1
|
Le Meur M, Pignatelli J, Blasi P, Palomo V. Nanoparticles targeting the central circadian clock: Potential applications for neurological disorders. Adv Drug Deliv Rev 2025; 220:115561. [PMID: 40120723 DOI: 10.1016/j.addr.2025.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Circadian rhythms and their involvement with various human diseases, including neurological disorders, have become an intense area of research for the development of new pharmacological treatments. The location of the circadian clock machinery in the central nervous system makes it challenging to reach molecular targets at therapeutic concentrations. In addition, a timely administration of the therapeutic agents is necessary to efficiently modulate the circadian clock. Thus, the use of nanoparticles in circadian clock dysfunctions may accelerate their clinical translation by addressing these two key challenges: enhancing brain penetration and/or enabling their formulation in chronodelivery systems. This review describes the implications of the circadian clock in neurological pathologies, reviews potential molecular targets and their modulators and suggests how the use of nanoparticle-based formulations could improve their clinical success. Finally, the potential integration of nanoparticles into chronopharmaceutical drug delivery systems will be described.
Collapse
Affiliation(s)
- Marion Le Meur
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy
| | - Jaime Pignatelli
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paolo Blasi
- Dipartimento di Farmacia e Biotecnologie (FaBiT), Alma Mater Studiorum - Università di Bologna, 40127 Bologna, Italy.
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; Unidad de Nanobiotecnología asociada al Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
2
|
Ahn JH, da Silva Pedrosa M, Lopez LR, Tibbs TN, Jeyachandran JN, Vignieri EE, Rothemich A, Cumming I, Irmscher AD, Haswell CJ, Zamboni WC, Yu YRA, Ellermann M, Denson LA, Arthur JC. Intestinal E. coli-produced yersiniabactin promotes profibrotic macrophages in Crohn's disease. Cell Host Microbe 2025; 33:71-88.e9. [PMID: 39701098 DOI: 10.1016/j.chom.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Inflammatory bowel disease (IBD)-associated fibrosis causes significant morbidity. Mechanisms are poorly understood but implicate the microbiota, especially adherent-invasive Escherichia coli (AIEC). We previously demonstrated that AIEC producing the metallophore yersiniabactin (Ybt) promotes intestinal fibrosis in an IBD mouse model. Since macrophages interpret microbial signals and influence inflammation/tissue remodeling, we hypothesized that Ybt metal sequestration disrupts this process. Here, we show that macrophages are abundant in human IBD-fibrosis tissue and mouse fibrotic lesions, where they co-localize with AIEC. Ybt induces profibrotic gene expression in macrophages via stabilization and nuclear translocation of hypoxia-inducible factor 1-alpha (HIF-1α), a metal-dependent immune regulator. Importantly, Ybt-producing AIEC deplete macrophage intracellular zinc and stabilize HIF-1α through inhibition of zinc-dependent HIF-1α hydroxylation. HIF-1α+ macrophages localize to sites of disease activity in human IBD-fibrosis strictures and mouse fibrotic lesions, highlighting their physiological relevance. Our findings reveal microbiota-mediated metal sequestration as a profibrotic trigger targeting macrophages in the inflamed intestine.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marlus da Silva Pedrosa
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lacey R Lopez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Taylor N Tibbs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joanna N Jeyachandran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily E Vignieri
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Aaron Rothemich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian Cumming
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA
| | - Alexander D Irmscher
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Corey J Haswell
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry Lab, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yen-Rei A Yu
- Department of Pulmonary and Critical Care Medicine, Duke University, Durham, NC 27710, USA; Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Ellermann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lee A Denson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Corner TP, Salah E, Tumber A, Kaur S, Nakashima Y, Allen MD, Schnaubelt LI, Fiorini G, Brewitz L, Schofield CJ. Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat. ChemMedChem 2024; 19:e202400504. [PMID: 39291299 DOI: 10.1002/cmdc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3) are 2-oxoglutarate (2OG)-dependent oxygenases catalysing C-4 hydroxylation of prolyl residues in α-subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF), modifications that promote HIF-α degradation via the ubiquitin-proteasome pathway. Pharmacological inhibition of the PHDs induces HIF-α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1-3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA-damage repair, and agrochemical resistance.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Present Address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States of America
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Samanpreet Kaur
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Mark D Allen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lara I Schnaubelt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
4
|
Pall AE, Bond S, Bailey DK, Stoj CS, Deschamps I, Huggins P, Parsons J, Bradbury MJ, Kosman DJ, Stemmler TL. ATH434, a promising iron-targeting compound for treating iron regulation disorders. Metallomics 2024; 16:mfae044. [PMID: 39317669 DOI: 10.1093/mtomcs/mfae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
Cytotoxic accumulation of loosely bound mitochondrial Fe2+ is a hallmark of Friedreich's Ataxia (FA), a rare and fatal neuromuscular disorder with limited therapeutic options. There are no clinically approved medications targeting excess Fe2+ associated with FA or the neurological disorders Parkinson's disease and Multiple System Atrophy. Traditional iron-chelating drugs clinically approved for systemic iron overload that target ferritin-stored Fe3+ for urinary excretion demonstrated limited efficacy in FA and exacerbated ataxia. Poor treatment outcomes reflect inadequate binding to excess toxic Fe2+ or exceptionally high affinities (i.e. ≤10-31) for non-pathologic Fe3+ that disrupts intrinsic iron homeostasis. To understand previous treatment failures and identify beneficial factors for Fe2+-targeted therapeutics, we compared traditional Fe3+ chelators deferiprone (DFP) and deferasirox (DFX) with additional iron-binding compounds including ATH434, DMOG, and IOX3. ATH434 and DFX had moderate Fe2+ binding affinities (Kd's of 1-4 µM), similar to endogenous iron chaperones, while the remaining had weaker divalent metal interactions. These compounds had low/moderate affinities for Fe3+(0.46-9.59 µM) relative to DFX and DFP. While all compounds coordinated iron using molecular oxygen and/or nitrogen ligands, thermodynamic analyses suggest ATH434 completes Fe2+ coordination using H2O. ATH434 significantly stabilized bound Fe2+ from ligand-induced autooxidation, reducing reactive oxygen species (ROS) production, whereas DFP and DFX promoted production. The comparable affinity of ATH434 for Fe2+ and Fe3+ position it to sequester excess Fe2+ and facilitate drug-to-protein iron metal exchange, mimicking natural endogenous iron binding proteins, at a reduced risk of autooxidation-induced ROS generation or perturbation of cellular iron stores.
Collapse
Affiliation(s)
- Ashley E Pall
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Silas Bond
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Danielle K Bailey
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Christopher S Stoj
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Isabel Deschamps
- Department of Biochemistry, Chemistry and Physics, Niagara University, Lewiston, NY 14109, USA
| | - Penny Huggins
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | - Jack Parsons
- Alterity Therapeutics Limited, Melbourne, 3000, Australia
| | | | - Daniel J Kosman
- Department of Biochemistry, University of Buffalo, Buffalo, NY14203, USA
| | - Timothy L Stemmler
- De partment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
6
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Hall CHT, Lanis JM, Dowdell AS, Murphy EM, Bhagavatula G, Neuhart RM, Vijaya Sai KY, Colgan SP. Fundamental role for the creatine kinase pathway in protection from murine colitis. Mucosal Immunol 2023; 16:817-825. [PMID: 37716510 PMCID: PMC12070598 DOI: 10.1016/j.mucimm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Inflammatory diseases of the digestive tract, including inflammatory bowel disease, cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in inflammatory bowel disease patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CK brain type/CK mitochondrial form (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length, and histology). In a broad cytokine profiling, CKdKO mice expressed near absent interferon gamma (IFN-γ) levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor in CKdKO splenocytes and pharmacological stabilization of hypoxia-inducible factor resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.
