1
|
Mahoney-Kurpe SC, Palevich N, Gagic D, Biggs PJ, Reid PM, Altshuler I, Pope PB, Attwood GT, Moon CD. Transcriptomic and proteomic changes associated with cobalamin-dependent propionate production by the rumen bacterium Xylanibacter ruminicola. mSystems 2024; 9:e0086424. [PMID: 39470249 PMCID: PMC11575231 DOI: 10.1128/msystems.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Xylanibacter ruminicola is an abundant rumen bacterium that produces propionate in a cobalamin (vitamin B12)-dependent manner via the succinate pathway. However, the extent to which this occurs across ruminal Xylanibacter and closely related bacteria, and the effect of cobalamin supplementation on the expression of propionate pathway genes and enzymes has yet to be investigated. To assess this, we screened 14 strains and found that almost all strains produced propionate when supplemented with cobalamin. X. ruminicola KHP1 was selected for further study, including complete genome sequencing, and comparative transcriptomics and proteomics of KHP1 cultures grown with and without supplemented cobalamin. The complete KHP1 genome was searched for cobalamin-binding riboswitches and four were predicted, though none were closely located to any of the succinate pathway genes, which were dispersed at numerous genomic loci. Cobalamin supplementation led to the differential expression of 17.5% of genes, including genes encoding the cobalamin-dependent methylmalonyl-CoA mutase and some methylmalonyl-CoA decarboxylase subunits, but most propionate biosynthesis pathway genes were not differentially expressed. The effect of cobalamin supplementation on the KHP1 proteome was much less pronounced, with the only differentially abundant propionate pathway enzyme being methylmalonyl-CoA mutase, which had greater abundance when supplemented with cobalamin. Our results demonstrate that cobalamin supplementation does not result in induction of the entire propionate biosynthesis pathway, but consistently increased expression of methylmalonyl-CoA mutase at transcriptome and proteome levels. The magnitude of the differential expression of propionate pathway genes observed was minor compared to that of genes proximate to predicted cobalamin riboswitches. IMPORTANCE In ruminants, the rumen microbial community plays a critical role in nutrition through the fermentation of feed to provide vital energy substrates for the host animal. Propionate is a major rumen fermentation end-product and increasing its production is desirable given its importance in host glucose production and impact on greenhouse gas production. Vitamin B12 (cobalamin) can induce propionate production in the prominent rumen bacterium Xylanibacter ruminicola, but it is not fully understood how cobalamin regulates propionate pathway activity. Contrary to expectation, we found that cobalamin supplementation had little effect on propionate pathway expression at transcriptome and proteome levels, with minor upregulation of genes encoding the cobalamin-dependent enzyme of the pathway. These findings provide new insights into factors that regulate propionate production and suggest that cobalamin-dependent propionate production by X. ruminicola is controlled post-translationally.
Collapse
Affiliation(s)
- Sam C Mahoney-Kurpe
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Dragana Gagic
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Peter M Reid
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ianina Altshuler
- Faculty of Biosciences, Norwegian University of Life Sciences, Ǎs, Norway
- MACE Laboratory, Alpine and Polar Environmental Research Centre (ALPOLE), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ǎs, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ǎs, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Graeme T Attwood
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
2
|
Djorić D, Atkinson SN, Kristich CJ. Reciprocal regulation of enterococcal cephalosporin resistance by products of the autoregulated yvcJ-glmR-yvcL operon enhances fitness during cephalosporin exposure. PLoS Genet 2024; 20:e1011215. [PMID: 38512984 PMCID: PMC10986989 DOI: 10.1371/journal.pgen.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Jiang W, Zhang Y, Yan J, He Z, Chen W. Differences of protein expression in enterococcus faecalis biofilm during resistance to environmental pressures. Technol Health Care 2024; 32:371-383. [PMID: 38759062 PMCID: PMC11307051 DOI: 10.3233/thc-248033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Enterococcus faecalis biofilm was frequently found on the failed treated root canal wall, which survived by resisting disinfectant during endodontic treatment.Many researches have been conducted to explore the mechanisms of persistence of this pathogen in unfavorable conditions. However, no comprehensive proteomics studies have been conducted to investigate stress response in Enterococcus faecalis caused by alkali and NaOCl. OBJECTIVE Enterococcus faecalis (E.f) has been recognized as a main pathogen of refractory apical periodontitis, its ability to withstand environmental pressure is the key to grow in the environment of high alkaline and anti-bacterial