1
|
Bastien BL, Haury WR, Smisko WR, Hart MP. nlr-1/CNTNAP regulates dopamine circuit structure and foraging behaviors in C. elegans. Commun Biol 2024; 7:1248. [PMID: 39358459 PMCID: PMC11447218 DOI: 10.1038/s42003-024-06936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The neurexin superfamily, consisting of neurexins and Casprs, play important roles in the development, maintenance, function, and plasticity of neuronal circuits. Caspr/CNTNAP genes are linked to alterations in neuronal circuits and associated with neurodevelopmental and neurodegenerative conditions. Casprs are implicated in multiple neuronal signaling pathways, including dopamine; however, the molecular mechanisms by which Casprs differentially alter specific signaling pathways and downstream behaviors are unclear. We find that the C. elegans Caspr nlr-1 functions in neurons to control foraging behaviors, acting in distinct monoamine neurons to modulate locomotor activity in the presence or absence of food. nlr-1 functions in dopamine neurons to reduce activity in the absence of food, similar to the role of dopamine, and regulates dopamine signaling through D2-like receptors. Furthermore, nlr-1 contributes to proper morphology and presynaptic structure of dopamine neurons, dopamine receptor expression and localization, and the behavioral response to dopamine. We find that nlr-1 similarly regulates another dopamine-dependent behavior, the basal slowing response. Therefore, spatial manipulation of a broadly expressed neuronal gene is sufficient to alter neural circuits and behavior and uncovers important functions masked by global manipulation, highlighting the importance of genetic variation and mechanisms that impact spatial expression of genes to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William R Haury
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William R Smisko
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Binder MS, Escobar I, Xu Y, Sokolov AM, Zhang L, Bordey A. Reducing Filamin A Restores Cortical Synaptic Connectivity and Early Social Communication Following Cellular Mosaicism in Autism Spectrum Disorder Pathways. J Neurosci 2024; 44:e1245232024. [PMID: 39164108 PMCID: PMC11426378 DOI: 10.1523/jneurosci.1245-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024] Open
Abstract
Communication in the form of nonverbal, social vocalization, or crying is evolutionary conserved in mammals and is impaired early in human infants that are later diagnosed with autism spectrum disorder (ASD). Defects in infant vocalization have been proposed as an early sign of ASD that may exacerbate ASD development. However, the neural mechanisms associated with early communicative deficits in ASD are not known. Here, we expressed a constitutively active mutant of Rheb (RhebS16H), which is known to upregulate two ASD core pathways, mTOR complex 1 (mTORC1) and ERK1/2, in Layer (L) 2/3 pyramidal neurons of the neocortex of mice of either sex. We found that cellular mosaic expression of RhebS16H in L2/3 pyramidal neurons altered the production of isolation calls from neonatal mice. This was accompanied by an expected misplacement of neurons and dendrite overgrowth, along with an unexpected increase in spine density and length, which was associated with increased excitatory synaptic activity. This contrasted with the known decrease in spine density in RhebS16H neurons of 1-month-old mice. Reducing the levels of the actin cross-linking and adaptor protein filamin A (FLNA), known to be increased downstream of ERK1/2, attenuated dendrite overgrowth and fully restored spine properties, synaptic connectivity, and the production of pup isolation calls. These findings suggest that upper-layer cortical pyramidal neurons contribute to communicative deficits in a condition known to affect two core ASD pathways and that these mechanisms are regulated by FLNA.
Collapse
Affiliation(s)
- Matthew S Binder
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Iris Escobar
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Youfen Xu
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Aidan M Sokolov
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Longbo Zhang
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular & Molecular Physiology, Wu Tsai Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8082
| |
Collapse
|
3
|
Zhang Q, Xing M, Bao Z, Xu L, Bai Y, Chen W, Pan W, Cai F, Wang Q, Guo S, Zhang J, Wang Z, Wu Y, Zhang Y, Li JD, Song W. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes. Signal Transduct Target Ther 2024; 9:51. [PMID: 38424048 PMCID: PMC10904759 DOI: 10.1038/s41392-024-01768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the Contactin-associated protein-like 2 (CNTNAP2) gene are associated with autism spectrum disorder (ASD), and ectodomain shedding of the CNTNAP2 protein plays a role in its function. However, key enzymes involved in the C-terminal cleavage of CNTNAP2 remain largely unknown, and the effect of ASD-associated mutations on this process and its role in ASD pathogenesis remain elusive. In this report we showed that CNTNAP2 undergoes sequential cleavages by furin, ADAM10/17-dependent α-secretase and presenilin-dependent γ-secretase. We identified that the cleavage sites of ADAM10 and ADAM17 in CNTNAP2 locate at its C-terminal residue I79 and L96, and the main α-cleavage product C79 by ADAM10 is required for the subsequent γ-secretase cleavage to generate CNTNAP2 intracellular domain (CICD). ASD-associated CNTNAP2 mutations impair the α-cleavage to generate C79, and the inhibition leads to ASD-like repetitive and social behavior abnormalities in the Cntnap2-I1254T knock-in mice. Finally, exogenous expression of C79 improves autism-like phenotypes in the Cntnap2-I1254T knock-in and Cntnap2-/- knockout mice. This data demonstrates that the α-secretase is essential for CNTNAP2 processing and its function. Our study indicates that inhibition of the cleavage by pathogenic mutations underlies ASD pathogenesis, and upregulation of its C-terminal fragments could have therapeutical potentials for ASD treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wanqi Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jia-Da Li
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Wang HC, Feldman DE. Degraded tactile coding in the Cntnap2 mouse model of autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560240. [PMID: 37808857 PMCID: PMC10557772 DOI: 10.1101/2023.09.29.560240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Atypical sensory processing in autism involves altered neural circuit function and neural coding in sensory cortex, but the nature of coding disruption is poorly understood. We characterized neural coding in L2/3 of whisker somatosensory cortex (S1) of Cntnap2-/- mice, an autism model with pronounced hypofunction of parvalbumin (PV) inhibitory circuits. We tested for both excess spiking, which is often hypothesized in autism models with reduced inhibition, and alterations in somatotopic coding, using c-fos immunostaining and 2-photon calcium imaging in awake mice. In Cntnap2-/- mice, c-fos-(+) neuron density was elevated in L2/3 of S1 under spontaneous activity conditions, but comparable to control mice after whisker stimulation, suggesting that sensory-evoked spiking was relatively normal. 2-photon GCaMP8m imaging in L2/3 pyramidal cells revealed no increase in whisker-evoked response magnitude, but instead showed multiple signs of degraded somatotopic coding. These included broadening of whisker tuning curves, blurring of the whisker map, and blunting of the point representation of each whisker. These altered properties were more pronounced in noisy than sparse sensory conditions. Tuning instability, assessed over 2-3 weeks of longitudinal imaging, was also significantly increased in Cntnap2-/- mice. Thus, Cntnap2-/- mice show no excess spiking, but a degraded and unstable tactile code in S1.
Collapse
Affiliation(s)
- Han Chin Wang
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Daniel E. Feldman
- Department of Molecular & Cell Biology, and Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Li X, Hao S, Zou S, Tu X, Kong W, Jiang T, Chen JG. Cortex-restricted deletion of Foxp1 impairs barrel formation and induces aberrant tactile responses in a mouse model of autism. Mol Autism 2023; 14:34. [PMID: 37691105 PMCID: PMC10494400 DOI: 10.1186/s13229-023-00567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Many children and young people with autism spectrum disorder (ASD) display touch defensiveness or avoidance (hypersensitivity), or engage in sensory seeking by touching people or objects (hyposensitivity). Abnormal sensory responses have also been noticed in mice lacking ASD-associated genes. Tactile sensory information is normally processed by the somatosensory system that travels along the thalamus to the primary somatosensory cortex. The neurobiology behind tactile sensory abnormalities, however, is not fully understood. METHODS We employed cortex-specific Foxp1 knockout (Foxp1-cKO) mice as a model of autism in this study. Tactile sensory deficits were measured by the adhesive removal test. The mice's behavior and neural activity were further evaluated by the whisker nuisance test and c-Fos immunofluorescence, respectively. We also studied the dendritic spines and barrel formation in the primary somatosensory cortex by Golgi staining and immunofluorescence. RESULTS Foxp1-cKO mice had a deferred response to the tactile environment. However, the mice exhibited avoidance behavior and hyper-reaction following repeated whisker stimulation, similar to a fight-or-flight response. In contrast to the wild-type, c-Fos was activated in the basolateral amygdala but not in layer IV of the primary somatosensory cortex of the cKO mice. Moreover, Foxp1 deficiency in cortical neurons altered the dendrite development, reduced the number of dendritic spines, and disrupted barrel formation in the somatosensory cortex, suggesting impaired somatosensory processing may underlie the aberrant tactile responses. LIMITATIONS It is still unclear how the defective thalamocortical connection gives rise to the hyper-reactive response. Future experiments with electrophysiological recording are needed to analyze the role of thalamo-cortical-amygdala circuits in the disinhibiting amygdala and enhanced fearful responses in the mouse model of autism. CONCLUSIONS Foxp1-cKO mice have tactile sensory deficits while exhibit hyper-reactivity, which may represent fearful and emotional responses controlled by the amygdala. This study presents anatomical evidence for reduced thalamocortical connectivity in a genetic mouse model of ASD and demonstrates that the cerebral cortex can be the origin of atypical sensory behaviors.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Shishuai Hao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Shimin Zou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xiaomeng Tu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Weixi Kong
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Tian Jiang
- Research Center for Translational Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, 317500, People's Republic of China
| | - Jie-Guang Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, People's Republic of China.
