1
|
Li XH, Lu HZ, Yao JB, Zhang C, Shi TQ, Huang H. Recent advances in the application of CRISPR/Cas-based gene editing technology in Filamentous Fungi. Biotechnol Adv 2025; 81:108561. [PMID: 40086675 DOI: 10.1016/j.biotechadv.2025.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Filamentous fungi are essential industrial microorganisms that can serve as sources of enzymes, organic acids, terpenoids, and other bioactive compounds with significant applications in food, medicine, and agriculture. However, the underdevelopment of gene editing tools limits the full exploitation of filamentous fungi, which still present numerous untapped potential applications. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats) system, a versatile genome-editing tool, has advanced significantly and been widely applied in filamentous fungi, showcasing considerable research potential. This review examines the development and mechanisms of genome-editing tools in filamentous fungi, and contrasts the CRISPR/Cas9 and CRISPR/Cpf1 systems. The transformation and delivery strategies of the CRISPR/Cas system in filamentous fungi are also examined. Additionally, recent applications of CRISPR/Cas systems in filamentous fungi are summarized, such as gene disruption, base editing, and gene regulation. Strategies to enhance editing efficiency and reduce off-target effects are also highlighted, with the aim of providing insights for the future construction and optimization of CRISPR/Cas systems in filamentous fungi.
Collapse
Affiliation(s)
- Xu-Hong Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hui-Zhi Lu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ji-Bao Yao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Chi Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Ost KJ, Arentshorst M, Moerschbacher BM, Dirks-Hofmeister ME, Ram AF. Comprehensive phenotypic analysis of multiple gene deletions of α-glucan synthase and Crh-transglycosylase gene families in Aspergillus niger highlighting the versatility of the fungal cell wall. Cell Surf 2025; 13:100141. [PMID: 39991742 PMCID: PMC11847290 DOI: 10.1016/j.tcsw.2025.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Multiple paralogs are found in the fungal genomes for several genes that encode proteins involved in cell wall biosynthesis. The genome of A. niger contains five genes encoding putative α-1,3-glucan synthases (AgsA-E) and seven genes encoding putative glucan-chitin crosslinking enzymes (CrhA-G). Here, we systematically studied the effects of the deletion of single (agsA or agsE), double (agsA and agsE), or all five ags genes (agsA-E) present in A. niger. Morphological and biochemical analysis of ags mutants emphasizes the important role of agsE in cell wall integrity, while deletion of other ags genes had minimal impact. Loss of agsE compromised cell wall integrity and altered pellet morphology in liquid cultures. Previous studies have indicated that deletion of all crh genes in A. niger did not result in cell wall integrity-related phenotypes. To determine whether the ags and crh gene families have redundant functions, both gene families were deleted using iterative CRISPR/Cas9 mediated genome editing. The 12-fold deletion mutant was viable and did not exhibit growth defects under non-stressing growth conditions. A synergistic effect on cell wall integrity was observed in this 12-fold deletion mutant, particularly when exposed to cell wall-perturbing compounds. The cell wall composition, extractability of glucans by alkali, and scanning electron microscopy analysis showed no differences between the parental strain and mutants lacking ags genes, crh genes, or both. These observations underscore the ability of fungal cells to adapt and secure cell wall integrity, even when two entire cell wall protein-encoding gene families are missing.
Collapse
Affiliation(s)
- Katharina J. Ost
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Mareike E. Dirks-Hofmeister
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| |
Collapse
|
3
|
Hassane AMA, Obiedallah M, Karimi J, Khattab SMR, Hussein HR, Abo-Dahab Y, Eltoukhy A, Abo-Dahab NF, Abouelela ME. Unravelling fungal genome editing revolution: pathological and biotechnological application aspects. Arch Microbiol 2025; 207:150. [PMID: 40402294 DOI: 10.1007/s00203-025-04360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Fungi represent a broad and evolutionarily unique group within the eukaryotic domain, characterized by extensive ecological adaptability and metabolic versatility. Their inherent biological intricacy is evident in the diverse and dynamic relationships they establish with various hosts and environmental niches. Notably, fungi are integral to disease processes and a wide array of biotechnological innovations, highlighting their significance in medical, agricultural, and industrial domains. Recent advances in genetic engineering have revolutionized fungal research, with CRISPR/Cas emerging as the most potent and versatile genome editing platform. This technology enables precise manipulation of fungal genomes, from silencing efflux pump genes in Candida albicans (enhancing antifungal susceptibility) to targeting virulence-associated sirtuins in Aspergillus fumigatus (attenuating pathogenicity). Its applications span gene overexpression, multiplexed mutagenesis, and secondary metabolite induction, proving transformative for disease management and biotechnological innovation. CRISPR/Cas9's advantages-unmatched precision, cost-effectiveness, and therapeutic potential-are tempered by challenges like off-target effects, ethical dilemmas, and regulatory gaps. Integrating nanoparticle delivery systems and multi-omics approaches may overcome technical barriers, but responsible innovation requires addressing these limitations. CRISPR-driven fungal genome editing promises to redefine solutions for drug-resistant infections, sustainable bioproduction, and beyond as the field evolves. In conclusion, genome editing technologies have enhanced our capacity to dissect fungal biology and expanded fungi's practical applications across various scientific and industrial domains. Continued innovation in this field promises to unlock the vast potential of fungal systems further, enabling more profound understanding and transformative biotechnological progress.