drug that causes chronic infection in the root canal. This study aims to focus on the protein expression patterns of E.f biofilm under extreme pressure environment". METHODS Enterococcus faecalis biofilm model was established in vitro. Liquid Chromatograph-Mass Spectrometer (LC-MS/MS)-based label free quantitative proteomics approach was applied to compare differential protein expression under different environmental pressures (pH 10 and 5% sodium hypochlorite (NaOCl)). And then qPCR and Parallel Reaction Monitoring Verification (PRM) were utilized to verify the consequence of proteomics. RESULTS The number of taxa in this study was higher than those in previous studies, demonstrating the presence of a remarkable number of proteins in the groups of high alkaline and NaOCl. Proteins involved in ATP-binding cassette (ABC) transporter were significantly enriched in experimental samples. We identified a total of 15 highly expressed ABC transporters in the high alkaline environment pressure group, with 7 proteins greater than 1.5 times. CONCLUSIONS This study revealed considerable changes in expression of proteins in E.f biofilm during resistance to environmental pressures. The findings enriched our understanding of association between the differential expression proteins and environmental pressures.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
| | - Youmeng Zhang
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
- Department of Stomatology, Eye and Ent Hospital of Fudan University, Shanghai, China
| | - Jie Yan
- Department of Stomatology, Shanghai Hudong Hospital, Shanghai, China
| | - Zhiyan He
- Shanghai Research Institute of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixu Chen
- Department of Stomatology, Eye and Ent Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ali IAA, Cheung GS, Neelakantan P. Transition Metals and
Enterococcus faecalis
: Homeostasis, Virulence and Perspectives. Mol Oral Microbiol 2022; 37:276-291. [DOI: 10.1111/omi.12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Islam A. A. Ali
- Department of Endodontics Faculty of Dentistry Mansoura University Mansoura Egypt
| | - Gary S.P. Cheung
- Discipline of Endodontology Division of Restorative Dental Sciences Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| | - Prasanna Neelakantan
- Discipline of Endodontology Division of Restorative Dental Sciences Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| |
Collapse
|
5
|
Patil A, Banerji R, Kanojiya P, Saroj SD. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: lessons Learned from Clinical Isolates. Pathog Glob Health 2021; 115:339-356. [PMID: 33851566 PMCID: PMC8592604 DOI: 10.1080/20477724.2021.1916158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ESKAPE pathogens (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are identified to be multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR); thereby, imposing severe challenges in the treatment of associated infections. ESKAPE pathogens colonize on various biotic and abiotic surfaces; biofilms formed by these pathogens are a potential source for food contamination. Moreover, biofilms play a pivotal role in the development of antimicrobial-resistant (AMR) strains. Hence, the frequent isolation of antimicrobial-resistant ESKAPE pathogens from food products across the globe imposes a threat to public health. A comprehensive understanding of the adhesion signaling involved in the polymicrobial and single-species biofilm will assist in developing alternative preservation techniques and novel therapeutic strategies to combat ESKAPE pathogens. The review provides a comprehensive overview of the signaling mechanisms that prevail in the ESKAPE pathogens for adhesion to abiotic and biotic surfaces and molecular mechanisms associated with poly-microbial biofilm-assisted AMR in ESKAPE.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, PuneMaharashtra, India
| |
Collapse
|
6
|
Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 2021; 97:6275716. [PMID: 33988698 PMCID: PMC8755941 DOI: 10.1093/femsec/fiab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Sébastien Duperron
- UMR 7245 Muséum National d'Histoire Naturelle/CNRS Molécules de Communication et Adaptation des Micro-organismes and Institut Universitaire de France, CP39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Martin Hovland
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
7
|
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021; 12:1230. [PMID: 33623002 PMCID: PMC7902821 DOI: 10.1038/s41467-021-21473-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Helen Masson
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Cathrine Bunæs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Benjamin Schmidt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Raymond H Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan E Lewis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
8
|
Microbiota-directed fibre activates both targeted and secondary metabolic shifts in the distal gut. Nat Commun 2020; 11:5773. [PMID: 33188211 PMCID: PMC7666174 DOI: 10.1038/s41467-020-19585-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/19/2020] [Indexed: 12/29/2022] Open
