1
|
Iacobescu GL, Corlatescu AD, Serban B, Spiridonica R, Costin HP, Cirstoiu C. Genetics and Molecular Pathogenesis of the Chondrosarcoma: A Review of the Literature. Curr Issues Mol Biol 2024; 46:12658-12671. [PMID: 39590345 PMCID: PMC11593320 DOI: 10.3390/cimb46110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The chondrosarcoma, a cartilage-forming bone tumor, presents significant clinical challenges due to its resistance to chemotherapy and radiotherapy. Surgical excision remains the primary treatment, but high-grade chondrosarcomas are prone to recurrence and metastasis, necessitating the identification of reliable biomarkers for diagnosis and prognosis. This review explores the genetic alterations and molecular pathways involved in chondrosarcoma pathogenesis. These markers show promise in distinguishing between benign enchondromas and malignant chondrosarcomas, assessing tumor aggressiveness, and guiding treatment. While these advancements offer hope for more personalized and targeted therapeutic strategies, further clinical validation of these biomarkers is essential to improve prognostic accuracy and patient outcomes in chondrosarcoma management.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Bogdan Serban
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Horia Petre Costin
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
| | - Catalin Cirstoiu
- Department of Orthopedics and Traumatology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.-L.I.); (A.-D.C.); (R.S.); (H.P.C.); (C.C.)
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
2
|
Rudà R, Horbinski C, van den Bent M, Preusser M, Soffietti R. IDH inhibition in gliomas: from preclinical models to clinical trials. Nat Rev Neurol 2024; 20:395-407. [PMID: 38760442 DOI: 10.1038/s41582-024-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Gliomas are the most common malignant primary brain tumours in adults and cannot usually be cured with standard cancer treatments. Gliomas show intratumoural and intertumoural heterogeneity at the histological and molecular levels, and they frequently contain mutations in the isocitrate dehydrogenase 1 (IDH1) or IDH2 gene. IDH-mutant adult-type diffuse gliomas are subdivided into grade 2, 3 or 4 IDH-mutant astrocytomas and grade 2 or 3 IDH-mutant, 1p19q-codeleted oligodendrogliomas. The product of the mutated IDH genes, D-2-hydroxyglutarate (D-2-HG), induces global DNA hypermethylation and interferes with immunity, leading to stimulation of tumour growth. Selective inhibitors of mutant IDH, such as ivosidenib and vorasidenib, have been shown to reduce D-2-HG levels and induce cellular differentiation in preclinical models and to induce MRI-detectable responses in early clinical trials. The phase III INDIGO trial has demonstrated superiority of vorasidenib, a brain-penetrant pan-mutant IDH inhibitor, over placebo in people with non-enhancing grade 2 IDH-mutant gliomas following surgery. In this Review, we describe the pathway of development of IDH inhibitors in IDH-mutant low-grade gliomas from preclinical models to clinical trials. We discuss the practice-changing implications of the INDIGO trial and consider new avenues of investigation in the field of IDH-mutant gliomas.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy.
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin van den Bent
- Brain Tumour Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin, Italy
| |
Collapse
|
3
|
Sun L, Jin Y, Nishio M, Watanabe M, Kamakura T, Nagata S, Fukuda M, Maekawa H, Kawai S, Yamamoto T, Toguchida J. Oxidative phosphorylation is a pivotal therapeutic target of fibrodysplasia ossificans progressiva. Life Sci Alliance 2024; 7:e202302219. [PMID: 38365425 PMCID: PMC10875110 DOI: 10.26508/lsa.202302219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Heterotopic ossification (HO) is a non-physiological bone formation where soft tissue progenitor cells differentiate into chondrogenic cells. In fibrodysplasia ossificans progressiva (FOP), a rare genetic disease characterized by progressive and systemic HO, the Activin A/mutated ACVR1/mTORC1 cascade induces HO in progenitors in muscle tissues. The relevant biological processes aberrantly regulated by activated mTORC1 remain unclear, however. RNA-sequencing analyses revealed the enrichment of genes involved in oxidative phosphorylation (OXPHOS) during Activin A-induced chondrogenesis of mesenchymal stem cells derived from FOP patient-specific induced pluripotent stem cells. Functional analyses showed a metabolic transition from glycolysis to OXPHOS during chondrogenesis, along with increased mitochondrial biogenesis. mTORC1 inhibition by rapamycin suppressed OXPHOS, whereas OXPHOS inhibitor IACS-010759 inhibited cartilage matrix formation in vitro, indicating that OXPHOS is principally involved in mTORC1-induced chondrogenesis. Furthermore, IACS-010759 inhibited the muscle injury-induced enrichment of fibro/adipogenic progenitor genes and HO in transgenic mice carrying the mutated human ACVR1. These data indicated that OXPHOS is a critical downstream mediator of mTORC1 signaling in chondrogenesis and therefore is a potential FOP therapeutic target.
Collapse
Affiliation(s)
- Liping Sun
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yonghui Jin
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Megumi Nishio
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Makoto Watanabe
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Takeshi Kamakura
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Masayuki Fukuda
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hirotsugu Maekawa
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shunsuke Kawai
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan
| | - Junya Toguchida
- Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
5
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
6
|
Ma J, Chen Z, Li Q, Wang L, Chen J, Yang X, Yang C, Quan Z. RARRES2 is involved in the "lock-and-key" interactions between osteosarcoma stem cells and tumor-associated macrophages. Sci Rep 2024; 14:2267. [PMID: 38280909 PMCID: PMC10821905 DOI: 10.1038/s41598-024-52738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Osteosarcoma (OS) is a type of tumor. Osteosarcoma stem cells (OSCs) are responsible for drug resistance, recurrence, and immunosuppression in OS. We aimed to determine the heterogeneity of OSCs and the immunosuppression mechanisms underlying the interactions between OSCs and tumor-associated macrophages (TAMs). The cell components, trajectory changes, and cell communication profiles of OS cells were analyzed by transcriptomics at the single-cell level. The intercellular communication patterns of OSCs were verified, and the role of the cell hub genes was revealed. Hub geneS are genes that play important roles in regulating certain biological processes; they are often defined as the genes with the strongest regulatory effect on differentially expressed gene sets. Moreover, various cellular components of the OS microenvironment were identified. Malignant cells were grouped, and OSCs were identified. Further regrouping and communication analysis revealed that the genes in the stemness maintenance and differentiation subgroups were involved in communication with macrophages. Key receptor-ligand pairs and target gene sets for cell communication were obtained. Transcriptome data analysis revealed the key gene RARRES2, which is involved in intercellular communication between OSCs and TAMs. In vitro studies confirmed that macrophages promote RARRES2-mediated stemness maintenance in OSCs via the TAM-secreted cytokine insulin-like growth factor 1. Patient studies confirmed that RARRES2 could be a biomarker of OS. OSCs are highly heterogeneous, and different subgroups are responsible for proliferation and communication with other cells. The IGF-RARRES2 axis plays a key role in maintaining OSC stemness through communication with TAMs.
Collapse
Affiliation(s)
- Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaohua Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Venneker S, Bovée JVMG. IDH Mutations in Chondrosarcoma: Case Closed or Not? Cancers (Basel) 2023; 15:3603. [PMID: 37509266 PMCID: PMC10377514 DOI: 10.3390/cancers15143603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chondrosarcomas are malignant cartilage-producing tumours that frequently harbour isocitrate dehydrogenase 1 and -2 (IDH) gene mutations. Several studies have confirmed that these mutations are key players in the early stages of cartilage tumour development, but their role in later stages remains ambiguous. The prognostic value of IDH mutations remains unclear and preclinical studies have not identified effective treatment modalities (in)directly targeting these mutations. In contrast, the IDH mutation status is a prognostic factor in other cancers, and IDH mutant inhibitors as well as therapeutic strategies targeting the underlying vulnerabilities induced by IDH mutations seem effective in these tumour types. This discrepancy in findings might be ascribed to a difference in tumour type, elevated D-2-hydroxyglutarate levels, and the type of in vitro model (endogenous vs. genetically modified) used in preclinical studies. Moreover, recent studies suggest that the (epi)genetic landscape in which the IDH mutation functions is an important factor to consider when investigating potential therapeutic strategies or patient outcomes. These findings imply that the dichotomy between IDH wildtype and mutant is too simplistic and additional subgroups indeed exist within chondrosarcoma. Future studies should focus on the identification, characterisation, and tailoring of treatments towards these biological subgroups within IDH wildtype and mutant chondrosarcoma.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Dermawan JKT, Nafa K, Mohanty A, Xu Y, Rijo I, Casanova J, Villafania L, Benhamida J, Kelly CM, Tap WD, Boland PJ, Fabbri N, Healey JH, Ladanyi M, Lu C, Hameed M. Distinct IDH1/2-associated Methylation Profile and Enrichment of TP53 and TERT Mutations Distinguish Dedifferentiated Chondrosarcoma from Conventional Chondrosarcoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:431-443. [PMID: 36926116 PMCID: PMC10013202 DOI: 10.1158/2767-9764.crc-22-0397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a rare high-grade chondrosarcoma characterized by a well-differentiated chondrosarcoma (WDCS) component that abruptly transitions to a high-grade, noncartilaginous sarcomatous component. To date, the molecular pathogenesis of DDCS and its distinction from conventional chondrosarcoma remain poorly understood. By targeted sequencing, we examined the mutational and copy-number profiles of 18 DDCS, including macrodissected WDCS components, compared with 55 clinically sequenced conventional chondrosarcomas. In conjunction with publicly available external data, we analyzed the methylation and expression profiles of 34 DDCS and 94 conventional chondrosarcomas. Isocitrate dehydrogenase 1/isocitrate dehydrogenase 2 (IDH1/IDH2) mutations were present in 36% conventional chondrosarcomas and 71% DDCS. Compared with conventional chondrosarcomas, DDCS had higher frequencies of TP53 and TERT promoter mutations and CDKN2A/B copy-number losses. Paired analysis of macrodissected WDCS and the high-grade components revealed TERT promoter mutations as early events. Despite phenotypic similarities, the percentage of genome with copy-number alterations in DDCS was significantly lower than that in other high-grade sarcomas. Differential methylation analysis revealed reduction of IDH1/IDH2-associated global hypermethylation characteristically seen in conventional chondrosarcoma and a distinct methylation profile in DDCS. The WDCS and high-grade components in DDCS showed similar methylation profiles. These CpG sites were associated with upregulated expression of genes involved in G2-M checkpoints and E2F targets. Genomic profiling revealed enrichment of TP53, TERT promoter, and CDKN2A/B alterations in DDCS. Integrated methylation and gene expression analysis revealed distinct IDH1/IDH2-associated methylation and transcriptional profiles as early events in DDCS, which may underlie the pathogenesis of dedifferentiation in chondrosarcomas. Significance DDCS is a rare, high-grade chondrosarcoma with a dismal prognosis. About 50%-80% of DDCS harbor IDH1/IDH2 mutations. We uncover a significant alteration of IDH-associated methylation profile in DDCS, which we propose is key to the progression to dedifferentiation. In this context, the potential effect of the use of IDH inhibitors is unclear but important to address, as clinical trials of selective IDH1 inhibitors showed worse outcome in DDCS.