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Marwa Obiedallah
- Department of Botany and Microbiology, Faculty of Science, University of Sohag, Sohag, 82524, Egypt
| | - Javad Karimi
- Department of Biology, College of Science, Shiraz University, Shiraz, Iran
| | - Sadat M R Khattab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hussein R Hussein
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Youssef Abo-Dahab
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco 1700 Fourth St, San Francisco, CA, USA
| | - Adel Eltoukhy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Nageh F Abo-Dahab
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
4
|
Morán Torres JP, Lyu J, Chen X, Klaas AM, Vonk PJ, Lugones LG, de Cock H, Wösten HAB. Single and combinatorial gene inactivation in Aspergillus niger using selected as well as genome-wide gRNA library pools. Microbiol Res 2025; 298:128204. [PMID: 40359875 DOI: 10.1016/j.micres.2025.128204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Aspergillus niger is a saprotroph, a pathogen, an endophyte, a food spoiler and an important cell factory. Only a minor fraction of its genes has been experimentally characterized. We here set up a CRISPR/Cas9 mutagenesis screen for functional gene analysis using co-transformation of a pool of gene editing plasmids that are maintained under selection pressure and that each contain a gRNA. First, a pool of gRNA vectors was introduced in A. niger targeting five genes with easy selectable phenotypes. Transformants were obtained with all possible single, double, triple, quadruple and quintuple gene inactivation phenotypes. Their genotypes were confirmed using the gRNA sequences in the transforming vector as barcodes. Next, a gRNA library was introduced in A. niger targeting > 9600 genes. Gene nsdC was identified as a sporulation gene using co-transformation conditions that favored uptake of one or two gRNA construct(s) from the genome-wide vector pool. Together, CRISPR/Cas9 vectors with a (genome-wide) pool of gRNAs can be used for functional analysis of genes in A. niger with phenotypes that are the result of the inactivation of a single or multiple genes.
Collapse
Affiliation(s)
- Juan Pablo Morán Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Jun Lyu
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Antonia M Klaas
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
5
|
Lai Y, Wang J, Xie N, Liu G, Lacap-Bugler DC. Identification of a novel forkhead transcription factor MtFKH1 for cellulase and xylanase gene expression in Myceliophthora thermophila (ATCC 42464). Microbiol Res 2025; 294:128097. [PMID: 39970722 DOI: 10.1016/j.micres.2025.128097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
Myceliophthora thermophila is a thermophilic fungus, known to produce industrially important enzymes in biorefineries. The mechanism underlying cellulase and xylanase expression in filamentous fungi is a complex regulatory network controlled by numerous transcription factors (TFs). These TFs in M. thermophila remain unclear. Here, we identified and characterised a novel cellulase and xylanase regulator MtFKH1 in M. thermophila through comparative transcriptomic and genetic analyses. Five of the eight potential TFs, which showed differential expression levels when grown on Avicel and glucose, were successfully deleted using the newly designed CRISPR/Cas9 system. This system identified the forkhead TF MtFKH1. The disruption of Mtfkh1 elevated the cellulolytic and xylanolytic enzyme activities, whereas the overexpression of Mtfkh1 led to considerable decrease in cellulase and xylanase production in M. thermophila cultivated on Avicel. The loss of Mtfkh1 also exhibited an impairment in sporulation in M. thermophila. Real-time quantitative reverse transcription PCR (RT-qPCR) and the electrophoretic mobility shift assays (EMSAs) demonstrated that MtFKH1 regulates the gene expression and specifically bind to the promoter regions of genes encoding β-glucosidase (bgl1/MYCTH_66804), cellobiohydrolase (cbh1/MYCTH_109566), and xylanase (xyn1/MYCTH_112050), respectively. Furthermore, DNase I footprinting analysis identified binding motif of MtFKH1 in the upstream region of Mtbgl1, with strongest binding affinity. Finally, transcriptomic profiling and Gene Ontology (GO) enrichment analyses of Mtfkh1 deletion mutant revealed that the regulon of MtFKH1 were significantly prevalent in hydrolase activity (acting on glycosyl bonds), polysaccharide binding, and carbohydrate metabolic process functional categories. These findings expand our knowledge on how forkhead transcription factor regulates lignocellulose degradation and provide a novel target for engineering of fungal cell factories with the hyperproduction of cellulase and xylanase.
