1
|
Thaden JT, Ahn R, Ruffin F, Gjertson DW, Hoffmann A, Fowler VG, Yeaman MR. Use of Transcriptional Signatures to Differentiate Pathogen-Specific and Treatment-Specific Host Responses in Patients With Bacterial Bloodstream Infections. J Infect Dis 2024; 229:1535-1545. [PMID: 38001039 PMCID: PMC11095544 DOI: 10.1093/infdis/jiad498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Clinical outcomes in bacterial bloodstream infections (BSIs) are influenced by bacterial species, host immunity, and antibiotic therapy. The mechanisms by which such factors influence outcomes are poorly understood. We aimed to identify bacterial- and antibiotic-specific host transcriptional signatures in patients with bacterial BSI. METHODS RNA sequencing was performed on blood samples from patients with BSI due to gram-negative (GN) versus gram-positive (GP) pathogens: Escherichia coli (n = 30) or Klebsiella pneumoniae (n = 28) versus methicillin-susceptible Staphylococcus aureus (MSSA) (n = 24) or methicillin-resistant S. aureus (MRSA) (n = 58). Patients were matched by age, sex, and race. RESULTS No significant host transcriptome differences were detected in patients with E. coli versus K. pneumoniae BSI, so these were considered together as GN BSI. Relative to S. aureus BSI, patients with GN BSI had increased activation of the classic complement system. However, the most significant signal was a reduction in host transcriptional signatures involving mitochondrial energy transduction and oxidative burst in MRSA versus MSSA. This attenuated host transcriptional signature remained after controlling for antibiotic therapy. CONCLUSIONS Given the importance of immune cellular energetics and reactive oxygen species in eliminating hematogenous or intracellular MRSA, these findings may offer insights into its persistence relative to other bacterial BSIs.
Collapse
Affiliation(s)
- Joshua T Thaden
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard Ahn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Felicia Ruffin
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - David W Gjertson
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Department of Medicine, Divisions of Molecular Medicine and Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California, USA
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
2
|
Reel JM, Abbadi J, Bueno AJ, Cizio K, Pippin R, Doyle DA, Mortan L, Bose JL, Cox MA. The Sympathetic Nervous System Is Necessary for Development of CD4+ T-Cell Memory Following Staphylococcus aureus Infection. J Infect Dis 2023; 228:966-974. [PMID: 37163747 PMCID: PMC10547460 DOI: 10.1093/infdis/jiad154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Lymph nodes and spleens are innervated by sympathetic nerve fibers that enter alongside arteries. Despite discovery of these nerve fibers nearly 40 years ago, the role of these nerves during response to infection remains poorly defined. We have found that chemical depletion of sympathetic nerve fibers compromises the ability of mice to develop protective immune memory to a Staphylococcus aureus infection. Innate control of the primary infection was not impacted by sympathectomy. Germinal center formation is also compromised in nerve-depleted animals; however, protective antibody responses are still generated. Interestingly, protective CD4+ T-cell memory fails to form in the absence of sympathetic nerves after S aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Mortan
- Stephenson Cancer Center
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City
| | - Maureen A Cox
- Department of Microbiology and Immunology
- Stephenson Cancer Center
| |
Collapse
|
3
|
Nicolas A, Deplanche M, Commere PH, Diot A, Genthon C, Marques da Silva W, Azevedo V, Germon P, Jamme H, Guédon E, Le Loir Y, Laurent F, Bierne H, Berkova N. Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Front Cell Infect Microbiol 2022; 12:854242. [PMID: 35531332 PMCID: PMC9067450 DOI: 10.3389/fcimb.2022.854242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Aurélie Nicolas
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Martine Deplanche
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Pierre-Henri Commere
- Cytometry and Biomarkers Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Clemence Genthon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan, France
| | - Wanderson Marques da Silva
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Germon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université François Rabelais, Infectiologie et Santé Publique (ISP), Tours, France