Collapse
Affiliation(s)
- Caroline H T Hall
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado, Aurora, Colorado, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA
| | - Jordi M Lanis
- Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander S Dowdell
- Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA; Rocky Mountain Veterans Hospital, Aurora, Colorado, USA
| | - Emily M Murphy
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado, Aurora, Colorado, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA
| | - Geetha Bhagavatula
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado, Aurora, Colorado, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA
| | - Rane M Neuhart
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado and University of Colorado, Aurora, Colorado, USA; Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA
| | - Kiranmayee Yenugudhati Vijaya Sai
- Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA; Rocky Mountain Veterans Hospital, Aurora, Colorado, USA
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, Department of Medicine, Mucosal Inflammation Program and University of Colorado, Aurora, Colorado, USA; Rocky Mountain Veterans Hospital, Aurora, Colorado, USA.
| |
Collapse
|
8
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
10
|
Liu L, Hao M, Zhang J, Chen Z, Zhou J, Wang C, Zhang H, Wang J. FSHR-mTOR-HIF1 signaling alleviates mouse follicles from AMPK-induced atresia. Cell Rep 2023; 42:113158. [PMID: 37733588 DOI: 10.1016/j.celrep.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The majority of activated ovarian follicles undergo atresia during reproductive life in mammals, and only a small number of follicles are ovulated. Though hormone treatment has been widely used to promote folliculogenesis, the molecular mechanism behind follicle selection and atresia remains under debate due to inconsistency among investigation models. Using a high-throughput molecular pathology strategy, we depicted a transcriptional atlas of mouse follicular granulosa cells (GCs) under physiological condition and obtained molecular signatures in healthy and atresia GCs during development. Functional results revealed hypoxia-inducible factor 1 (HIF1) as a major effector downstream of follicle-stimulating hormone (FSH), and HIF1 activation is essential for follicle growth. Energy shortage leads to prevalent AMP-activated protein kinase (AMPK) activation and drives follicular atresia. FSHR-mTOR-HIF1 signaling helps follicles escape from the atresia fate, while energy stress persists. Our work provides a comprehensive understanding of the molecular network behind follicle selection and atresia under physiological condition.
Collapse
Affiliation(s)
- Longping Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School, Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials, Digital Medical Devices, Beijing 100081, P.R. China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
12
|
Rundle CH, Gomez GA, Pourteymoor S, Mohan S. Sequential application of small molecule therapy enhances chondrogenesis and angiogenesis in murine segmental defect bone repair. J Orthop Res 2023; 41:1471-1481. [PMID: 36448182 PMCID: PMC10506518 DOI: 10.1002/jor.25493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
The increasing incidence of physiologic/pathologic conditions that impair the otherwise routine healing of endochondral bone fractures and the occurrence of severe bone injuries necessitate novel approaches to enhance clinically challenging bone fracture repair. To promote the healing of nonunion fractures, we tested an approach that used two small molecules to sequentially enhance cartilage development and conversion to the bone in the callus of a murine femoral segmental defect nonunion model of bone injury. Systemic injections of smoothened agonist 21k (SAG21k) were used to stimulate chondrogenesis through the activation of the sonic hedgehog (SHH) pathway early in bone repair, while injections of the prolyl hydroxylase domain (PHD)2 inhibitor, IOX2, were used to stimulate hypoxia signaling-mediated endochondral bone formation. The expression of SHH pathway genes and Phd2 target genes was increased in chondrocyte cell lines in response to SAG21k and IOX2 treatment, respectively. The segmental defect responded to sequential systemic administration of these small molecules with increased chondrocyte expression of PTCH1, GLI1, and SOX9 in response to SAG and increased expression of hypoxia-induced factor-1α and vascular endothelial growth factor-A in the defect tissues in response to IOX2. At 6 weeks postsurgery, the combined SAG-IOX2 therapy produced increased bone formation in the defect with the bony union over the injury. Clinical significance: This therapeutic approach was successful in promoting cartilage and bone formation within a critical-size segmental defect and established the utility of a sequential small molecule therapy for the enhancement of fracture callus development in clinically challenging bone injuries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
13
|
Hall CH, Lanis JM, Dowdell AS, Murphy EM, Colgan SP. Fundamental role for the creatine kinase pathway in protection from murine colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544110. [PMID: 37333192 PMCID: PMC10274769 DOI: 10.1101/2023.06.07.544110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CKB/CKMit (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length and histology). In a broad cytokine profiling, CKdKO mice expressed near absent IFN-γ levels. We identified losses in IFN-γ production from CD4 + and CD8 + T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. We identified basal stabilization of the transcription factor hypoxia-inducible factor (HIF) in CKdKO splenocytes and pharmacological stabilization of HIF resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4 + and CD8 + T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.
Collapse
|
14
|
Suppression of Macrophage Activation by Sodium Danshensu via HIF-1α/STAT3/NLRP3 Pathway Ameliorated Collagen-Induced Arthritis in Mice. Molecules 2023; 28:molecules28041551. [PMID: 36838542 PMCID: PMC9963181 DOI: 10.3390/molecules28041551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
It is still a clinical challenge to sustain the remission of rheumatoid arthritis (RA); thus, identifying more effective and safer agents for RA treatment remains an urgent demand. We investigated the anti-arthritic activity and potential mechanism of action of sodium Danshensu (SDSS), a structurally representative water-soluble derivative of Danshen, on collagen-induced arthritis (CIA) mice. Our results showed that paw edema, synovium hyperplasia, bone destruction, and the serum levels of both IL-1β and IL-6 were ameliorated by SDSS (40 mg/kg·d) in CIA mice. In addition, there was no difference between SDSS and methotrexate (MTX, 2 mg/kg·3d) treatment in the above indicators. Further mechanism studies illustrated that SDSS inhibited IL-1β secretion by downregulating the HIF-1α/STAT3/NLRP3 pathway in macrophages. On the other hand, HIF-1α accumulation and HIF-1α/STAT3/NLRP3 pathway activation by IOX4 stimulation reduced the therapeutic effect of SDSS. These findings demonstrate that SDSS displays anti-arthritic activity in CIA mice and prevents proinflammatory cytokines secretion in macrophages by suppressing the HIF-1α/STAT3/NLRP3 pathway.
Collapse
|
15
|
Zarin B, Nedaeinia R, Laher I, Manian M, Javanmard SH. The effects of ALK5 inhibition and simultaneous inhibition or activation of HIF-1α in melanoma tumor growth and angiogenesis. Tumour Biol 2023; 45:111-126. [PMID: 37927290 DOI: 10.3233/tub-220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Hypoxia is the most common signature of the tumor microenvironment that drives tumorigenesis through the complex crosstalk of a family of transcription factors called hypoxia-inducible factors (HIFs), with other intercellular signaling networks. Hypoxia increases transforming growth factor-beta (TGF-β) expression. TGF-β and HIF-1α play critical roles in several malignancies and their interactions in melanoma progression remain unknown. Therefore, the aim of this study was to assess the impact of inhibiting activin receptor-like kinase-5 (ALK5), a TGF-β receptor, on the response to HIF-1α activation or inhibition in melanoma tumor progression. MATERIALS AND METHODS Tumors were induced in C57BL/6J mice by subcutaneous inoculation with B16F10 melanoma cells. Mice were divided into HIF-1α inhibitor, ALK5 inhibitor (1 mg/kg) and HIF-1α inhibitor (100 mg/kg), ALK5 inhibitor, HIF-1α activator (1000 mg/kg), HIF-1α activator and ALK5 inhibitor, and control groups to receive inhibitors and activators through intraperitoneal injection. The expression of E-cadherin was evaluated by RT-qPCR. Vessel density and platelet-derived growth factor receptor beta (PDGFR)-β+ cells around the vessels were investigated using immunohistochemistry. RESULTS The groups receiving HIF-1α inhibitor and activator showed lower and higher tumor growth compared to the control group, respectively. E-cadherin expression decreased in all groups compared to the control group, illustrating the dual function of E-cadherin in the tumor microenvironment. Vascular density was reduced in the groups given HIF-1α inhibitor, ALK5 inhibitor, and ALK5 and HIF-1α inhibitor simultaneously. The percentage of PDGFR-β+ cells was reduced in the presence of HIF-1α inhibitor, ALK5 inhibitor, HIF-1α and ALK5 inhibitors, and upon simultaneous treatment with HIF-1α activator and ALK5 inhibitor. CONCLUSION Despite increased expression and interaction between TGF-β and HIF-1α pathways in some cancers, in melanoma, inhibition of either pathway alone may have a stronger effect on tumor inhibition than simultaneous inhibition of both pathways. The synergistic effects may be context-dependent and should be further evaluated in different cancer types.