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
6
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
7
|
Zhang Q, Sterling K, Xu L, Xing M, Cai F, Yu S, Bestard-Lorigados I, Song W. CNTNAP2 Protein Is Degraded by the Ubiquitin-Proteasome System and the Macroautophagy-Lysosome Pathway. Mol Neurobiol 2023; 60:2455-2469. [PMID: 36658382 DOI: 10.1007/s12035-023-03227-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023]
Abstract
Contactin-associated protein-like 2 (CNTNAP2) gene, located on chromosome 7q35, is one of the largest genes in the human genome. CNTNAP2 protein is a type-I transmembrane protein specifically expressed in the nervous system, with versatile roles in the axonal organization, synaptic functions, neuronal migration, and functional connectivity. CNTNAP2 has been widely investigated as a risk gene for autism spectrum disorder (ASD), and recent studies also implicated CNTNAP2 in Alzheimer's disease (AD). Knowledge of the regulations on CNTNAP2's life cycle is necessary for understanding the related physiological functions and pathological conditions. However, the mechanisms underlying CNTNAP2 protein degradation remain elusive. Therefore, we systematically investigated the half-life and degradation pathway of the human CNTNAP2 protein. We discovered that CNTNAP2 has C-terminal fragments (CTF), which may have essential physiological functions. Our results demonstrated that CNTNAP2 full-length protein and CTF have a short half-life of about 3-4 h. CNTNAP2 proteins are degraded by the ubiquitin-proteasome system and the macroautophagy-lysosome pathway, while the lysosome pathway is more common for CNTNAP2 degradation. This study will provide novel insights and valuable tools for CNTNAP2 functional research in physiological and pathological scenarios.
Collapse
Affiliation(s)
- Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Sheng Yu
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Isabel Bestard-Lorigados
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
8
|
Zhang Q, Xu L, Bai Y, Chen P, Xing M, Cai F, Wu Y, Song W. Intermittent hypoxia-induced enhancement of sociability and working memory associates with CNTNAP2 upregulation. Front Mol Neurosci 2023; 16:1155047. [PMID: 37089693 PMCID: PMC10118049 DOI: 10.3389/fnmol.2023.1155047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionHypoxia is an environmental risk factor for many disorders throughout life. Perinatal hypoxia contributes to autism spectrum disorder (ASD), while hypoxic conditions in the elderly facilitate memory deficits. However, the effects of hypoxia on adolescence remains elusive. CNTNAP2 is a critical molecule in ASD pathogenesis with undefined mechanisms. We investigate hypoxia’s impact on adolescence and the underlying mechanism related to CNTNAP2.MethodsThree-chamber social approach test, Y maze, Morris Water Maze and Open Field Test were applied to evaluate behavioral alterations. Immunoblotting, 5′- RACE and dual-luciferase reporter assay were performed to examine CNTNAP2 protein expression, transcription start site (TSS) of human CNTNAP2 gene and CNTNAP2 promoter activity, respectively.ResultsIntermittent hypoxia treatment improved social behaviors and working memory in adolescent mice. CNTNAP2 was increased in the brains of hypoxia-treated mice. The sequencing results identified the TSS at 518 bp upstream of the translation start site ATG. Hypoxia upregulated CNTNAP2 by interacting with functional hypoxia response elements in CNTNAP2 promoter.ConclusionIntermittent hypoxia enhanced sociability and working memory associated with CNTNAP2 upregulation. Our study provides novel insights into intermittent hypoxia’s impact on development and the interaction between genetic and environmental risk factors in ASD pathogenesis.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiye Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yili Wu,
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, Vancouver, BC, Canada
- Weihong Song, ; orcid.org/0000-0001-9928-889X
| |
Collapse
|
9
|
Mann RS, Allman BL, Schmid S. Developmental changes in electrophysiological properties of auditory cortical neurons in the Cntnap2 knockout rat. J Neurophysiol 2023; 129:937-947. [PMID: 36947880 PMCID: PMC10110732 DOI: 10.1152/jn.00029.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023] Open
Abstract
Disruptions in the CNTNAP2 gene are known to cause language impairments and symptoms associated with autism spectrum disorder (ASD). Importantly, knocking out this gene in rodents results in ASD-like symptoms that include auditory processing deficits. This study used in vitro patch-clamp electrophysiology to examine developmental alterations in auditory cortex pyramidal neurons of Cntnap2-/- rats, hypothesizing that CNTNAP2 is essential for maintaining intrinsic neuronal properties and synaptic wiring in the developing auditory cortex. Whole cell patch-clamp recordings were conducted in wildtype and Cntnap2-/- littermates at three postnatal age ranges (P8-12, P18-21, and P70-90). Consistent changes across age were seen in all measures of intrinsic membrane properties and spontaneous synaptic input. Intrinsic cell properties such as action potential half-widths, rheobase, and action-potential firing frequencies were different between wildtype and Cntnap2-/- rats predominantly during the juvenile stage (P18-21), whereas adult Cntnap2-/- rats showed higher frequencies of spontaneous and mini postsynaptic currents (sPSCs; mPSCs), with lower sPSC amplitudes. These results indicate that intrinsic cell properties are altered in Cntnap2-/- rats during the juvenile age, leading to a hyperexcitable phenotype during this stage of synaptic remodeling and refinement. Although intrinsic properties eventually normalize by reaching adulthood, changes in synaptic input, potentially caused by the differences in intrinsic membrane properties, seem to manifest in the adult age and are presumably responsible for the hyperreactive behavioral phenotype. In conjunction with a previous study, the present results also indicate a large influence of breeding scheme, i.e., pre- or postnatal environment, on the impact of Cntnap2 on cellular physiology.NEW & NOTEWORTHY This study shows that neurons in the auditory cortex of Cntnap2 knockout rats are hyperexcitable only during the juvenile age, whereas resulting changes in synaptic input persist in the adult. In conjunction with a previous study, the present results indicate that it is not the genes alone, but also the influence of pre- and postnatal environment, that shape neuronal function, highlighting the importance of early intervention in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rajkamalpreet S Mann
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Cifuentes-Diaz C, Canali G, Garcia M, Druart M, Manett T, Savariradjane M, Guillaume C, Le Magueresse C, Goutebroze L. Differential impacts of Cntnap2 heterozygosity and Cntnap2 null homozygosity on axon and myelinated fiber development in mouse. Front Neurosci 2023; 17:1100121. [PMID: 36793543 PMCID: PMC9922869 DOI: 10.3389/fnins.2023.1100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, a large variety of alterations of the Contactin Associated Protein 2 (CNTNAP2) gene, encoding Caspr2, have been identified in several neuronal disorders, including neurodevelopmental disorders and peripheral neuropathies. Some of these alterations are homozygous but most are heterozygous, and one of the current challenges is to estimate to what extent they could affect the functions of Caspr2 and contribute to the development of these pathologies. Notably, it is not known whether the disruption of a single CNTNAP2 allele could be sufficient to perturb the functions of Caspr2. To get insights into this issue, we questioned whether Cntnap2 heterozygosity and Cntnap2 null homozygosity in mice could both impact, either similarly or differentially, some specific functions of Caspr2 during development and in adulthood. We focused on yet poorly explored functions of Caspr2 in axon development and myelination, and performed a morphological study from embryonic day E17.5 to adulthood of two major brain interhemispheric myelinated tracts, the anterior commissure (AC) and the corpus callosum (CC), comparing wild-type (WT), Cntnap2 -/- and Cntnap2 +/- mice. We also looked for myelinated fiber abnormalities in the sciatic nerves of mutant mice. Our work revealed that Caspr2 controls the morphology of the CC and AC throughout development, axon diameter at early developmental stages, cortical neuron intrinsic excitability at the onset of myelination, and axon diameter and myelin thickness at later developmental stages. Changes in axon diameter, myelin thickness and node of Ranvier morphology were also detected in the sciatic nerves of the mutant mice. Importantly, most of the parameters analyzed were affected in Cntnap2 +/- mice, either specifically, more severely, or oppositely as compared to Cntnap2 -/- mice. In addition, Cntnap2 +/- mice, but not Cntnap2 -/- mice, showed motor/coordination deficits in the grid-walking test. Thus, our observations show that both Cntnap2 heterozygosity and Cntnap2 null homozygosity impact axon and central and peripheral myelinated fiber development, but in a differential manner. This is a first step indicating that CNTNAP2 alterations could lead to a multiplicity of phenotypes in humans, and raising the need to evaluate the impact of Cntnap2 heterozygosity on the other neurodevelopmental functions of Caspr2.
