1
|
Smith BH. Cognition from genes to ecology: individual differences incognition and its potential role in a social network. Anim Cogn 2025; 28:32. [PMID: 40252107 PMCID: PMC12009236 DOI: 10.1007/s10071-025-01951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
There have now been many reports of intra-colony differences in how individuals learn on a variety of conditioning tasks in both honey bees and bumble bees. Yet the fundamental mechanistic and adaptive bases for this variation have yet to be fully described. This review summarizes a long series of investigations with the honey bee (Apis mellifera) that had the objective of describing the factors that contribute to this variation. Selection on haploid drones for extremes in learning performance revealed that genotype accounted for much of the variance. Neither age nor behavioral caste consistently accounted for observed variation on different conditioning protocols until genotype was controlled. Two subsequent Quantitative Trait Locus mapping studies identified a locus in the honey bee genome with a significant effect on the learning phenotype. Pharmacological and reverse genetic approaches, combined with neurophysiological analyses, confirmed that a biogenic amine receptor for tyramine affects expression of the trait. This work allowed for development of a hypothetical model of how that receptor functions in the brain to produce broad pleiotropic effects on behavior. Subsequent work used genotype as a treatment condition for evaluation of the variation under quasi-natural conditions, which revealed that individual variation reflects how foragers weigh known and novel resources in decision making. This work, together with other studies of individual differences, suggests a unifying framework for understanding how and why individuals differ in cognitive abilities.
Collapse
|
2
|
Maigoro AY, Lee JH, Yun Y, Lee S, Kwon HW. In the battle of survival: transcriptome analysis of hypopharyngeal gland of the Apis mellifera under temperature-stress. BMC Genomics 2025; 26:151. [PMID: 39962388 PMCID: PMC11834505 DOI: 10.1186/s12864-025-11322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Temperature is one of the essential abiotic factors required for honey bee survival and pollination. Apart from its role as a major contributor to colony collapse disorder (CCD), it also affects honey bee physiology and behavior. Temperature-stress induces differential expression of genes related to protein synthesis and metabolic regulation, correlating with impaired gland function. This phenomenon has been confirmed in mandibular glands (MGs), but not in Hypopharyngeal glands (HGs), potentially affecting larval nutrition. RNA-seq analysis was performed using HGs tissue at low (23 °C), regular (26 °C), and high (29 °C) ambient temperatures. This study aims to decode molecular signatures and the pathways of the HGs tissue in response to temperature-stress and the rapid genetic changes that impact not only royal jelly (RJ) production potential but also other biological functions related to HGs and beyond. RESULTS From the analyzed RNA-seq data, 1,465 significantly differentially expressed genes (DEGs) were identified across all the temperature groups. Eight genes (APD-1, LOC100577569, LOC100577883, LOC113218757, LOC408769, LOC409318, LOC412162, OBP18) were commonly expressed in all groups, while 415 (28.3%) of the total genes were exclusively expressed under temperature-stress. The DEGs were categorized into 14 functional groups and significantly enriched in response to external stimuli, response to abiotic stimuli, and protein processing in the endoplasmic reticulum (ER). Pathway analysis of exclusively temperature-stressed DEGs revealed that these genes promote ECM-receptor interaction and fatty acid metabolism while reducing protein processing in the ER, which is related to royal jelly (RJ) production and overall nutrition. Although heat-shock protein 90 and gustatory receptor 10 serve as markers for stress and hypopharyngeal glands (HGs) development respectively, their expression varies under temperature-stress conditions. CONCLUSIONS We conclude that with the recent effects of climate change and its contributing factors, honey bee pollination, and reproduction activity is on the verge of halting or experiencing a detrimental decline. Considering the impact of temperature-stress on the expression of the nutritional marker gene (GR10), silencing GR10 in HGs tissue could provide valuable insights into its significance in nutritional performance, survival, and beyond. Finally, a broader temperature range in future experiments could help derive more definitive conclusion.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Jeong Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Yumi Yun
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sujin Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hyung Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
3
|
Ellis JT, Rangel J. Stress drives premature hive exiting behavior that leads to death in young honey bee (Apis mellifera) workers. Biol Res 2024; 57:92. [PMID: 39593109 PMCID: PMC11600856 DOI: 10.1186/s40659-024-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The Western honey bee, Apis mellifera, is an economically important pollinator, as well as a tractable species for studying the behavioral intricacies of eusociality. Honey bees are currently being challenged by multiple biotic and environmental stressors, many of which act concomitantly to affect colony health and productivity. For instance, developmental stress can lead workers to become precocious foragers and to leave the hive prematurely. Precocious foragers have decreased flight time and lower foraging efficiency, which can ultimately lower colony productivity and even lead to colony collapse. MATERIALS AND METHODS In this study, we tested the hypothesis that stress during pupal development can cause young workers to exit the hive prematurely before they are physically able to fly. This premature exiting behavior results in death outside the hive soon thereafter. To determine how various stressors may lead bees to perform this behavior, we subjected workers during the last pupal stage to either cold stress (26 °C for 24 h), heat stress (39 °C for 24 h), or Varroa destructor mite parasitization, and compared the rate of premature hive exits between stressed bees and their respective control counterparts. Upon emergence, we individually tagged focal bees in all treatment groups and introduced them to a common observation hive. We then followed tagged bees over time and monitored their survivorship, as well as their likelihood of performing the premature hive exiting behavior. We also dissected the hypopharyngeal glands of all treatment and control bees sampled. RESULTS We found that significantly more bees in all three treatment groups exited the hive prematurely compared to their control counterparts. Bees in all treatment groups also had significantly smaller hypopharyngeal glands than control bees. CONCLUSIONS Our results suggest that premature hive exiting behavior is driven by stress and is potentially a form of accelerated age polyethism that leads to premature death.