Collapse
Affiliation(s)
- Yapeng Lai
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1010, New Zealand
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | | |
Collapse
|
6
|
Ma B, Li Y, Wang T, Li D, Jia S. Advances in CRISPR/Cas9-Based Gene Editing in Filamentous Fungi. J Fungi (Basel) 2025; 11:350. [PMID: 40422684 DOI: 10.3390/jof11050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
As an important class of microorganisms, filamentous fungi have crucial roles in protein secretion, secondary metabolite production and environmental pollution control. However, characteristics such as apical growth, heterokaryon, low homologous recombination (HR) efficiency and the scarcity of genetic markers mean that the application of traditional gene editing technology in filamentous fungi faces great challenges. The introduction of the RNA-mediated CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRlSPR-associated protein) system in filamentous fungi in recent years has revolutionized gene editing in filamentous fungi. In addition, the continuously expressed CRISPR system has significantly improved the editing efficiency, while the optimized sgRNA design and reduced cas9 concentration have effectively reduced the off-target effect, further enhancing the safety and reliability of the technology. In this review, we systematically analyze the molecular mechanism and regulatory factors of CRISPR/Cas9, focus on the optimization of its expression system and the improvement of the transformation efficiency in filamentous fungi, and reveal the core regulatory roles of HR and non-homologous end-joining (NHEJ) pathways in gene editing. Based on the analysis of various filamentous fungi applications, this review reveals the outstanding advantages of CRISPR/Cas9 in the enhancement of protein secretion, addresses the reconstruction of secondary metabolic pathways and pollutant degradation in the past decade, and provides a theoretical basis and practical guidance for the optimization of the technology and engineering applications.
Collapse
Affiliation(s)
- Bin Ma
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yimiao Li
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tinghui Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongming Li
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuang Jia
- School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
7
|
van Esch AP, Prudence SMM, Contesini FJ, Gerhartz B, Royle KE, Mortensen UH. A CRISPR Cas12a/Cpf1 strategy to facilitate robust multiplex gene editing in Aspergillus Niger. Fungal Biol Biotechnol 2025; 12:5. [PMID: 40281629 PMCID: PMC12023492 DOI: 10.1186/s40694-025-00196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND CRISPR technologies have revolutionized strain engineering of Aspergillus species, and drastically increased the ease and speed at which genomic modifications can be performed. One of the advantages of CRISPR technologies is the possibility of rapid strain engineering using multiplex experiments. This can be achieved by using a set of different guiding RNA molecules (gRNA) to target multiple loci in the same experiment. Two major challenges in such experiments are firstly, the delivery of multiple guides simultaneously, and secondly, ensuring that each target locus is cut efficiently by the CRISPR nuclease. The CRISPR nuclease Cas12a, also known as Cpf1, presents a unique advantage to bypass this challenge. Specifically, and unlike Cas9, Cpf1 is able to release several gRNAs from a common precursor RNA molecule through its own RNase activity, eliminating the need for elements such as ribozymes or tRNA machinery for gRNA maturation. This feature sets the stage for much more straightforward construction of vectors for the delivery of many gRNAs, which in turn allows each locus to be targeted by multiple gRNAs to increase the odds of successfully inducing a break in the DNA. RESULTS Here we present a toolbox that can be used to assemble plasmids containing a gRNA multiplex expression cassette, which is able to express a multi gRNA precursor. The precursor can be processed via Cpf1 RNase activity to produce multiple functional gRNAs in vivo. Using our setup, we have constructed plasmids that are able to deliver up to ten gRNAs. In addition, we show that three simultaneous deletions can be introduced robustly in Aspergillus niger by targeting each gene with several gRNAs, without prior gRNA validation or the use of genomically integrated selection markers. CONCLUSION In this study we have established an efficient system for the construction of CRISPR-Cpf1 vectors that are able to deliver a large number of gRNAs for multiplex genome editing in Aspergillus species. Our strategy allows multiple specific genomic modifications to be performed in a time frame of less than two weeks, and we envision this will be able to speed up cell factory construction efforts significantly.
Collapse
|
8
|
Liu Y, Wang Y, Bao D, Chen H, Gong M, Sun S, Zou G. Cross-Kingdom DNA Methylation Dynamics: Comparative Mechanisms of 5mC/6mA Regulation and Their Implications in Epigenetic Disorders. BIOLOGY 2025; 14:461. [PMID: 40427651 PMCID: PMC12108942 DOI: 10.3390/biology14050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
DNA methylation, a cornerstone of epigenetic regulation, governs critical biological processes including transcriptional modulation, genomic imprinting, and transposon suppression through chromatin architecture remodeling. Recent advances have revealed that aberrant methylation patterns-characterized by spatial-temporal dysregulation and stochastic molecular noise-serve as key drivers of diverse pathological conditions, from oncogenesis to neurodegenerative disorders. However, the field faces dual challenges: (1) current understanding remains fragmented due to the inherent spatiotemporal heterogeneity of methylation landscapes across tissues and developmental stages, and (2) mechanistic insights into non-canonical methylation pathways (particularly 6mA) in non-mammalian systems are conspicuously underdeveloped. This review systematically synthesizes the evolutionary-conserved versus species-specific features of 5-methylcytosine (5mC) and N6-methyladenine (6mA) regulatory networks across three biological kingdoms. Through comparative analysis of methylation/demethylation enzymatic cascades (DNMTs/TETs in mammals, CMTs/ROS1 in plants, and DIM-2/DNMTA in fungi), we propose a unified framework for targeting methylation-associated diseases through precision epigenome editing, while identifying critical knowledge gaps in fungal methylome engineering that demand urgent investigation.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Ying Wang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Rd., Shanghai 201403, China; (Y.W.); (D.B.)