| | - Hélène Jamme
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Maisons-Alfort, France
| | - Eric Guédon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Yves Le Loir
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Fréderic Laurent
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Hélène Bierne
- Université Paris-Saclay, Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nadia Berkova
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- *Correspondence: Nadia Berkova,
| |
Collapse
|
4
|
Zhang J, Wang C, An Q, Quan Q, Li M, Zhao D. Gene Expression Profile Analyses of the Skin Response of Balb/c-Nu Mice Model Injected by Staphylococcus aureus. Clin Cosmet Investig Dermatol 2022; 15:217-235. [PMID: 35210800 PMCID: PMC8857954 DOI: 10.2147/ccid.s348961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 01/20/2023]
Abstract
Background Pathogenesis and persistence of many skin diseases are related to Staphylococcus aureus (S. aureus) colonization. S. aureus infection can cause varying degrees of changes in cell gene expression, resulting in complex changes in cell phenotype and finally changes in cell life activities. Materials and Methods The transcriptomes of healthy and Staphylococcus aureus (S. aureus)-infected murine skin tissues were analyzed. We identified 638 differentially expressed genes (DEGs) in the infected tissues compared to the control samples, of which 324 were upregulated and 314 were downregulated, following the criteria of P < 0.01 and |log2FC| > 3. The DEGs were functionally annotated by Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and the protein–protein interaction (PPI) network analyses. Results The upregulated DEGs were mainly enriched in GO terms, such as response to stimulus, immune system process and signal transduction, as well as in the complement and coagulation cascade pathway. Thus, S. aureus infection likely activates these pathways to limit the influx of neutrophils and prevent skin damage. Four clusters were identified in the PPI network, and the major hubs were mainly related to cell cycle and proliferation, and mostly downregulated. The expression levels of Nox4, Mmrn1, Mcm5, Msx1 and Fgf5 mRNAs were validated by qRT-PCR and found to be consistent with the RNA-Seq data, confirming a strong correlation between the two approaches. Conclusion The identified genes and pathways are potential drug targets for treating skin inflammation caused by S. aureus and should be investigated further.
Collapse
Affiliation(s)
- Jiachan Zhang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Changtao Wang
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Qianghua Quan
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Meng Li
- Yunnan Baiyao Group Co., Ltd., Kunming, 650000, People's Republic of China
| | - Dan Zhao
- Beijing Key Lab of Plant Resource Research and Development, College of chemistry and materials engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| |
Collapse
|
5
|
Özcan A, Collado-Diaz V, Egholm C, Tomura M, Gunzer M, Halin C, Kolios AGA, Boyman O. CCR7-guided neutrophil redirection to skin-draining lymph nodes regulates cutaneous inflammation and infection. Sci Immunol 2022; 7:eabi9126. [PMID: 35119939 DOI: 10.1126/sciimmunol.abi9126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils are the first nonresident effector immune cells that migrate to a site of infection or inflammation; however, improper control of neutrophil responses can cause considerable tissue damage. Here, we found that neutrophil responses in inflamed or infected skin were regulated by CCR7-dependent migration and phagocytosis of neutrophils in draining lymph nodes (dLNs). In mouse models of Toll-like receptor-induced skin inflammation and cutaneous Staphylococcus aureus infection, neutrophils migrated from the skin to the dLNs via lymphatic vessels in a CCR7-mediated manner. In the dLNs, these neutrophils were phagocytosed by lymph node-resident type 1 and type 2 conventional dendritic cells. CCR7 up-regulation on neutrophils was a conserved mechanism across different tissues and was induced by a broad range of microbial stimuli. In the context of cutaneous immune responses, disruption of CCR7 interactions by selective CCR7 deficiency of neutrophils resulted in increased antistaphylococcal immunity and aggravated skin inflammation. Thus, neutrophil homing to and clearance in skin-dLNs affects cutaneous immunity versus pathology.