Collapse
Affiliation(s)
- Josephine Kam Tai Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Khedoujia Nafa
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abhinita Mohanty
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yingjuan Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ivelise Rijo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklyn Casanova
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liliana Villafania
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ciara M. Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick J. Boland
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicola Fabbri
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - John H. Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chao Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, New York
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
10
|
Chen C, Li J, Jiang T, Tang J, Zhang Z, Luo Y, Wang X, Sun K, Jiang Z, Zhou J, Liu Z. IDH Mutations Are Potentially the Intrinsic Genetic Link among the Multiple Neoplastic Lesions in Ollier Disease and Maffucci Syndrome: A Clinicopathologic Analysis from a Single Institute in Shanghai, China. Diagnostics (Basel) 2022; 12:diagnostics12112764. [PMID: 36428825 PMCID: PMC9689145 DOI: 10.3390/diagnostics12112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study aims to investigate isocitrate dehydrogenase gene mutations in patients with the non-hereditary skeletal disorders of Ollier disease and Maffucci syndrome, particularly in the extraosseous tumours. METHODS A total of 16 tumours from three patients with Ollier disease and three patients with Maffucci syndrome were collected. Sanger sequencing was applied to determine the hotspot mutations of IDH1 and IDH2 genes in multiple neoplastic tissues. RESULTS A majority of the tumours displayed an IDH1 mutation (p.R132C in 11 tumours including the paediatric ovarian tumour from one patient with Ollier disease, 4 cutaneous haemangiomas from three patients with Maffucci syndrome, 5 enchondromas and 1 chondrosarcoma; p.R132H in 2 cartilaginous tumours from one patient). CONCLUSIONS IDH1 mutations were demonstrated in multiple cartilaginous tumours and extraskeletal neoplasms in this case series. Specifically, identical IDH1 mutations were confirmed in the separate lesions of each patient. These results are in concordance with findings that have been reported. However, here, we additionally reported the first case of Ollier disease with an ovarian tumour, which harboured the identical IDH1 mutation with the corresponding cartilaginous tumour. We further provided evidence that IDH mutations are the potential genetic links among the multiple neoplastic lesions of Ollier disease and Maffucci syndrome.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Jiang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juan Tang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhichang Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yanli Luo
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xinpei Wang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Keyang Sun
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiming Jiang
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Juan Zhou
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Correspondence: (J.Z.); (Z.L.)
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Correspondence: (J.Z.); (Z.L.)
| |
Collapse
|
11
|
Cross W, Lyskjær I, Lesluyes T, Hargreaves S, Strobl AC, Davies C, Waise S, Hames-Fathi S, Oukrif D, Ye H, Amary F, Tirabosco R, Gerrand C, Baker T, Barnes D, Steele C, Alexandrov L, Bond G, Cool P, Pillay N, Van Loo P, Flanagan AM. A genetic model for central chondrosarcoma evolution correlates with patient outcome. Genome Med 2022; 14:99. [PMID: 36042521 PMCID: PMC9426036 DOI: 10.1186/s13073-022-01084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Central conventional chondrosarcoma (CS) is the most common subtype of primary malignant bone tumour in adults. Treatment options are usually limited to surgery, and prognosis is challenging. These tumours are characterised by the presence and absence of IDH1 and IDH2 mutations, and recently, TERT promoter alterations have been reported in around 20% of cases. The effect of these mutations on clinical outcome remains unclear. The purpose of this study was to determine if prognostic accuracy can be improved by the addition of genomic data, and specifically by examination of IDH1, IDH2, and TERT mutations. METHODS In this study, we combined both archival samples and data sourced from the Genomics England 100,000 Genomes Project (n = 356). Mutations in IDH1, IDH2, and TERT were profiled using digital droplet PCR (n = 346), whole genome sequencing (n=68), or both (n = 64). Complex events and other genetic features were also examined, along with methylation array data (n = 84). We correlated clinical features and patient outcomes with our genetic findings. RESULTS IDH2-mutant tumours occur in older patients and commonly present with high-grade or dedifferentiated disease. Notably, TERT mutations occur most frequently in IDH2-mutant tumours, although have no effect on survival in this group. In contrast, TERT mutations are rarer in IDH1-mutant tumours, yet they are associated with a less favourable outcome in this group. We also found that methylation profiles distinguish IDH1- from IDH2-mutant tumours. IDH wild-type tumours rarely exhibit TERT mutations and tend to be diagnosed in a younger population than those with tumours harbouring IDH1 and IDH2 mutations. A major genetic feature of this group is haploidisation and subsequent genome doubling. These tumours evolve less frequently to dedifferentiated disease and therefore constitute a lower risk group. CONCLUSIONS Tumours with IDH1 or IDH2 mutations or those that are IDHwt have significantly different genetic pathways and outcomes in relation to TERT mutation. Diagnostic testing for IDH1, IDH2, and TERT mutations could therefore help to guide clinical monitoring and prognostication.
Collapse
Affiliation(s)
- William Cross
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Iben Lyskjær
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Medical Genomics Research Group, University College London, UCL Cancer Institute, London, UK
| | | | - Steven Hargreaves
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Christopher Davies
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Shadi Hames-Fathi
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Dahmane Oukrif
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Hongtao Ye
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Fernanda Amary
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Roberto Tirabosco
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Craig Gerrand
- Bone Tumour Unit, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - David Barnes
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Christopher Steele
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | | | - Gareth Bond
- Institute of Cancer and Genomic Sciences, Birmingham University, Birmingham, UK
| | - Paul Cool
- Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
- Keele University, Keele, UK
| | - Nischalan Pillay
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK
| | | | - Adrienne M Flanagan
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK.
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, UK.
| |
Collapse
|
12
|
Pacheco M, Barra L, Gambarotti M, Magagnoli G, Sbaraglia M, Asioli S, Cocchi S, Carretta E, Frisoni T, Benini S, Dei Tos AP, Righi A. Periosteal chondrosarcoma: A case series in a referral center with survivorship analysis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2022; 48:1730-1738. [DOI: 10.1016/j.ejso.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
|
13
|
Zhang H, Puviindran V, Nadesan P, Ding X, Shen L, Tang YJ, Tsushima H, Yahara Y, Ban GI, Zhang GF, Karner CM, Alman BA. Distinct Roles of Glutamine Metabolism in Benign and Malignant Cartilage Tumors With IDH Mutations. J Bone Miner Res 2022; 37:983-996. [PMID: 35220602 PMCID: PMC9314601 DOI: 10.1002/jbmr.4532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022]
Abstract
Enchondromas and chondrosarcomas are common cartilage neoplasms that are either benign or malignant, respectively. The majority of these tumors harbor mutations in either IDH1 or IDH2. Glutamine metabolism has been implicated as a critical regulator of tumors with IDH mutations. Using genetic and pharmacological approaches, we demonstrated that glutaminase-mediated glutamine metabolism played distinct roles in enchondromas and chondrosarcomas with IDH1 or IDH2 mutations. Glutamine affected cell differentiation and viability in these tumors differently through different downstream metabolites. During murine enchondroma-like lesion development, glutamine-derived α-ketoglutarate promoted hypertrophic chondrocyte differentiation and regulated chondrocyte proliferation. Deletion of glutaminase in chondrocytes with Idh1 mutation increased the number and size of enchondroma-like lesions. In contrast, pharmacological inhibition of glutaminase in chondrosarcoma xenografts reduced overall tumor burden partially because glutamine-derived non-essential amino acids played an important role in preventing cell apoptosis. This study demonstrates that glutamine metabolism plays different roles in tumor initiation and cancer maintenance. Supplementation of α-ketoglutarate and inhibiting GLS may provide a therapeutic approach to suppress enchondroma and chondrosarcoma tumor growth, respectively. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | | | | | - Xiruo Ding
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Leyao Shen
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuning J Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Yasuhito Yahara
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ga I Ban
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Endocrinology and Metabolism Division, Duke University Medical Center, Durham, NC, USA
| | - Courtney M Karner
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University, Durham, NC, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin A Alman
- Department of Cell Biology, Duke University, Durham, NC, USA.,Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
Cadoux-Hudson T, Schofield CJ, McCullagh JS. Isocitrate dehydrogenase gene variants in cancer and their clinical significance. Biochem Soc Trans 2021; 49:2561-2572. [PMID: 34854890 PMCID: PMC8786286 DOI: 10.1042/bst20210277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Human isocitrate dehydrogenase (IDH) genes encode for the IDH1, 2 & 3 isoenzymes which catalyse the formation of 2-oxoglutarate from isocitrate and are essential for normal mammalian metabolism. Although mutations in these genes in cancer were long thought to lead to a 'loss of function', combined genomic and metabolomic studies led to the discovery that a common IDH 1 mutation, present in low-grade glioma and acute myeloid leukaemia (AML), yields a variant (R132H) with a striking change of function leading to the production of (2R)-hydroxyglutarate (2HG) which consequently accumulates in large quantities both within and outside cells. Elevated 2HG is proposed to promote tumorigenesis, although the precise mechanism by which it does this remains uncertain. Inhibitors of R132H IDH1, and other subsequently identified cancer-linked 2HG producing IDH variants, are approved for clinical use in the treatment of chemotherapy-resistant AML, though resistance enabled by additional substitutions has emerged. In this review, we provide a current overview of cancer linked IDH mutations focussing on their distribution in different cancer types, the effects of substitution mutations on enzyme activity, the mode of action of recently developed inhibitors, and their relationship with emerging resistance-mediating double mutations.