| |
Collapse
|
9
|
Nie H, Jin M, Wang Z, Zheng J, Zhang Y, Li X. Heterologous Expression of Candida antarctica Lipase B in Aspergillus niger Using CRISPR/Cas9-mediated Multi-Gene Editing. Biotechnol Bioeng 2025. [PMID: 40247765 DOI: 10.1002/bit.29000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Aspergillus niger, a filamentous fungus, is known as a cell factory due to its ability to produce large amounts of organic acids and industrial enzymes. Lipase B from Candida antarctica (CALB) is one of the most widely used lipases in industrial applications, including oil processing, papermaking, food, pharmaceuticals, and personal care products. In this study, the CRISPR/Cas9 technique was employed to knock out the pyrG and kusA genes in A. niger. The CALB gene was integrated into the high-production protein gene loci, such as glaA and amyA, to construct a multi-copy CALB production engineered strain. Additionally, the pepA, aglU, and bglA genes were deleted, which minimized the background level of secreted proteins in A. niger and increased the production of CALB. After two rounds of gene editing, the A. niger with multi-copy CALB was created, and the engineered A. niger CCTCC 206047.09 with high CALB yield was isolated. After 120 h of liquid fermentation, the lipase activity reached 17.84 U/mL and the protein yield reached 10.21 mg/mL. In summary, an engineered A. niger strain with high lipase activity was successfully isolated by employing a CRISPR/Cas9 system to integrate CALB into high-expression loci, while simultaneously knocking out the host's highly expressed protein genes. These results provide an effective strategy for the high expression of both heterologous and homologous enzymes in A. niger.
Collapse
Affiliation(s)
- Hongmei Nie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mengmeng Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zebin Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University, Xinyu, P. R. China
| |
Collapse
|
10
|
Sun J, Jiang X, Xu F, Tian X, Chu J. Constructing pyrG marker by CRISPR/Cas facilities the highly-efficient precise genome editing on industrial Aspergillus niger strain. Bioprocess Biosyst Eng 2025; 48:679-691. [PMID: 39955701 DOI: 10.1007/s00449-025-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
To prevent the unique difficulty of hygromycin-based gene editing on industrial A. niger strain and increase the working efficiency, the local pyrG marker was removed by well-designed dual sgRNAs and repair template through Cas9-ribonucleoprotein (RNP) strategy in this study. The positive rate of the desired pyrG auxotroph construction was 100%, while no transformant was observed using the traditional methods. The complementation strain showed similar fermentation character as the starting strain. Moreover, an efficient and seamless knock out plasmid-based strategy was established, achieving positive rate at 90% and 50% for challenging Δku70 and Δku80 respectively. Further, combined hygromycin markers and miniaturization cultivation were conducted to select the poor growth strain. Finally, skillfully designed sgRNA and amdS counter-selection repair template were used to obtain ERG3Tyr185 mutation. A highly-efficient precise strategy was established for A. niger through a diagnostic PCR method, with nearly 100% positive rate. Highly- precise desired point mutation was achieved by the developed gene toolbox.
Collapse
Affiliation(s)
- Jingchun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Xing Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P.O. Box 329, Shanghai, 200237, China.
| |
Collapse
|
11
|
Zhai Z, Zhang M, Yin R, Zhao S, Shen Z, Yang Y, Zhang X, Wang J, Qin Y, Xu D, Zhou L, Lai D. CRISPR/Cas9-assisted gene editing reveals that EgPKS, a polyketide synthase, is required for the biosynthesis of preussomerins in Edenia gomezpompae SV2. World J Microbiol Biotechnol 2025; 41:103. [PMID: 40069470 DOI: 10.1007/s11274-025-04313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Edenia gomezpompae, an endophytic fungus derived from plants, produced a diverse array of preussomerins, a type of spirobisnaphthalenes featuring two spiroketal groups, which exhibited significant antibacterial, antifungal, and cytotoxic activities. Structurally, the biosynthesis of preussomerins might be related to the biosynthesis of 1,8-dihydroxynaphthalene (DHN), a precursor of DHN-melanin. However, the absence of efficient gene-editing tools for E. gomezpompae has hindered the biosynthetic study of preussomerins. In this study, we developed a CRISPR/Cas9-based gene editing system for E. gomezpompae SV2 that was isolated from the stem of Setaria viridis, by utilizing the endogenous U6 snRNA promoter to drive sgRNA expression. Using this system, we successfully disrupted the polyketide synthase (PKS)-encoding gene, Egpks, a putative 1,3,6,8-tetrahydroxynaphthalene synthase gene involved in the biosynthesis of DHN-melanin, with an editing efficiency up to 92% and a knockout efficiency of 71% when employing the U6 snRNA-3 promoter. Furthermore, the disrupted mutant (∆Egpks) displayed white hyphae and lost the ability to produce preussomerins. These results provided a foundational tool for genetic manipulation in E. gomezpompae and revealed the role of EgPKS in the biosynthesis of preussomerin-type spirobisnaphthalenes.