Collapse
Affiliation(s)
- A Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - V Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - C Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - M Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - C Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - A G A Kolios
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - O Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Ghosh R, Dey R, Sawoo R, Bishayi B. Neutralization of IL-17 and treatment with IL-2 protects septic arthritis by regulating free radical production and antioxidant enzymes in Th17 and Tregs: An immunomodulatory TLR2 versus TNFR response. Cell Immunol 2021; 370:104441. [PMID: 34628221 DOI: 10.1016/j.cellimm.2021.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Septic arthritis is a destructive joint disease caused by Staphylococcus aureus. Synovial inflammation involved Th17 proliferation and down regulation of Treg population, thus resolution of inflammation targeting IL-17 may be important to control arthritis. Endogenous inhibition of IL-17 to regulate arthritic inflammation correlating with Th17/Treg cells TLR2 and TNFRs are not done. The role of SOD, CAT and GRx in relation to ROS production during arthritis along with expression of TLR2, TNFR1/TNFR2 in Th17/Treg cells of mice treated with IL-17A Ab/ IL-2 were studied. Increased ROS, reduced antioxidant enzyme activity was found in Th17 cells of SA infected mice whereas Treg cells of IL-17A Ab/ IL-2 treated group showed opposite effects. Neutralization of IL-17 after arthritis cause decreased TNFR1 and increased TNFR2 expression in Treg cells. Thus, neutralization of IL-17 or IL-2 treatment regulates septic arthritis by enhancing anti-inflammatory properties of Treg via antioxidant balance and modulating TLR2/TNFR response.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
7
|
Chen M, Xu Y, Wang W, Wang X, Qiu L, Chen S, Kan H, Ying Z. Paternal Exposure to PM 2.5 Programs Offspring's Energy Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6097-6106. [PMID: 33825453 DOI: 10.1021/acs.est.0c08161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Considerable studies show that maternal exposure to ambient fine particulate matter (PM2.5) programs offspring's susceptibility to obesity. However, few studies have investigated the effect of paternal PM2.5 exposure on offspring's energy homeostasis. This study thus tested whether paternal PM2.5 exposure programs offspring's energy homeostasis. Male C57Bl/6J mice were exposed to filtered air or concentrated ambient PM2.5 (CAP) for 12 weeks and then mated with normal female C57Bl/6J mice. The offspring were assessed for growth trajectories, food intakes, and body compositions, and the sperm miRNAs of those sires were profiled by microarray. Zygotic injection was used to test whether the miRNA identified by the microarray mediates the impact of paternal PM2.5 exposure on offspring's energy homeostasis. Paternal CAP exposure resulted in significant hypophagia and weight loss in male, but not female, offspring. The weight loss of male offspring was accompanied by decreases in the liver and kidney masses and paradoxically an increase in the adipose mass. Without further exposure to CAP, this programming was three-generationally transmitted along the paternal line. The sperm miRNA profiling revealed that mmu-mir6909-5p was the sole differentially expressed sperm miRNA due to PM2.5 exposure, and zygotic injection of mmu-mir6909-5p mimicked all the effects of paternal PM2.5 exposure on offspring's energy homeostasis. Paternal PM2.5 exposure programs offspring's energy homeostasis through increasing paternal sperm mmu-mir6909-5p.
Collapse
Affiliation(s)
- Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wanjun Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoke Wang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Sufang Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Endocrinology, The People's Hospital of Zhengzhou University (Henan Provincial People's Hospital), Zhengzhou, Henan 450003, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Abstract
We report a systematic unbiased analysis of small RNA molecule expression in 11 different tissues of the model organism mouse. We discovered uncharacterized noncoding RNA molecules and identified that ∼30% of total noncoding small RNA transcriptome are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. Distinct distribution patterns of small RNA across the body suggest the existence of tissue-specific mechanisms involved in noncoding RNA processing. Small noncoding RNAs (ncRNAs) play a vital role in a broad range of biological processes both in health and disease. A comprehensive quantitative reference of small ncRNA expression would significantly advance our understanding of ncRNA roles in shaping tissue functions. Here, we systematically profiled the levels of five ncRNA classes (microRNA [miRNA], small nucleolar RNA [snoRNA], small nuclear RNA [snRNA], small Cajal body-specific RNA [scaRNA], and transfer RNA [tRNA] fragments) across 11 mouse tissues by deep sequencing. Using 14 biological replicates spanning both sexes, we identified that ∼30% of small ncRNAs are distributed across the body in a tissue-specific manner with some also being sexually dimorphic. We found that some miRNAs are subject to “arm switching” between healthy tissues and that tRNA fragments are retained within tissues in both a gene- and a tissue-specific manner. Out of 11 profiled tissues, we confirmed that brain contains the largest number of unique small ncRNA transcripts, some of which were previously annotated while others are identified in this study. Furthermore, by combining these findings with single-cell chromatin accessibility (scATAC-seq) data, we were able to connect identified brain-specific ncRNAs with their cell types of origin. These results yield the most comprehensive characterization of specific and ubiquitous small RNAs in individual murine tissues to date, and we expect that these data will be a resource for the further identification of ncRNAs involved in tissue function in health and dysfunction in disease.