Collapse
Affiliation(s)
- Bahareh Zarin
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Mostafa Manian
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Gong Z, Li Q, Shi J, Liu ET, Shultz LD, Ren G. Lipid-laden lung mesenchymal cells foster breast cancer metastasis via metabolic reprogramming of tumor cells and natural killer cells. Cell Metab 2022; 34:1960-1976.e9. [PMID: 36476935 PMCID: PMC9819197 DOI: 10.1016/j.cmet.2022.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
While the distant organ environment is known to support metastasis of primary tumors, its metabolic roles in this process remain underdetermined. Here, in breast cancer models, we found lung-resident mesenchymal cells (MCs) accumulating neutral lipids at the pre-metastatic stage. This was partially mediated by interleukin-1β (IL-1β)-induced hypoxia-inducible lipid droplet-associated (HILPDA) that subsequently represses adipose triglyceride lipase (ATGL) activity in lung MCs. MC-specific ablation of the ATGL or HILPDA genes in mice reinforced and reduced lung metastasis of breast cancer respectively, suggesting a metastasis-promoting effect of lipid-laden MCs. Mechanistically, lipid-laden MCs transported their lipids to tumor cells and natural killer (NK) cells via exosome-like vesicles, leading to heightened tumor cell survival and proliferation and NK cell dysfunction. Blockage of IL-1β, which was effective singly, improved the efficacy of adoptive NK cell immunotherapy in mitigating lung metastasis. Collectively, lung MCs metabolically regulate tumor cells and anti-tumor immunity to facilitate breast cancer lung metastasis.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
17
|
Bondi CD, Rush BM, Hartman HL, Wang J, Al-Bataineh MM, Hughey RP, Tan RJ. Suppression of NRF2 Activity by HIF-1α Promotes Fibrosis after Ischemic Acute Kidney Injury. Antioxidants (Basel) 2022; 11:1810. [PMID: 36139884 PMCID: PMC9495756 DOI: 10.3390/antiox11091810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/26/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid decline in renal function and can occur after ischemia/reperfusion injury (IRI) to the tubular epithelia. The nuclear factor erythroid-2-related factor 2 (NRF2) pathway protects against AKI and AKI-to-chronic kidney disease (CKD) progression, but we previously demonstrated that severe IRI maladaptively reduced NRF2 activity in mice. To understand the mechanism of this response, we subjected C57BL/6J mice to unilateral kidney IRI with ischemia times that were titrated to induce mild to severe injury. Mild IRI increased NRF2 activity and was associated with renal recovery, whereas severe IRI decreased NRF2 activity and led to progressive CKD. Due to these effects of ischemia, we tested the hypothesis that hypoxia-inducible factor-1α (HIF-1α) mediates NRF2 activity. To mimic mild and severe ischemia, we activated HIF-1α in HK-2 cells in nutrient-replete or nutrient-deficient conditions. HIF-1α activation in nutrient-replete conditions enhanced NRF2 nuclear localization and activity. However, in nutrient-deficient conditions, HIF-1α activation suppressed NRF2 nuclear localization and activity. Nuclear localization was rescued with HIF-1α siRNA knockdown. Our results suggest that severe ischemic AKI leads to HIF-1α-mediated suppression of NRF2, leading to AKI-to-CKD progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 152671, USA
| |
Collapse
|
18
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Sato F, Kuroda T, Yamada M, Leung GNW. Pharmacokinetic Study of Vadadustat and High-Resolution Mass Spectrometric Characterization of its Novel Metabolites in Equines for the Purpose of Doping Control. Curr Drug Metab 2022; 23:850-865. [PMID: 36017833 DOI: 10.2174/1389200223666220825093945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vadadustat, a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, is a substance which carries a lifetime ban in both horse racing and equestrian competition. A comprehensive metabolic study of vadadustat in horses has not been previously reported. OBJECTIVE Metabolism and elimination profiles of vadadustat in equine plasma and urine were studied for the purpose of doping control. METHODS A nasoesophageal administration of vadadustat (3 g/day for 3 days) was conducted on three thoroughbred mares. Potential metabolites were comprehensively detected by differential analysis of full-scan mass spectral data obtained from both in vitro studies with liver homogenates and post-administration samples using liquid chromatography high-resolution mass spectrometry. The identities of metabolites were further substantiated by product ion scans. Quantification methods were developed and validated for the establishment of the excretion profiles of the total vadadustat (free and conjugates) in plasma and urine. RESULTS A total of 23 in vivo and 14 in vitro metabolites (12 in common) were identified after comprehensive analysis. We found that vadadustat was mainly excreted into urine as the parent drug together with some minor conjugated metabolites. The elimination profiles of total vadadustat in post-administration plasma and urine were successfully established by using quantification methods equipped with alkaline hydrolysis for cleavage of conjugates such as methylated vadadustat, vadadustat glucuronide, and vadadustat glucoside. CONCLUSION Based on our study, for effective control of the misuse or abuse of vadadustat in horses, total vadadustat could successfully be detected for up to two weeks after administration in plasma and urine.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Zip 980-8574, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, Zip 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, Zip 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi, Zip 320-0856, Japan
| | - Fumio Sato
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, Zip 329-0412, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, Zip 320-0851, Japan
| |
Collapse
|
19
|
Chan YY, Chan MC. Pharmacological Activation of the HIF Pathway Exerts Distinct Proliferative Effects in MDA‐MB‐231 and MCF7 cells**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Ying Chan
- Department of Molecular Medicine Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Mun Chiang Chan
- Department of Molecular Medicine Faculty of Medicine Universiti Malaya 50603 Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2407223. [PMID: 35592530 PMCID: PMC9113874 DOI: 10.1155/2022/2407223] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a major transcription factor that adapts to low oxygen homeostasis and regulates the expression of several hypoxic genes, which aid in cancer survival and development. It has recently piqued the interest of translational researchers in the disciplines of cancer sciences. Hypoxia triggers an ample adaptive mechanism mediated via the HIF-1α transcriptional domain. Anaerobic glycolysis, angiogenesis, metastasis, and mitophagy are adaptive mechanisms that support tumor survival by promoting oxygen supply and regulating oxygen demand in hypoxic tumor cells. Throughout this pathway, the factor-inhibiting HIF-1α is a negative regulator of HIF-1α leading to its hydroxylation at the C-TAD domain of HIF-1α under normoxia. Thus, hydroxylated HIF-1α is unable to proceed with the transcriptional events due to interference in binding of C-TAD and CBP/p300. From this review, we can hypothesize that remodeling of FIH-1 activity is a unique mechanism that decreases the transcriptional activity of HIF-1α and, as a result, all of its hypoxic consequences. Hence, this review manuscript details the depth of knowledge of FIH-1 on hypoxia-associated cellular and molecular events, a potential strategy for targeting hypoxia-induced malignancies.