Collapse
Affiliation(s)
- Ziqi Zhai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mengwei Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ruya Yin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Siji Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yonglin Yang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jianing Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yifei Qin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Xu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Ligang Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daowan Lai
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Virgílio MLDS, Quintela ED, Maciel LHR, Goulart GSS, Silva JFAE, Cortes MVDCB. Metarhizium anisopliae engineering mediated by a CRISPR/Cas9 recyclable system. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01249-5. [PMID: 39982596 DOI: 10.1007/s12223-025-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The advent of CRISPR/Cas technology has revolutionized genome editing, offering simplicity, precision, and cost-effectiveness. While its application in biological control fungi has been limited, including the cosmopolitan fungus Metarhizium anisopliae, recent advancements show promise. However, integrating cas9 and selection-marker genes into fungal genomes poses challenges, including reduced efficiency, toxicity, and off-target effects. Besides, marker-free genetic engineering through a CRISPR recyclable system presents a viable solution, enabling efficient mutant generation without compromising fitness and virulence. This study pioneers the construction of marker-free strains of M. anisopliae using a CRISPR/Cas9 recyclable system. Precise deletion of albA and ku70, alongside gfp cassette insertion, confirms the system efficiency. This innovative approach holds significant potential for facilitating in-depth molecular studies, understanding their ecological roles in agricultural systems, and enhancing biocontrol efficacy against insect pests through genetic improvement.
Collapse
Affiliation(s)
| | - Eliane Dias Quintela
- Embrapa Rice & Beans, Brazilian Agricultural Research Corporation, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | - Gabriela Souza Silva Goulart
- Embrapa Rice & Beans, Brazilian Agricultural Research Corporation, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | | |
Collapse
|
13
|
Pullen R, Decker SR, Subramanian V, Adler MJ, Tobias AV, Perisin M, Sund CJ, Servinsky MD, Kozlowski MT. Considerations for Domestication of Novel Strains of Filamentous Fungi. ACS Synth Biol 2025; 14:343-362. [PMID: 39883596 PMCID: PMC11852223 DOI: 10.1021/acssynbio.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Fungi, especially filamentous fungi, are a relatively understudied, biotechnologically useful resource with incredible potential for commercial applications. These multicellular eukaryotic organisms have long been exploited for their natural production of useful commodity chemicals and proteins such as enzymes used in starch processing, detergents, food and feed production, pulping and paper making and biofuels production. The ability of filamentous fungi to use a wide range of feedstocks is another key advantage. As chassis organisms, filamentous fungi can express cellular machinery, and metabolic and signal transduction pathways from both prokaryotic and eukaryotic origins. Their genomes abound with novel genetic elements and metabolic processes that can be harnessed for biotechnology applications. Synthetic biology tools are becoming inexpensive, modular, and expansive while systems biology is beginning to provide the level of understanding required to design increasingly complex synthetic systems. This review covers the challenges of working in filamentous fungi and offers a perspective on the approaches needed to exploit fungi as microbial cell factories.
Collapse
Affiliation(s)
- Randi
M. Pullen
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Stephen R. Decker
- National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | | | - Meaghan J. Adler
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Alexander V. Tobias
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew Perisin
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Christian J. Sund
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Matthew D. Servinsky
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| | - Mark T. Kozlowski
- DEVCOM
Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20783, United
States
| |
Collapse
|
14
|
Müller A, Meng J, Kuijpers R, Mäkelä MR, de Vries RP. Exploring the complexity of xylitol production in the fungal cell factory Aspergillus niger. Enzyme Microb Technol 2025; 183:110550. [PMID: 39591728 DOI: 10.1016/j.enzmictec.2024.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Production of xylitol from agricultural by-products offers a promising approach for the circular bioeconomy. This study investigates the roles of transcription factors XlnR and CreA in xylitol production from wheat bran in Aspergillus niger by generating strains with a constitutively active XlnR (XlnRc, V756F mutation) and/or deletion of creA, in a previously generated xylitol-producing strain. The XlnRc mutation increased the initial rate of xylitol production but lowered the overall accumulation. Deletion of creA in this strain significantly improved both the onset and rate of xylitol production, indicating an inhibitory role of CreA in the PCP. These results demonstrate the complexity of metabolic engineering to generate fungal cell factories for valuable biochemicals, such as xylitol, as not only metabolic but also multiple gene regulation aspects need to be considered.
Collapse
Affiliation(s)
- Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Robin Kuijpers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Miia R Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Aalto FI-00076, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
15
|
Yang H, Luo X, Shang Z, Li K, Cai J, Chen Y, Xin L, Ju J. Metabolic Blockade-Based Genome Mining of Malbranchea circinata SDU050: Discovery of Diverse Secondary Metabolites. Mar Drugs 2025; 23:50. [PMID: 39852552 PMCID: PMC11766578 DOI: 10.3390/md23010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/26/2025] Open
Abstract
Malbranchea circinata SDU050, a fungus derived from deep-sea sediment, is a prolific producer of diverse secondary metabolites. Genome sequencing revealed the presence of at least 69 biosynthetic gene clusters (BGCs), including 30 encoding type I polyketide synthases (PKSs). This study reports the isolation and identification of four classes of secondary metabolites from wild-type M. circinata SDU050, alongside five additional metabolite classes, including three novel cytochalasins (7-9), obtained from a mutant strain through the metabolic blockade strategy. Furthermore, bioinformatic analysis of the BGC associated with the isocoumarin sclerin (1) enabled the deduction of its biosynthetic pathway based on gene function predictions. Bioactivity assays demonstrated that sclerin (1) and (-)-mycousnine (10) exhibited weak antibacterial activity against Gram-positive bacteria such as Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus subtilis. These findings underscore the chemical diversity and biosynthetic potential of M. circinata SDU050 and highlight an effective strategy for exploring marine fungal metabolites.