Collapse
Affiliation(s)
- Jordan Twombly Ellis
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
| |
Collapse
|
4
|
Keodara A, Jeker L, Straub L, Grossar D, Müller J, Christen V. Novel fungicide and neonicotinoid insecticide impair flight behavior in pollen foraging honey bees, Apis mellifera. Sci Rep 2024; 14:22865. [PMID: 39354118 PMCID: PMC11445536 DOI: 10.1038/s41598-024-73235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024] Open
Abstract
Bees are often exposed to pesticides affecting physiological functions and molecular mechanisms. Studies showed a potential link between altered expression of energy metabolism related transcripts and increased homing flight time of foragers exposed to pesticides. In this study, we investigated the effects of thiamethoxam and pyraclostrobin on longevity, flight behavior, and expression of transcripts involved in endocrine regulation (hbg-3, buffy, vitellogenin) and energy metabolism (cox5a, cox5b, cox17) using radio frequency identification (RFID) technology and quantitative polymerase chain reaction. Parallel, a laboratory study was conducted investigating whether pesticide exposure alone without the influence of flight activity caused similar expression patterns as in the RFID experiment. No significant effect on survival, homing flight duration, or return rate of exposed bees was detected. The overall time foragers spent outside the hive was significantly reduced post-exposure. Irrespective of the treatment group, a correlation was observed between cox5a, cox5b, cox17 and hbg-3 expression and prolonged homing flight duration. Our results suggest that flight behavior can impact gene expression and exposure to pesticides adversely affects the expression of genes that are important for maintaining optimal flight capacity. Our laboratory-based experiment showed significantly altered expression levels of cox5a, cox6c, and cox17. However, further work is needed to identify transcriptional profiles responsible for prolonged homing flight duration.
Collapse
Affiliation(s)
- Anna Keodara
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology, North Bangkok, Rayong Campus, Rayong, Thailand
- Centre for Ecology, Evolution, and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Daniela Grossar
- Agroscope, Swiss Bee Research Center, Schwarzenburgstrasse 161, Bern, Switzerland
| | - Jan Müller
- Federal Office of Information Technology, Systems and Telecommunication, Bern, Switzerland
| | - Verena Christen
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
5
|
Murawska A, Migdał P, Mating M, Bieńkowski P, Berbeć E, Einspanier R. Metabolism gene expression in worker honey bees after exposure to 50Hz electric field - semi-field analysis. Front Zool 2024; 21:14. [PMID: 38807222 PMCID: PMC11134740 DOI: 10.1186/s12983-024-00535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
The investigation of the effects of artificial 50 Hz electric field (E-field) frequency on Apis mellifera is a relatively new field of research. Since the current literature focuses mainly on short-term effects, it is unknown whether E-fields have permanent effects on bees or whether their effects can be neutralized. In this study we assessed gene expression immediately after exposure to the E-field, as well as 7 days after exposure. The aim of this work was to identify potentially dysregulated gene transcripts in honey bees that correlate with exposure time and duration to E-fields.Newly emerged bees were marked daily with a permanent marker (one color for each group). Then bees were exposed to the 50 Hz E-field with an intensity of 5.0 kV/m or 10.0 kV/m for 1-3 h. After exposure, half of the bees were analyzed for gene expression changes. The other half were transferred to a colony kept in a mini-hive. After 7 days, marked bees were collected from the mini-hive for further analysis. Six regulated transcripts were selected of transcripts involved in oxidative phosphorylation (COX5a) and transcripts involved in endocrine functions (HBG-3, ILP-1), mitochondrial inner membrane transport (TIM10), and aging (mRPL18, mRPS30).Our study showed that in Apis mellifera the expression of selected genes is altered in different ways after exposure to 50 Hz electric fields -. Most of those expression changes in Cox5a, mRPL18, mRPS30, and HGB3, were measurable 7 days after a 1-3 h exposure. These results indicate that some E-field effects may be long-term effects on honey bees due to E-field exposure, and they can be observed 7 days after exposure.