Collapse
Affiliation(s)
- Carmen Cifuentes-Diaz
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Giorgia Canali
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Marta Garcia
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mélanie Druart
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Taylor Manett
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Mythili Savariradjane
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Camille Guillaume
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Corentin Le Magueresse
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France
| | - Laurence Goutebroze
- Inserm, Unité Mixte de Recherche (UMR)-S 1270, Paris, France,Faculté des Sciences et Ingénierie, Sorbonne University, Paris, France,Institut du Fer à Moulin, Paris, France,*Correspondence: Laurence Goutebroze,
| |
Collapse
|
11
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
12
|
Xu D, Meng Y, An S, Meng W, Li H, Zhang W, Xue Y, Lan X, Wang X, Li M, Zhang X, Zhihao Z, Zhao Y, Yang H, Zhang C, Zhang R, Zhen Z. Swimming exercise is a promising early intervention for autism-like behavior in Shank3 deletion rats. CNS Neurosci Ther 2022; 29:78-90. [PMID: 36221783 PMCID: PMC9804047 DOI: 10.1111/cns.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION SHANK3 is an important excitatory postsynaptic scaffold protein, and its mutations lead to genetic cause of neurodevelopmental diseases including autism spectrum disorders (ASD), Philan McDermid syndrome (PMS), and intellectual disability (ID). Early prevention and treatment are important for Shank3 gene mutation disease. Swimming has been proven to have a positive effect on neurodegenerative diseases. METHODS Shank3 gene exon 11-21 knockout rats were intervened by a 40 min/day, 5 day/week for 8-week protocol. After the intervention, the rats were tested to behavioral measures such as learning and memory, and the volume and H-spectrum of the brain were measured using MRI; hippocampal dendritic spines were measured using Golgi staining and laser confocal. RESULTS The results showed that Shank3-deficient rats had significant deficits in social memory, object recognition, and water maze learning decreased hippocampal volume and number of neurons, and lower levels of related scaffold proteins and receptor proteins were found in Shank3-deficient rats. CONCLUSION It is suggested that early swimming exercise has a positive effect on Shank3 gene-deficient rats, which provides a new therapeutic strategy for the prevention and recovery of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Dan Xu
- College of P.E and SportsBeijing Normal UniversityBeijingChina,Sports and Health Editorial OfficePeople's education pressBeijingChina
| | - Yunchen Meng
- Department of P.E.China University of Mining and Technology‐BeijingBeijingChina
| | - Shasha An
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Wenshu Meng
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Hanran Li
- Centre for Cognitive and Brain Sciences and Department of PsychologyUniversity of MacauTaipaMacau
| | - Weinan Zhang
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Yaqi Xue
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Xinyu Lan
- Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina,Neuroscience Research InstitutePeking UniversityBeijingChina,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning CommissionPeking UniversityBeijingChina,Autism Research Center of Peking University Health Science CenterBeijingChina
| | - Xiaoxi Wang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Mingjuan Li
- Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina,Neuroscience Research InstitutePeking UniversityBeijingChina,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning CommissionPeking UniversityBeijingChina,Autism Research Center of Peking University Health Science CenterBeijingChina
| | - Xiaoyan Zhang
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Zhang Zhihao
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Yu Zhao
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Haodong Yang
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Rong Zhang
- Department of Neurobiology, School of Basic Medical SciencesPeking UniversityBeijingChina,Neuroscience Research InstitutePeking UniversityBeijingChina,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning CommissionPeking UniversityBeijingChina,Autism Research Center of Peking University Health Science CenterBeijingChina,Department of Integration of Chinese and Western MedicineSchool of Basic Medical Sciences, Peking UniversityBeijingChina
| | - Zhiping Zhen
- College of P.E and SportsBeijing Normal UniversityBeijingChina
| |
Collapse
|
13
|
Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA Receptor Function in Hypothalamic Synapses. Front Synaptic Neurosci 2022; 14:833449. [PMID: 35173598 PMCID: PMC8842481 DOI: 10.3389/fnsyn.2022.833449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
AMPA receptors (AMPARs) are critical for mediating glutamatergic synaptic transmission and plasticity, thus playing a major role in the molecular machinery underlying cellular substrates of memory and learning. Their expression pattern, transport and regulatory mechanisms have been extensively studied in the hippocampus, but their functional properties in other brain regions remain poorly understood. Interestingly, electrophysiological and molecular evidence has confirmed a prominent role of AMPARs in the regulation of hypothalamic function. This review summarizes the existing evidence on AMPAR-mediated transmission in the hypothalamus, where they are believed to orchestrate the role of glutamatergic transmission in autonomous, neuroendocrine function, body homeostasis, and social behavior.
Collapse
|
14
|
St George-Hyslop F, Kivisild T, Livesey FJ. The role of contactin-associated protein-like 2 in neurodevelopmental disease and human cerebral cortex evolution. Front Mol Neurosci 2022; 15:1017144. [PMID: 36340692 PMCID: PMC9630569 DOI: 10.3389/fnmol.2022.1017144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is associated with multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), intellectual disability (ID), and specific language impairment (SLI). Experimental work has shown that CNTNAP2 is important for neuronal development and synapse formation. There is also accumulating evidence for the differential use of CNTNAP2 in the human cerebral cortex compared with other primates. Here, we review the current literature on CNTNAP2, including what is known about its expression, disease associations, and molecular/cellular functions. We also review the evidence for its role in human brain evolution, such as the presence of eight human accelerated regions (HARs) within the introns of the gene. While progress has been made in understanding the function(s) of CNTNAP2, more work is needed to clarify the precise mechanisms through which CNTNAP2 acts. Such information will be crucial for developing effective treatments for CNTNAP2 patients. It may also shed light on the longstanding question of what makes us human.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- Zayed Centre for Research Into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
15
|
Riemersma IW, Havekes R, Kas MJH. Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes (Basel) 2021; 13:28. [PMID: 35052369 PMCID: PMC8774890 DOI: 10.3390/genes13010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by differences in social interaction, repetitive behaviors, restricted interests, and sensory differences beginning early in life. Especially sensory symptoms are highly correlated with the severity of other behavioral differences. ASD is a highly heterogeneous condition on multiple levels, including clinical presentation, genetics, and developmental trajectories. Over a thousand genes have been implicated in ASD. This has facilitated the generation of more than two hundred genetic mouse models that are contributing to understanding the biological underpinnings of ASD. Since the first symptoms already arise during early life, it is especially important to identify both spatial and temporal gene functions in relation to the ASD phenotype. To further decompose the heterogeneity, ASD-related genes can be divided into different subgroups based on common functions, such as genes involved in synaptic function. Furthermore, finding common biological processes that are modulated by this subgroup of genes is essential for possible patient stratification and the development of personalized early treatments. Here, we review the current knowledge on behavioral rodent models of synaptic dysfunction by focusing on behavioral phenotypes, spatial and temporal gene function, and molecular targets that could lead to new targeted gene-based therapy.