Collapse
Affiliation(s)
- Hu Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.Y.); (Z.S.); (K.L.); (L.X.)
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-Efficient Utilization of Marine Traditional Chinese Medicine Resources, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Zhuo Shang
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.Y.); (Z.S.); (K.L.); (L.X.)
| | - Kunlong Li
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.Y.); (Z.S.); (K.L.); (L.X.)
| | - Jian Cai
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.C.); (Y.C.)
| | - Yingying Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.C.); (Y.C.)
| | - Longchao Xin
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.Y.); (Z.S.); (K.L.); (L.X.)
| | - Jianhua Ju
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong Basic Science Research Center (Pharmacy), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (H.Y.); (Z.S.); (K.L.); (L.X.)
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (J.C.); (Y.C.)
| |
Collapse
|
16
|
Fan J, Wei PL, Li Y, Zhang S, Ren Z, Li W, Yin WB. Developing filamentous fungal chassis for natural product production. BIORESOURCE TECHNOLOGY 2025; 415:131703. [PMID: 39477163 DOI: 10.1016/j.biortech.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for green and sustainable production of high-value chemicals has driven the interest in microbial chassis. Recent advances in synthetic biology and metabolic engineering have reinforced filamentous fungi as promising chassis cells to produce bioactive natural products. Compared to the most used model organisms, Escherichia coli and Saccharomyces cerevisiae, most filamentous fungi are natural producers of secondary metabolites and possess an inherent pre-mRNA splicing system and abundant biosynthetic precursors. In this review, we summarize recent advances in the application of filamentous fungi as chassis cells. Emphasis is placed on strategies for developing a filamentous fungal chassis, including the establishment of mature genetic manipulation and efficient genetic tools, the catalogue of regulatory elements, and the optimization of endogenous metabolism. Furthermore, we provide an outlook on the advanced techniques for further engineering and application of filamentous fungal chassis.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengquan Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zedong Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Yao L, Zheng J, Wang B, Pan L. Development of a landing pad system for Aspergillus niger and its application in the overproduction of monacolin J. Microbiol Res 2025; 290:127956. [PMID: 39515266 DOI: 10.1016/j.micres.2024.127956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Aspergillus niger is a powerful and efficient cell factory, with the potential to synthesize valuable products as chassis cells. The use of microbial cell factories to produce monacolin J, a precursor for statin synthesis, as an alternative to chemical synthesis could meet increasing market demand. However, the need for precise large fragment gene editing and the availability of suitable integration loci hinders the application of this strain. Herein, we identified neutral integration sites of A. niger based on the combination of ATAC-seq, H3K4me3 epigenetic datasets. Next, a landing pad system was developed for the one-step integration of the MJ biosynthesis gene cluster (BGC) in A. niger. Furthermore, we optimized the precursor module supply, the auxiliary factor supply module of NADPH, the module for eliminating oxidative stress pressure, and the transporter module to improve the production of MJ. Finally, a multi-copy integration strategy was applied to the rapid integration of MJ BGC, achieving MJ titer up to 1851.52 mg/L at the 500 mL shaker level.
Collapse
Affiliation(s)
- Linlin Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Junwei Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
18
|
Latif A, Hassan N, Ali H, Niazi MBK, Jahan Z, Ghuman IL, Hassan F, Saqib A. An overview of key industrial product citric acid production by Aspergillus niger and its application. J Ind Microbiol Biotechnol 2024; 52:kuaf007. [PMID: 40156584 PMCID: PMC11956825 DOI: 10.1093/jimb/kuaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Citric acid possesses high economic value and is considered as the world's largest consumed organic acid in numerous industries. Citric acid applications range from food to beverage industries, pharmaceuticals, cosmetics, and the environment. It is mostly produced by microbial fermentation, but Aspergillus niger is considered as the main workhorse for large-scale production of citric acid. In the current review, special devotion has been made toward addressing the latest and innovative literature related to production of citric acid by A. niger. The review article discusses A. niger historical involvement in citric acid production, fermentation technologies, molecular biology, biosynthesis, accumulation of citric acid, methods for enhanced production of citric acid, different operational factors also influencing citric acid production, and various techniques used for citric acid recovery. Also, copious biotechnological applications of citric acid are summarized for a fundamental comprehension of the subject and its critical role in diverse fields of industries. ONE-SENTENCE SUMMARY This review describes the historical role of Aspergillus niger in the production of citric acid, fermentation technologies, molecular biology, techniques for increased citric acid production, and other physical and chemical variables influencing the production of citric acid.