Collapse
Affiliation(s)
- Thomas Cadoux-Hudson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
16
|
Micaily I, Roche M, Ibrahim MY, Martinez-Outschoorn U, Mallick AB. Metabolic Pathways and Targets in Chondrosarcoma. Front Oncol 2021; 11:772263. [PMID: 34938658 PMCID: PMC8685273 DOI: 10.3389/fonc.2021.772263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrosarcomas are the second most common primary bone malignancy. Chondrosarcomas are characterized by the production of cartilaginous matrix and are generally resistant to radiation and chemotherapy and the outcomes are overall poor. Hence, there is strong interest in determining mechanisms of cancer aggressiveness and therapeutic resistance in chondrosarcomas. There are metabolic alterations in chondrosarcoma that are linked to the epigenetic state and tumor microenvironment that drive treatment resistance. This review focuses on metabolic changes in chondrosarcoma, and the relationship between signaling via isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), hedgehog, PI3K-mTOR-AKT, and SRC, as well as histone acetylation and angiogenesis. Also, potential treatment strategies targeting metabolism will be discussed including potential synergy with immunotherapies.
Collapse
Affiliation(s)
- Ida Micaily
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Megan Roche
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mohammad Y. Ibrahim
- Saint Francis Medical Center, Seton Hall University, Trenton, NJ, United States
| | | | - Atrayee Basu Mallick
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Aoki Y, Yamamoto J, Tome Y, Hamada K, Masaki N, Inubushi S, Tashiro Y, Bouvet M, Endo I, Nishida K, Hoffman RM. Over-methylation of Histone H3 Lysines Is a Common Molecular Change Among the Three Major Types of Soft-tissue Sarcoma in Patient-derived Xenograft (PDX) Mouse Models. Cancer Genomics Proteomics 2021; 18:715-721. [PMID: 34697064 DOI: 10.21873/cgp.20292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Sarcomas are considered a heterogeneous disease with incomplete understanding of its molecular basis. In the present study, to further understand general molecular changes in sarcoma, patient-derived xenograft (PDX) mouse models of the three most common soft-tissue sarcomas: myxofibrosarcoma, undifferentiated pleomorphic sarcoma (UPS) and liposarcoma were established and the methylation status of histone H3 lysine marks was studied. MATERIALS AND METHODS Immunoblotting and immunohistochemical staining were used to quantify the extent of methylation of histone H3K4me3 and histone H3K9me3. RESULTS In all 3 sarcoma types in PDX models, histone H3K4me3 and H3K9me3 were found highly over-methylated compared to normal muscle tissue. CONCLUSION Histone H3 lysine over-methylation may be a general basis of malignancy of the major sarcoma types.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan;
| | - Kazuyuki Hamada
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Sachiko Inubushi
- Department of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
18
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
19
|
Madda R, Chen CM, Chen CF, Wang JY, Wu PK, Chen WM. Effect of Cryoablation Treatment on the Protein Expression Profile of Low-Grade Central Chondrosarcoma Identified by LC-ESI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1469-1489. [PMID: 34003650 DOI: 10.1021/jasms.1c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of cryoablation/cryosurgery in treating solid tumors has been proven as a unique technique that uses lethal temperatures to destroy the tumors and impart better functions for the affected organs. This novel technique recently demonstrated the best clinical results in chondrosarcoma (CSA) with faster recovery, less recurrence, and metastasis. Due to the resistant nature of CSA to chemo and radiation therapy, cryoablation comes to light as the best alternative approach. Therefore, for the first time, we aimed to compare CSA-untreated with cryoablation treated samples to discover some potential markers that may provide various clues in terms of diagnosis and pathophysiology and may facilitate the development of novel methods to treat sarcoma efficiently. To find the altered proteins among both groups, a mass-based label-free approach was employed and identified a total of 160 significantly altered proteins. Among these, 138 proteins were dysregulated with <1- to -0.1-fold, 18 proteins were up-regulated with >3 folds, and four proteins were similarly expressed in the untreated group compared to the treated. Interestingly, the differential expressions of proteins from the untreated group showed contrast expressions in the treated group. Furthermore, the functional enrichment analysis revealed that most of the identified proteins from this study were associated with various significant pathways such as glycolysis, MAPK activation, PI3K-Akt signaling, extracellular matrix degradation, etc. In addition, two protein expressions, such as fibronectin and annexin-1, were validated by immunoblot analysis. Therefore, this study signifies the most comprehensive discovery of altered protein expressions to date and the first large-scale detection of protein profiles from CSA-cryoablation treated compared to untreated. This work may serve as the basis for future research to open novel treatment options for chondrosarcoma.
Collapse
Affiliation(s)
- Rashmi Madda
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Chao-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Cheng-Fong Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Jir-You Wang
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Po-Kuei Wu
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| | - Wei-Ming Chen
- Department of Orthopedics & Traumatology, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Department of orthopedics, Therapeutical and Musculoskeletal Tumor Research Center, Taipei Veterans General Hospital, Taipai 11217 Taiwan
- Orthopedic Department, School of Medicine, National Yang-Ming University, Taipai 11221 Taiwan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Enchondroma is a common cartilage benign tumor that develops from dysregulation of chondrocyte terminal differentiation during growth plate development. Here we provide an overview of recent progress in understanding causative mutations for enchondroma, dysregulated signaling and metabolic pathways in enchondroma, and the progression from enchondroma to malignant chondrosarcoma. RECENT FINDINGS Several signaling pathways that regulate chondrocyte differentiation are dysregulated in enchondromas. Somatic mutations in the metabolic enzymes isocitrate dehydrogenase 1 and 2 (IDH1/2) are the most common findings in enchondromas. Mechanisms including metabolic regulation, epigenetic regulation, and altered signaling pathways play a role in enchondroma formation and progression. Multiple pathways regulate growth plate development in a coordinated manner. Deregulation of the process can result in chondrocytes failing to undergo differentiation and the development of enchondroma.
Collapse
Affiliation(s)
- Hongyuan Zhang
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
21
|
Liu L, Hu K, Feng J, Wang H, Fu S, Wang B, Wang L, Xu Y, Yu X, Huang H. The oncometabolite R-2-hydroxyglutarate dysregulates the differentiation of human mesenchymal stromal cells via inducing DNA hypermethylation. BMC Cancer 2021; 21:36. [PMID: 33413208 PMCID: PMC7791852 DOI: 10.1186/s12885-020-07744-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Background Isocitrate dehydrogenase (IDH1/2) gene mutations are the most frequently observed mutations in cartilaginous tumors. The mutant IDH causes elevation in the levels of R-enantiomer of 2-hydroxylglutarate (R-2HG). Mesenchymal stromal cells (MSCs) are reasonable precursor cell candidates of cartilaginous tumors. This study aimed to investigate the effect of oncometabolite R-2HG on MSCs. Methods Human bone marrow MSCs treated with or without R-2HG at concentrations 0.1 to 1.5 mM were used for experiments. Cell Counting Kit-8 was used to detect the proliferation of MSCs. To determine the effects of R-2HG on MSC differentiation, cells were cultured in osteogenic, chondrogenic and adipogenic medium. Specific staining approaches were performed and differentiation-related genes were quantified. Furthermore, DNA methylation status was explored by Illumina array-based arrays. Real-time PCR was applied to examine the signaling component mRNAs involved in. Results R-2HG showed no influence on the proliferation of human MSCs. R-2HG blocked osteogenic differentiation, whereas promoted adipogenic differentiation of MSCs in a dose-dependent manner. R-2HG inhibited chondrogenic differentiation of MSCs, but increased the expression of genes related to chondrocyte hypertrophy in a lower concentration (1.0 mM). Moreover, R-2HG induced a pronounced DNA hypermethylation state of MSC. R-2HG also improved promotor methylation of lineage-specific genes during osteogenic and chondrogenic differentiation. In addition, R-2HG induced hypermethylation and decreased the mRNA levels of SHH, GLI1and GLI2, indicating Sonic Hedgehog (Shh) signaling inhibition. Conclusions The oncometabolite R-2HG dysregulated the chondrogenic and osteogenic differentiation of MSCs possibly via induction of DNA hypermethylation, improving the role of R-2HG in cartilaginous tumor development. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07744-x.