Collapse
|
21
|
Ishii H, Shibuya M, So YM, Wong JKY, Ho ENM, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. Long-term monitoring of IOX4 in horse hair and its longitudinal distribution with segmental analysis using liquid chromatography/electrospray ionization Q Exactive high-resolution mass spectrometry for the purpose of doping control. Drug Test Anal 2022; 14:1244-1254. [PMID: 35195358 DOI: 10.1002/dta.3247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
IOX4, a hypoxia-inducible factor stabilizer, is classified as a banned substance for horses in both horse racing and equestrian sports. We recently reported the pharmacokinetic profiles of IOX4 in horse plasma and urine and also identified potential monitoring targets for the doping control purpose. In this study, a long-term longitudinal analysis of IOX4 in horse hair after a nasoesophageal administration of IOX4 (500 mg/day for three days) to three thoroughbred mares is presented for the first time for controlling the abuse/misuse of IOX4. Six bunches of mane hair were collected at 0 (pre), 1, 2, 3, and 6 month(s) post-administration. Our results showed that the presence of IOX4 was identified in all post-administration horse hair samples but no metabolite could be detected. The detection window for IOX4 could achieve up to 6-month post-administration (last sampling point) by monitoring IOX4 in hair. In order to evaluate the longitudinal distribution of IOX4 over six months, a validated quantification method of IOX4 in hair was developed for the analysis of the post-administration samples. Segmental analysis of 2-cm cut hair across the entire length of post-administration hair showed that IOX4 could be quantified up to the level of 1.84 pg/mg. In addition, it was found that the movement of the incorporated IOX4 band in the hair shaft over six months varied among the three horses due to individual variation and a significant diffusion of IOX4 band up to 10 cm width was also observed in the 6-month post-administration hair samples.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong, China
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, JRA, Tokyo, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, JRA, Tokyo, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Chiba, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, Tochigi, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| |
Collapse
|
22
|
Jian CB, Yu XE, Gao HD, Chen HA, Jheng RH, Chen CY, Lee HM. Liposomal PHD2 Inhibitors and the Enhanced Efficacy in Stabilizing HIF-1α. NANOMATERIALS 2022; 12:nano12010163. [PMID: 35010112 PMCID: PMC8746909 DOI: 10.3390/nano12010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2) inhibition, which stabilizes hypoxia-inducible factor (HIF)-1α and thus triggers adaptation responses to hypoxia in cells, has become an important therapeutic target. Despite the proven high potency, small-molecule PHD2 inhibitors such as IOX2 may require a nanoformulation for favorable biodistribution to reduce off-target toxicity. A liposome formulation for improving the pharmacokinetics of an encapsulated drug while allowing a targeted delivery is a viable option. This study aimed to develop an efficient loading method that can encapsulate IOX2 and other PHD2 inhibitors with similar pharmacophore features in nanosized liposomes. Driven by a transmembrane calcium acetate gradient, a nearly 100% remote loading efficiency of IOX2 into liposomes was achieved with an optimized extraliposomal solution. The electron microscopy imaging revealed that IOX2 formed nanoprecipitates inside the liposome’s interior compartments after loading. For drug efficacy, liposomal IOX2 outperformed the free drug in inducing the HIF-1α levels in cell experiments, especially when using a targeting ligand. This method also enabled two clinically used inhibitors—vadadustat and roxadustat—to be loaded into liposomes with a high encapsulation efficiency, indicating its generality to load other heterocyclic glycinamide PHD2 inhibitors. We believe that the liposome formulation of PHD2 inhibitors, particularly in conjunction with active targeting, would have therapeutic potential for treating more specifically localized disease lesions.
Collapse
Affiliation(s)
- Cheng-Bang Jian
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Xu-En Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Hua-De Gao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-An Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Ren-Hua Jheng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Correspondence: ; Tel.: +886-2-5572-8620
| |
Collapse
|
23
|
Yu Y, Yang F, Yu Q, Liu S, Wu C, Su K, Yang L, Bao X, Li Z, Li X, Zhang X. Discovery of a Potent and Orally Bioavailable Hypoxia-Inducible Factor 2α (HIF-2α) Agonist and Its Synergistic Therapy with Prolyl Hydroxylase Inhibitors for the Treatment of Renal Anemia. J Med Chem 2021; 64:17384-17402. [PMID: 34709043 DOI: 10.1021/acs.jmedchem.1c01479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of hypoxia-inducible factor 2 (HIF-2) has emerged as a potent renal anemia treatment strategy. Here, the benzisothiazole derivative 26 was discovered as a novel HIF-2α agonist, which first demonstrated nanomolar activity (EC50 = 490 nM, Emax = 349.2%) in the luciferase reporter gene assay. Molecular dynamics simulations indicated that 26 could allosterically enhance HIF-2 dimerization. Furthermore, compound 26 had a good pharmacokinetic profile (the oral bioavailability in rats was 41.38%) and an in vivo safety profile (the LD50 in mice was greater than 708 mg·kg-1). In the in vivo efficacy assays, the combination of 26 and the prolyl hydroxylase inhibitor, AKB-6548, was confirmed for the first time to synergistically increase the plasma erythropoietin level in mice (from 260 to 2296 pg·mL-1) and alleviate zebrafish anemia induced by doxorubicin. These results provide new insights for HIF-2α agonists and the treatment of renal anemia.
Collapse
Affiliation(s)
- Yancheng Yu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Quanwei Yu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Simeng Liu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyang Wu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaijun Su
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Le Yang
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoqian Bao
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Zhang J, Sharma R, Ryu K, Shen P, Salaita K, Jo H. Conditional Antisense Oligonucleotides Triggered by miRNA. ACS Chem Biol 2021; 16:2255-2267. [PMID: 34664929 PMCID: PMC10982875 DOI: 10.1021/acschembio.1c00387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides (ASOs) are single-stranded short nucleic acids that silence the expression of target mRNAs and show increasing therapeutic potential. Since ASOs are internalized by many cell types, both normal and diseased cells, gene silencing in unwanted cells is a significant challenge for their therapeutic use. To address this challenge, we created conditional ASOs that become active only upon detecting transcripts unique to the target cell. As a proof-of-concept, we modified an HIF1α ASO (EZN2968) to generate miRNA-specific conditional ASOs, which can inhibit HIF1α in the presence of a hepatocyte-specific miRNA, miR-122, via a toehold exchange reaction. We characterized a library of nucleic acids, testing how the conformation, thermostability, and chemical composition of the conditional ASO impact the specificity and efficacy in response to miR-122 as a trigger signal. Optimally designed conditional ASOs demonstrated knockdown of HIF1α in cells transfected with exogenous miR-122 and in hepatocytes expressing endogenous miR-122. We confirmed that conditional ASO activity was mediated by toehold exchange between miR-122 and the conditional ASO duplex, and the magnitude of the knockdown depended on the toehold length and miR-122 levels. Using the same concept, we further generated another conditional ASO that can be triggered by miR-21. Our results suggest that conditional ASOs can be custom-designed with any miRNA to control ASO activation in targeted cells while reducing unwanted effects in nontargeted cells.
Collapse
Affiliation(s)
- Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radhika Sharma
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kitae Ryu
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Patrick Shen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States; Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Nakashima Y, Brewitz L, Tumber A, Salah E, Schofield CJ. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases. Nat Commun 2021; 12:6478. [PMID: 34759269 PMCID: PMC8580996 DOI: 10.1038/s41467-021-26673-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
2-Oxoglutarate (2OG) oxygenases are validated agrochemical and human drug targets. The potential for modulating their activity with 2OG derivatives has not been explored, possibly due to concerns regarding selectivity. We report proof-of-principle studies demonstrating selective enhancement or inhibition of 2OG oxygenase activity by 2-oxo acids. The human 2OG oxygenases studied, factor inhibiting hypoxia-inducible transcription factor HIF-α (FIH) and aspartate/asparagine-β-hydroxylase (AspH), catalyze C3 hydroxylations of Asp/Asn-residues. Of 35 tested 2OG derivatives, 10 enhance and 17 inhibit FIH activity. Comparison with results for AspH reveals that 2OG derivatives selectively enhance or inhibit FIH or AspH. Comparison of FIH structures complexed with 2OG derivatives to those for AspH provides insight into the basis of the observed selectivity. 2-Oxo acid derivatives have potential as drugs, for use in biomimetic catalysis, and in functional studies. The results suggest that the in vivo activity of 2OG oxygenases may be regulated by natural 2-oxo acids other than 2OG.