Collapse
Affiliation(s)
- Agnieszka Murawska
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland.
| | - Paweł Migdał
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| | - Moritz Mating
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| | - Paweł Bieńkowski
- Telecommunications and Teleinformatics Department, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., Wroclaw, 50-370, Poland
| | - Ewelina Berbeć
- Department of Bees Breeding, Institute of Animal Husbandry, Wroclaw University of Environmental and Life Sciences, Wroclaw, 51-630, Poland
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universitaet Berlin, Berlin, 14163, Germany
| |
Collapse
|
6
|
Vernier CL, Nguyen LA, Gernat T, Ahmed AC, Chen Z, Robinson GE. Gut microbiota contribute to variations in honey bee foraging intensity. THE ISME JOURNAL 2024; 18:wrae030. [PMID: 38412118 PMCID: PMC11008687 DOI: 10.1093/ismejo/wrae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Gut microbiomes are increasingly recognized for mediating diverse biological aspects of their hosts, including complex behavioral phenotypes. Although many studies have reported that experimental disruptions to the gut microbial community result in atypical host behavior, studies that address how gut microbes contribute to adaptive behavioral trait variation are rare. Eusocial insects represent a powerful model to test this, because of their simple gut microbiota and complex division of labor characterized by colony-level variation in behavioral phenotypes. Although previous studies report correlational differences in gut microbial community associated with division of labor, here, we provide evidence that gut microbes play a causal role in defining differences in foraging behavior between European honey bees (Apis mellifera). We found that gut microbial community structure differed between hive-based nurse bees and bees that leave the hive to forage for floral resources. These differences were associated with variation in the abundance of individual microbes, including Bifidobacterium asteroides, Bombilactobacillus mellis, and Lactobacillus melliventris. Manipulations of colony demography and individual foraging experience suggested that differences in gut microbial community composition were associated with task experience. Moreover, single-microbe inoculations with B. asteroides, B. mellis, and L. melliventris caused effects on foraging intensity. These results demonstrate that gut microbes contribute to division of labor in a social insect, and support a role of gut microbes in modulating host behavioral trait variation.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Lan Anh Nguyen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61810, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
7
|
Nazemi-Rafie J, Fatehi F, Hasrak S. A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees ( Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:253-270. [PMID: 36511774 DOI: 10.1017/s0007485322000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The role of bees in the environment, economic, biodiversity and pharmaceutical industries is due to its social behavior, which is oriented from the brain and hypopharyngeal gland that is the center of royal jelly (RJ) production. Limited studies have been performed on the head gene expression profile at the RJ production stage. The aim of this study was to compare the gene expressions in 9 and 1-day-old (DO) honeybee workers in order to achieve better understanding about head gene expression pattern. After sequencing of RNAs, transcriptome and their networks were compared. The head expression profile undergoes various changes. 1662 gene transcripts had differential expressions which 1125 and 537 were up and down regulated, respectively, in 9_DO compared with 1_DO honey bees. The day 1th had more significant role in the expression of genes related to RJ production as major RJ protein 1, 2, 3, 5, 6 and 9 encoding genes, but their maximum secretion occurred at day 9th. All process related to hypopharyngeal glands activities as CYP450 gene, fatty acid synthase gene, vitamin B6 metabolism and some of genes involved in fatty acid elongation and degradation process had an upward trend from 1_DO and were age-dependent. By increasing the age, the activity of pathways related to immune system increased for keeping the health of bees against the chemical compound. The expression of aromatic amino acid genes involved in Phenylalanine, tyrosine and tryptophan biosynthesis pathway are essential for early stage of life. In 9_DO honeybees, the energy supplying, reducing stress, protein production and export pathways have a crucial role for support the body development and the social duties. It can be stated that the activity of honeybee head is focused on energy supply instead of storage, while actively trying to improve the level of cell dynamics for increasing the immunity and reducing stress. Results of current study identified key genes of certain behaviors of honeybee workers. Deeper considering of some pathways will be evaluated in future studies.
Collapse
Affiliation(s)
- Javad Nazemi-Rafie
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Witwicka A, López‐Osorio F, Patterson V, Wurm Y. Expression of subunits of an insecticide target receptor varies across tissues, life stages, castes, and species of social bees. Mol Ecol 2023; 32:1034-1044. [PMID: 36478483 PMCID: PMC10947401 DOI: 10.1111/mec.16811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Global losses of insects jeopardize ecosystem stability and crop pollination. Robust evidence indicates that insecticides have contributed to these losses. Notably, insecticides targeting nicotinic acetylcholine receptors (nAChRs) have neurotoxic effects on beneficial insects. Because each nAChR consists of five subunits, the alternative arrangements of subunits could create a multitude of receptors differing in structure and function. Therefore, understanding whether the use of subunits varies is essential for evaluating and predicting the effects of insecticides targeting such receptors. To better understand how the use and composition of nAChRs differ within and between insect pollinators, we analysed RNA-seq gene expression data from tissues and castes of Apis mellifera honey bees and life stages and castes of the Bombus terrestris bumble bees. We reveal that all analysed tissues express nAChRs and that relative expression levels of nAChR subunits vary widely across almost all comparisons. Our work thus shows fine-tuned spatial and temporal expression of nAChRs. Given that coexpression of subunits underpins the compositional diversity of functional receptors and that the affinities of insecticides depend on nAChR composition, our findings provide a likely mechanism for the various damaging effects of nAChR-targeting insecticides on insects. Furthermore, our results indicate that the appraisal of insecticide risks should carefully consider variation in molecular targets.