Collapse
Affiliation(s)
- Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Kaimin Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Huafang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Stem Cell Institute, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
| |
Collapse
|
22
|
Venneker S, Kruisselbrink AB, Baranski Z, Palubeckaite I, Briaire-de Bruijn IH, Oosting J, French PJ, Danen EHJ, Bovée JVMG. Beyond the Influence of IDH Mutations: Exploring Epigenetic Vulnerabilities in Chondrosarcoma. Cancers (Basel) 2020; 12:E3589. [PMID: 33266275 PMCID: PMC7760027 DOI: 10.3390/cancers12123589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase (IDH1 or IDH2) genes are common in enchondromas and chondrosarcomas, and lead to elevated levels of the oncometabolite D-2-hydroxyglutarate causing widespread changes in the epigenetic landscape of these tumors. With the use of a DNA methylation array, we explored whether the methylome is altered upon progression from IDH mutant enchondroma towards high-grade chondrosarcoma. High-grade tumors show an overall increase in the number of highly methylated genes, indicating that remodeling of the methylome is associated with tumor progression. Therefore, an epigenetics compound screen was performed in five chondrosarcoma cell lines to therapeutically explore these underlying epigenetic vulnerabilities. Chondrosarcomas demonstrated high sensitivity to histone deacetylase (HDAC) inhibition in both 2D and 3D in vitro models, independent of the IDH mutation status or the chondrosarcoma subtype. siRNA knockdown and RNA expression data showed that chondrosarcomas rely on the expression of multiple HDACs, especially class I subtypes. Furthermore, class I HDAC inhibition sensitized chondrosarcoma to glutaminolysis and Bcl-2 family member inhibitors, suggesting that HDACs define the metabolic state and apoptotic threshold in chondrosarcoma. Taken together, HDAC inhibition may represent a promising targeted therapeutic strategy for chondrosarcoma patients, either as monotherapy or as part of combination treatment regimens.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Alwine B. Kruisselbrink
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Zuzanna Baranski
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (Z.B.); (E.H.J.D.)
| | - Ieva Palubeckaite
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Inge H. Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| | - Pim J. French
- Department of Neurology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Erik H. J. Danen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands; (Z.B.); (E.H.J.D.)
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.V.); (A.B.K.); (I.P.); (I.H.B.-d.B.); (J.O.)
| |
Collapse
|
23
|
Mehrjardi NZ, Hänggi D, Kahlert UD. Current biomarker-associated procedures of cancer modeling-a reference in the context of IDH1 mutant glioma. Cell Death Dis 2020; 11:998. [PMID: 33221817 PMCID: PMC7680457 DOI: 10.1038/s41419-020-03196-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Isocitrate dehydrogenases (IDH1/2) are central molecular markers for glioblastoma. Providing in vitro or in vivo models with mutated IDH1/2 can help prepare facilities to understand the biology of these mutated genes as glioma markers, as well as help, improve therapeutic strategies. In this review, we first summarize the biology principles of IDH and its mutations and outline the core primary findings in the clinical context of neuro-oncology. Given the extensive research interest and exciting developments in current stem cell biology and genome editing, the central part of the manuscript is dedicated to introducing various routes of disease modeling strategies of IDH mutation (IDHMut) glioma and comparing the scientific-technological findings from the field using different engineering methods. Lastly, by giving our perspective on the benefits and limitations of patient-derived and donor-derived disease modeling respectively, we aim to propose leading research questions to be answered in the context of IDH1 and glioma.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany
| | - Ulf Dietrich Kahlert
- Clinic for Neurosurgery, Medical Faculty Heinrich-Heine University, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
24
|
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M, Nielsen TO. The epigenomics of sarcoma. Nat Rev Cancer 2020; 20:608-623. [PMID: 32782366 PMCID: PMC8380451 DOI: 10.1038/s41568-020-0288-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation is critical to physiological control of development, cell fate, cell proliferation, genomic integrity and, fundamentally, transcriptional regulation. This epigenetic control occurs at multiple levels including through DNA methylation, histone modification, nucleosome remodelling and modulation of the 3D chromatin structure. Alterations in genes that encode chromatin regulators are common among mesenchymal neoplasms, a collection of more than 160 tumour types including over 60 malignant variants (sarcomas) that have unique and varied genetic, biological and clinical characteristics. Herein, we review those sarcomas in which chromatin pathway alterations drive disease biology. Specifically, we emphasize examples of dysregulation of each level of epigenetic control though mechanisms that include alterations in metabolic enzymes that regulate DNA methylation and histone post-translational modifications, mutations in histone genes, subunit loss or fusions in chromatin remodelling and modifying complexes, and disruption of higher-order chromatin structure. Epigenetic mechanisms of tumorigenesis have been implicated in mesenchymal tumours ranging from chondroblastoma and giant cell tumour of bone to chondrosarcoma, malignant peripheral nerve sheath tumour, synovial sarcoma, epithelioid sarcoma and Ewing sarcoma - all diseases that present in a younger patient population than most cancers. Finally, we review current and potential future approaches for the development of sarcoma therapies based on this emerging understanding of chromatin dysregulation.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Kevin B Jones
- Department of Orthopaedics, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew M Intlekofer
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie S E Yu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - C David Allis
- The Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
25
|
Asioli S, Ruengwanichayakun P, Zoli M, Guaraldi F, Sollini G, Greco P, Facco C, Gibertoni D, Jiménez BV, Benini S, Turri-Zanoni M, Pasquini E, Mazzatenta D, Foschini MP, Righi A. Association of Clinicopathological Features With Outcome in Chondrosarcomas of the Head and Neck. Otolaryngol Head Neck Surg 2020; 164:807-814. [PMID: 32928034 DOI: 10.1177/0194599820957271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study is to assess the association between clinical and radiological features as well as of isocitrate dehydrogenase 1 and 2 (IDH 1,2) mutations with outcome in head and neck chondrosarcomas. STUDY DESIGN Retrospective study. SETTING Tertiary referral center. METHODS Clinical, histological, and molecular data of patients with head and neck chondrosarcomas treated by surgery were collected. RESULTS Forty-six patients were included. The mean age at diagnosis was 56 years (range, 17-78). The tumor originated from the skull base (52.2%), facial bones (28.2%), or laryngotracheal area (19.6%). At last follow-up (median 52.5 months), 38 patients were alive, 30 of which were disease free, whereas 8 had died, 4 of disease progression and 4 of other causes. Fourteen (30.4%) had local recurrence and 2 (4.3%) had lung metastasis. All cases were negative for cytokeratin AE1/AE3, brachyury, and IDH1 at immunohistochemistry, while Sanger sequencing identified IDH1/2 point mutations, typically IDH1 R132C, in 9 (37.5%) tumors arising from the skull base. Margin infiltration on the surgical specimen negatively affected the outcome, whereas no correlation was identified with IDH mutation status. CONCLUSIONS An adequate margin positively affects survival. IDH mutation status does not affect patient outcome.
Collapse
Affiliation(s)
- Sofia Asioli
- Pituitary Unit, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Istituto di Ricerca e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,Dipartimento di Scienze Biomediche e Neuromotorie - DIBINEM, Università di Bologna, Bologna, Italia
| | - Poosit Ruengwanichayakun
- Service of Anatomic Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Matteo Zoli
- Pituitary Unit, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Istituto di Ricerca e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,Dipartimento di Scienze Biomediche e Neuromotorie - DIBINEM, Università di Bologna, Bologna, Italia
| | - Federica Guaraldi
- Dipartimento di Scienze Biomediche e Neuromotorie - DIBINEM, Università di Bologna, Bologna, Italia
| | | | - Paolo Greco
- UOC ORL Ospedale Bellaria Ausl Bologna, Bologna, Italy
| | - Carla Facco
- Anatomia Patologica, ASST Sette Laghi Varese, Italy
| | - Dino Gibertoni
- Unit of Hygiene, Public Health and Biostatistics, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Brayan Vega Jiménez
- Service of Anatomic Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Pathology, San Juan de Dios Hospital, San José, Costa Rica
| | - Stefania Benini
- Service of Anatomic Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mario Turri-Zanoni
- Unit of Otorhinolaryngology - Head & Neck Surgery, University of Insubria, Varese, Italy
| | - Ernesto Pasquini
- Pituitary Unit, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Istituto di Ricerca e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,UOC ORL Ospedale Bellaria Ausl Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Pituitary Unit, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Istituto di Ricerca e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia.,Dipartimento di Scienze Biomediche e Neuromotorie - DIBINEM, Università di Bologna, Bologna, Italia
| | - Maria Pia Foschini
- Dipartimento di Scienze Biomediche e Neuromotorie - DIBINEM, Università di Bologna, Bologna, Italia
| | - Alberto Righi
- Service of Anatomic Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
26
|
Clonality analysis and IDH1 and IDH2 mutation detection in both components of dedifferentiated chondrosarcoma, implicated its monoclonal origin. J Bone Oncol 2020; 22:100293. [PMID: 32742915 PMCID: PMC7385535 DOI: 10.1016/j.jbo.2020.100293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Dedifferentiated chondrosarcoma is composed of highly differentiated chondrosarcoma and highly malignant non-cartilaginous sarcomas with abruptly-defined. The question of whether the two components originated from the same archaeocyte has not yet been clarified. Clonality analysis showed that the two components were same X chromosome inactivation. The mutation states of IDH1 and IDH2 gene were consistent in the two components of a DDCS. We conclude that the two components of a DDCS originate from the same primitive cell.
Dedifferentiated chondrosarcoma (DDCS) is a highly malignant tumor that belongs to an uncommon subtype of chondrosarcoma with a poor prognosis. Microscopically, it is composed of highly differentiated chondrosarcoma and highly malignant noncartilaginous sarcomas with an abrupt interface. The question of whether the two components originated from the same archaeocyte has not yet been clarified. To further investigate this issue, DNA was separately extracted from the two components of the same patient. In total, 18 DDCS patients were analyzed. A portion of DNA samples from 9 female patients was used for clonality analysis. Another portion of DNA from 9 female and DNA from 9 male patients was used for isocitrate dehydrogenase 1(IDH1) and IDH2 gene mutation detection. The results of clonality analysis showed that the same X chromosome inactivation and consistent mutation states of the IDH1 and IDH2 genes in the two DDCS components. We conclude that the two DDCS components originate from the same primitive cell and that DDCS is monoclonal in origin.