Collapse
Affiliation(s)
- Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, 930-0194, Toyama, Japan
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.
| |
Collapse
|
26
|
Ishii H, Shibuya M, So YM, Wong JKY, Ho ENM, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Yamada M, Leung GNW. Comprehensive metabolic study of IOX4 in equine urine and plasma using liquid chromatography/electrospray ionization Q Exactive high-resolution mass spectrometer for the purpose of doping control. Drug Test Anal 2021; 14:233-251. [PMID: 34612014 DOI: 10.1002/dta.3172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
IOX4 is a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor, which was developed for the treatment of anemia by exerting hematopoietic effects. The administration of HIF-PHD inhibitors such as IOX4 to horses is strictly prohibited by the International Federation of Horseracing Authorities and the Fédération Équestre Internationale. To the best of our knowledge, this is the first comprehensive metabolic study of IOX4 in horse plasma and urine after a nasoesophageal administration of IOX4 (500 mg/day, 3 days). A total of four metabolites (three mono-hydroxylated IOX4 and one IOX4 glucuronide) were detected from the in vitro study using homogenized horse liver. As for the in vivo study, post-administration plasma and urine samples were comprehensively analyzed with liquid chromatography/electrospray ionization high-resolution mass spectrometry to identify potential metabolites and determine their corresponding detection times. A total of 10 metabolites (including IOX4 glucuronide, IOX4 glucoside, O-desbutyl IOX4, O-desbutyl IOX4 glucuronide, four mono-hydroxylated IOX4, N-oxidized IOX4, and N-oxidized IOX4 glucoside) were found in urine and three metabolites (glucuronide, glucoside, and O-desbutyl) in plasma. Thus, the respective quantification methods for the detection of free and conjugated IOX4 metabolites in urine and plasma with a biphase enzymatic hydrolysis were developed and applied to post-administration samples for the establishment of elimination profiles of IOX4. The detection times of total IOX4 in urine and plasma could be successfully prolonged to at least 312 h.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan.,Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Yat-Ming So
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Jenny K Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T., Hong Kong
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, JRA, Minato, Tokyo, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, JRA, Minato, Tokyo, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, Shiroi, Chiba, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, Utsunomiya, Tochigi, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
27
|
Figg WD, McDonough MA, Chowdhury R, Nakashima Y, Zhang Z, Holt‐Martyn JP, Krajnc A, Schofield CJ. Structural Basis of Prolyl Hydroxylase Domain Inhibition by Molidustat. ChemMedChem 2021; 16:2082-2088. [PMID: 33792169 PMCID: PMC8359944 DOI: 10.1002/cmdc.202100133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Human prolyl-hydroxylases (PHDs) are hypoxia-sensing 2-oxoglutarate (2OG) oxygenases, catalysis by which suppresses the transcription of hypoxia-inducible factor target genes. PHD inhibition enables the treatment of anaemia/ischaemia-related disease. The PHD inhibitor Molidustat is approved for the treatment of renal anaemia; it differs from other approved/late-stage PHD inhibitors in lacking a glycinamide side chain. The first reported crystal structures of Molidustat and IOX4 (a brain-penetrating derivative) complexed with PHD2 reveal how their contiguous triazole, pyrazolone and pyrimidine/pyridine rings bind at the active site. The inhibitors bind to the active-site metal in a bidentate manner through their pyrazolone and pyrimidine nitrogens, with the triazole π-π-stacking with Tyr303 in the 2OG binding pocket. Comparison of the new structures with other PHD inhibitor complexes reveals differences in the conformations of Tyr303, Tyr310, and a mobile loop linking β2-β3, which are involved in dynamic substrate binding/product release.
Collapse
Affiliation(s)
- William D. Figg
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Rasheduzzaman Chowdhury
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Cardiovascular Research InstituteUniversity of California, San Francisco555 Mission Bay Blvd.San FranciscoCA 94158USA
| | - Yu Nakashima
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
- Institute of Natural MedicineUniversity of Toyama2630 SugitaniToyama930–0194Japan
| | - Zhihong Zhang
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Alen Krajnc
- Department of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | | |
Collapse
|
28
|
Richardson NL, O'Malley LJ, Weissberger D, Tumber A, Schofield CJ, Griffith R, Jones NM, Hunter L. Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorg Med Chem 2021; 38:116115. [PMID: 33862469 DOI: 10.1016/j.bmc.2021.116115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Prolyl hydroxylase (PHD) enzymes play a critical role in the cellular responses to hypoxia through their regulation of the hypoxia inducible factor α (HIF-α) transcription factors. PHD inhibitors show promise for the treatment of diseases including anaemia, cardiovascular disease and stroke. In this work, a pharmacophore-based virtual high throughput screen was used to identify novel potential inhibitors of human PHD2. Two moderately potent new inhibitors were discovered, with IC50 values of 4 μM and 23 μM respectively. Cell-based studies demonstrate that these compounds exhibit protective activity in neuroblastoma cells, suggesting that they have the potential to be developed into clinically useful neuroprotective agents.
Collapse
Affiliation(s)
- Nicole L Richardson
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Laura J O'Malley
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Renate Griffith
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Nicole M Jones
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia.
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
29
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
30
|
Philip M, Mathew B, Karatt TK, Perwad Z, Subhahar MB, Karakka Kal AK. Metabolic studies of hypoxia-inducible factor stabilisers IOX2, IOX3 and IOX4 (in vitro) for doping control. Drug Test Anal 2021; 13:794-816. [PMID: 33458935 DOI: 10.1002/dta.3000] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
The transcriptional activator hypoxia-inducible factor (HIF) is a vital arbitrator in the performance of cellular responses lacking oxygen supply in aerobic organisms. Because these compounds are capable of enhancing the organism's capacity for molecular oxygen transport, they possess great potential for abuse as a performance-enhancing agent in sports. A comprehensive study of the metabolic conversion of the most popular HIF stabilisers such as IOX2, IOX3 and IOX4 using equine liver microsomes (in vitro) is reported. The parents and their metabolites were identified and characterised by liquid chromatography-mass spectrometry in negative ionisation mode using a QExactive high-resolution mass spectrometer. Under the current experimental condition, a total of 10 metabolites for IOX2 (three phase I and seven phase II), nine metabolites for IOX3 (four phase I and five phase II) and five metabolites for IOX4 (three phase I and two phase II) were detected. The outcome of the present study is as follows: (1) all the three IOX candidates are prone to oxidation, results in subsequent monohydroxylated, and some dihydroxylated metabolites. (2) Besides oxidation, there is a possibility of hydrolysis and de-alkylation, which results in corresponding carboxylic acid and amide, respectively. (3) The glucuronide and sulphate conjugate of the parent drugs as well as the monohydroxylated analogues were observed in this study. The characterised in vitro metabolites can potentially serve as target analytes for doping control analysis.
Collapse
Affiliation(s)
- Moses Philip
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Binoy Mathew
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Tajudheen K Karatt
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Zubair Perwad
- Equine Forensic Unit, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | |
Collapse
|
31
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
32
|
Wang RX, Henen MA, Lee JS, Vögeli B, Colgan SP. Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes 2021; 13:1938380. [PMID: 34190032 PMCID: PMC8253137 DOI: 10.1080/19490976.2021.1938380] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota is essential for human health. Microbial supply of short-chain fatty acids (SCFAs), particularly butyrate, is a well-established contributor to gut homeostasis and disease resistance. Reaching millimolar luminal concentrations, butyrate is sequestered and utilized in the colon as the favored energy source for intestinal epithelia. Given the steep oxygen gradient across the anoxic lumen and the highly oxygenated lamina propria, the colon provides a particularly interesting environment to study oxygen sensing. Previous studies have shown that the transcription factor hypoxia-inducible factor (HIF) is stabilized in healthy colonic epithelia. Here we show that butyrate directly inhibits HIF prolyl hydroxylases (PHDs) to stabilize HIF. We find that butyrate stabilizes HIF in vitro despite eliminating β-oxidation and resultant oxygen consumption. Using recombinant PHD protein in combination with nuclear magnetic resonance and enzymatic biochemical assays, we identify butyrate to bind and function as a unique, noncompetitive inhibitor of PHDs relative to other SCFAs. Butyrate inhibited PHD with a noncompetitive Ki of 5.3 ± 0.5 mM, a physiologically relevant concentration. We also confirm that microbiota-derived butyrate is necessary to stabilize HIF in mice colonic tissue through antibiotic-induced butyrate depletion and reconstitution experiments. Our results suggest that the co-evolution of mammals and mutualistic microbiota has selected for butyrate to impact a critical gene regulation pathway that can be extended beyond the mammalian gut. As PHDs are a major target for drug development in the stabilization of HIF, butyrate holds great potential as a well-tolerated endogenous inhibitor with far-reaching therapeutic impact.