Collapse
Affiliation(s)
| | | | | | - Yannick Wurm
- Biology DepartmentQueen Mary University of LondonLondonUK
- Digital Environment Research InstituteQueen Mary University of LondonLondonUK
- Alan Turing InstituteLondonUK
| |
Collapse
|
9
|
Jang H, Ghosh S, Sun S, Cheon KJ, Mohamadzade Namin S, Jung C. Chlorella-supplemented diet improves the health of honey bee (Apis mellifera). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.922741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nutritional stress is one of the major factors affecting the health of honey bees. Supplementing the pollen patty with microalgae enhances the protein content of the patty and therefore is supposed to improve bee’s health. The objective of the present study was to investigate the effect of Chlorella as a dietary supplement on the health and physiology of the honey bee (Apis mellifera). We formulated the honey bee feed by supplementing Chlorella sorokiniana, obtained commercially, with commercially available rapeseed pollen patty in different amounts—0.5, 2, 5, and 10%, and the treatment groups were named P0.5, P2, P5, and P10, respectively. Pollen patty was set as a positive control and only 50% sucrose solution (no protein) was set as a negative control. Diets were supplied ad libitum to newly emerged workers in cages; food consumption patterns; longevity; and physiology including the development of the brain in terms of protein (i.e., total amino acids), thorax muscle, fat body mass, and glands (hypopharyngeal and venom); and gene expression of nutrition-related gene vitellogenin (Vg) of honey bee at different points of time of their age were observed. The addition of Chlorella significantly increased the food consumption pattern, longevity, gland development, muscle formation, and Vg gene expression significantly in comparison to only a pollen or sugar diet. However, the response varied depending on the level of Chlorella supplementation. As depicted in most of the cases, P2, that is, the pollen diet with 2% of Chlorella supplement exhibited the best outcome in terms of all the tested parameters. Therefore, based on the results obtained in the present study, we concluded that 2% Chlorella supplementation to pollen patty could enhance the health of honey bees, which in turn improves their performance.
Collapse
|
10
|
Christen V, Grossar D, Charrière JD, Eyer M, Jeker L. Correlation Between Increased Homing Flight Duration and Altered Gene Expression in the Brain of Honey Bee Foragers After Acute Oral Exposure to Thiacloprid and Thiamethoxam. FRONTIERS IN INSECT SCIENCE 2021; 1:765570. [PMID: 38468880 PMCID: PMC10926505 DOI: 10.3389/finsc.2021.765570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/19/2021] [Indexed: 03/13/2024]
Abstract
Neonicotinoids as thiamethoxam and thiacloprid are suspected to be implicated in the decline of honey bee populations. As nicotinic acetylcholine receptor agonists, they disturb acetylcholine receptor signaling in insects, leading to neurotoxicity and are therefore globally used as insecticides. Several behavioral studies have shown links between neonicotinoid exposure of bees and adverse effects on foraging activity, homing flight performance and reproduction, but the molecular aspects underlying these effects are not well-understood. In the last years, several studies through us and others showed the effects of exposure to neonicotinoids on gene expression in the brain of honey bees. Transcripts of acetylcholine receptors, hormonal regulation, stress markers, detoxification enzymes, immune system related genes and transcripts of the energy metabolism were altered after neonicotinoid exposure. To elucidate the link between homing flight performance and shifts in gene expression in the brain of honey bees after neonicotinoid exposure, we combined homing flight activity experiments applying RFID technology and gene expression analysis. We analyzed the expression of endocrine factors, stress genes, detoxification enzymes and genes linked to energy metabolism in forager bees after homing flight experiments. Three different experiments (experiment I: pilot study; experiment II: "worst-case" study and experiment III: laboratory study) were performed. In a pilot study, we wanted to investigate if we could see differences in gene expression between controls and exposed bees (experiment I). This first study was followed by a so-called "worst-case" study (experiment II), where we investigated mainly differences in the expression of transcripts linked to energy metabolism between fast and slow returning foragers. We found a correlation between homing flight duration and the expression of cytochrome c oxidase subunit 5A, one transcript linked to oxidative