Collapse
|
27
|
Venneker S, Szuhai K, Hogendoorn PCW, Bovée JVMG. Mutation-driven epigenetic alterations as a defining hallmark of central cartilaginous tumours, giant cell tumour of bone and chondroblastoma. Virchows Arch 2019; 476:135-146. [PMID: 31728625 PMCID: PMC6968983 DOI: 10.1007/s00428-019-02699-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, specific driver mutations were identified in chondroblastoma, giant cell tumour of bone and central cartilaginous tumours (specifically enchondroma and central chondrosarcoma), sharing the ability to induce genome-wide epigenetic alterations. In chondroblastoma and giant cell tumour of bone, the neoplastic mononuclear stromal-like cells frequently harbour specific point mutations in the genes encoding for histone H3.3 (H3F3A and H3F3B). The identification of these driver mutations has led to development of novel diagnostic tools to distinguish between chondroblastoma, giant cell tumour of bone and other giant cell containing tumours. From a biological perspective, these mutations induce several global and local alterations of the histone modification marks. Similar observations are made for central cartilaginous tumours, which frequently harbour specific point mutations in the metabolic enzymes IDH1 or IDH2. Besides an altered methylation pattern on histones, IDH mutations also induce a global DNA hypermethylation phenotype. In all of these tumour types, the mutation-driven epigenetic alterations lead to a highly altered transcriptome, resulting for instance in alterations in differentiation. These genomic alterations have diagnostic impact. Further research is needed to identify the genes and signalling pathways that are affected by the epigenetic alterations, which will hopefully lead to a better understanding of the biological mechanism underlying tumourigenesis.
Collapse
Affiliation(s)
- Sanne Venneker
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
28
|
Ribeiro ML, Reyes-Garau D, Armengol M, Fernández-Serrano M, Roué G. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet 2019; 10:986. [PMID: 31681423 PMCID: PMC6807552 DOI: 10.3389/fgene.2019.00986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field.
Collapse
Affiliation(s)
- Marcelo L. Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo, Brazil
| | - Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc Armengol
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Miranda Fernández-Serrano
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y, Machida Y, Katsumoto T, Yamagata K, Hattori A, Fujita S, Aikawa Y, Ishikawa T, Soga T, Kawai A, Chuman H, Yokoyama N, Fukushima S, Yahiro K, Kimura A, Shimada E, Hirose T, Fujiwara T, Setsu N, Matsumoto Y, Iwamoto Y, Nakashima Y, Kitabayashi I. Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 2019; 38:6835-6849. [DOI: 10.1038/s41388-019-0929-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 01/25/2023]
|
30
|
Wild-Type IDH Enzymes as Actionable Targets for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040563. [PMID: 31010244 PMCID: PMC6520797 DOI: 10.3390/cancers11040563] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Isocitrate dehydrogenases (IDHs) are enzymes that catalyze the oxidative decarboxylation of isocitrate, producing α-ketoglutarate (αKG) and CO2. The discovery of IDH1 and IDH2 mutations in several malignancies has brought to the approval of drugs targeting IDH1/2 mutants in cancers. Here, we summarized findings addressing the impact of IDH mutants in rare pathologies and focused on the relevance of non-mutated IDH enzymes in tumors. Several pieces of evidence suggest that the enzymatic inhibition of IDHs may have therapeutic potentials also in wild-type IDH cancers. Moreover, IDHs inhibition could enhance the efficacy of canonical cancer therapies, such as chemotherapy, target therapy, and radiotherapy. However, further studies are required to elucidate whether IDH proteins are diagnostic/prognostic markers, instrumental for tumor initiation and maintenance, and could be exploited as targets for anticancer therapy. The development of wild-type IDH inhibitors is expected to improve our understanding of a potential non-oncogenic addition to IDH1/2 activities and to fully address their applicability in combination with other therapies.
Collapse
|
31
|
Hujber Z, Horváth G, Petővári G, Krencz I, Dankó T, Mészáros K, Rajnai H, Szoboszlai N, Leenders WPJ, Jeney A, Tretter L, Sebestyén A. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:271. [PMID: 30404651 PMCID: PMC6223071 DOI: 10.1186/s13046-018-0946-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Background Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. Methods Metabolic characteristics of human glioma cell models – including mitochondrial function, glycolytic pathway and energy substrate oxidation – in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. Results U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). Conclusions Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas. Electronic supplementary material The online version of this article (10.1186/s13046-018-0946-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Katalin Mészáros
- Hungarian Academy of Sciences - Momentum Hereditary Endocrine Tumours Research Group, Semmelweis University - National Bionics Program, Budapest, 1088, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, 1518, Hungary
| | - William P J Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
32
|
Abarrategi A, Gambera S, Alfranca A, Rodriguez-Milla MA, Perez-Tavarez R, Rouault-Pierre K, Waclawiczek A, Chakravarty P, Mulero F, Trigueros C, Navarro S, Bonnet D, García-Castro J. c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells. Sci Rep 2018; 8:15615. [PMID: 30353072 PMCID: PMC6199246 DOI: 10.1038/s41598-018-33689-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal progenitor cells (MPCs) have been hypothesized as cells of origin for sarcomas, and c-Fos transcription factor has been showed to act as an oncogene in bone tumors. In this study, we show c-Fos is present in most sarcomas with chondral phenotype, while multiple other genes are related to c-Fos expression pattern. To further define the role of c-Fos in sarcomagenesis, we expressed it in primary human MPCs (hMPCs), immortalized hMPCs and transformed murine MPCs (mMPCs). In immortalized hMPCs, c-Fos expression generated morphological changes, reduced mobility capacity and impaired adipogenic- and osteogenic-differentiation potentials. Remarkably, immortalized hMPCs or mMPCs expressing c-Fos generated tumors harboring a chondrogenic phenotype and morphology. Thus, here we show that c-Fos protein has a key role in sarcomas and that c-Fos expression in immortalized MPCs yields cell transformation and chondrogenic tumor formation.
Collapse
Affiliation(s)
- Ander Abarrategi
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Stefano Gambera
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
| | - Arantzazu Alfranca
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain
| | | | | | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Alexander Waclawiczek
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Probir Chakravarty
- Bioinformatics Core, The Francis Crick Institute, London, United Kingdom
| | - Francisca Mulero
- Molecular Image Core Unit, Spanish National Cancer Research Centre, Madrid, E-28029, Spain
| | - César Trigueros
- Mesenchymal and Hematopoietic Stem Cell Laboratory, Fundación Inbiomed, San Sebastian, E-20009, Spain
| | - Samuel Navarro
- Pathology Department, University of Valencia, Valencia, E-46010, Spain
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, WC2A 3LY, UK
| | - Javier García-Castro
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, E-28021, Spain.
| |
Collapse
|
33
|
Yin B, Yu F, Wang C, Li B, Liu M, Ye L. Epigenetic Control of Mesenchymal Stem Cell Fate Decision via Histone Methyltransferase Ash1l. Stem Cells 2018; 37:115-127. [PMID: 30270478 DOI: 10.1002/stem.2918] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Previous research indicates that knocking out absent, small, or homeotic-like (Ash1l) in mice, a histone 3 lysine 4 (H3K4) trimethyltransferase, can result in arthritis with more severe cartilage and bone destruction. Research has documented the essential role of Ash1l in stem cell fate decision such as hematopoietic stem cells and the progenitors of keratinocytes. Following up on those insights, our research seeks to document the function of Ash1l in skeletal formation, specifically whether it controls the fate decision of mesenchymal progenitor cells. Our findings indicate that in osteoporotic bones, Ash1l was significantly decreased, indicating a positive correlation between bone mass and the expression of Ash1l. Silencing of Ash1l that had been markedly upregulated in differentiated C3H10T1/2 (C3) cells hampered osteogenesis and chondrogenesis but promoted adipogenesis. Consistently, overexpression of an Ash1l SET domain-containing fragment 3 rather than Ash1lΔN promoted osteogenic and chondrogenic differentiation of C3 cells and simultaneously inhibited adipogenic differentiation. This indicates that the role of Ash1l in regulating the differentiation of C3 cells is linked to its histone methyltransferase activity. Subcutaneous ex vivo transplantation experiments confirmed the role of Ash1l in the promotion of osteogenesis. Further experiments proved that Ash1l can epigenetically affect the expression of essential osteogenic and chondrogenic transcription factors. It exerts this impact via modifications in the enrichment of H3K4me3 on their promoter regions. Considering the promotional action of Ash1l on bone, it could potentially prompt new therapeutic strategy to promote osteogenesis. Stem Cells 2019;37:115-127.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Boer Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,West China School of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
34
|
van Maldegem A, Conley AP, Rutkowski P, Patel SR, Lugowska I, Desar IME, Bovée JVMG, Gelderblom H. Outcome of First-Line Systemic Treatment for Unresectable Conventional, Dedifferentiated, Mesenchymal, and Clear Cell Chondrosarcoma. Oncologist 2018; 24:110-116. [PMID: 30082492 DOI: 10.1634/theoncologist.2017-0574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chondrosarcoma is a heterogeneous group of primary bone sarcoma with an excellent overall survival after local therapy. However, the small percentage of patients who have no surgical treatment options have a very poor prognosis. We retrospectively collected data from these patients in four sarcoma centers and compared the progression-free survival (PFS) for the different treatment regimens used for the four chondrosarcoma subtypes. MATERIALS AND METHODS Patients diagnosed with unresectable chondrosarcoma in all four major sarcoma centers were included, and data on first-line systemic therapy were retrospectively collected for analysis. RESULTS A total of 112 patients were enrolled in this retrospective analysis: 50 conventional, 25 mesenchymal, 34 dedifferentiated, and 3 clear cell chondrosarcoma patients. In conventional chondrosarcoma patients, the longest mean PFS (6.7 months) was found in the group treated with antihormonal therapy. Patients diagnosed with mesenchymal chondrosarcoma were all treated with multidrug chemotherapy, and the mean PFS was 6.7 months. Doxorubicin monotherapy seems to have an unexplained better PFS than doxorubicin-based combination therapy in patients with dedifferentiated chondrosarcoma (5.5 vs. 2.8 months, respectively; p = .275). CONCLUSION Prospective studies need to be conducted based on preclinical work to develop a uniform regimen to treat advanced chondrosarcoma patients according to the diagnosed subtype and improve survival. IMPLICATIONS FOR PRACTICE Currently, there are no uniform treatment lines for advanced chondrosarcoma patients, which results in a very diverse group of treatment regimens being used. In this study, the data of 112 patients was collected. It was concluded that some treatment regimens seem to have a better progression-free survival compared with others, and that these results also differ between the chondrosarcoma subtypes. Prospective studies need to be conducted based on preclinical work to develop a uniform regimen to treat advanced chondrosarcoma patients according to the diagnosed histological subtype to improve their survival.