Collapse
Affiliation(s)
| | | | - Martien J. H. Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (I.W.R.); (R.H.)
| |
Collapse
|
16
|
Grzadzinski R, Amso D, Landa R, Watson L, Guralnick M, Zwaigenbaum L, Deák G, Estes A, Brian J, Bath K, Elison J, Abbeduto L, Wolff J, Piven J. Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodev Disord 2021; 13:49. [PMID: 34654371 PMCID: PMC8520312 DOI: 10.1186/s11689-021-09393-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Autism spectrum disorder (ASD) impacts an individual's ability to socialize, communicate, and interact with, and adapt to, the environment. Over the last two decades, research has focused on early identification of ASD with significant progress being made in understanding the early behavioral and biological markers that precede a diagnosis, providing a catalyst for pre-symptomatic identification and intervention. Evidence from preclinical trials suggest that intervention prior to the onset of ASD symptoms may yield more improved developmental outcomes, and clinical studies suggest that the earlier intervention is administered, the better the outcomes. This article brings together a multidisciplinary group of experts to develop a conceptual framework for behavioral intervention, during the pre-symptomatic period prior to the consolidation of symptoms into diagnosis, in infants at very-high-likelihood for developing ASD (VHL-ASD). The overarching goals of this paper are to promote the development of new intervention approaches, empirical research, and policy efforts aimed at VHL-ASD infants during the pre-symptomatic period (i.e., prior to the consolidation of the defining features of ASD).
Collapse
Affiliation(s)
- Rebecca Grzadzinski
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA.
| | - Dima Amso
- Department of Psychology, Columbia University, New York, NY, USA
| | - Rebecca Landa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Watson
- Program for Early Autism Research Leadership and Service (PEARLS), University of North Carolina, Chapel Hill, NC, USA
- Division of Speech and Hearing Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Guralnick
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | | | - Gedeon Deák
- Department of Cognitive Science, University of California, San Diego, San Diego, CA, USA
| | - Annette Estes
- Department of Speech and Hearing Sciences, University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jessica Brian
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Kevin Bath
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Leonard Abbeduto
- University of California, Davis, MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Jason Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Barón-Mendoza I, Maqueda-Martínez E, Martínez-Marcial M, De la Fuente-Granada M, Gómez-Chavarin M, González-Arenas A. Changes in the Number and Morphology of Dendritic Spines in the Hippocampus and Prefrontal Cortex of the C58/J Mouse Model of Autism. Front Cell Neurosci 2021; 15:726501. [PMID: 34616277 PMCID: PMC8488392 DOI: 10.3389/fncel.2021.726501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Abstract
Autism spectrum disorder (ASD) has a broad range of neurobiological characteristics, including alterations in dendritic spines, where approximately 90% of excitatory synapses occur. Therefore, changes in their number or morphology would be related to atypical brain communication. The C58/J inbred mouse strain displays low sociability, impaired communication, and stereotyped behavior; hence, it is considered among the animal models suitable for the study of idiopathic autism. Thus, this study aimed to evaluate the dendritic spine differences in the hippocampus and the prefrontal cortex of C58/J mice. We found changes in the number of spines and morphology in a brain region-dependent manner: a subtle decrease in spine density in the prefrontal cortex, higher frequency of immature phenotype spines characterized by filopodia-like length or small morphology, and a lower number of mature phenotype spines with mushroom-like or wide heads in the hippocampus. Moreover, an in silico analysis showed single nucleotide polymorphisms (SNPs) at genes collectively involved in regulating structural plasticity with a likely association with ASD, including MAP1A (Microtubule-Associated Protein 1A), GRM7 (Metabotropic Glutamate Receptor, 7), ANKRD11 (Ankyrin Repeat Domain 11), and SLC6A4 (Solute Carrier Family 6, member 4), which might support the relationship between the C58/J strain genome, an autistic-like behavior, and the observed anomalies in the dendritic spines.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emely Maqueda-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Martínez-Marcial
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisol De la Fuente-Granada
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita Gómez-Chavarin
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Altered Cerebellar Response to Somatosensory Stimuli in the Cntnap2 Mouse Model of Autism. eNeuro 2021; 8:ENEURO.0333-21.2021. [PMID: 34593517 PMCID: PMC8532344 DOI: 10.1523/eneuro.0333-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Atypical sensory processing is currently included within the diagnostic criteria of autism. The cerebellum is known to integrate sensory inputs of different modalities through its connectivity to the cerebral cortex. Interestingly, cerebellar malformations are among the most replicated features found in postmortem brain of individuals with autism. We studied sensory processing in the cerebellum in a mouse model of autism, knock-out (KO) for the Cntnap2 gene. Cntnap2 is widely expressed in Purkinje cells (PCs) and has been recently reported to regulate their morphology. Further, individuals with CNTNAP2 mutations display cerebellar malformations and CNTNAP2 antibodies are associated with a mild form of cerebellar ataxia. Previous studies in the Cntnap2 mouse model show an altered cerebellar sensory learning. However, a physiological analysis of cerebellar function has not been performed yet. We studied sensory evoked potentials in cerebellar Crus I/II region on electrical stimulation of the whisker pad in alert mice and found striking differences between wild-type and Cntnap2 KO mice. In addition, single-cell recordings identified alterations in both sensory-evoked and spontaneous firing patterns of PCs. These changes were accompanied by altered intrinsic properties and morphologic features of these neurons. Together, these results indicate that the Cntnap2 mouse model could provide novel insight into the pathophysiological mechanisms of autism core sensory deficits.
Collapse
|
19
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
20
|
Li J, Liu W, Li H, Chen F, Luo H, Bao P, Li Y, Jiang H, Gao Y, Liang H, Fang S. Genome-wide variant-based study of genetic effects with the largest neuroanatomic coverage. BMC Bioinformatics 2021; 22:223. [PMID: 33931008 PMCID: PMC8086096 DOI: 10.1186/s12859-021-04145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain image genetics provides enormous opportunities for examining the effects of genetic variations on the brain. Many studies have shown that the structure, function, and abnormality (e.g., those related to Alzheimer's disease) of the brain are heritable. However, which genetic variations contribute to these phenotypic changes is not completely clear. Advances in neuroimaging and genetics have led us to obtain detailed brain anatomy and genome-wide information. These data offer us new opportunities to identify genetic variations such as single nucleotide polymorphisms (SNPs) that affect brain structure. In this paper, we perform a genome-wide variant-based study, and aim to identify top SNPs or SNP sets which have genetic effects with the largest neuroanotomic coverage at both voxel and region-of-interest (ROI) levels. Based on the voxelwise genome-wide association study (GWAS) results, we used the exhaustive search to find the top SNPs or SNP sets that have the largest voxel-based or ROI-based neuroanatomic coverage. For SNP sets with >2 SNPs, we proposed an efficient genetic algorithm to identify top SNP sets that can cover all ROIs or a specific ROI. RESULTS We identified an ensemble of top SNPs, SNP-pairs and SNP-sets, whose effects have the largest neuroanatomic coverage. Experimental results on real imaging genetics data show that the proposed genetic algorithm is superior to the exhaustive search in terms of computational time for identifying top SNP-sets. CONCLUSIONS We proposed and applied an informatics strategy to identify top SNPs, SNP-pairs and SNP-sets that have genetic effects with the largest neuroanatomic coverage. The proposed genetic algorithm offers an efficient solution to accomplish the task, especially for identifying top SNP-sets.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Wenjie Liu
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Huang Li
- Computer and Information Science, IUPUI, 723 W Michigan St, Indianapolis, IN 46202 USA
| | - Feng Chen
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Haoran Luo
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Peihua Bao
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Yanzhao Li
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Hailong Jiang
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Yue Gao
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Hong Liang
- College of Automation, Harbin Engineering University, NO. 145 Nantong Street, Nangang District, Harbin, 150001 China
| | - Shiaofen Fang
- Computer and Information Science, IUPUI, 723 W Michigan St, Indianapolis, IN 46202 USA
| |
Collapse
|
21
|
Gandhi T, Lee CC. Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 2021; 14:592710. [PMID: 33519379 PMCID: PMC7840495 DOI: 10.3389/fncel.2020.592710] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is comprised of several conditions characterized by alterations in social interaction, communication, and repetitive behaviors. Genetic and environmental factors contribute to the heterogeneous development of ASD behaviors. Several rodent models display ASD-like phenotypes, including repetitive behaviors. In this review article, we discuss the potential neural mechanisms involved in repetitive behaviors in rodent models of ASD and related neuropsychiatric disorders. We review signaling pathways, neural circuits, and anatomical alterations in rodent models that display robust stereotypic behaviors. Understanding the mechanisms and circuit alterations underlying repetitive behaviors in rodent models of ASD will inform translational research and provide useful insight into therapeutic strategies for the treatment of repetitive behaviors in ASD and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
22
|
Ash RT, Park J, Suter B, Zoghbi HY, Smirnakis SM. Excessive Formation and Stabilization of Dendritic Spine Clusters in the MECP2-Duplication Syndrome Mouse Model of Autism. eNeuro 2021; 8:ENEURO.0282-20.2020. [PMID: 33168618 PMCID: PMC7877475 DOI: 10.1523/eneuro.0282-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022] Open
Abstract
Autism-associated genetic mutations may perturb the balance between stability and plasticity of synaptic connections in the brain. Here, we report an increase in the formation and stabilization of dendritic spines in the cerebral cortex of the mouse model of MECP2-duplication syndrome, a high-penetrance form of syndromic autism. Increased stabilization is mediated entirely by spines that form cooperatively in 10-μm clusters and is observable across multiple cortical areas both spontaneously and following motor training. Excessive stability of dendritic spine clusters could contribute to behavioral rigidity and other phenotypes in syndromic autism.