Collapse
Affiliation(s)
- Ambreen Latif
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetics Engineering-College (NIBGE-C), Pakistan Institute of Engineering & Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Chemical & Materials Engineering, National University for Science and Technology, Islamabad, Pakistan
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetics Engineering-College (NIBGE-C), Pakistan Institute of Engineering & Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetics Engineering-College (NIBGE-C), Pakistan Institute of Engineering & Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Bilal Khan Niazi
- School of Chemical & Materials Engineering, National University for Science and Technology, Islamabad, Pakistan
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Zaib Jahan
- School of Chemical & Materials Engineering, National University for Science and Technology, Islamabad, Pakistan
| | - Iqra Latif Ghuman
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetics Engineering-College (NIBGE-C), Pakistan Institute of Engineering & Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetics Engineering-College (NIBGE-C), Pakistan Institute of Engineering & Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Anam Saqib
- QuinTech Center for Applied Sciences, Lahore, Pakistan
| |
Collapse
|
19
|
Gong Y, Li S, Zhao D, Yuan X, Zhou Y, Chen F, Shao Y. From Random Perturbation to Precise Targeting: A Comprehensive Review of Methods for Studying Gene Function in Monascus Species. J Fungi (Basel) 2024; 10:892. [PMID: 39728388 DOI: 10.3390/jof10120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Monascus, a genus of fungi known for its fermentation capability and production of bioactive compounds, such as Monascus azaphilone pigments and Monacolin K, have received considerable attention because of their potential in biotechnological applications. Understanding the genetic basis of these metabolic pathways is crucial for optimizing the fermentation and enhancing the yield and quality of these products. However, Monascus spp. are not model fungi, and knowledge of their genetics is limited, which is a great challenge in understanding physiological and biochemical phenomena at the genetic level. Since the first application of particle bombardment to explore gene function, it has become feasible to link the phenotypic variation and genomic information on Monascus strains. In recent decades, accurate gene editing assisted by genomic information has provided a solution to analyze the functions of genes involved in the metabolism and development of Monascus spp. at the molecular level. This review summarizes most of the genetic manipulation tools used in Monascus spp. and emphasizes Agrobacterium tumefaciens-mediated transformation and nuclease-guided gene editing, providing comprehensive references for scholars to select suitable genetic manipulation tools to investigate the functions of genes of interest in Monascus spp.
Collapse
Affiliation(s)
- Yunxia Gong
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengfa Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqing Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Yuan
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhou
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Long H, Zhou J, Ren Y, Lu J, Wang N, Liu H, Zhou X, Cai M. Comparative omics directed gene discovery and rewiring for normal temperature-adaptive red pigment synthesis by polar psychrotrophic fungus Geomyces sp. WNF-15A. Synth Syst Biotechnol 2024; 9:842-852. [PMID: 39149535 PMCID: PMC11326490 DOI: 10.1016/j.synbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The Antarctic fungus Geomyces sp. WNF-15A can produce high-quality red pigments (AGRP) with good prospects for the use in food and cosmetic area. However, efficient AGRP synthesis relies on low-temperature and thus limits its industrial development. Here genome sequencing and comparative analysis were performed on the wild-type versus to four mutants derived from natural mutagenesis and transposon insertion mutation. Eleven mutated genes were identified from 2309 SNPs and 256 Indels. A CRISPR-Cas9 gene-editing system was established for functional analysis of these genes. Deficiency of scaffold1.t692 and scaffold2.t704 with unknown functions highly improved AGRP synthesis at all tested temperatures. Of note, the two mutants produced comparable levels of AGRP at 20 °C to the wild-type at 14 °C. They also broke the normal-temperature limitation and effectively synthesized AGRP at 25 °C. Comparative metabolomic analysis revealed that deficiency of scaffold1.t692 improved AGRP synthesis by regulation of global metabolic pathways especially downregulation of the competitive pathways. Knockout of key genes responsible for the differential metabolites confirmed the metabolomic results. This study shows new clues for cold-adaptive regulatory mechanism of polar fungi. It also provides references for exploitation and utilization of psychrotrophic fungal resources.