Collapse
|
9
|
Stairiker CJ, van Meurs M, Leon LG, Brouwers-Haspels AA, Rijsbergen L, Mueller YM, Katsikis PD. Heatr9 is an infection responsive gene that affects cytokine production in alveolar epithelial cells. PLoS One 2020; 15:e0236195. [PMID: 32678841 PMCID: PMC7367486 DOI: 10.1371/journal.pone.0236195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/30/2020] [Indexed: 12/23/2022] Open
Abstract
During infection, viruses enter susceptible host cells in order to replicate their components for production of new virions. In the process of infection, the gene expression of infected cells undergoes changes because of the production of viral components and due to the host response from detection of viral products. In the advent of RNA sequencing, the discovery of new genes and their functions in the host response generates new avenues for interventions in the host-pathogen interaction. We have identified a novel gene, Heatr9, as a virus and cytokine inducible viral responsive gene. We confirm Heatr9’s expression in vitro and in vivo during virus infection and correlate it with viral burden. Heatr9 is induced by influenza virus and RSV. Heatr9 knockdown during viral infection was shown to affect chemokine expression. Our studies identify Heatr9 as a novel inflammatory and virus infection induced gene that can regulate the induction of specific cytokines.
Collapse
Affiliation(s)
- Christopher J. Stairiker
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leticia G. Leon
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - A. A. Brouwers-Haspels
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Laurine Rijsbergen
- Department of Virology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yvonne M. Mueller
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Marchitto MC, Dillen CA, Liu H, Miller RJ, Archer NK, Ortines RV, Alphonse MP, Marusina AI, Merleev AA, Wang Y, Pinsker BL, Byrd AS, Brown ID, Ravipati A, Zhang E, Cai SS, Limjunyawong N, Dong X, Yeaman MR, Simon SI, Shen W, Durum SK, O'Brien RL, Maverakis E, Miller LS. Clonal Vγ6 +Vδ4 + T cells promote IL-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A 2019; 116:10917-10926. [PMID: 31088972 PMCID: PMC6561199 DOI: 10.1073/pnas.1818256116] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cell cytokines contribute to immunity against Staphylococcus aureus, but the predominant T cell subsets involved are unclear. In an S. aureus skin infection mouse model, we found that the IL-17 response was mediated by γδ T cells, which trafficked from lymph nodes to the infected skin to induce neutrophil recruitment, proinflammatory cytokines IL-1α, IL-1β, and TNF, and host defense peptides. RNA-seq for TRG and TRD sequences in lymph nodes and skin revealed a single clonotypic expansion of the encoded complementarity-determining region 3 amino acid sequence, which could be generated by canonical nucleotide sequences of TRGV5 or TRGV6 and TRDV4 However, only TRGV6 and TRDV4 but not TRGV5 sequences expanded. Finally, Vγ6+ T cells were a predominant γδ T cell subset that produced IL-17A as well as IL-22, TNF, and IFNγ, indicating a broad and substantial role for clonal Vγ6+Vδ4+ T cells in immunity against S. aureus skin infections.
Collapse
Affiliation(s)
- Mark C Marchitto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alina I Marusina
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Angel S Byrd
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Isabelle D Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Emily Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Shuting S Cai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael R Yeaman
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Wei Shen
- Cytokines and Immunity Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80206
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
11
|
Randad PR, Dillen CA, Ortines RV, Mohr D, Aziz M, Price LB, Kaya H, Larsen J, Carroll KC, Smith TC, Miller LS, Heaney CD. Comparison of livestock-associated and community-associated Staphylococcus aureus pathogenicity in a mouse model of skin and soft tissue infection. Sci Rep 2019; 9:6774. [PMID: 31043631 PMCID: PMC6494861 DOI: 10.1038/s41598-019-42919-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/08/2019] [Indexed: 11/08/2022] Open
Abstract
Industrial hog operation (IHO) workers are at increased risk of carrying Staphylococcus aureus in their nares, particularly strains that are livestock-associated (LA) and multidrug-resistant. The pathogenicity of LA-S. aureus strains remains unclear, with some prior studies suggesting reduced transmission and virulence in humans compared to community-associated methicillin-resistant (CA-MRSA) S. aureus. The objective of this study was to determine the degree to which LA-S. aureus strains contracted by IHO workers cause disease relative to a representative CA-MRSA strain in a mouse model of skin and soft tissue infection (SSTI). Mice infected with CC398 LA-S. aureus strains (IHW398-1 and IHW398-2) developed larger lesion sizes with higher bacterial burden than mice infected with CA-MRSA (SF8300) (p < 0.05). The greatest lesion size and bacterial burden was seen with a CC398 strain that produced a recurrent SSTI in an IHO worker. The LA-S. aureus infected mice had decreased IL-1β protein levels compared with CA-MRSA-infected mice (p < 0.05), suggesting a suboptimal host response to LA-S. aureus SSTIs. WGSA revealed heterogeneity in virulence factor and antimicrobial resistance genes carried by LA-S. aureus and CA-MRSA strains. The observed pathogenicity suggest that more attention should be placed on preventing the spread of LA-S. aureus into human populations.