Collapse
Affiliation(s)
- Ryan Thomas Ash
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Jiyoung Park
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Bernhard Suter
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Huda Yaya Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
| | - Stelios Manolis Smirnakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
23
|
Fernandes D, Santos SD, Coutinho E, Whitt JL, Beltrão N, Rondão T, Leite MI, Buckley C, Lee HK, Carvalho AL. Disrupted AMPA Receptor Function upon Genetic- or Antibody-Mediated Loss of Autism-Associated CASPR2. Cereb Cortex 2020; 29:4919-4931. [PMID: 30843029 DOI: 10.1093/cercor/bhz032] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Neuropsychiatric disorders share susceptibility genes, suggesting a common origin. One such gene is CNTNAP2 encoding contactin-associated protein 2 (CASPR2), which harbours mutations associated to autism, schizophrenia, and intellectual disability. Antibodies targeting CASPR2 have also been recently described in patients with several neurological disorders, such as neuromyotonia, Morvan's syndrome, and limbic encephalitis. Despite the clear implication of CNTNAP2 and CASPR2 in neuropsychiatric disorders, the pathogenic mechanisms associated with alterations in CASPR2 function are unknown. Here, we show that Caspr2 is expressed in excitatory synapses in the cortex, and that silencing its expression in vitro or in vivo decreases the synaptic expression of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and the amplitude of AMPA receptor-mediated currents. Furthermore, Caspr2 loss of function blocks synaptic scaling in vitro and experience-dependent homoeostatic synaptic plasticity in the visual cortex. Patient CASPR2 antibodies decrease the dendritic levels of Caspr2 and synaptic AMPA receptor trafficking, and perturb excitatory transmission in the visual cortex. These results suggest that mutations in CNTNAP2 may contribute to alterations in AMPA receptor function and homoeostatic plasticity, and indicate that antibodies from anti-CASPR2 encephalitis patients affect cortical excitatory transmission.
Collapse
Affiliation(s)
- Dominique Fernandes
- Synapse Biology Group, CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,PDBEB, Doctoral Programme in Experimental Biology and Biomedicine, CNC & Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3004-504 Coimbra, Portugal.,Solomon Snyder Department of Neurosciences, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sandra D Santos
- Synapse Biology Group, CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ester Coutinho
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jessica L Whitt
- Solomon Snyder Department of Neurosciences, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nuno Beltrão
- Synapse Biology Group, CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Rondão
- Synapse Biology Group, CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Camilla Buckley
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Hey-Kyoung Lee
- Solomon Snyder Department of Neurosciences, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ana Luísa Carvalho
- Synapse Biology Group, CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
24
|
In utero exposure to endogenous maternal polyclonal anti-Caspr2 antibody leads to behavioral abnormalities resembling autism spectrum disorder in male mice. Sci Rep 2020; 10:14446. [PMID: 32879327 PMCID: PMC7468145 DOI: 10.1038/s41598-020-71201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 01/17/2023] Open
Abstract
The concept that exposure in utero to maternal anti-brain antibodies contributes to the development of autism spectrum disorders (ASD) has been entertained for over a decade. We determined that antibodies targeting Caspr2 are present at high frequency in mothers with brain-reactive serology and a child with ASD, and further demonstrated that exposure in utero to a monoclonal anti-Caspr2 antibody, derived from a mother of an ASD child, led to an-ASD like phenotype in male offspring. Now we propose a new model to study the effects of in utero exposure to anti-Caspr2 antibody. Dams immunized with the extracellular portion of Caspr2 express anti-Caspr2 antibodies throughout gestation to better mimic the human condition. Male but not female mice born to dams harboring polyclonal anti-Caspr2 antibodies showed abnormal cortical development, decreased dendritic complexity of excitatory neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as repetitive behaviors and impairments in novelty interest in the social preference test as adults. These data supporting the pathogenicity of anti-Caspr2 antibodies are consistent with the concept that anti-brain antibodies present in women during gestation can alter fetal brain development, and confirm that males are peculiarly susceptible.
Collapse
|
25
|
Mohan V, Sullivan CS, Guo J, Wade SD, Majumder S, Agarwal A, Anton ES, Temple BS, Maness PF. Temporal Regulation of Dendritic Spines Through NrCAM-Semaphorin3F Receptor Signaling in Developing Cortical Pyramidal Neurons. Cereb Cortex 2020; 29:963-977. [PMID: 29415226 DOI: 10.1093/cercor/bhy004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/06/2018] [Indexed: 01/03/2023] Open
Abstract
Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive β1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chelsea S Sullivan
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jiami Guo
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sarah D Wade
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Samarpan Majumder
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany
| | - Eva S Anton
- UNC Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brenda S Temple
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Patricia F Maness
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Scott R, Sánchez-Aguilera A, van Elst K, Lim L, Dehorter N, Bae SE, Bartolini G, Peles E, Kas MJH, Bruining H, Marín O. Loss of Cntnap2 Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cereb Cortex 2020; 29:586-597. [PMID: 29300891 DOI: 10.1093/cercor/bhx341] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
Contactin-associated protein-like 2 (Caspr2) is found at the nodes of Ranvier and has been associated with physiological properties of white matter conductivity. Genetic variation in CNTNAP2, the gene encoding Caspr2, has been linked to several neurodevelopmental conditions, yet pathophysiological effects of CNTNAP2 mutations on axonal physiology and brain myelination are unknown. Here, we have investigated mouse mutants for Cntnap2 and found profound deficiencies in the clustering of Kv1-family potassium channels in the juxtaparanodes of brain myelinated axons. These deficits are associated with a change in the waveform of axonal action potentials and increases in postsynaptic excitatory responses. We also observed that the normal process of myelination is delayed in Cntnap2 mutant mice. This later phenotype is a likely modulator of the developmental expressivity of the stereotyped motor behaviors that characterize Cntnap2 mutant mice. Altogether, our results reveal a mechanism linked to white matter conductivity through which mutation of CNTNAP2 may affect neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Ricardo Scott
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Alberto Sánchez-Aguilera
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Kim van Elst
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nathalie Dehorter
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sung Eun Bae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Giorgia Bartolini
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martien J H Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hilgo Bruining
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.,Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
27
|
Interneuron deficits in neurodevelopmental disorders: Implications for disease pathology and interneuron-based therapies. Eur J Paediatr Neurol 2020; 24:81-88. [PMID: 31870698 PMCID: PMC7152321 DOI: 10.1016/j.ejpn.2019.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
|
28
|
Gao R, Pratt CP, Yoon S, Martin-de-Saavedra MD, Forrest MP, Penzes P. CNTNAP2 is targeted to endosomes by the polarity protein PAR3. Eur J Neurosci 2019; 51:1074-1086. [PMID: 31730244 DOI: 10.1111/ejn.14620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023]
Abstract
A decade of genetic studies has established contactin-associated protein-like 2 (CNTNAP2) as a prominent susceptibility gene associated with multiple neurodevelopmental disorders. The development and characterization of Cntnap2 knockout models in multiple species have bolstered this claim by establishing clear connections with certain endophenotypes. Despite these remarkable in vivo findings, CNTNAP2's molecular functions are relatively unexplored, highlighting the need to identify novel protein partners. Here, we characterized an interaction between CNTNAP2 and partitioning-defective 3 (PAR3)-a polarity molecule isolated in a yeast two-hybrid screen with CNTNAP2's C-terminus. We provide evidence that the two proteins interact via PDZ domain-mediated binding, that CNTNAP2+ /PAR3+ complexes are largely associated with clathrin-coated endocytic vesicles in heterologous cells and that PAR3 causes an enlargement of CNTNAP2 puncta size. Live imaging and fluorescence recovery after photobleaching (FRAP) reveals that PAR3 limits the mobility of CNTNAP2. Finally, overexpression of PAR3 but not a PAR3 mutant lacking all PDZ domains (PAR3∆PDZall) can cluster endogenous CNTNAP2 in primary neurons. Collectively, we conclude that PAR3 regulates CNTNAP2 spatial localization.