phosphorylation. In the third experiment (experiment III), foragers were exposed in the laboratory to 1 ng/bee thiamethoxam and 8 ng/bee thiacloprid followed by gene expression analysis without a subsequent flight experiment. We could partially confirm the induction of cytochrome c oxidase subunit 5A, which we detected in experiment II. In addition, we analyzed the effect of the feeding mode (group feeding vs. single bee feeding) on data scattering and demonstrated that single bee feeding is superior to group feeding as it significantly reduces variability in gene expression. Based on the data, we thus hypothesize that the disruption of energy metabolism may be one reason for a prolongation of homing flight duration in neonicotinoid treated bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | | | - Michael Eyer
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| |
Collapse
|
11
|
Shi T, Zhu Y, Liu P, Ye L, Jiang X, Cao H, Yu L. Age and Behavior-Dependent Differential miRNAs Expression in the Hypopharyngeal Glands of Honeybees ( Apis mellifera L.). INSECTS 2021; 12:insects12090764. [PMID: 34564204 PMCID: PMC8466209 DOI: 10.3390/insects12090764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
This study aims to investigate the expression differences of miRNAs in the hypopharyngeal glands (HPGs) of honeybees at three developmental stages and to explore their regulation functions in the HPGs development. Small RNA sequencing was employed to analyze the miRNA profiles of HPGs in newly-emerged bees (NEB), nurse bees (NB), and forager bees (FB). Results showed that a total of 153 known miRNAs were found in the three stages, and ame-miR-276-3p, ame-miR-375-3p, ame-miR-14-3p, ame-miR-275-3p, and ame-miR-3477-5p were the top five most abundant ones. Furthermore, the expression of 11 miRNAs, 17 miRNAs, and 18 miRNAs were significantly different in NB vs. FB comparison, NB vs. NEB comparison, and in FB vs. NEB comparison, respectively, of which ame-miR-184-3p and ame-miR-252a-5p were downregulated in NB compared with that in both the FB and NEB, while ame-miR-11-3p, ame-miR-281-3p, and ame-miR-31a-5p had lower expression levels in FB compared with that in both the NB and NEB. Bioinformatic analysis showed that the potential target genes of the differentially expressed miRNAs (DEMs) were mainly enriched in several key signaling pathways, including mTOR signaling pathway, MAPK signaling pathway-fly, FoxO signaling pathway, Hippo signaling pathway-fly. Overall, our study characterized the miRNA profiles in the HPGs of honeybees at three different developmental stages and provided a basis for further study of the roles of miRNAs in HPGs development.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Yujie Zhu
- School of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Peng Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Liang Ye
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Xingchuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
| | - Linsheng Yu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; (T.S.); (P.L.); (L.Y.); (X.J.); (H.C.)
- Correspondence:
| |
Collapse
|
12
|
Fent K, Haltiner T, Kunz P, Christen V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. CHEMOSPHERE 2020; 260:127542. [PMID: 32683019 DOI: 10.1016/j.chemosphere.2020.127542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Bees are exposed to endocrine active insecticides. Here we assessed expressional alteration of marker genes indicative of endocrine effects in the brain of honey bees. We exposed foragers to chlorpyrifos, cypermethrin and thiacloprid and assessed the expression of genes after exposure for 24 h, 48 h and 72 h. Chlorpyrifos caused the strongest expressional changes at 24 h characterized by induction of vitellogenin, major royal jelly protein (mrjp) 2 and 3, insulin-like peptide (ilp1), alpha-glucosidase (hbg3) and sima, and down-regulation of buffy. Cypermethrin caused minor induction of mrjp1, mrjp2, mmp1 and ilp1. The sima transcript showed down-regulation at 48 h and up-regulation at 72 h. Exposure to thiacloprid caused down-regulation of vitellogenin, mrjp1 and sima at 24 h, and hbg3 at 72 h, as well as induction of ilp1 at 48 h. The buffy transcript was down-regulated at 24 h and up-regulated at 48 h. Despite compound-specific expression patterns, each insecticide altered the expression of some of the suggested endocrine system related genes. Our study suggests that expressional changes of genes prominently expressed in nurse or forager bees, including down-regulation of buffy and mrjps and up-regulation of hbg3 and ilp1 may serve as indicators for endocrine activity of insecticides in foragers.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092, Zürich, Switzerland.