Abstract
Beneficial modulation of the gut microbiome has high-impact implications not only in humans, but also in livestock that sustain our current societal needs. In this context, we have tailored an acetylated galactoglucomannan (AcGGM) fibre to match unique enzymatic capabilities of Roseburia and Faecalibacterium species, both renowned butyrate-producing gut commensals. Here, we test the accuracy of AcGGM within the complex endogenous gut microbiome of pigs, wherein we resolve 355 metagenome-assembled genomes together with quantitative metaproteomes. In AcGGM-fed pigs, both target populations differentially express AcGGM-specific polysaccharide utilization loci, including novel, mannan-specific esterases that are critical to its deconstruction. However, AcGGM-inclusion also manifests a “butterfly effect”, whereby numerous metabolic changes and interdependent cross-feeding pathways occur in neighboring non-mannanolytic populations that produce short-chain fatty acids. Our findings show how intricate structural features and acetylation patterns of dietary fibre can be customized to specific bacterial populations, with potential to create greater modulatory effects at large. Here, the authors tailor an acetylated galactoglucomannan (AcGGM) fibre from spruce wood to specifically enrich Roseburia and Faecalibacterium - beneficial species which have the enzymatic machinery to breakdown the fibre and generate butyrate. They subsequently perform a piglet feeding trial, metagenomics and metaproteomics, together showing that AcGGM-fed pigs exhibit not only increased Roseburia and Faecalibacterium populations with AcGGM-specific mannan-specific esterases, but also secondary metabolic pathways.
Collapse
|
9
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
10
|
Minniti G, Rød Sandve S, Padra JT, Heldal Hagen L, Lindén S, Pope PB, Ø Arntzen M, Vaaje-Kolstad G. The Farmed Atlantic Salmon ( Salmo salar) Skin-Mucus Proteome and Its Nutrient Potential for the Resident Bacterial Community. Genes (Basel) 2019; 10:genes10070515. [PMID: 31284681 PMCID: PMC6678340 DOI: 10.3390/genes10070515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022] Open
Abstract
Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In particular, the microbial temporal proteome dynamics during nine days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment. At the start of the incubation period, the largest proportion of proteins (~99%) belonged to the salmon and many of these proteins were assigned to protecting functions, confirming the defensive role of mucus. On the contrary, after nine days of incubation, most of the proteins detected were assigned to bacteria, mainly to the genera Vibrio and Pseudoalteromonas. Most of the predicted secreted proteins were affiliated with transport and metabolic processes. In particular, a large abundance and variety of bacterial proteases were observed, highlighting the capacity of bacteria to degrade the skin-mucus proteins of Atlantic salmon.
Collapse
Affiliation(s)
- Giusi Minniti
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Simen Rød Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - János Tamás Padra
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Live Heldal Hagen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Sara Lindén
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), NO-1432 Ås, Norway.
| |
Collapse
|
11
|
The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat Commun 2019; 10:905. [PMID: 30796211 PMCID: PMC6385246 DOI: 10.1038/s41467-019-08812-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/03/2019] [Indexed: 12/11/2022] Open
Abstract
β-Mannans are plant cell wall polysaccharides that are commonly found in human diets. However, a mechanistic understanding into the key populations that degrade this glycan is absent, especially for the dominant Firmicutes phylum. Here, we show that the prominent butyrate-producing Firmicute Roseburia intestinalis expresses two loci conferring metabolism of β-mannans. We combine multi-“omic” analyses and detailed biochemical studies to comprehensively characterize loci-encoded proteins that are involved in β-mannan capturing, importation, de-branching and degradation into monosaccharides. In mixed cultures, R. intestinalis shares the available β-mannan with Bacteroides ovatus, demonstrating that the apparatus allows coexistence in a competitive environment. In murine experiments, β-mannan selectively promotes beneficial gut bacteria, exemplified by increased R. intestinalis, and reduction of mucus-degraders. Our findings highlight that R. intestinalis is a primary degrader of this dietary fiber and that this metabolic capacity could be exploited to selectively promote key members of the healthy microbiota using β-mannan-based therapeutic interventions. How dietary β-mannans are utilized by gut Gram-positive bacteria is unclear. Here, the authors uncover the enzymatic pathway for β-mannan metabolism in Roseburia intestinalis and show that these polysaccharides promote beneficial gut bacteria, highlighting a potential for β-mannan-based therapeutic interventions.