Collapse
Affiliation(s)
- Pranay R. Randad
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| | - Carly A. Dillen
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - David Mohr
- Genetic Resources Core Facility, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Maliha Aziz
- Department of Environmental and Occupational Health, George Washington University, Washington, D.C. USA
- Antibiotic Resistance Action Center, George Washington University, Washington, D.C. USA
| | - Lance B. Price
- Department of Environmental and Occupational Health, George Washington University, Washington, D.C. USA
- Antibiotic Resistance Action Center, George Washington University, Washington, D.C. USA
| | - Hülya Kaya
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jesper Larsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Karen C. Carroll
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Tara C. Smith
- Department of Epidemiology and Biostatistics, Kent State University, Kent, Ohio, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, Maryland USA
| | - Christopher D. Heaney
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland USA
| |
Collapse
|
12
|
Lindfors E, van Dam JCJ, Lam CMC, Zondervan NA, Martins dos Santos VAP, Suarez-Diez M. SyNDI: synchronous network data integration framework. BMC Bioinformatics 2018; 19:403. [PMID: 30400817 PMCID: PMC6219086 DOI: 10.1186/s12859-018-2426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Systems biology takes a holistic approach by handling biomolecules and their interactions as big systems. Network based approach has emerged as a natural way to model these systems with the idea of representing biomolecules as nodes and their interactions as edges. Very often the input data come from various sorts of omics analyses. Those resulting networks sometimes describe a wide range of aspects, for example different experiment conditions, species, tissue types, stimulating factors, mutants, or simply distinct interaction features of the same network produced by different algorithms. For these scenarios, synchronous visualization of more than one distinct network is an excellent mean to explore all the relevant networks efficiently. In addition, complementary analysis methods are needed and they should work in a workflow manner in order to gain maximal biological insights. RESULTS In order to address the aforementioned needs, we have developed a Synchronous Network Data Integration (SyNDI) framework. This framework contains SyncVis, a Cytoscape application for user-friendly synchronous and simultaneous visualization of multiple biological networks, and it is seamlessly integrated with other bioinformatics tools via the Galaxy platform. We demonstrated the functionality and usability of the framework with three biological examples - we analyzed the distinct connectivity of plasma metabolites in networks associated with high or low latent cardiovascular disease risk; deeper insights were obtained from a few similar inflammatory response pathways in Staphylococcus aureus infection common to human and mouse; and regulatory motifs which have not been reported associated with transcriptional adaptations of Mycobacterium tuberculosis were identified. CONCLUSIONS Our SyNDI framework couples synchronous network visualization seamlessly with additional bioinformatics tools. The user can easily tailor the framework for his/her needs by adding new tools and datasets to the Galaxy platform.
Collapse
Affiliation(s)
- Erno Lindfors
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
| | - Jesse C. J. van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Niels A. Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Vitor A. P. Martins dos Santos
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
13
|
Burns EN, Bordbari MH, Mienaltowski MJ, Affolter VK, Barro MV, Gianino F, Gianino G, Giulotto E, Kalbfleisch TS, Katzman SA, Lassaline M, Leeb T, Mack M, Müller EJ, MacLeod JN, Ming-Whitfield B, Alanis CR, Raudsepp T, Scott E, Vig S, Zhou H, Petersen JL, Bellone RR, Finno CJ. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Anim Genet 2018; 49:564-570. [PMID: 30311254 DOI: 10.1111/age.12717] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.