Collapse
Affiliation(s)
- Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher P Pratt
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, USA
| |
Collapse
|
29
|
Abstract
The structure of neuronal circuits that subserve cognitive functions in the brain is shaped and refined throughout development and into adulthood. Evidence from human and animal studies suggests that the cellular and synaptic substrates of these circuits are atypical in neuropsychiatric disorders, indicating that altered structural plasticity may be an important part of the disease biology. Advances in genetics have redefined our understanding of neuropsychiatric disorders and have revealed a spectrum of risk factors that impact pathways known to influence structural plasticity. In this Review, we discuss the importance of recent genetic findings on the different mechanisms of structural plasticity and propose that these converge on shared pathways that can be targeted with novel therapeutics.
Collapse
|
30
|
Gene-environment interaction counterbalances social impairment in mouse models of autism. Sci Rep 2019; 9:11490. [PMID: 31391512 PMCID: PMC6686010 DOI: 10.1038/s41598-019-47680-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/17/2019] [Indexed: 11/08/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and repetitive/restricted behaviors. Although gene-environment interactions may explain the heterogeneous etiology of ASD, it is still largely unknown how the gene-environment interaction affects behavioral symptoms and pathophysiology in ASD. To address these questions, we used Cntnap2 knockout mice (genetic factor, G) exposed to valproic acid during embryonic development (environmental factor, E) as a gene-environment interaction (G × E) model. Paradoxically, the social deficits observed in the respective G and E models were improved in the G × E model; however, the high seizure susceptibility was more severe in the G × E -model than in the G and E models. Repetitive self-grooming and hyperactivity did not differ among the three models. The amplitudes of miniature excitatory postsynaptic currents in layer 2/3 pyramidal neurons of the medial prefrontal cortex were aberrant and similar in the G × E model when compared to the control group. Our findings suggest that the interaction of two risk factors does not always aggravate ASD symptoms but can also alleviate them, which may be key to understanding individual differences in behavioral phenotypes and symptom intensity.
Collapse
|
31
|
Castagna C, Merighi A, Lossi L. Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cell Mol Neurobiol 2019; 39:833-856. [PMID: 31098770 PMCID: PMC11462894 DOI: 10.1007/s10571-019-00683-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/02/2019] [Indexed: 01/17/2023]
Abstract
Reeler heterozygous mice (reln+/-) are seemingly normal but haplodeficient in reln, a gene implicated in autism. Structural/neurochemical alterations in the reln+/- brain are subtle and difficult to demonstrate. Therefore, the usefulness of these mice in translational research is still debated. As evidence implicated several synapse-related genes in autism and the cerebellar vermis is structurally altered in the condition, we have investigated the expression of synaptophysin 1 (SYP1) and contactin 6 (CNTN6) within the vermis of reln+/- mice. Semi-thin plastic sections of the vermis from adult mice of both sexes and different genotypes (reln+/- and reln+/+) were processed with an indirect immunofluorescence protocol. Immunofluorescence was quantified on binary images and statistically analyzed. Reln+/- males displayed a statistically significant reduction of 11.89% in the expression of SYP1 compared to sex-matched wild-type animals, whereas no differences were observed between reln+/+ and reln+/- females. In reln+/- male mice, reductions were particularly evident in the molecular layer: 10.23% less SYP1 than reln+/+ males and 5.84% < reln+/+ females. In reln+/- females, decrease was 9.84% versus reln+/+ males and 5.43% versus reln+/+ females. Both reln+/- males and females showed a stronger decrease in CNTN6 expression throughout all the three cortical layers of the vermis: 17-23% in the granular layer, 24-26% in the Purkinje cell layer, and 9-14% in the molecular layer. Altogether, decrease of vermian SYP1 and CNTN6 in reln+/- mice displayed patterns compatible with the structural modifications of the autistic cerebellum. Therefore, these mice may be a good model in translational studies.
Collapse
Affiliation(s)
- Claudia Castagna
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy.
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| |
Collapse
|
32
|
Mazón-Cabrera R, Vandormael P, Somers V. Antigenic Targets of Patient and Maternal Autoantibodies in Autism Spectrum Disorder. Front Immunol 2019; 10:1474. [PMID: 31379804 PMCID: PMC6659315 DOI: 10.3389/fimmu.2019.01474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose behavioral symptoms become apparent in early childhood. The underlying pathophysiological mechanisms are only partially understood and the clinical manifestations are heterogeneous in nature, which poses a major challenge for diagnosis, prognosis and intervention. In the last years, an important role of a dysregulated immune system in ASD has emerged, but the mechanisms connecting this to a disruption of brain development are still largely unknown. Although ASD is not considered as a typical autoimmune disease, self-reactive antibodies or autoantibodies against a wide variety of targets have been found in a subset of ASD patients. In addition, autoantibodies reactive to fetal brain proteins have also been described in the prenatal stage of neurodevelopment, where they can be transferred from the mother to the fetus by transplacental transport. In this review, we give an extensive overview of the antibodies described in ASD according to their target antigens, their different origins, and timing of exposure during neurodevelopment.
Collapse
Affiliation(s)
| | | | - Veerle Somers
- Biomedical Research Institute, Faculty of Medicine and Life Science, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
33
|
Pharmacological modulation of AMPA receptor rescues social impairments in animal models of autism. Neuropsychopharmacology 2019; 44:314-323. [PMID: 29899405 PMCID: PMC6300529 DOI: 10.1038/s41386-018-0098-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, featuring social communication deficit and repetitive/restricted behaviors as common symptoms. Its prevalence has continuously increased, but, till now, there are no therapeutic approaches to relieve the core symptoms, particularly social deficit. In previous studies, abnormal function of the glutamatergic neural system has been proposed as a critical mediator and therapeutic target of ASD-associated symptoms. Here, we investigated the possible roles of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in autism symptoms using two well-known autistic animal models, Cntnap2 knockout (KO) mice and in utero valproic acid-exposed ICR (VPA) mice. We found that Cntnap2 KO mice displayed decreased glutamate receptor expression and transmission. Contrarily, VPA mice exhibited increased glutamate receptor expression and transmission. Next, we investigated whether AMPAR modulators (positive-allosteric-modulator for Cntnap2 KO mice and antagonist for VPA mice) can improve autistic symptoms by normalizing the aberrant excitatory transmission in the respective animal models. Interestingly, the AMPAR modulation specifically ameliorated social deficits in both animal models. These results indicated that AMPAR-derived excitatory neural transmission changes can affect normal social behavior. To validate this, we injected an AMPAR agonist or antagonist in control ICR mice and, interestingly, these treatments impaired only the social behavior, without affecting the repetitive and hyperactive behaviors. Collectively, these results provide insight into the role of AMPARs in the underlying pathophysiological mechanisms of ASD, and demonstrate that modulation of AMPAR can be a potential target for the treatment of social behavior deficits associated with ASD.
Collapse
|
34
|
Saint-Martin M, Joubert B, Pellier-Monnin V, Pascual O, Noraz N, Honnorat J. Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases. Eur J Neurosci 2018; 48:1906-1923. [PMID: 30028556 DOI: 10.1111/ejn.14081] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022]
Abstract
Contactin-associated protein-like 2 (CASPR2) is a cell adhesion protein of the neurexin family. Proteins of this family have been shown to play a role in the development of the nervous system, in synaptic functions, and in neurological diseases. Over recent years, CASPR2 function has gained an increasing interest as demonstrated by the growing number of publications. Here, we gather published data to comprehensively review CASPR2 functions within the nervous system in relation to CASPR2-related diseases in humans. On the one hand, studies on Cntnap2 (coding for CASPR2) knockout mice revealed its role during development, especially, in setting-up the inhibitory network. Consistent with this result, mutations in the CNTNAP2 gene coding for CASPR2 in human have been identified in neurodevelopmental disorders such as autism, intellectual disability, and epilepsy. On the other hand, CASPR2 was shown to play a role beyond development, in the localization of voltage-gated potassium channel (VGKC) complex that is composed of TAG-1, Kv1.1, and Kv1.2. This complex was found in several subcellular compartments essential for action potential propagation: the node of Ranvier, the axon initial segment, and the synapse. In line with a role of CASPR2 in the mature nervous system, neurological autoimmune diseases have been described in patients without neurodevelopmental disorders but with antibodies directed against CASPR2. These autoimmune diseases were of two types: central with memory disorders and temporal lobe seizures, or peripheral with muscular hyperactivity. Overall, we review the up-to-date knowledge on CASPR2 function and pinpoint confused or lacking information that will need further investigation.