Collapse
|
12
|
Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol (Dordr) 2019; 42:173-196. [PMID: 30756254 DOI: 10.1007/s13402-018-00418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling. METHODS To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS). RESULTS Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment. CONCLUSION Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.
Collapse
|
13
|
Actinobaculum massiliense Proteome Profiled in Polymicrobial Urethral Catheter Biofilms. Proteomes 2018; 6:proteomes6040052. [PMID: 30544882 PMCID: PMC6314084 DOI: 10.3390/proteomes6040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Actinobaculum massiliense, a Gram-positive anaerobic coccoid rod colonizing the human urinary tract, belongs to the taxonomic class of Actinobacteria. We identified A. massiliense as a cohabitant of urethral catheter biofilms (CB). The CBs also harbored more common uropathogens, such as Proteus mirabilis and Aerococcus urinae, supporting the notion that A. massiliense is adapted to a life style in polymicrobial biofilms. We isolated a clinical strain from a blood agar colony and used 16S rRNA gene sequencing and shotgun proteomics to confirm its identity as A. massiliense. We characterized this species by quantitatively comparing the bacterial proteome derived from in vitro growth with that of four clinical samples. The functional relevance of proteins with emphasis on nutrient import and the response to hostile host conditions, showing evidence of neutrophil infiltration, was analyzed. Two putative subtilisin-like proteases and a heme/oligopeptide transporter were abundant in vivo and are likely important for survival and fitness in the biofilm. Proteins facilitating uptake of xylose/glucuronate and oligopeptides, also highly expressed in vivo, may feed metabolites into mixed acid fermentation and peptidolysis pathways, respectively, to generate energy. A polyketide synthase predicted to generate a secondary metabolite that interacts with either the human host or co-colonizing microbes was also identified. The product of the PKS enzyme may contribute to A. massiliense fitness and persistence in the CBs.
Collapse
|
14
|
Proteomic Dissection of the Cellulolytic Machineries Used by Soil-Dwelling Bacteroidetes. mSystems 2018; 3:mSystems00240-18. [PMID: 30505945 PMCID: PMC6247017 DOI: 10.1128/msystems.00240-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. The soil Bacteroidetes species Cytophaga hutchinsonii and Sporocytophaga myxococcoides have long been known as efficient cellulose metabolizers, but neither species conforms to known cellulolytic mechanisms. Both species require contact with their substrate but do not encode cellulosomal systems of cell surface-attached enzyme complexes or the polysaccharide utilization loci found in many other Bacteroidetes species. Here, we have fractionated the cellular compartments of each species from cultures growing on crystalline cellulose and pectin, respectively, and analyzed them using label-free quantitative proteomics as well as enzymatic activity assays. The combined results enabled us to highlight enzymes likely to be important for cellulose conversion and to infer their cellular localization. The combined proteomes represent a wide array of putative cellulolytic enzymes and indicate specific and yet highly redundant mechanisms for cellulose degradation. Of the putative endoglucanases, especially enzymes of hitherto-unstudied glycoside hydrolase family, 8 were abundant, indicating an overlooked important role during cellulose metabolism. Furthermore, both species generated a large number of abundant hypothetical proteins during cellulose conversion, providing a treasure trove of targets for future enzymology studies. IMPORTANCE Cellulose is the most abundant renewable polymer on earth, but its recalcitrance limits highly efficient conversion methods for energy-related and material applications. Though microbial cellulose conversion has been studied for decades, recent advances showcased that large knowledge gaps still exist. Bacteria of the phylum Bacteroidetes are regarded as highly efficient carbohydrate metabolizers, but most species are limited to (semi)soluble glycans. A few species, including the soil bacteria C. hutchinsonii and S. myxococcoides, are regarded as cellulose specialists, but their cellulolytic mechanisms are not understood, as they do not conform to the current models for enzymatic cellulose turnover. By unraveling the proteome setups of these two bacteria during growth on both crystalline cellulose and pectin, we have taken a significant step forward in understanding their idiosyncratic mode of cellulose conversion. This report provides a plethora of new enzyme targets for improved biomass conversion.