Collapse
Affiliation(s)
- E N Burns
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M J Mienaltowski
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - V K Affolter
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M V Barro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - F Gianino
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - G Gianino
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E Giulotto
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, Pavia, I-27100, Italy
| | - T S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - S A Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - M Lassaline
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - M Mack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E J Müller
- Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, 3001, Switzerland
| | - J N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - B Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C R Alanis
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA
| | - E Scott
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - S Vig
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - H Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE, 68583, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Merleev AA, Marusina AI, Ma C, Elder JT, Tsoi LC, Raychaudhuri SP, Weidinger S, Wang EA, Adamopoulos IE, Luxardi G, Gudjonsson JE, Shimoda M, Maverakis E. Meta-analysis of RNA sequencing datasets reveals an association between TRAJ23, psoriasis, and IL-17A. JCI Insight 2018; 3:120682. [PMID: 29997305 DOI: 10.1172/jci.insight.120682] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Numerous studies of relatively few patients have linked T cell receptor (TCR) genes to psoriasis but have yielded dramatically conflicting results. To resolve these discrepancies, we have chosen to mine RNA-Seq datasets for patterns of TCR gene segment usage in psoriasis. A meta-analysis of 3 existing and 1 unpublished datasets revealed a statistically significant link between the relative expression of TRAJ23 and psoriasis and the psoriasis-associated cytokine IL-17A. TRGV5, a TCR-γ segment, was also associated with psoriasis but correlated instead with IL-36A, other IL-36 family members, and IL-17C (not IL-17A). In contrast, TRAJ39 was strongly associated with healthy skin. T cell diversity measurements and analysis of CDR3 sequences were also conducted, revealing no psoriasis-associated public CDR3 sequences. Finally, in comparison with the expression of TCR-αβ genes, the expression of TCR-γδ genes was relatively low but mildly elevated in psoriatic skin. These results have implications for the development of targeted therapies for psoriasis and other autoimmune diseases. Also, the techniques employed in this study have applications in other fields, such as cancer immunology and infectious disease.
Collapse
Affiliation(s)
- Alexander A Merleev
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Alina I Marusina
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Chelsea Ma
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Siba P Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy & Clinical immunology, UCD School of Medicine, Sacramento, California, USA.,VA Medical Center Sacramento, Division of Rheumatology & Immunology, Sacramento, California, USA
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Elizabeth A Wang
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Iannis E Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy & Clinical immunology, UCD School of Medicine, Sacramento, California, USA
| | - Guillaume Luxardi
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | | | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA.,Department of Medical Microbiology and Immunology, School of Medicine, UCD, California, USA
| |
Collapse
|
15
|
Greenberg JA, Hrusch CL, Jaffery MR, David MZ, Daum RS, Hall JB, Kress JP, Sperling AI, Verhoef PA. Distinct T-helper cell responses to Staphylococcus aureus bacteremia reflect immunologic comorbidities and correlate with mortality. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:107. [PMID: 29695270 PMCID: PMC5916828 DOI: 10.1186/s13054-018-2025-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The dysregulated host immune response that defines sepsis varies as a function of both the immune status of the host and the distinct nature of the pathogen. The degree to which immunocompromising comorbidities or immunosuppressive medications affect the immune response to infection is poorly understood because these patients are often excluded from studies about septic immunity. The objectives of this study were to determine the immune response to a single pathogen (Staphylococcus aureus) among a diverse case mix of patients and to determine whether comorbidities affect immune and clinical outcomes. METHODS Blood samples were drawn from 95 adult inpatients at multiple time points after the first positive S. aureus blood culture. Cox proportional hazards modeling was used to determine the associations between admission neutrophil counts, admission lymphocyte counts, cytokine levels, and 90-day mortality. A nested case-control flow cytometric analysis was conducted to determine T-helper type 1 (Th1), Th2, Th17, and regulatory T-cell (Treg) subsets among a subgroup of 28 patients. In a secondary analysis, we categorized patients as either having immunocompromising disorders (human immunodeficiency virus and hematologic malignancies), receiving immunosuppressive medications, or being not immunocompromised. RESULTS Higher neutrophil-to-lymphocyte count ratios and higher Th17 cytokine responses relative to Th1 cytokine responses early after infection were independently associated with mortality and did not depend on the immune state of the patient (HR 1.93, 95% CI 1.17-3.17, p = 0.01; and HR 1.13, 95% CI 1.01-1.27, p = 0.03, respectively). On the basis of flow cytometric analysis of CD4 T-helper subsets, an increasing Th17/Treg response over the course of the infection was most strongly associated with increased mortality (HR 4.41, 95% CI 1.69-11.5, p < 0.01). This type of immune response was most common among patients who were not immunocompromised. In contrast, among immunocompromised patients who died, a decreasing Th1/Treg response was most common. CONCLUSIONS The association of both increased Th17 responses and increased neutrophil counts relative to lymphocyte counts with mortality suggests that an overwhelming inflammatory response is detrimental. However, the differential responses of patients according to immune state suggest that immune status is an important clinical indicator that should be accounted for in the management of septic patients, as well as in the development of novel immunomodulatory therapies.