Collapse
Affiliation(s)
- Annemiek van Maldegem
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Shreyaskumar R Patel
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Ingrid M E Desar
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
35
|
The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms. J Transl Med 2018; 98:414-426. [PMID: 29339836 DOI: 10.1038/s41374-017-0003-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
The discovery of mutations in genes encoding the metabolic enzymes isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH) has expanded our understanding not only of altered metabolic pathways but also epigenetic dysregulation in cancer. IDH1/2 mutations occur in enchondromas and chondrosarcomas in patients with the non-hereditary enchondromatosis syndromes Ollier disease and Maffucci syndrome and in sporadic tumors. IDH1/2 mutations result in excess production of the oncometabolite (D)-2-hydroxyglutarate. In contrast, SDH and FH act as tumor suppressors and genomic inactivation results in succinate and fumarate accumulation, respectively. SDH deficiency may result from germline SDHA, SDHB, SDHC, or SDHD mutations and is found in autosomal-dominant familial paraganglioma/pheochromocytoma and Carney-Stratakis syndrome, describing the combination of paraganglioma and gastrointestinal stromal tumor (GIST). In contrast, patients with the non-hereditary Carney triad, including paraganglioma, GIST, and pulmonary chondroma, usually lack germline SDH mutations and instead show epigenetic SDH complex inactivation through SDHC promoter methylation. Inactivating FH germline mutations are found in patients with hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome comprising benign cutaneous/uterine leiomyomas and renal cell carcinoma. Mutant IDH, SDH, and FH share common inhibition of α-ketoglutarate-dependent oxygenases such as the TET family of 5-methylcytosine hydroxylases preventing DNA demethylation, and Jumonji domain histone demethylases increasing histone methylation, which together inhibit cell differentiation. Ongoing studies aim to better characterize these complex alterations in cancer, the different clinical phenotypes, and variable penetrance of inherited and sporadic cancer predisposition syndromes. A better understanding of the roles of metabolic enzymes in cancer may foster the development of therapies that specifically target functional alterations in tumor cells in the future. Here, the physiologic functions of these metabolic enzymes, the mutational spectrum, and associated functional alterations will be discussed, with a focus on mesenchymal tumor predisposition syndromes.
Collapse
|
36
|
Boehme KA, Schleicher SB, Traub F, Rolauffs B. Chondrosarcoma: A Rare Misfortune in Aging Human Cartilage? The Role of Stem and Progenitor Cells in Proliferation, Malignant Degeneration and Therapeutic Resistance. Int J Mol Sci 2018; 19:ijms19010311. [PMID: 29361725 PMCID: PMC5796255 DOI: 10.3390/ijms19010311] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/07/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Unlike other malignant bone tumors including osteosarcomas and Ewing sarcomas with a peak incidence in adolescents and young adults, conventional and dedifferentiated chondrosarcomas mainly affect people in the 4th to 7th decade of life. To date, the cell type of chondrosarcoma origin is not clearly defined. However, it seems that mesenchymal stem and progenitor cells (MSPC) in the bone marrow facing a pro-proliferative as well as predominantly chondrogenic differentiation milieu, as is implicated in early stage osteoarthritis (OA) at that age, are the source of chondrosarcoma genesis. But how can MSPC become malignant? Indeed, only one person in 1,000,000 will develop a chondrosarcoma, whereas the incidence of OA is a thousandfold higher. This means a rare coincidence of factors allowing escape from senescence and apoptosis together with induction of angiogenesis and migration is needed to generate a chondrosarcoma. At early stages, chondrosarcomas are still assumed to be an intermediate type of tumor which rarely metastasizes. Unfortunately, advanced stages show a pronounced resistance both against chemo- and radiation-therapy and frequently metastasize. In this review, we elucidate signaling pathways involved in the genesis and therapeutic resistance of chondrosarcomas with a focus on MSPC compared to signaling in articular cartilage (AC).
Collapse
Affiliation(s)
- Karen A Boehme
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| | - Sabine B Schleicher
- Department of Hematology and Oncology, Eberhard Karls University Tuebingen, Children's Hospital, 72076 Tuebingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany.
| |
Collapse
|
37
|
Lim D, Oliva E. Ovarian sex cord-stromal tumours: an update in recent molecular advances. Pathology 2017; 50:178-189. [PMID: 29275930 DOI: 10.1016/j.pathol.2017.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Sex cord-stromal tumours (SCSTs) consist of a heterogeneous group of neoplasms with diverse clinicopathological features and biological behaviour. They often present as a diagnostic challenge as they have varied and occasionally overlapping histomorphology and some may even mimic non-SCSTs. An accurate diagnosis is important for therapeutic and prognostic purposes. The use of a panel of immunohistochemical markers which are sensitive and specific for sex cord-stromal differentiation such as α-inhibin, calretinin, SF-1 and FOXL2, may be helpful in confirming the cellular lineage of these tumours, but is of limited utility in distinguishing between the different tumour types within this category. Additionally, the development of new therapeutic strategies in patients with SCSTs is also hampered by the infrequent occurrence of these neoplasms. Recent molecular analyses of some SCSTs has led to the discovery of novel molecular events, which may have important diagnostic, prognostic and therapeutic implications. The salient pathological features, management issues and recently described genetic aberrations in adult and juvenile granulosa cell tumours as well as Sertoli-Leydig cell tumours are discussed in this review, with particular emphasis on the clinical significance of FOXL2 and DICER1 mutations. An in-depth understanding of the molecular pathogenesis underlying SCSTs may aid in improving tumour classification and disease prognostication and also potentially lead to the discovery of more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Lim
- Department of Pathology, National University Hospital, Singapore; Translational Centre for Development and Research, National University Health System, Singapore.
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Ten Broek RW, Bekers EM, de Leng WWJ, Strengman E, Tops BBJ, Kutzner H, Leeuwis JW, van Gorp JM, Creytens DH, Mentzel T, van Diest PJ, Eijkelenboom A, Flucke U. Mutational analysis using Sanger and next generation sequencing in sporadic spindle cell hemangiomas: A study of 19 cases. Genes Chromosomes Cancer 2017; 56:855-860. [PMID: 28845532 DOI: 10.1002/gcc.22501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/16/2023] Open
Abstract
Spindle cell hemangioma (SCH) is a distinct vascular soft-tissue lesion characterized by cavernous blood vessels and a spindle cell component mainly occurring in the distal extremities of young adults. The majority of cases harbor heterozygous mutations in IDH1/2 sporadically or rarely in association with Maffucci syndrome. However, based on mosaicism and accordingly a low percentage of lesional cells harboring a mutant allele, detection can be challenging. We tested 19 sporadic SCHs by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), conventional next generation sequencing (NGS), and NGS using a single molecule molecular inversion probes (smMIP)-based library preparation to compare their diagnostic value. Out of 10 cases tested by Sanger sequencing and 2 analyzed using MLPA, 4 and 1, respectively, revealed a mutation in IDH1 (p.R132C). The 7 remaining negative cases and additional 6 cases were investigated using smMIP/NGS, showing hot spot mutations in IDH1 (p.R132C) (8 cases) and IDH2 (3 cases; twice p.R172S and once p.R172G, respectively). One case was negative. Owing to insufficient DNA quality and insufficient coverage, 2 cases were excluded. In total, in 16 out of 17 cases successfully tested, an IDH1/2 mutation was found. Given that IDH1/2 mutations were absent in 161 other vascular lesions tested by smMIP/NGS, the mutation can be considered as highly specific for SCH.
Collapse
Affiliation(s)
- Roel W Ten Broek
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Elise M Bekers
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Strengman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bastiaan B J Tops
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Joost M van Gorp
- Department of Pathology, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - David H Creytens
- Department of Pathology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Uta Flucke
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
39
|
Wiehle L, Raddatz G, Pusch S, Gutekunst J, von Deimling A, Rodríguez-Paredes M, Lyko F. mIDH-associated DNA hypermethylation in acute myeloid leukemia reflects differentiation blockage rather than inhibition of TET-mediated demethylation. Cell Stress 2017; 1:55-67. [PMID: 31225434 PMCID: PMC6551656 DOI: 10.15698/cst2017.10.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1/2) are recurrently mutated in acute myeloid leukemia (AML), but their mechanistic role in leukemogenesis is poorly understood. The inhibition of TET enzymes by D-2-hydroxyglutarate (D-2-HG), which is produced by mutant IDH1/2 (mIDH1/2), has been suggested to promote epigenetic deregulation during tumorigenesis. In addition, mIDH also induces a differentiation block in various cell culture and mouse models. Here we analyze the genomic methylation patterns of AML patients with mIDH using Infinium 450K data from a large AML cohort and found that mIDH is associated with pronounced DNA hypermethylation at tens of thousands of CpGs. Interestingly, however, myeloid leukemia cells overexpressing mIDH, cells that were cultured in the presence of D-2-HG or TET2 mutant AML patients did not show similar methylation changes. In further analyses, we also characterized the methylation landscapes of myeloid progenitor cells and analyzed their relationship to mIDH-associated hypermethylation. Our findings identify the differentiation state of myeloid cells, rather than inhibition of TET-mediated DNA demethylation, as a major factor of mIDH-associated hypermethylation in AML. Furthermore, our results are also important for understanding the mode of action of currently developed mIDH inhibitors.