| | - Tiffany Haltiner
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, 3003, Bern, Switzerland
| | - Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| |
Collapse
|
13
|
Christen V, Krebs J, Bünter I, Fent K. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120736. [PMID: 31202068 DOI: 10.1016/j.jhazmat.2019.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 06/05/2019] [Indexed: 05/21/2023]
Abstract
Bees experience substantial colony losses, which are often associated with pesticides. Besides synthetic insecticides biological compounds such as spinosad are used in agriculture and organic farming against insect pests. However, potential adverse effect at sublethal concentrations to pollinators are poorly known. Here we aim to determine potential adverse outcome pathways of spinosad and to identify molecular effects by investigating transcriptional alterations in the brain of honey bees. We experimentally exposed bees to three sublethal concentrations of 0.05, 0.5 and 5 ng spinosad/bee, and assessed transcriptional alterations of target genes. Additionally, we evaluated whether spinosad-induced transcriptional alterations were influenced by the time of the year. In April, alterations were most pronounced after 24 h exposure, while in June alterations occurred mostly after 48 h. In July, expressional alterations were often lower but the pattern was more similar to that in June than that in April. Down-regulation of genes encoding acetylcholine receptors, enzymes involved in oxidative phosphorylation (cox5a, ndufb7 and cox17), cytochrome P450 dependent monooxygenases (cyp9q1, cyp9q2 and cyp9q3) and insulin-like peptide-1 were among the most significant transcriptional alterations. This suggests adverse effects of spinosad to energy production and metabolism and thus negative consequences on foraging. Together, our study indicates that spinosad causes adverse effects at environmentally realistic concentrations, which may pose a risk to bee populations.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Jana Krebs
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Ivan Bünter
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Christen V, Krebs J, Fent K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:215-226. [PMID: 31170570 DOI: 10.1016/j.jhazmat.2019.05.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Fungicides are highly used for plant protection but their molecular and chronic effects are poorly known. Here, we analyse transcriptional effects in the brain of honey bees of three frequently applied fungicides, azoxystrobin, chlorothanolin and folpet, after oral exposure for 24, 48 and 72 h. Among transcripts assessed were genes encoding proteins for immune and hormone system regulation, oxidative phosphorylation, metabolism, and acetylcholine receptor alpha 1. Azoxystrobin and folpet induced minor alterations, including down-regulation of hbg-3 by azoxystrobin and induction of ndufb-7 by folpet. Chlorothanolin induced strong transcriptional down-regulation of genes encoding enzymes related to oxidative phosphorylation and metabolism, including cyp9q1, cyp9q2 and cyp9q3, acetylcholine receptor alpha 1 and hbg-3 and ilp-1, which are linked to hormonal regulation and behavioural transition of honey bees. Exposures to chlorothanolin in different seasonal times showed different responsiveness; responses were faster and often stronger in April than in June. Chlorothanolin caused the strongest effects and affected transcriptional abundance of genes related to energy production, metabolism and the endocrine system. Disturbed energy production may reduce foraging activity and hormonal dysregulation, such as the transition of nurse bees to foragers. Further analyses are needed to further substantiate potential adverse effects of chlorothanolin in bees on the physiological level.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Jana Krebs
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Langackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, Institute of Biogeochemistry and Pollution Dynamics, CH-8092, Zürich, Switzerland.
| |
Collapse
|
15
|
Wang Q, Goodger JQD, Woodrow IE, Chang L, Elgar MA. Task-Specific Recognition Signals Are Located on the Legs in a Social Insect. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
16
|
Corby-Harris V, Snyder L, Meador C. Fat body lipolysis connects poor nutrition to hypopharyngeal gland degradation in Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:1-9. [PMID: 30953617 DOI: 10.1016/j.jinsphys.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The hypopharyngeal glands (HGs) of honey bee nurse workers secrete the major protein fraction of jelly, a protein and lipid rich substance fed to developing larvae, other worker bees, and queens. A hallmark of poorly nourished nurses is their small HGs, which actively degrade due to hormone-induced autophagy. To better connect nutritional stress with HG degradation, we looked to honey bees and other insect systems, where nutrient stress is often accompanied by fat body degradation. The fat body contains stored lipids that are likely a substrate for ecdysteroid synthesis, so we tested whether starvation caused increased fat body lipolysis. Ecdysteroid signaling and response pathways and IIS/TOR are tied to nutrient-dependent autophagy in honey bees and other insects, and so we also tested whether and where genes in these pathways were differentially regulated in the head and fat body. Last, we injected nurse-aged bees with the honey bee ecdysteroid makisterone A to determine whether this hormone influenced HG size and autophagy. We find that starved nurse aged bees exhibited increased fat body lipolysis and increased expression of ecdysteroid production and response genes in the head. Genes in the IIS/TOR pathway were not impacted by starvation in either the head or fat body. Additionally, bees injected with makisterone A had smaller HGs and increased expression of autophagy genes. These data support the hypothesis that nutritional stress induces fat body lipolysis, which may liberate the sterols important for ecdysteroid production, and that increased ecdysteroid levels induce autophagic HG degradation.
Collapse
Affiliation(s)
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| |
Collapse
|
17
|
Christen V, Kunz PY, Fent K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1588-1601. [PMID: 30296754 DOI: 10.1016/j.envpol.2018.09.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Exposure to plant protection products (PPPs) is one of the causes for the population decline of pollinators. In addition to direct exposure, pollinators are exposed to PPPs by pollen, nectar and honey that often contain residues of multiple PPPs. While in legislation PPPs are regarded mainly for their acute toxicity in bees, other effects such as neurotoxicity, immunotoxicity, behavioural changes, stress responses and chronic effects that may harm different physiologically and ecologically relevant traits are much less or not regarded. Despite the fact that endocrine disruption by PPPs is among key effects weakening survival and thriving of populations, pollinators have been poorly investigated in this regard. Here we summarize known endocrine disruptive effects of PPPs in bees and compare them to other chronic effects. Endocrine disruption in honey bees comprise negative effects on reproductive success of queens and drones and behavioural transition of nurse bees to foragers. Among identified PPPs are insecticides, including neonicotinoids, fipronil, chlorantraniliprole and azadirachtin. So far, there exists no OECD guideline to investigate possible endocrine effects of PPPs. Admittedly, investigation of effects on reproduction success of queens and drones is rarely possible under laboratory conditions. But the behavioural transition of nurse bees to foragers could be a possible endpoint to analyse endocrine effects of PPPs under laboratory conditions. We identified some genes, including vitellogenin, which regulate this transition and which may be used as biomarkers for endocrine disruptive PPPs. We plea for a better implementation of the adverse outcome pathway concept into bee's research and propose a procedure for extending and complementing current assessments, including OECD guidelines, with additional physiological and molecular endpoints. Consequently, assessing potential endocrine disruption in pollinators should receive much more relevance.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Y Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, CH-3003, Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092, Zürich, Switzerland.