Collapse
Affiliation(s)
- Jared A Greenberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rush University Medical Center, 1725 West Harrison Street, Suite 054, Chicago, IL, 60612, USA.
| | - Cara L Hrusch
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mohammad R Jaffery
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Michael Z David
- Division of Infectious Disease, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert S Daum
- Section of Infectious Disease and Global Health, Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Jesse B Hall
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - John P Kress
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne I Sperling
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.,Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Philip A Verhoef
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Brady RA, Mocca CP, Plaut RD, Takeda K, Burns DL. Comparison of the immune response during acute and chronic Staphylococcus aureus infection. PLoS One 2018; 13:e0195342. [PMID: 29596507 PMCID: PMC5875981 DOI: 10.1371/journal.pone.0195342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/20/2018] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus bacteria are able to grow in a planktonic state that is associated with acute infections and in biofilms that are associated with chronic infections. Acute infections, such as skin infections, are often self-limiting. However, chronic infections, such as implant infections, can be difficult to clear and may require surgical intervention. The host immune response may contribute to the different outcomes often associated with these two disease types. We used proteomic arrays and two murine models for an initial, descriptive characterization of the contribution of the host immune response to outcomes of acute versus chronic S. aureus disease. We compared the immune responses between a model of self-limiting skin and soft tissue infection caused by the planktonic form of S. aureus versus a model of surgical mesh implant infection, which we show to be caused by a bacterial biofilm. The significantly altered host cytokines and chemokines were largely different in the two models, with responses diminished by 21 days post-implantation in surgical mesh infection. Because bacterial levels remained constant during the 21 days that the surgical mesh infection was followed, those cytokines that are significantly increased during chronic infection are not likely effective in eradicating biofilm. Comparison of the levels of cytokines and chemokines in acute versus chronic S. aureus infection can provide a starting point for evaluation of the role of specific immune factors that are present in one disease manifestation but not the other.
Collapse
Affiliation(s)
- Rebecca A. Brady
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Christopher P. Mocca
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| | - Roger D. Plaut
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| | - Drusilla L. Burns
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring, Maryland, United States of America
| |
Collapse
|
17
|
Dillen CA, Pinsker BL, Marusina AI, Merleev AA, Farber ON, Liu H, Archer NK, Lee DB, Wang Y, Ortines RV, Lee SK, Marchitto MC, Cai SS, Ashbaugh AG, May LS, Holland SM, Freeman AF, Miller LG, Yeaman MR, Simon SI, Milner JD, Maverakis E, Miller LS. Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection. J Clin Invest 2018; 128:1026-1042. [PMID: 29400698 PMCID: PMC5824877 DOI: 10.1172/jci96481] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/19/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms that mediate durable protection against Staphylococcus aureus skin reinfections are unclear, as recurrences are common despite high antibody titers and memory T cells. Here, we developed a mouse model of S. aureus skin reinfection to investigate protective memory responses. In contrast with WT mice, IL-1β-deficient mice exhibited poor neutrophil recruitment and bacterial clearance during primary infection that was rescued during secondary S. aureus challenge. The γδ T cells from skin-draining LNs utilized compensatory T cell-intrinsic TLR2/MyD88 signaling to mediate rescue by trafficking and producing TNF and IFN-γ, which restored neutrophil recruitment and promoted bacterial clearance. RNA-sequencing (RNA-seq) of the LNs revealed a clonotypic S. aureus-induced γδ T cell expansion with a complementarity-determining region 3 (CDR3) aa sequence identical to that of invariant Vγ5+ dendritic epidermal T cells. However, this T cell receptor γ (TRG) aa sequence of the dominant CDR3 sequence was generated from multiple gene rearrangements of TRGV5 and TRGV6, indicating clonotypic expansion. TNF- and IFN-γ-producing γδ T cells were also expanded in peripheral blood of IRAK4-deficient humans no longer predisposed to S. aureus skin infections. Thus, clonally expanded γδ T cells represent a mechanism for long-lasting immunity against recurrent S. aureus skin infections.