Collapse
Affiliation(s)
- Laura Wiehle
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Stefan Pusch
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Julian Gutekunst
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Andreas von Deimling
- German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center; 69120 Heidelberg, Germany
| |
Collapse
|
40
|
Mariño-Enríquez A, Bovée JVMG. Molecular Pathogenesis and Diagnostic, Prognostic and Predictive Molecular Markers in Sarcoma. Surg Pathol Clin 2017; 9:457-73. [PMID: 27523972 DOI: 10.1016/j.path.2016.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomas are infrequent mesenchymal neoplasms characterized by notable morphological and molecular heterogeneity. Molecular studies in sarcoma provide refinements to morphologic classification, and contribute diagnostic information (frequently), prognostic stratification (rarely) and predict therapeutic response (occasionally). Herein, we summarize the major molecular mechanisms underlying sarcoma pathogenesis and present clinically useful diagnostic, prognostic and predictive molecular markers for sarcoma. Five major molecular alterations are discussed, illustrated with representative sarcoma types, including 1. the presence of chimeric transcription factors, in vascular tumors; 2. abnormal kinase signaling, in gastrointestinal stromal tumor; 3. epigenetic deregulation, in chondrosarcoma, chondroblastoma, and other tumors; 4. deregulated cell survival and proliferation, due to focal copy number alterations, in dedifferentiated liposarcoma; 5. extreme genomic instability, in conventional osteosarcoma as a representative example of sarcomas with highly complex karyotype.
Collapse
Affiliation(s)
- Adrián Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
41
|
Divisato G, Scotto di Carlo F, Pazzaglia L, Rizzo R, Coviello DA, Benassi MS, Picci P, Esposito T, Gianfrancesco F. The distinct clinical features of giant cell tumor of bone in pagetic and non-pagetic patients are associated with genetic, biochemical and histological differences. Oncotarget 2017; 8:63121-63131. [PMID: 28968976 PMCID: PMC5609908 DOI: 10.18632/oncotarget.18670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Giant Cell Tumor of Bone (GCT) is a tumor characterized by neoplastic mesenchymal stromal cells and a high number of osteoclast-like multinucleated giant cells. Rarely, GCT could arise in bones affected by Paget's disease of bone (GCT/PDB). Although it is already known that GCT/PDB and GCT show a different clinical profile regarding the age-onset and skeletal localization, our deep clinical comparison between the two GCT/PDB and GCT cohorts, permitted us to identify additional differences (e.g. focality, ALP serum levels, the 5-year survival rate and the familial recurrence), strongly suggesting a different molecular basis. Accordingly, driver somatic mutations in H3F3A and IDH2 were described in GCT patients, while we recently identified a germline mutation in ZNF687 as the genetic defect of GCT/PDB patients. Here, we detected H3F3A mutations in our GCT cohort, confirming its molecular screening as the elected diagnostic tool, and then we excluded the two-hit in H3F3A and IDH2 as the trigger event for the GCT/PDB development. Importantly, we also identified an alternative biochemical profile with GCT/PDB not exhibiting the up-regulation of the GCT marker FGFR2IIIc. Finally, our histological analysis also showed a different appearance of the two forms of the tumor, with GCT/PDB showing a higher number of osteoclast-like giant cells (twice), with an abnormal number of nuclei per cell, corroborating its different behaviour in terms of neoplastic properties. We demonstrated that the distinct clinical features of pagetic and conventional GCT are associated with different genetic background, resulting in a specific biochemical and histological behaviour of the tumour.
Collapse
Affiliation(s)
- Giuseppina Divisato
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy
| | - Federica Scotto di Carlo
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry, National Research Council of Italy, Naples, Italy
| | | | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Teresa Esposito
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy.,IRCCS INM Neuromed, Pozzilli, Italy
| | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council of Italy, Naples, Italy
| |
Collapse
|
42
|
Dang L, Su SSM. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu Rev Biochem 2017; 86:305-331. [DOI: 10.1146/annurev-biochem-061516-044732] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lenny Dang
- Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139;,
| | | |
Collapse
|
43
|
Hujber Z, Petővári G, Szoboszlai N, Dankó T, Nagy N, Kriston C, Krencz I, Paku S, Ozohanics O, Drahos L, Jeney A, Sebestyén A. Rapamycin (mTORC1 inhibitor) reduces the production of lactate and 2-hydroxyglutarate oncometabolites in IDH1 mutant fibrosarcoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:74. [PMID: 28578659 PMCID: PMC5457553 DOI: 10.1186/s13046-017-0544-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple studies concluded that oncometabolites (e.g. D-2-hydroxyglutarate (2-HG) related to mutant isocitrate dehydrogenase 1/2 (IDH1/2) and lactate) have tumour promoting potential. Regulatory mechanisms implicated in the maintenance of oncometabolite production have great interest. mTOR (mammalian target of rapamycin) orchestrates different pathways, influences cellular growth and metabolism. Considering hyperactivation of mTOR in several malignancies, the question has been addressed whether mTOR operates through controlling of oncometabolite accumulation in metabolic reprogramming. METHODS HT-1080 cells - carrying originally endogenous IDH1 mutation - were used in vitro and in vivo. Anti-tumour effects of rapamycin were studied using different assays. The main sources and productions of the oncometabolites (2-HG and lactate) were analysed by 13C-labeled substrates. Alterations at protein and metabolite levels were followed by Western blot, flow cytometry, immunohistochemistry and liquid chromatography mass spectrometry using rapamycin, PP242 and different glutaminase inhibitors, as well. RESULTS Rapamycin (mTORC1 inhibitor) inhibited proliferation, migration and altered the metabolic activity of IDH1 mutant HT-1080 cells. Rapamycin reduced the level of 2-HG sourced mainly from glutamine and glucose derived lactate which correlated to the decreased incorporation of 13C atoms from 13C-substrates. Additionally, decreased expressions of lactate dehydrogenase A and glutaminase were also observed both in vitro and in vivo. CONCLUSIONS Considering the role of lactate and 2-HG in regulatory network and in metabolic symbiosis it could be assumed that mTOR inhibitors have additional effects besides their anti-proliferative effects in tumours with glycolytic phenotype, especially in case of IDH1 mutation (e.g. acute myeloid leukemias, gliomas, chondrosarcomas). Based on our new results, we suggest targeting mTOR activity depending on the metabolic and besides molecular genetic phenotype of tumours to increase the success of therapies.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1518, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Tumor Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Olivér Ozohanics
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, MS Proteomics Research Group, 1117, Budapest, Hungary
| | - László Drahos
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, MS Proteomics Research Group, 1117, Budapest, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary. .,Tumor Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
44
|
Cleven AHG, Suijker J, Agrogiannis G, Briaire-de Bruijn IH, Frizzell N, Hoekstra AS, Wijers-Koster PM, Cleton-Jansen AM, Bovée JVMG. IDH1 or - 2 mutations do not predict outcome and do not cause loss of 5-hydroxymethylcytosine or altered histone modifications in central chondrosarcomas. Clin Sarcoma Res 2017; 7:8. [PMID: 28484589 PMCID: PMC5418698 DOI: 10.1186/s13569-017-0074-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase (IDH)1 or -2 are found in ~50% of conventional central chondrosarcomas and in up to 87% of their assumed benign precursors enchondromas. The mutant enzyme acquires the activity to convert α-ketoglutarate into the oncometabolite d-2-hydroxyglutarate (d-2-HG), which competitively inhibits α-ketoglutarate dependent enzymes such as histone- and DNA demethylases. METHODS We therefore evaluated the effect of IDH1 or -2 mutations on histone modifications (H3K4me3, H3K9me3 and H3K27me3), chromatin remodeler ATRX expression, DNA modifications (5-hmC and 5-mC), and TET1 subcellular localization in a genotyped cohort (IDH, succinate dehydrogenase (SDH) and fumarate hydratase (FH)) of enchondromas and central chondrosarcomas (n = 101) using immunohistochemistry. RESULTS IDH1 or -2 mutations were found in 60.8% of the central cartilaginous tumours, while mutations in FH and SDH were absent. The mutation status did not correlate with outcome. Chondrosarcomas are strongly positive for the histone modifications H3K4me3, H3K9me3 and H3K27me3, which was independent of the IDH1 or -2 mutation status. Two out of 36 chondrosarcomas (5.6%) show complete loss of ATRX. Levels of 5-hmC and 5-mC are highly variable in central cartilaginous tumours and are not associated with mutation status. In tumours with loss of 5-hmC, expression of TET1 was more prominent in the cytoplasm than the nucleus (p = 0.0001). CONCLUSIONS In summary, in central chondrosarcoma IDH1 or -2 mutations do not affect immunohistochemical levels of 5-hmC, 5mC, trimethylation of H3K4, -K9 and K27 and outcome, as compared to wildtype.