Collapse
Affiliation(s)
- Ruth X. Wang
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- School of Medicine, Medical Scientist Training Program, University of Colorado, Aurora, CO, USA
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - J. Scott Lee
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P. Colgan
- Department of Medicine, Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Cirillo F, Resmini G, Angelino E, Ferrara M, Tarantino A, Piccoli M, Rota P, Ghiroldi A, Monasky MM, Ciconte G, Pappone C, Graziani A, Anastasia L. HIF-1α Directly Controls WNT7A Expression During Myogenesis. Front Cell Dev Biol 2020; 8:593508. [PMID: 33262987 PMCID: PMC7686515 DOI: 10.3389/fcell.2020.593508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Herein we unveil that Hypoxia-inducible factor-1α (HIF-1α) directly regulates WNT7A expression during myogenesis. In fact, chromatin immunoprecipitation (ChiP) and site-directed mutagenesis experiments revealed two distinct hypoxia response elements (HREs) that are specific HIF-1α binding sites on the WNT7A promoter. Remarkably, a pharmacological activation of HIF-1α induced WNT7A expression and enhanced muscle differentiation. On the other hand, silencing of WNT7A using CRISPR/Cas9 genome editing blocked the effects of HIF-1α activation on myogenesis. Finally, treatment with prolyl hydroxylases (PHDs) inhibitors improved muscle regeneration in vitro and in vivo in a cardiotoxin (CTX)-induced muscle injury mouse model, paving the way for further studies to test its efficacy on acute and chronic muscular pathologies.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giulia Resmini
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Elia Angelino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michele Ferrara
- Division of Genetics and Cell Biology, Chromatin Dynamics Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Paola Rota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| | - Andrea Graziani
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Italy.,Vita-Salute San Raffaele University, Faculty of Medicine, Milan, Italy
| |
Collapse
|
34
|
Souza E, Cho KH, Harris ST, Flindt NR, Watt RK, Pai AB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: a paradigm shift for treatment of anemia in chronic kidney disease? Expert Opin Investig Drugs 2020; 29:831-844. [PMID: 32476498 DOI: 10.1080/13543784.2020.1777276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The hypoxia-inducible factor prolyl hydroxylase (HIF-PH) pathway is responsible for regulating the biosynthesis of erythropoietin (EPO) and maintaining iron homeostasis. Investigational drugs that target the HIF-PH pathway are promising alternatives for treating anemia in Chronic Kidney Disease (CKD). AREAS COVERED This review summarizes recent advances focused on the clinical development of HIF-PH inhibitors (HIF-PHIs) as potentially novel therapies in the treatment of anemia in CKD based on publications available on PubMed and restricted Google searches. We provide a comparison between HIF-PHIs regarding their pharmacokinetics, dosing regimens and safety concerns, structure-activity relationships, and alterations in key laboratory parameters observed in animal models and clinical trials. EXPERT OPINION HIF-PHIs may be advantageous in some aspects compared to the conventional erythropoiesis-stimulating agents (ESAs). While ESAs could increase the risk of cardiovascular events due to rapid rises in ESA blood levels, HIF-PHIs have been reported to maintain EPO concentrations at levels that are closer to the normal physiological ranges. Although HIF-PHIs have been demonstrated to be relatively safe and effective in clinical trials, long-term safety data are needed in order to establish whether these therapeutic agents will lead to a major paradigm change in the treatment of anemia of CKD.
Collapse
Affiliation(s)
- Ernane Souza
- Department of Clinical Pharmacy, University of Michigan , Ann Arbor, MI, USA
| | - Katherine H Cho
- Department of Clinical Pharmacy, University of Michigan , Ann Arbor, MI, USA
| | - Shelby T Harris
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, UT, USA
| | - Naomi R Flindt
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, UT, USA
| | - Richard K Watt
- Department of Chemistry and Biochemistry, Brigham Young University , Provo, UT, USA
| | - Amy Barton Pai
- Department of Clinical Pharmacy, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
35
|
Peng K, Chen WR, Xia F, Liu H, Meng XW, Zhang J, Liu HY, Xia ZY, Ji FH. Dexmedetomidine post-treatment attenuates cardiac ischaemia/reperfusion injury by inhibiting apoptosis through HIF-1α signalling. J Cell Mol Med 2019; 24:850-861. [PMID: 31680420 PMCID: PMC6933328 DOI: 10.1111/jcmm.14795] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/21/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia‐inducible factor 1α (HIF‐1α) plays a critical role in the apoptotic process during cardiac ischaemia/reperfusion (I/R) injury. This study aimed to investigate whether post‐treatment with dexmedetomidine (DEX) could protect against I/R‐induced cardiac apoptosis in vivo and in vitro via regulating HIF‐1α signalling pathway. Rat myocardial I/R was induced by occluding the left anterior descending artery for 30 minutes followed by 6‐hours reperfusion, and cardiomyocyte hypoxia/reoxygenation (H/R) was induced by oxygen‐glucose deprivation for 6 hours followed by 3‐hours reoxygenation. Dexmedetomidine administration at the beginning of reperfusion or reoxygenation attenuated I/R‐induced myocardial injury or H/R‐induced cell death, alleviated mitochondrial dysfunction, reduced the number of apoptotic cardiomyocytes, inhibited the activation of HIF‐1α and modulated the expressions of apoptosis‐related proteins including BCL‐2, BAX, BNIP3, cleaved caspase‐3 and cleaved PARP. Conversely, the HIF‐1α prolyl hydroxylase‐2 inhibitor IOX2 partly blocked DEX‐mediated cardioprotection both in vivo and in vitro. Mechanistically, DEX down‐regulated HIF‐1α expression at the post‐transcriptional level and inhibited the transcriptional activation of the target gene BNIP3. Post‐treatment with DEX protects against cardiac I/R injury in vivo and H/R injury in vitro. These effects are, at least in part, mediated via the inhibition of cell apoptosis by targeting HIF‐1α signalling.
Collapse
Affiliation(s)
- Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei-Rong Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Anesthesiology, Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Fan Xia
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zheng-Yuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
36
|
Langley GW, Abboud MI, Lohans CT, Schofield CJ. Inhibition of a viral prolyl hydroxylase. Bioorg Med Chem 2019; 27:2405-2412. [PMID: 30737136 DOI: 10.1016/j.bmc.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The hydroxylation of prolyl-residues in eukaryotes is important in collagen biosynthesis and in hypoxic signalling. The hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are drug targets for the treatment of anaemia, while the procollagen prolyl hydroxylases and other 2-oxoglutarate dependent oxygenases are potential therapeutic targets for treatment of cancer, fibrotic disease, and infection. We describe assay development and inhibition studies for a procollagen prolyl hydroxylase from Paramecium bursaria chlorella virus 1 (vCPH). The results reveal HIF PHD inhibitors in clinical trials also inhibit vCPH. Implications for the targeting of the human PHDs and microbial prolyl hydroxylases are discussed.
Collapse
Affiliation(s)
- Gareth W Langley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
37
|
Thinnes CC, Lohans CT, Abboud MI, Yeh T, Tumber A, Nowak RP, Attwood M, Cockman ME, Oppermann U, Loenarz C, Schofield CJ. Selective Inhibitors of a Human Prolyl Hydroxylase (OGFOD1) Involved in Ribosomal Decoding. Chemistry 2019; 25:2019-2024. [PMID: 30427558 PMCID: PMC6471485 DOI: 10.1002/chem.201804790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Indexed: 12/12/2022]
Abstract
Human prolyl hydroxylases are involved in the modification of transcription factors, procollagen, and ribosomal proteins, and are current medicinal chemistry targets. To date, there are few reports on inhibitors selective for the different types of prolyl hydroxylases. We report a structurally informed template-based strategy for the development of inhibitors selective for the human ribosomal prolyl hydroxylase OGFOD1. These inhibitors did not target the other human oxygenases tested, including the structurally similar hypoxia-inducible transcription factor prolyl hydroxylase, PHD2.