Collapse
Affiliation(s)
- Carly A. Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bret L. Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alina I. Marusina
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | | | - Orly N. Farber
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Da B. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven K. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark C. Marchitto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuting S. Cai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alyssa G. Ashbaugh
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Larissa S. May
- Department of Emergency Medicine, School of Medicine, UCD, Sacramento, California, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Michael R. Yeaman
- Division of Infectious Diseases
- Division of Molecular Medicine, and
- St. John’s Cardiovascular Research Center, Los Angeles Biomedical Research Institute, Harbor–UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Scott I. Simon
- Department of Biomedical Engineering, UCD, Davis, California, USA
| | - Joshua D. Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, UCD, Sacramento, California, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, and
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Reeves PM, Sluder AE, Paul SR, Scholzen A, Kashiwagi S, Poznansky MC. Application and utility of mass cytometry in vaccine development. FASEB J 2017; 32:5-15. [PMID: 29092906 DOI: 10.1096/fj.201700325r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
Mass cytometry enables highly multiplexed profiling of cellular immune responses in limited-volume samples, advancing prospects of a new era of systems immunology. The capabilities of mass cytometry offer expanded potential for deciphering immune responses to infectious diseases and to vaccines. Several studies have used mass cytometry to profile protective immune responses, both postinfection and postvaccination, although no vaccine-development program has yet systematically employed the technology from the outset to inform both candidate design and clinical evaluation. In this article, we review published mass cytometry studies relevant to vaccine development, briefly compare immune profiling by mass cytometry to other systems-level technologies, and discuss some general considerations for deploying mass cytometry in the context of vaccine development.-Reeves, P. M., Sluder, A. E., Raju Paul, S., Scholzen, A., Kashiwagi, S., Poznansky, M. C. Application and utility of mass cytometry in vaccine development.
Collapse
Affiliation(s)
- Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | | | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital-East, Boston, Massachusetts, USA; and
| |
Collapse
|
19
|
Bent ZW, Poorey K, LaBauve AE, Hamblin R, Williams KP, Meagher RJ. A Rapid Spin Column-Based Method to Enrich Pathogen Transcripts from Eukaryotic Host Cells Prior to Sequencing. PLoS One 2016; 11:e0168788. [PMID: 28002481 PMCID: PMC5176299 DOI: 10.1371/journal.pone.0168788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023] Open
Abstract
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.
Collapse
Affiliation(s)
- Zachary W. Bent
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| | - Kunal Poorey
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Annette E. LaBauve
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Hamblin
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Kelly P. Williams
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Robert J. Meagher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| |
Collapse
|
20
|
Omics Approaches for the Study of Adaptive Immunity to Staphylococcus aureus and the Selection of Vaccine Candidates. Proteomes 2016; 4:proteomes4010011. [PMID: 28248221 PMCID: PMC5217363 DOI: 10.3390/proteomes4010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 03/01/2016] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is a dangerous pathogen both in hospitals and in the community. Due to the crisis of antibiotic resistance, there is an urgent need for new strategies to combat S. aureus infections, such as vaccination. Increasing our knowledge about the mechanisms of protection will be key for the successful prevention or treatment of S. aureus invasion. Omics technologies generate a comprehensive picture of the physiological and pathophysiological processes within cells, tissues, organs, organisms and even populations. This review provides an overview of the contribution of genomics, transcriptomics, proteomics, metabolomics and immunoproteomics to the current understanding of S. aureus‑host interaction, with a focus on the adaptive immune response to the microorganism. While antibody responses during colonization and infection have been analyzed in detail using immunoproteomics, the full potential of omics technologies has not been tapped yet in terms of T-cells. Omics technologies promise to speed up vaccine development by enabling reverse vaccinology approaches. In consequence, omics technologies are powerful tools for deepening our understanding of the “superbug” S. aureus and for improving its control.
Collapse
|