| |
Collapse
|
18
|
Winkler P, Sieg F, Buttstedt A. Transcriptional Control of Honey Bee ( Apis mellifera) Major Royal Jelly Proteins by 20-Hydroxyecdysone. INSECTS 2018; 9:insects9030122. [PMID: 30235865 PMCID: PMC6163268 DOI: 10.3390/insects9030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/04/2022]
Abstract
One of the first tasks of worker honey bees (Apis mellifera) during their lifetime is to feed the larval offspring. In brief, young workers (nurse bees) secrete a special food jelly that contains a large amount of unique major royal jelly proteins (MRJPs). The regulation of mrjp gene expression is not well understood, but the large upregulation in well-fed nurse bees suggests a tight repression until, or a massive induction upon, hatching of the adult worker bees. The lipoprotein vitellogenin, the synthesis of which is regulated by the two systemic hormones 20-hydroxyecdysone and juvenile hormone, is thought to be a precursor for the production of MRJPs. Thus, the regulation of mrjp expression by the said systemic hormones is likely. This study focusses on the role of 20-hydroxyecdysone by elucidating its effect on mrjp gene expression dynamics. Specifically, we tested whether 20-hydroxyecdysone displayed differential effects on various mrjps. We found that the expression of the mrjps (mrjp1–3) that were finally secreted in large amounts into the food jelly, in particular, were down regulated by 20-hydroxyecdysone treatment, with mrjp3 showing the highest repression value.
Collapse
Affiliation(s)
- Paul Winkler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| | - Frank Sieg
- CuroNZ, 173 Cames Road, Mangawhai 0975, New Zealand.
| | - Anja Buttstedt
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany.
| |
Collapse
|
19
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Requirement of Leptinotarsa decemlineata gene within the 74EF puff for larval-pupal metamorphosis and appendage growth. INSECT MOLECULAR BIOLOGY 2018; 27:439-453. [PMID: 29582498 DOI: 10.1111/imb.12384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two Drosophila melanogaster E-twenty-six domain transcription factor isoforms (E74A and E74B) act differentially at the start of the 20-hydroxyecdysone (20E) signalling cascade to regulate larval-pupal metamorphosis. In the present paper, we identified the two isoforms (LdE74A and LdE74B) in Leptinotarsa decemlineata. During the larval development stage, the mRNA transcript levels of the two LdE74 isoforms were correlated with circulating 20E titres. In vitro midgut culture and in vivo dietary supplementation with 20E revealed that the presence of 20E induced expression peaks of both LdE74A and LdE74B, with similar patterns observed for the two isoforms. Moreover, the mRNA transcript levels of both LdE74A and LdE74B isoforms were significantly downregulated in the L. decemlineata ecdysone receptor RNA interference (RNAi) specimens, but not in the LdE75 RNAi beetles. Ingestion of 20E reduced the larval fresh weights and shortened the larval development period, irrespective of knockdown of LdE74 or not. RNAi of LdE74 did not affect 20E-induced expression of the Ecdysone induced protein 75-hormone receptor 3-fushi tarazu factor 1 (E75-HR3-FTZ-F1) transcriptional cascade. Thus, it seems that LdE74 mediates 20E signalling independent of the E75-HR3-FTZ-F1 transcriptional cascade. Furthermore, silencing of both LdE74 isoforms caused failure of ecdysis. Most of the LdE74 RNAi beetles remained as prepupae. The LdE74 RNAi prepupae exhibited adult character-like forms underneath after removal of the apolysed larval cuticle. Their appendages such as antennae, legs and wings were shorter than those of control larvae. Only a few LdE74 RNAi larvae finally became deformed pupae, with shortened antennae and legs. Therefore, LdE74 is required for larval-pupal metamorphosis and appendage growth in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - G-Q Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Klose SP, Rolke D, Baumann O. Morphogenesis of honeybee hypopharyngeal gland during pupal development. Front Zool 2017; 14:22. [PMID: 28428804 PMCID: PMC5397693 DOI: 10.1186/s12983-017-0207-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0207-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sascha Peter Klose
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.,Present Address: Institute of Biology, Department of Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Daniel Rolke
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| |
Collapse
|
21
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
22
|
Shpigler HY, Siegel AJ, Huang ZY, Bloch G. No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity. Horm Behav 2016; 85:67-75. [PMID: 27503109 DOI: 10.1016/j.yhbeh.2016.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023]
Abstract
A hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend ("nurse") brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees. We studied the influence of juvenile hormone (JH) on task performance in the bumblebee Bombus terrestris. We first used a radioimmunoassay to measure circulating JH titers in workers specializing in nursing and foraging activities. Next, we developed new protocols for manipulating JH titers by combining a size-adjusted topical treatment with the allatotoxin Precocene-I and replacement therapy with JH-III. Finally, we used this protocol to test the influence of JH on task performance. JH levels were either similar for nurses and foragers (three colonies), or higher in nurses (two colonies). Nurses had better developed ovaries and JH levels were typically positively correlated with ovarian state. Manipulation of JH titers influenced ovarian development and wax secretion, consistent with earlier allatectomy studies. These manipulations however, did not affect nursing or foraging activity, or the likelihood to specialize in nursing or foraging activity. These findings contrast with honeybees in which JH influences age-related division of labor but not adult female fertility. Thus, the evolution of complex societies in bees was associated with modifications in the way JH influences social behavior.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam J Siegel