Collapse
Affiliation(s)
| | | | | | - Tzu‐Lan Yeh
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Radosław P. Nowak
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
- Department of Cancer BiologyDana-Farber Cancer InstituteBoston, MA02215USA
| | - Martin Attwood
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Matthew E. Cockman
- Centre for Cellular and Molecular PhysiologyUniversity of OxfordOxfordOX3 7BNUK
| | - Udo Oppermann
- Structural Genomics ConsortiumUniversity of OxfordHeadingtonOX3 7DQUK
| | - Christoph Loenarz
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität Freiburg79104FreiburgGermany
| | | |
Collapse
|
38
|
Frost J, Ciulli A, Rocha S. RNA-seq analysis of PHD and VHL inhibitors reveals differences and similarities to the hypoxia response. Wellcome Open Res 2019; 4:17. [PMID: 30801039 PMCID: PMC6376255 DOI: 10.12688/wellcomeopenres.15044.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Hypoxia-inducible factor (HIF) transcription factors are well known to control the transcriptional response to hypoxia. Given the importance of cellular response to hypoxia, a number of pharmacological agents to interfere with this pathway have been developed and entered pre-clinical or clinical trial phases. However, how similar or divergent the transcriptional response elicited by different points of interference in cells is currently unknown. Methods: We performed RNA-sequencing to analyse the similarities and differences of transcriptional response in HeLa cells treated with hypoxia or chemical agents that stabilise HIF by inhibiting components of the hypoxia signalling pathway - prolyl hydroxylase (PHD) inhibitor or von Hippel-Lindau (VHL) inhibitor. Results: This analysis revealed that hypoxia produces the highest changes in gene transcription, with activation and repression of genes being in large numbers. Treatment with the PHD inhibitor IOX2 or the VHL inhibitor VH032 led mostly to gene activation, majorly via a HIF-dependent manner. These results were also confirmed by qRT-PCR using more specific and/or efficient inhibitors, FG-4592 (PHDs) and VH298 (VHL). Conclusion: PHD inhibition and VHL inhibition mimic gene activation promoted by hypoxia via a HIF-dependent manner. However, gene repression is mostly associated with the hypoxia response and not common to the response elicited by inhibitors of the pathway.
Collapse
Affiliation(s)
- Julianty Frost
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Sonia Rocha
- Biochemistry-Institute of Integrative Biology, University of Liverpool, Liverpool, L697ZB, UK
| |
Collapse
|
39
|
Li Z, You Q, Zhang X. Small-Molecule Modulators of the Hypoxia-Inducible Factor Pathway: Development and Therapeutic Applications. J Med Chem 2019; 62:5725-5749. [DOI: 10.1021/acs.jmedchem.8b01596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
40
|
Mayer M, Fey K, Heinze E, Wick CR, Abboud MI, Yeh TL, Tumber A, Orth N, Schley G, Buchholz B, Clark T, Schofield CJ, Willam C, Burzlaff N. A Fluorescent Benzo[g]isoquinoline-Based HIF Prolyl Hydroxylase Inhibitor for Cellular Imaging. ChemMedChem 2019; 14:94-99. [PMID: 30380199 DOI: 10.1002/cmdc.201800483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Prolyl hydroxylation domain (PHD) enzymes catalyze the hydroxylation of the transcription factor hypoxia-inducible factor (HIF) and serve as cellular oxygen sensors. HIF and the PHD enzymes regulate numerous potentially tissue-protective target genes which can adapt cells to metabolic and ischemic stress. We describe a fluorescent PHD inhibitor (1-chloro-4-hydroxybenzo[g]isoquinoline-3-carbonyl)glycine which is suited to fluorescence-based detection assays and for monitoring PHD inhibitors in biological systems. In cell-based assays, application of the fluorescent PHD inhibitor allowed co-localization with a cellular PHD enzyme and led to live cell imaging of processes involved in cellular oxygen sensing.
Collapse
Affiliation(s)
- Marleen Mayer
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kerstin Fey
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Eva Heinze
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Christian R Wick
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
- Institute for Theoretical Physics I, PULS Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052, Erlangen, Germany
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Tzu-Lan Yeh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicole Orth
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
41
|
Lanigan SM, O'Connor JJ. Prolyl hydroxylase domain inhibitors: can multiple mechanisms be an opportunity for ischemic stroke? Neuropharmacology 2018; 148:117-130. [PMID: 30578795 DOI: 10.1016/j.neuropharm.2018.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Abstract
Stroke and cerebrovascular disease are now the fifth most common cause of death behind other diseases such as heart, cancer and respiratory disease and accounts for approximately 40-50 fatalities per 100,000 people each year in the United States. Currently the only therapy for acute stroke, is intravenous administration of tissue plasminogen activator which was approved in 1996 by the FDA. Surprisingly no new treatments have come on the market since, although endovascular mechanical thrombectomy is showing promising results in trials. Recently focus has shifted towards a preventative therapy rather than trying to reverse or limit the amount of damage occurring following stroke onset. During one of the components of ischemia, hypoxia, a number of physiological changes occur within neurons which include the stabilization of hypoxia-inducible factors. The activity of these proteins is regulated by O2, Fe2+, 2-OG and ascorbate-dependant hydroxylases which contain prolyl-4-hydroxylase domains (PHDs). PHD inhibitors are capable of pharmacologically activating the body's own endogenous adaptive response to low levels of oxygen and have therefore become an attractive therapeutic target for treating ischemia. They have been widely used in the periphery and have been shown to have a preconditioning and protective effect against a later and more severe ischemic insult. Currently there are a number of these agents in phase 1, 2 and 3 clinical trials for the treatment of anemia. In this review we assess the neuroprotective effects of PHD inhibitors, including dimethyloxalylglycine and deferoxamine and suggest that not all of their effects in the CNS are HIF-dependent. Unravelling new roles and a better understanding of the function of PHD inhibitors in the CNS may be of great benefit especially when investigating their use in the treatment of stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Sinead M Lanigan
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Chen B. The miRNA-184 drives renal fibrosis by targeting HIF1AN in vitro and in vivo. Int Urol Nephrol 2018; 51:543-550. [PMID: 30536131 PMCID: PMC6424919 DOI: 10.1007/s11255-018-2025-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/03/2018] [Indexed: 11/10/2022]
Abstract
Progressive renal fibrosis is the last phase of chronic kidney disease and results in renal failure. Micro-RNA has been demonstrated as important agent to drive organ fibrosis. However, the precise mechanisms are not fully understood. Here, we found miRNA-184 as a critical mediator to promote the renal fibrosis by targeting HIF1AN. In Vivo, miRNA-184 expression levels remarkably increased both in patients’ serum and in unilateral ureteral obstruction kidneys, as well as induced the expression of COL1A1 and COL3A1. Furthermore, transfection of NRK49F cells with miRNA-184 mimics down-regulated HIF1AN, transfection of NRK49F cells with miRNA-184 inhibitor up-regulated HIF1AN, while the cells transfected with miRNA-184 inhibitor exerted the opposite effect. When the cells were co-transfected with miRNA-184 mimics and HIF1AN, the expression of α-SMA, GTGF, COL1A1, and COL3A1 at mRNA level was apparently decreased when compared with miRNA-184 mimic-transfected cells, which was strengthened when transfected with miRNA-184 inhibitor. Thus, miRNA-184 is an important agent to promote the fibrosis though binding to HIF1AN, and may be a promising novel target in treatment of renal fibrosis.