Collapse
Affiliation(s)
- Margaux Saint-Martin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bastien Joubert
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| | - Véronique Pellier-Monnin
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Olivier Pascual
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nelly Noraz
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGene INSERM U1217/CNRS UMR 5310, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,French Reference Center on Paraneoplastic Neurological Syndrome, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France
| |
Collapse
|
35
|
Lauber E, Filice F, Schwaller B. Dysregulation of Parvalbumin Expression in the Cntnap2-/- Mouse Model of Autism Spectrum Disorder. Front Mol Neurosci 2018; 11:262. [PMID: 30116174 PMCID: PMC6082962 DOI: 10.3389/fnmol.2018.00262] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023] Open
Abstract
Due to the complex and heterogeneous etiology of autism spectrum disorder (ASD), identification of convergent pathways and/or common molecular endpoints in the pathophysiological processes of ASD development are highly needed in order to facilitate treatment approaches targeted at the core symptoms. We recently reported on decreased expression of the Ca2+-binding protein parvalbumin (PV) in three well-characterized ASD mouse models, Shank1-/-, Shank3B-/- and in utero VPA-exposed mice. Moreover, PV-deficient mice (PV+/- and PV-/-) were found to show behavioral impairments and neuroanatomical changes closely resembling those frequently found in human ASD individuals. Here, we combined a stereology-based approach with molecular biology methods to assess changes in the subpopulation of PV-expressing (Pvalb) interneurons in the recently characterized contactin-associated protein-like 2 (Cntnap2-/-) knockout mouse model of ASD. The CNTNAP2 gene codes for a synaptic cell adhesion molecule involved in neurodevelopmental processes; mutations affecting the human CNTNAP2 locus are associated with human ASD core symptoms, in particular speech and language problems. We demonstrate that in Cntnap2-/- mice, no loss of Pvalb neurons is evident in ASD-associated brain regions including the striatum, somatosensory cortex (SSC) and medial prefrontal cortex (mPFC), shown by the unaltered number of Pvalb neurons ensheathed by VVA-positive perineuronal nets. However, the number of PV-immunoreactive (PV+) neurons and also PV protein levels were decreased in the striatum of Cntnap2-/- mice indicating that PV expression levels in some striatal Pvalb neurons dropped below the detection limit, yet without a loss of Pvalb neurons. No changes in PV+ neuron numbers were detected in the cortical regions investigated and also cortical PV expression levels were unaltered. Considering that Cntnap2 shows high expression levels in the striatum during human and mouse embryonic development and that the cortico-striato-thalamic circuitry is important for speech and language development, alterations in striatal PV expression and associated (homeostatic) adaptations are likely to play an important role in Cntnap2-/- mice and, assumingly, in human ASD patients with known Cntnap2 mutations.
Collapse
Affiliation(s)
- Emanuel Lauber
- Anatomy Unit, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Federica Filice
- Anatomy Unit, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy Unit, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Wang X, Kery R, Xiong Q. Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:398-415. [PMID: 28986278 DOI: 10.1016/j.pnpbp.2017.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Xinxing Wang
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rachel Kery
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
37
|
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017; 134:537-566. [PMID: 28584888 PMCID: PMC5693718 DOI: 10.1007/s00401-017-1736-4] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Collapse
Affiliation(s)
- Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Keshav
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Jacot-Descombes
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Unit of Psychiatry, Department of Children and Teenagers, University Hospitals and School of Medicine, Geneva, CH-1205, Switzerland
| | - Tahia Warda
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bridget Wicinski
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
38
|
Adam I, Mendoza E, Kobalz U, Wohlgemuth S, Scharff C. CNTNAP2 is a direct FoxP2 target in vitro and in vivo in zebra finches: complex regulation by age and activity. GENES BRAIN AND BEHAVIOR 2017; 16:635-642. [PMID: 28488276 DOI: 10.1111/gbb.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance.
Collapse
Affiliation(s)
- I Adam
- Department for Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - E Mendoza
- Department for Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - U Kobalz
- Department for Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - S Wohlgemuth
- Department for Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | - C Scharff
- Department for Animal Behavior, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
39
|
Lee E, Lee J, Kim E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol Psychiatry 2017; 81:838-847. [PMID: 27450033 DOI: 10.1016/j.biopsych.2016.05.011] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/19/2022]
Abstract
Imbalances between excitation and inhibition in synaptic transmission and neural circuits have been implicated in autism spectrum disorders. Excitation and inhibition imbalances are frequently observed in animal models of autism spectrum disorders, and their correction normalizes key autistic-like phenotypes in these animals. These results suggest that excitation and inhibition imbalances may contribute to the development and maintenance of autism spectrum disorders and represent an important therapeutic target.
Collapse
Affiliation(s)
- Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Jiseok Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| |
Collapse
|
40
|
Poquérusse J, Luikart BW. A Neurodevelopmental Perspective for Autism-Associated Gene Function. OBM NEUROBIOLOGY 2017; 1:004. [PMID: 35445171 PMCID: PMC9017685 DOI: 10.21926/obm.neurobiol.1702004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Large-scale genetic sequencing studies have identified a wealth of genes in which mutations are associated with autism spectrum disorder (ASD). Understanding the biological function of these genes sheds light onto the neurodevelopmental basis of ASD. To this end, we defined functional categories representing brain development - (1) Cell Division and Survival, (2) Cell Migration and Differentiation, (3) Neuronal Morphological Elaboration, (4) Development and Regulation of Cellular Excitability, and (5) Synapse Formation and Function - and place 100 high confidence ASD-associated genes yielding at least 50 published PubMed articles into these categories based on keyword searches. We compare the categorization of ASD genes to genes associated with developmental delay (DD) and systematically review the published literature on the function of these genes. We find evidence that ASD-associated genes have important functions that span the neurodevelopmental continuum. Further, examining the temporal expression pattern of these genes using the BrainSpan Atlas of the Developing Human Brain supports their function across development. Thus, our analyses and review of literature on ASD gene function support a model whereby differences in brain development - from very early stages of macroarchitectural patterning to late stages of activity-dependent sculpting of synaptic connectivity - may lead to ASD. It will be important to keep investigating potential points of mechanistic convergence which could explain a common pathophysiological basis of ASD behind this disparate array of genes.
Collapse
|
41
|
Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 2017; 7:877. [PMID: 28408745 PMCID: PMC5429823 DOI: 10.1038/s41598-017-00707-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Forkhead Box P (FOXP) transcriptional repressors play a major role in brain development and their dysfunction leads to human cognitive disorders. However, little is known about how the activity of these proteins is regulated. Here, we show that FOXP1 SUMOylation at lysine 670 is required for recruiting the co-repressor CtBP1 and transcriptional repression. FOXP1 SUMOylation is tightly controlled by neuronal activity, in which synapse to nucleus signalling, mediated via NMDAR and L-type calcium channels, results in rapid FOXP1 deSUMOylation. Knockdown of FOXP1 in cultured cortical neurons stunts dendritic outgrowth and this phenotype cannot be rescued by replacement with a non-SUMOylatable FOXP1-K670R mutant, indicating that SUMOylation of FOXP1 is essential for regulation of proper neuronal morphogenesis. These results suggest that activity-dependent SUMOylation of FOXP1 may be an important mediator of early cortical development and neuronal network formation in the brain.
Collapse
Affiliation(s)
- Daniel L Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
42
|
Abstract
Intragenic deletions of the contactin-associated protein-like 2 gene (CNTNAP2) have been found in patients with Gilles de la Tourette syndrome, intellectual disability (ID), obsessive compulsive disorder, cortical dysplasia-focal epilepsy syndrome, autism, schizophrenia, Pitt-Hopkins syndrome, stuttering, and attention deficit hyperactivity disorder. A variety of molecular mechanisms, such as loss of transcription factor binding sites and perturbation of penetrance and expressivity, have been proposed to account for the phenotypic variability resulting from CNTNAP2 mutations. Deletions of both CNTNAP2 alleles produced truncated proteins lacking the transmembrane or some of the extracellular domains, or no protein at all. This observation can be extended to heterozygous intragenic deletions by assuming that such deletion-containing alleles lead to expression of a Caspr2 protein lacking one or several extracellular domains. Such altered forms of Capr2 proteins will lack the ability to bridge the intercellular space between neurons by binding to partners, such as CNTN1, CNTN2, DLG1, and DLG4. This presumed effect of intragenic deletions of CNTNAP2, and possibly other genes involved in connecting neuronal cells, represents a molecular basis for the postulated neuronal hypoconnectivity in autism and probably other neurodevelopmental disorders, including epilepsy, ID, language impairments and schizophrenia. Thus, CNTNAP2 may represent a paradigmatic case of a gene functioning as a node in a genetic and cellular network governing brain development and acquisition of higher cognitive functions.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity. Neural Plast 2017; 2017:6526151. [PMID: 28255461 PMCID: PMC5307005 DOI: 10.1155/2017/6526151] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.