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
23
|
Okuyama M, Saburi W, Mori H, Kimura A. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell Mol Life Sci 2016; 73:2727-51. [PMID: 27137181 PMCID: PMC11108350 DOI: 10.1007/s00018-016-2247-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/30/2022]
Abstract
α-Glucosidases (AGases) and α-1,4-glucan lyases (GLases) catalyze the degradation of α-glucosidic linkages at the non-reducing ends of substrates to release α-glucose and anhydrofructose, respectively. The AGases belong to glycoside hydrolase (GH) families 13 and 31, and the GLases belong to GH31 and share the same structural fold with GH31 AGases. GH13 and GH31 AGases show diverse functions upon the hydrolysis of substrates, having linkage specificities and size preferences, as well as upon transglucosylation, forming specific α-glucosidic linkages. The crystal structures of both enzymes were determined using free and ligand-bound forms, which enabled us to understand the important structural elements responsible for the diverse functions. A series of mutational approaches revealed features of the structural elements. In particular, amino-acid residues in plus subsites are of significance, because they regulate transglucosylation, which is used in the production of industrially valuable oligosaccharides. The recently solved three-dimensional structure of GLase from red seaweed revealed the amino-acid residues essential for lyase activity and the strict recognition of the α-(1 → 4)-glucosidic substrate linkage. The former was introduced to the GH31 AGase, and the resultant mutant displayed GLase activity. GH13 and GH31 AGases hydrate anhydrofructose to produce glucose, suggesting that AGases are involved in the catabolic pathway used to salvage unutilized anhydrofructose.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
24
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
25
|
Corby-Harris V, Meador CAD, Snyder LA, Schwan MR, Maes P, Jones BM, Walton A, Anderson KE. Transcriptional, translational, and physiological signatures of undernourished honey bees (Apis mellifera) suggest a role for hormonal factors in hypopharyngeal gland degradation. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:65-75. [PMID: 26658137 DOI: 10.1016/j.jinsphys.2015.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Honey bee colonies function as a superorganism, where facultatively sterile female workers perform various tasks that support the hive. Nurse workers undergo numerous anatomical and physiological changes in preparation for brood rearing, including the growth of hypopharyngeal glands (HGs). These glands produce the major protein fraction of a protein- and lipid-rich jelly used to sustain developing larvae. Pollen intake is positively correlated with HG growth, but growth in the first three days is similar regardless of diet, suggesting that initial growth is a pre-determined process while later HG development depends on nutrient availability during a critical window in early adulthood (>3 d). It is unclear whether the resultant size differences in nurse HG are simply due to growth arrest or active degradation of the tissue. To determine what processes cause such differences in HG size, we catalogued the differential expression of both gene transcripts and proteins in the HGs of 8 d old bees that were fed diets containing pollen or no pollen. 3438 genes and 367 proteins were differentially regulated due to nutrition. Of the genes and proteins differentially expressed, undernourished bees exhibited more gene and protein up-regulation compared to well-nourished bees, with the affected processes including salivary gland apoptosis, oogenesis, and hormone signaling. Protein secretion was virtually the only process up-regulated in well-nourished bees. Further assays demonstrated that inhibition of ultraspiracle, one component of the ecdysteroid receptor, in the fat body caused larger HGs. Undernourished bees also had higher acid phosphatase activity, a physiological marker of cell death, compared to well-nourished bees. These results support a connection between poor nutrition, hormonal signaling, and HG degradation.
Collapse
Affiliation(s)
- Vanessa Corby-Harris
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States; Department of Entomology, University of Arizona, Tucson, AZ 85721 United States.
| | - Charlotte A D Meador
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Lucy A Snyder
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Melissa R Schwan
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Patrick Maes
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Beryl M Jones
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Alexander Walton
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States
| | - Kirk E Anderson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, Tucson, AZ 85719, United States; Department of Entomology, University of Arizona, Tucson, AZ 85721 United States
| |
Collapse
|