Collapse
|
15
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Suriyanarayanan T, Qingsong L, Kwang LT, Mun LY, Truong T, Seneviratne CJ. Quantitative Proteomics of Strong and Weak Biofilm Formers of Enterococcus faecalis Reveals Novel Regulators of Biofilm Formation. Mol Cell Proteomics 2018; 17:643-654. [PMID: 29358339 DOI: 10.1074/mcp.ra117.000461] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Enterococcus faecalis is a bacterial pathogen associated with both endodontic and systemic infections. The biofilm formation ability of E. faecalis plays a key role in its virulence and drug resistance attributes. The formation of E. faecalis biofilms on implanted medical devices often results in treatment failure. In the present study, we report protein markers associated with the biofilm formation ability of E. faecalis using iTRAQ-based quantitative proteomics approach. In order to elucidate the biofilm-associated protein markers, we investigated the proteome of strong and weak biofilm-forming E. faecalis clinical isolates in comparison with standard American Type Culture Collection (ATCC) control strains. Comparison of E. faecalis strong and weak biofilm-forming clinical isolates with ATCC control strains showed that proteins associated with shikimate kinase pathway and sulfate transport were up-regulated in the strong biofilm former, while proteins associated with secondary metabolites, cofactor biosynthesis, and tetrahydrofolate biosynthesis were down-regulated. In the weak biofilm former, proteins associated with nucleoside and nucleotide biosynthesis were up-regulated, whereas proteins associated with sulfate and sugar transport were down-regulated. Further pathway and gene ontology analyses revealed that the major differences in biofilm formation arise from differences in metabolic activity levels of the strong and weak biofilm formers, with higher levels of metabolic activity observed in the weak biofilm former. The differences in metabolic activity could therefore be a major determinant of the biofilm ability of E. faecalis The new markers identified from this study can be further characterized in order to understand their exact role in E. faecalis biofilm formation ability. This, in turn, can lead to numerous therapeutic benefits in the treatment of this oral and systemic pathogen. The data has been deposited to the ProteomeXchange with identifier PXD006542.
Collapse
Affiliation(s)
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lim Teck Kwang
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Lee Yew Mun
- Department of Biological Sciences, Faculty of Science, National University of Singapore
| | - Thuyen Truong
- From the Oral Sciences, Faculty of Dentistry, National University of Singapore
| | | |
Collapse
|
17
|
Association of Metal Homeostasis and (p)ppGpp Regulation in the Pathophysiology of Enterococcus faecalis. Infect Immun 2017; 85:IAI.00260-17. [PMID: 28483855 DOI: 10.1128/iai.00260-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/30/2023] Open
Abstract
In Enterococcus faecalis, the regulatory nucleotides pppGpp and ppGpp, collectively, (p)ppGpp, are required for growth in blood, survival within macrophages, and virulence. However, a clear understanding of how (p)ppGpp promotes virulence in E. faecalis and other bacterial pathogens is still lacking. In the host, the essential transition metals iron (Fe) and manganese (Mn) are not readily available to invading pathogens because of a host-driven process called nutritional immunity. Considering its central role in adaptation to nutritional stresses, we hypothesized that (p)ppGpp mediates E. faecalis virulence through regulation of metal homeostasis. Indeed, supplementation of serum with either Fe or Mn restored growth and survival of the Δrel ΔrelQ [(p)ppGpp0] strain to wild-type levels. Using a chemically defined medium, we found that (p)ppGpp accumulates in response to either Fe depletion or Mn depletion and that the (p)ppGpp0 strain has a strong growth requirement for Mn that is alleviated by Fe supplementation. Although inactivation of the nutrient-sensing regulator codY restored some phenotypes of the (p)ppGpp0 strain, transcriptional analysis showed that the (p)ppGpp/CodY network does not promote transcription of known metal transporters. Interestingly, physiologic and enzymatic investigations suggest that the (p)ppGpp0 strain requires higher levels of Mn in order to cope with high levels of endogenously produced reactive oxygen species (ROS). Because (p)ppGpp mediates antibiotic persistence and virulence in several bacteria, our findings have broad implications and provide new leads for the development of novel therapeutic and preventive strategies against E. faecalis and beyond.