Collapse
|
44
|
Townsend LB, Smith SL. Genotype- and sex-dependent effects of altered Cntnap2 expression on the function of visual cortical areas. J Neurodev Disord 2017; 9:2. [PMID: 28115996 PMCID: PMC5244519 DOI: 10.1186/s11689-016-9182-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/30/2016] [Indexed: 12/29/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a heritable, heterogeneous neurodevelopmental disorder that is four times more likely to affect males than females. Despite this overt sex bias, it is unclear how genetic mutations associated with ASD alter cortical circuitry to produce the behavioral phenotypes by which ASD is diagnosed. Contactin-associated protein-like 2 (CNTNAP2) is an ASD-associated gene, and while Cntnap2 knockout (KO) mice recapitulate many of the features of ASD, the effect on cortical circuitry is poorly understood. Moreover, although heterozygous (Het) mice are the more relevant genotype for ASD-linked CNTNAP2 mutations in humans, to our knowledge, no effects in Het mice have been previously reported. Methods Intrinsic signal optical imaging was used to measure functional visual responses in primary and higher visual cortical areas in male and female Cntnap2 KO, Het, and wild-type (WT) mice. Main effect of genotype was assessed with one-way ANOVA. Visual responses were also measured in P17–18 and P30–32 KO and WT mice. Main effects of age and genotype were assessed using two-way ANOVA. Results Visually evoked activity in dorsal stream associated higher visual areas in both KO and Het adult males was decreased relative to WT adult males. This decrease was not observed in adult females. Additionally, no significant difference was observed between WT and KO males at P17–18 with differences beginning to emerge at P30–32. Conclusions The functional responses of cortical circuitry in male mice are more strongly affected by Cntnap2 mutations than females, an effect present even in Hets. The observed differences in males emerge with development beginning at P30–32. These results reveal genotype- and sex-dependent effects of altered Cntnap2 expression and can shed light on the sex-dependent incidence of ASD. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9182-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leah B Townsend
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Spencer L Smith
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
45
|
Brimberg L, Mader S, Jeganathan V, Berlin R, Coleman TR, Gregersen PK, Huerta PT, Volpe BT, Diamond B. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol Psychiatry 2016; 21:1663-1671. [PMID: 27698429 PMCID: PMC5583730 DOI: 10.1038/mp.2016.165] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) occurs in 1 in 68 births, preferentially affecting males. It encompasses a group of neurodevelopmental abnormalities characterized by impaired social interaction and communication, stereotypic behaviors and motor dysfunction. Although recent advances implicate maternal brain-reactive antibodies in a causative role in ASD, a definitive assessment of their pathogenic potential requires cloning of such antibodies. Here, we describe the isolation and characterization of monoclonal brain-reactive antibodies from blood of women with brain-reactive serology and a child with ASD. We further demonstrate that male but not female mice exposed in utero to the C6 monoclonal antibody, binding to contactin-associated protein-like 2 (Caspr2), display abnormal cortical development, decreased dendritic complexity of excitatory neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as impairments in sociability, flexible learning and repetitive behavior. Anti-Caspr2 antibodies are frequent in women with brain-reactive serology and a child with ASD. Together these studies provide a methodology for obtaining monclonal brain-reactive antibodies from blood B cells, demonstrate that ASD can result from in utero exposure to maternal brain-reactive antibodies of single specificity and point toward the exciting possibility of prognostic and protective strategies.
Collapse
Affiliation(s)
- L Brimberg
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - S Mader
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - V Jeganathan
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - R Berlin
- Laboratory of Functional Neuroanatomy, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - TR Coleman
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - PK Gregersen
- Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - PT Huerta
- Laboratory of Immune & Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - BT Volpe
- Laboratory of Functional Neuroanatomy, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - B Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
46
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
47
|
Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism. eNeuro 2016; 3:eN-CFN-0196-16. [PMID: 27785461 PMCID: PMC5066262 DOI: 10.1523/eneuro.0196-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2-/- and Shank3+/ΔC transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.
Collapse
|
48
|
Lu Z, Reddy MVVVS, Liu J, Kalichava A, Liu J, Zhang L, Chen F, Wang Y, Holthauzen LMF, White MA, Seshadrinathan S, Zhong X, Ren G, Rudenko G. Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2). J Biol Chem 2016; 291:24133-24147. [PMID: 27621318 DOI: 10.1074/jbc.m116.748236] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
Contactin-associated protein-like 2 (CNTNAP2) is a large multidomain neuronal adhesion molecule implicated in a number of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorder, intellectual disability, and language delay. We reveal here by electron microscopy that the architecture of CNTNAP2 is composed of a large, medium, and small lobe that flex with respect to each other. Using epitope labeling and fragments, we assign the F58C, L1, and L2 domains to the large lobe, the FBG and L3 domains to the middle lobe, and the L4 domain to the small lobe of the CNTNAP2 molecular envelope. Our data reveal that CNTNAP2 has a very different architecture compared with neurexin 1α, a fellow member of the neurexin superfamily and a prototype, suggesting that CNTNAP2 uses a different strategy to integrate into the synaptic protein network. We show that the ectodomains of CNTNAP2 and contactin 2 (CNTN2) bind directly and specifically, with low nanomolar affinity. We show further that mutations in CNTNAP2 implicated in autism spectrum disorder are not segregated but are distributed over the whole ectodomain. The molecular shape and dimensions of CNTNAP2 place constraints on how CNTNAP2 integrates in the cleft of axo-glial and neuronal contact sites and how it functions as an organizing and adhesive molecule.
Collapse
Affiliation(s)
- Zhuoyang Lu
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,the Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - M V V V Sekhar Reddy
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Jianfang Liu
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ana Kalichava
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Jiankang Liu
- the Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Fang Chen
- the University of Michigan, Ann Arbor, Michigan 48109
| | - Yun Wang
- the University of Michigan, Ann Arbor, Michigan 48109
| | | | - Mark A White
- the Sealy Center for Structural Biology and Molecular Biophysics and.,the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, and
| | - Suchithra Seshadrinathan
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Xiaoying Zhong
- the Department of Pharmacology and Toxicology.,the Sealy Center for Structural Biology and Molecular Biophysics and
| | - Gang Ren
- From the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
| | - Gabby Rudenko
- the Department of Pharmacology and Toxicology, .,the Sealy Center for Structural Biology and Molecular Biophysics and
| |
Collapse
|
49
|
Advancing the understanding of autism disease mechanisms through genetics. Nat Med 2016; 22:345-61. [PMID: 27050589 DOI: 10.1038/nm.4071] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022]
Abstract
Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies.
Collapse
|
50
|
Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep 2016; 6:24241. [PMID: 27053173 PMCID: PMC4823656 DOI: 10.1038/srep24241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/23/2016] [Indexed: 01/27/2023] Open
Abstract
Formation and stability of synapses are required for proper brain function. While it is well established that synaptic adhesion molecules are important regulators of synapse formation, their specific role during different phases of synapse development remains unclear. To investigate the function of the synaptic cell adhesion molecule SynCAM 1 in the formation, stability, and maintenance of spines we used 2-photon in vivo imaging to follow individual spines over a long period of time. In SynCAM 1 knockout mice the survival rate of existing spines was reduced and fewer filopodia-like structures were converted into stable spines. SynCAM 1flag overexpression resulted in more stable spines and fewer filopodia-like structures. When SynCAM 1flag overexpression is turned on the spine density rapidly increases within a few days. Interestingly, the spine density stayed at an elevated level when SynCAM 1flag overexpression was turned off. Our data indicate that the SynCAM 1 induced altered spine density is not caused by the formation of newly emerging protrusions, instead SynCAM 1 stabilizes nascent synaptic contacts which promotes their maturation. Concomitant with the synaptic stabilization, SynCAM 1 generally prolongs the lifetime of spines. In summary, we demonstrate that SynCAM 1 is a key regulator of spine stability.
Collapse
Affiliation(s)
- Nils Körber
- Institute of Physiology II, Medical Faculty, University Bonn, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, Medical Faculty, University Bonn, Bonn, Germany
| |
Collapse
|