Collapse
Affiliation(s)
- Bin Chen
- Kidney Department, Zhenhai People's Hospital of Ningbo City (Ningbo No.7 Hospital), 718 Nanerxi Road, Luotuo Subdistrict, Zhenhai, Ningbo, People's Republic of China.
| |
Collapse
|
43
|
Wang Y, Zhong S, Schofield CJ, Ratcliffe PJ, Lu X. Nuclear entry and export of FIH are mediated by HIF1α and exportin1, respectively. J Cell Sci 2018; 131:jcs219782. [PMID: 30333145 PMCID: PMC6250434 DOI: 10.1242/jcs.219782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia plays a crucial role at cellular and physiological levels in all animals. The responses to chronic hypoxia are, at least substantially, orchestrated by activation of the hypoxia inducible transcription factors (HIFs), whose stability and subsequent transcriptional activation are regulated by HIF hydroxylases. Factor inhibiting HIF (FIH), initially isolated as a HIFα interacting protein following a yeast two-hybrid screen, is an asparaginyl hydroxylase that negatively regulates transcriptional activation by HIF. This study aimed to define the mechanisms that govern transitions of FIH between the nucleus and cytoplasm. We report that FIH accumulates in the nucleus within a short time window during hypoxia treatment. We provide evidence, based on the application of genetic interventions and small molecule inhibition of the HIF hydroxylases, that the nuclear localization of FIH is governed by two opposing processes: nuclear entry by 'coupling' with HIF1α for importin β1-mediated nuclear import and active export via a Leptomycin B-sensitive exportin1-dependent pathway.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yihua Wang
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shan Zhong
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
44
|
Joharapurkar AA, Pandya VB, Patel VJ, Desai RC, Jain MR. Prolyl Hydroxylase Inhibitors: A Breakthrough in the Therapy of Anemia Associated with Chronic Diseases. J Med Chem 2018; 61:6964-6982. [PMID: 29712435 DOI: 10.1021/acs.jmedchem.7b01686] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease, cancer, chronic inflammatory disorders, nutritional, and genetic deficiency can cause anemia. Hypoxia causes induction of hypoxia-inducible factor (HIF), which stimulates erythropoietin (EPO) synthesis. Prolyl hydroxylase domain (PHD) enzyme inhibition can stabilize hypoxia-inducible factor (HIF). HIF stabilization also decreases hepcidin, a hormone of hepatic origin, which regulates iron homeostasis. PHD inhibitors represent a novel pharmacological treatment of anemia associated with chronic diseases. Many orally active PHD inhibitors like roxadustat, molidustat, vadadustat, and desidustat are in late phase clinical trials. This review discusses the role of PHD inhibitors in the treatment of anemia associated with chronic diseases.
Collapse
Affiliation(s)
- Amit A Joharapurkar
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Vrajesh B Pandya
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Vishal J Patel
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Ranjit C Desai
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| | - Mukul R Jain
- Zydus Research Centre , Cadila Healthcare Limited , Sarkhej Bavla NH8A , Moraiya , Ahmedabad 382210 , India
| |
Collapse
|
45
|
Dutta D, Mishra S. L-Captopril and its derivatives as potential inhibitors of microbial enzyme DapE: A combined approach of drug repurposing and similarity screening. J Mol Graph Model 2018; 84:82-89. [PMID: 29936366 DOI: 10.1016/j.jmgm.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The perils of antimicrobial drug resistance can be overcome by finding novel antibiotic targets and corresponding small molecule inhibitors. Microbial enzyme DapE is a promising antibiotic target due to its importance to the bacterial survival. The potency of L-Captopril, a well known angiotensin-converting enzyme inhibitor, as an inhibitor of DapE enzyme has been evaluated by analyzing its binding modes and binding affinity towards DapE enzyme. L-Captopril is found to bind the metal centers of DapE enzyme either via its thiolate group or through its carboxylate group. While the latter binding mode is found to be thermodynamically favorable, the former binding mode, also seen in the crystal structure, is kinetically favored. To optimize the binding affinity of the inhibitor towards DapE enzyme, a series of L-Captopril-based inhibitors have been modelled by changing the side groups of L-Captopril. The introduction of a bipolar functional group at the C4 position of the pyrrolidine ring of L-Captopril and the substitution of the thiol group with a carboxylate group, have been shown to provide excellent enzyme affinity that supersedes the binding affinity of DapE enzyme towards its natural substrate, thus making this molecule a potential inhibitor with great promise.
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
46
|
Abboud MI, McAllister TE, Leung IKH, Chowdhury R, Jorgensen C, Domene C, Mecinović J, Lippl K, Hancock RL, Hopkinson RJ, Kawamura A, Claridge TDW, Schofield CJ. 2-Oxoglutarate regulates binding of hydroxylated hypoxia-inducible factor to prolyl hydroxylase domain 2. Chem Commun (Camb) 2018. [PMID: 29522057 PMCID: PMC5885369 DOI: 10.1039/c8cc00387d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The binding of prolyl-hydroxylated HIF-α to PHD2 is hindered by prior 2OG binding; likely, leading to the inhibition of HIF-α degradation under limiting 2OG conditions.
Prolyl hydroxylation of hypoxia inducible factor (HIF)-α, as catalysed by the Fe(ii)/2-oxoglutarate (2OG)-dependent prolyl hydroxylase domain (PHD) enzymes, has a hypoxia sensing role in animals. We report that binding of prolyl-hydroxylated HIF-α to PHD2 is ∼50 fold hindered by prior 2OG binding; thus, when 2OG is limiting, HIF-α degradation might be inhibited by PHD binding.
Collapse
Affiliation(s)
- Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Tom E McAllister
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and School of Chemical Sciences, The University of Auckland, New Zealand
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | - Carmen Domene
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jasmin Mecinović
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Rebecca L Hancock
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. and Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
47
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
48
|
Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci 2017; 8:7651-7668. [PMID: 29435217 PMCID: PMC5802278 DOI: 10.1039/c7sc02103h] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
Collapse
Affiliation(s)
- Tzu-Lan Yeh
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Thomas M Leissing
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Martine I Abboud
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Cyrille C Thinnes
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Onur Atasoylu
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - James P Holt-Martyn
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Dong Zhang
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Anthony Tumber
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Kerstin Lippl
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher T Lohans
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Helen Morcrette
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Ian J Clifton
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Timothy D W Claridge
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Akane Kawamura
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Emily Flashman
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Xin Lu
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Peter J Ratcliffe
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
- The Francis Crick Institute , 1 Midland Road , London NW1 1AT , UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher W Pugh
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Christopher J Schofield
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| |
Collapse
|
49
|
Sadiku P, Willson JA, Dickinson RS, Murphy F, Harris AJ, Lewis A, Sammut D, Mirchandani AS, Ryan E, Watts ER, Thompson AR, Marriott HM, Dockrell DH, Taylor CT, Schneider M, Maxwell PH, Chilvers ER, Mazzone M, Moral V, Pugh CW, Ratcliffe PJ, Schofield CJ, Ghesquiere B, Carmeliet P, Whyte MK, Walmsley SR. Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. J Clin Invest 2017; 127:3407-3420. [PMID: 28805660 PMCID: PMC5669581 DOI: 10.1172/jci90848] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Pranvera Sadiku
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Joseph A. Willson
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca S. Dickinson
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona Murphy
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison J. Harris
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy Lewis
- Academic Unit of Respiratory Medicine and
| | | | - Ananda S. Mirchandani
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilise Ryan
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily R. Watts
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Helen M. Marriott
- Academic Unit of Immunology and Infectious Diseases, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Academic Unit of Immunology and Infectious Diseases, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Cormac T. Taylor
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Martin Schneider
- General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Patrick H. Maxwell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Massimilliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, Leuven, Belgium
| | - Veronica Moral
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | | | | | | | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Moira K.B. Whyte
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah R. Walmsley
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
50
|
Ratcliffe P, Koivunen P, Myllyharju J, Ragoussis J, Bovée JV, Batinic-Haberle I, Vinatier C, Trichet V, Robriquet F, Oliver L, Gardie B. Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics. HYPOXIA 2017; 5:11-20. [PMID: 28352643 PMCID: PMC5359007 DOI: 10.2147/hp.s127042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The “Hypoxia Nantes 2016” organized its second conference dedicated to the field of hypoxia research. This conference focused on “the role of hypoxia under physiological conditions as well as in cancer” and took place in Nantes, France, in October 6–7, 2016. The main objective of this conference was to bring together a large group of scientists from different spheres of hypoxia. Recent advances were presented and discussed around different topics: genomics, physiology, musculoskeletal, stem cells, microenvironment and cancer, and oxidative stress. This review summarizes the major highlights of the meeting.
Collapse
Affiliation(s)
- Peter Ratcliffe
- Target Discovery Institute, University of Oxford; The Francis Crick Institute, London, UK
| | - Peppi Koivunen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, Canada
| | - Judith Vmg Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Claire Vinatier
- INSERM UMR 1229, Regenerative Medicine and Skeleton-RMeS, Team STEP, University of Nantes, UFR Odontology
| | | | | | - Lisa Oliver
- CRCINA, INSERM, Université de Nantes, Nantes
| | - Betty Gardie
- CRCINA, INSERM, Université de Nantes, Nantes; Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| |
Collapse
|