Collapse
|
18
|
Arntzen MØ, Várnai A, Mackie RI, Eijsink VGH, Pope PB. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol 2017; 19:2701-2714. [PMID: 28447389 DOI: 10.1111/1462-2920.13770] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
Abstract
Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.
Collapse
Affiliation(s)
- Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roderick I Mackie
- Institute for Genomic Biology, and Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Hagen LH, Frank JA, Zamanzadeh M, Eijsink VGH, Pope PB, Horn SJ, Arntzen MØ. Quantitative Metaproteomics Highlight the Metabolic Contributions of Uncultured Phylotypes in a Thermophilic Anaerobic Digester. Appl Environ Microbiol 2017; 83:e01955-16. [PMID: 27815274 PMCID: PMC5203625 DOI: 10.1128/aem.01955-16] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/31/2016] [Indexed: 01/23/2023] Open
Abstract
In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and β-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the β-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.
Collapse
Affiliation(s)
- Live H Hagen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Mirzaman Zamanzadeh
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Phillip B Pope
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Svein J Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
20
|
Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome. mSystems 2016; 1:mSystems00092-16. [PMID: 27822555 PMCID: PMC5080403 DOI: 10.1128/msystems.00092-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates. Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1’s metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or “biogas” is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.
Collapse
|
21
|
Zhao P, Fu J, Yao B, Jia Y, Zhang H, Li X, Dong L, Gao Y, Liu W, Chen W, Zhou Z. Label-free quantitative proteomic analysis of benzo(a)pyrene-transformed 16HBE cells serum-free culture supernatant and xenografted nude mice sera. Chem Biol Interact 2015; 245:39-49. [PMID: 26748308 DOI: 10.1016/j.cbi.2015.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/01/2015] [Accepted: 12/29/2015] [Indexed: 11/30/2022]
Abstract
To screen potential biomarkers of benzo(a)pyrene (BaP)-induced lung cancer, the proteomic profiles of BaP-transformed 16HBE cell line T-16HBE-C1 cells serum-free culture supernatant and xenografted nude mice sera were compared with those of 16HBE group by utilizing label-free quantitative proteomic strategy. By employing nano-LC-MS/MS technology followed by MaxQuant and Perseus processing, 489 differentially expressed proteins were identified between T-16HBE-C1 and 16HBE cells serum-free culture supernatant, and 49 significantly up-regulated proteins were identified in T-16HBE-C1 xenografted nude mice sera. Three proteins neuropilin-2 (NRP2), clusterin (CLU) and A-kinase anchor protein 12 (AKAP12) were up-regulated in the serum-free culture supernatant of T-16HBE-C1 cells. These 3 human proteins were present in the sera of nude mice xenografted with T-16HBE-C1 cells, but were undetectable in mice xenografted with 16HBE cells. The proteomic results of NRP2 and AKAP12 were confirmed by Western blotting and enzyme-linked immunosorbent assays, respectively. Moreover, the serum NRP2 levels were significantly elevated at the 4th day after tumor cell implantation and showed good positive correlation with tumor growth characterized by tumor volume. In conclusion, serum NRP2, CLU and AKAP12 could be potential biomarkers of BaP-induced lung cancer. The proteomic results will gain deeper insights into the mechanisms of BaP-induced carcinogenesis.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China.
| | - Juanling Fu
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China
| | - Biyun Yao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yongrui Jia
- Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, PR China
| | - Hongtao Zhang
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xuehui Li
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Lisha Dong
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ya Gao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wenli Liu
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing, 100191, PR China
| | - Wen Chen
- Department of Toxicology, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Zongcan Zhou
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|