Collapse
Affiliation(s)
- Arjen H G Cleven
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johnny Suijker
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Georgios Agrogiannis
- 1st Department of Pathology, Laikon General Hospital, Athens University School of Medicine, Athens, Greece
| | - Inge H Briaire-de Bruijn
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Norma Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, USA
| | - Attje S Hoekstra
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline M Wijers-Koster
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, L1-Q, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
45
|
Fuller P, Leung D, Chu S. Genetics and genomics of ovarian sex cord-stromal tumors. Clin Genet 2017; 91:285-291. [DOI: 10.1111/cge.12917] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Affiliation(s)
- P.J. Fuller
- Centre for Endocrinology and Metabolism; Hudson Institute of Medical Research; Clayton Australia
- Department of Molecular and Translational Science; Monash University; Clayton Australia
| | - D. Leung
- Centre for Endocrinology and Metabolism; Hudson Institute of Medical Research; Clayton Australia
- Department of Molecular and Translational Science; Monash University; Clayton Australia
| | - S. Chu
- Centre for Endocrinology and Metabolism; Hudson Institute of Medical Research; Clayton Australia
- Department of Molecular and Translational Science; Monash University; Clayton Australia
| |
Collapse
|
46
|
Nadtochiy SM, Schafer X, Fu D, Nehrke K, Munger J, Brookes PS. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. J Biol Chem 2016; 291:20188-97. [PMID: 27510037 DOI: 10.1074/jbc.m116.738799] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
2-Hydroxyglutarate (2-HG) is an important epigenetic regulator, with potential roles in cancer and stem cell biology. The d-(R)-enantiomer (d-2-HG) is an oncometabolite generated from α-ketoglutarate (α-KG) by mutant isocitrate dehydrogenase, whereas l-(S)-2-HG is generated by lactate dehydrogenase and malate dehydrogenase in response to hypoxia. Because acidic pH is a common feature of hypoxia, as well as tumor and stem cell microenvironments, we hypothesized that pH may regulate cellular 2-HG levels. Herein we report that cytosolic acidification under normoxia moderately elevated 2-HG in cells, and boosting endogenous substrate α-KG levels further stimulated this elevation. Studies with isolated lactate dehydrogenase-1 and malate dehydrogenase-2 revealed that generation of 2-HG by both enzymes was stimulated severalfold at acidic pH, relative to normal physiologic pH. In addition, acidic pH was found to inhibit the activity of the mitochondrial l-2-HG removal enzyme l-2-HG dehydrogenase and to stimulate the reverse reaction of isocitrate dehydrogenase (carboxylation of α-KG to isocitrate). Furthermore, because acidic pH is known to stabilize hypoxia-inducible factor (HIF) and 2-HG is a known inhibitor of HIF prolyl hydroxylases, we hypothesized that 2-HG may be required for acid-induced HIF stabilization. Accordingly, cells stably overexpressing l-2-HG dehydrogenase exhibited a blunted HIF response to acid. Together, these results suggest that acidosis is an important and previously overlooked regulator of 2-HG accumulation and other oncometabolic events, with implications for HIF signaling.
Collapse
Affiliation(s)
| | | | | | - Keith Nehrke
- Medicine, University of Rochester, Rochester, New York 14642
| | | | | |
Collapse
|
47
|
Papegaey A, Eddarkaoui S, Deramecourt V, Fernandez-Gomez FJ, Pantano P, Obriot H, Machala C, Anquetil V, Camuzat A, Brice A, Maurage CA, Le Ber I, Duyckaerts C, Buée L, Sergeant N, Buée-Scherrer V. Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathol Commun 2016; 4:74. [PMID: 27435172 PMCID: PMC4952067 DOI: 10.1186/s40478-016-0345-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/10/2016] [Indexed: 12/12/2022] Open
Abstract
Reduction of Tau protein expression was described in 2003 by Zhukareva et al. in a variant of frontotemporal lobar degeneration (FTLD) referred to as diagnosis of dementia lacking distinctive histopathology, then re-classified as FTLD with ubiquitin inclusions. However, the analysis of Tau expression in FTLD has not been reconsidered since then. Knowledge of the molecular basis of protein aggregates and genes that are mutated in the FTLD spectrum would enable to determine whether the “Tau-less” is a separate pathological entity or if it belongs to an existing subclass of FTLD. To address this question, we have analyzed Tau expression in the frontal brain areas from control, Alzheimer’s disease and FTLD cases, including FTLD- Tau (MAPT), FTLD-TDP (sporadic, FTLD-TDP-GRN, FTLD-TDP-C9ORF72) and sporadic FTLD-FUS, using western blot and 2D-DIGE (Two-Dimensional fluorescence Difference Gel Electrophoresis) approaches. Surprisingly, we found that most of the FTLD-TDP-GRN brains are characterized by a huge reduction of Tau protein expression without any decrease in Tau mRNA levels. Interestingly, only cases affected by point mutations, rather than cases with total deletion of one GRN allele, seem to be affected by this reduction of Tau protein expression. Moreover, proteomic analysis highlighted correlations between reduced Tau protein level, synaptic impairment and massive reactive astrogliosis in these FTLD-GRN cases. Consistent with a recent study, our data also bring new insights regarding the role of progranulin in neurodegeneration by suggesting its involvement in lysosome and synaptic regulation. Together, our results demonstrate a strong association between progranulin deficiency and reduction of Tau protein expression that could lead to severe neuronal and glial dysfunctions. Our study also indicates that this FTLD-TDP-GRN subgroup could be part as a distinct entity of FTLD classification.
Collapse
|
48
|
Rosiak K, Smolarz M, Stec WJ, Peciak J, Grzela D, Winiecka-Klimek M, Stoczynska-Fidelus E, Krynska B, Piaskowski S, Rieske P. IDH1R132H in Neural Stem Cells: Differentiation Impaired by Increased Apoptosis. PLoS One 2016; 11:e0154726. [PMID: 27145078 PMCID: PMC4856348 DOI: 10.1371/journal.pone.0154726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The high frequency of mutations in the isocitrate dehydrogenase 1 (IDH1) gene in diffuse gliomas indicates its importance in the process of gliomagenesis. These mutations result in loss of the normal function and acquisition of the neomorphic activity converting α-ketoglutarate to 2-hydroxyglutarate. This potential oncometabolite may induce the epigenetic changes, resulting in the deregulated expression of numerous genes, including those related to the differentiation process or cell survivability. METHODS Neural stem cells were derived from human induced pluripotent stem cells following embryoid body formation. Neural stem cells transduced with mutant IDH1R132H, empty vector, non-transduced and overexpressing IDH1WT controls were differentiated into astrocytes and neurons in culture. The neuronal and astrocytic differentiation was determined by morphology and expression of lineage specific markers (MAP2, Synapsin I and GFAP) as determined by real-time PCR and immunocytochemical staining. Apoptosis was evaluated by real-time observation of Caspase-3 activation and measurement of PARP cleavage by Western Blot. RESULTS Compared with control groups, cells expressing IDH1R132H retained an undifferentiated state and lacked morphological changes following stimulated differentiation. The significant inhibitory effect of IDH1R132H on neuronal and astrocytic differentiation was confirmed by immunocytochemical staining for markers of neural stem cells. Additionally, real-time PCR indicated suppressed expression of lineage markers. High percentage of apoptotic cells was detected within IDH1R132H-positive neural stem cells population and their derivatives, if compared to normal neural stem cells and their derivatives. The analysis of PARP and Caspase-3 activity confirmed apoptosis sensitivity in mutant protein-expressing neural cells. CONCLUSIONS Our study demonstrates that expression of IDH1R132H increases apoptosis susceptibility of neural stem cells and their derivatives. Robust apoptosis causes differentiation deficiency of IDH1R132H-expressing cells.
Collapse
Affiliation(s)
- Kamila Rosiak
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90–752, Lodz, Poland
| | - Maciej Smolarz
- Department of Research and Development, Celther Polska, Milionowa 23, 93–193, Lodz, Poland
| | - Wojciech J. Stec
- Department of Research and Development, Celther Polska, Milionowa 23, 93–193, Lodz, Poland
| | - Joanna Peciak
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90–752, Lodz, Poland
| | - Dawid Grzela
- Department of Research and Development, Celther Polska, Milionowa 23, 93–193, Lodz, Poland
| | - Marta Winiecka-Klimek
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90–752, Lodz, Poland
| | | | - Barbara Krynska
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair and Rehabilitation, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, United States of America
| | - Sylwester Piaskowski
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90–752, Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90–752, Lodz, Poland
| |
Collapse
|
49
|
Tamaki S, Fukuta M, Sekiguchi K, Jin Y, Nagata S, Hayakawa K, Hineno S, Okamoto T, Watanabe M, Woltjen K, Ikeya M, Kato T, Toguchida J. SS18-SSX, the Oncogenic Fusion Protein in Synovial Sarcoma, Is a Cellular Context-Dependent Epigenetic Modifier. PLoS One 2015; 10:e0142991. [PMID: 26571495 PMCID: PMC4646489 DOI: 10.1371/journal.pone.0142991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022] Open
Abstract
The prevalence and specificity of unique fusion oncogenes are high in a number of soft tissue sarcomas (STSs). The close relationship between fusion genes and clinicopathological features suggests that a correlation may exist between the function of fusion proteins and cellular context of the cell-of-origin of each tumor. However, most STSs are origin-unknown tumors and this issue has not yet been investigated in detail. In the present study, we examined the effects of the cellular context on the function of the synovial sarcoma (SS)-specific fusion protein, SS18-SSX, using human pluripotent stem cells (hPSCs) containing the drug-inducible SS18-SSX gene. We selected the neural crest cell (NCC) lineage for the first trial of this system, induced SS18-SSX at various differentiation stages from PSCs to NCC-derived mesenchymal stromal cells (MSCs), and compared its biological effects on each cell type. We found that the expression of FZD10, identified as an SS-specific gene, was induced by SS18-SSX at the PSC and NCC stages, but not at the MSC stage. This stage-specific induction of FZD10 correlated with stage-specific changes in histone marks associated with the FZD10 locus and also with the loss of the BAF47 protein, a member of the SWI/SNF chromatin-remodeling complex. Furthermore, the global gene expression profile of hPSC-derived NCCs was the closest to that of SS cell lines after the induction of SS18-SSX. These results clearly demonstrated that the cellular context is an important factor in the function of SS18-SSX as an epigenetic modifier.
Collapse
Affiliation(s)
- Sakura Tamaki
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Makoto Fukuta
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuya Sekiguchi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yonghui Jin
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sanae Nagata
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kazuo Hayakawa
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sho Hineno
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Okamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Watanabe
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Makoto Ikeya
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomohisa Kato
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|