Collapse
Affiliation(s)
- Haoyu Long
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Nengfei Wang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharma Co., Ltd., 78 E-jiao Street, Liaocheng, China
| | - Xiangshan Zhou
- China Resources Biopharmaceutical Co., Ltd., 1301-84 Sightseeing Road, Shenzhen, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, China
| |
Collapse
|
21
|
Catanzaro I, Gerrits R, Feldmann I, Gorbushina AA, Onofri S, Schumacher J. Deletion of the polyketide synthase-encoding gene pks1 prevents melanization in the extremophilic fungus Cryomyces antarcticus. IUBMB Life 2024; 76:1072-1090. [PMID: 39011777 PMCID: PMC11580375 DOI: 10.1002/iub.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 07/17/2024]
Abstract
Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which-according to a previous investigation-may contain both 1,8-dihydroxynaphthalene (DHN) and L-3,4 dihydroxyphenylalanine (L-DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non-reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock-inhabiting fungus Knufia petricola. The co-expression of CaPKS1 or KpPKS1 with a 4'-phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non-melanized mutants were generated by CRISPR/Cas9-mediated genome editing. Notwithstanding its slow growth (up to months), three independent non-melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild-type and non-melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B-GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non-melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Ecological and Biological Sciences (DEB)Università degli Studi della TusciaViterboItaly
| | - Ruben Gerrits
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
| | - Ines Feldmann
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
| | - Anna A. Gorbushina
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB)Università degli Studi della TusciaViterboItaly
| | - Julia Schumacher
- Department Materials and the EnvironmentBundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| |
Collapse
|
22
|
de Figueiredo FL, Contesini FJ, Terrasan CRF, Gerhardt JA, Corrêa AB, Antoniel EP, Wassano NS, Levassor L, Rabelo SC, Franco TT, Mortensen UH, Damasio A. Engineering the secretome of Aspergillus niger for cellooligosaccharides production from plant biomass. Microb Cell Fact 2024; 23:323. [PMID: 39614296 DOI: 10.1186/s12934-024-02578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Fermentation of sugars derived from plant biomass feedstock is crucial for sustainability. Hence, utilizing customized enzymatic cocktails to obtain oligosaccharides instead of monomers is an alternative fermentation strategy to produce prebiotics, cosmetics, and biofuels. This study developed an engineered strain of Aspergillus niger producing a tailored cellulolytic cocktail capable of partially degrading sugarcane straw to yield cellooligosaccharides. RESULTS The A. niger prtT∆ strain created resulted in a reduced extracellular protease production. The prtT∆ background was then used to create strains by deleting exoenzyme encoding genes involved in mono- or disaccharide formation. Consequently, we successfully generated a tailored prtT∆bglA∆ strain by eliminating a beta-glucosidase (bglA) gene and subsequently deleted two cellobiohydrolases and one beta-xylosidase encoding genes using a multiplex strategy, resulting in the Quintuple∆ strain (prtT∆; bglA∆; cbhA∆; cbhB∆; xlnD∆). When applied for sugarcane biomass degradation, the tailored secretomes produced by A. niger resulted in a higher ratio of cellobiose and cellotriose compared with glucose relative to the reference strain. Mass spectrometry revealed that the Quintuple∆ strain secreted alternative cellobiohydrolases and beta-glucosidases to compensate for the absence of major cellulases. Enzymes targeting minor polysaccharides in plant biomass were also upregulated in this tailored strain. CONCLUSION Tailored secretome use increased COS/glucose ratio during sugarcane biomass degradation showing that deleting some enzymatic components is an effective approach for producing customized enzymatic cocktails. Our findings highlight the plasticity of fungal genomes as enzymes that target minor components of plant cell walls, and alternative cellulases were produced by the mutant strain. Despite deletion of important secretome components, fungal growth was maintained in plant biomass.
Collapse
Affiliation(s)
- Fernanda Lopes de Figueiredo
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Fabiano Jares Contesini
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - César Rafael Fanchini Terrasan
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Jaqueline Aline Gerhardt
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Ana Beatriz Corrêa
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Everton Paschoal Antoniel
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Natália Sayuri Wassano
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Lucas Levassor
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - Sarita Cândida Rabelo
- Department of Bioprocess and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Telma Teixeira Franco
- Interdisciplinary Center of Energy Planning, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Uffe Hasbro Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark (DTU), Søltofts Plads, Building 223, Kongens Lyngby, 2800, Denmark
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
23
|
Leal K, Rojas E, Madariaga D, Contreras MJ, Nuñez-Montero K, Barrientos L, Goméz-Espinoza O, Iturrieta-González I. Unlocking Fungal Potential: The CRISPR-Cas System as a Strategy for Secondary Metabolite Discovery. J Fungi (Basel) 2024; 10:748. [PMID: 39590667 PMCID: PMC11595728 DOI: 10.3390/jof10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
Natural products (NPs) are crucial for the development of novel antibiotics, anticancer agents, and immunosuppressants. To highlight the ability of fungi to produce structurally diverse NPs, this article focuses on the impact of genome mining and CRISPR-Cas9 technology in uncovering and manipulating the biosynthetic gene clusters (BGCs) responsible for NP synthesis. The CRISPR-Cas9 system, originally identified as a bacterial adaptive immune mechanism, has been adapted for precise genome editing in fungi, enabling targeted modifications, such as gene deletions, insertions, and transcription modulation, without altering the genomic sequence. This review elaborates on various CRISPR-Cas9 systems used in fungi, notably the Streptococcus pyogenes type II Cas9 system, and explores advancements in different Cas proteins for fungal genome editing. This review discusses the methodologies employed in CRISPR-Cas9 genome editing of fungi, including guide RNA design, delivery methods, and verification of edited strains. The application of CRISPR-Cas9 has led to enhanced production of secondary metabolites in filamentous fungi, showcasing the potential of this system in biotechnology, medical mycology, and plant pathology. Moreover, this article emphasizes the integration of multi-omics data (genomics, transcriptomics, proteomics, and metabolomics) to validate CRISPR-Cas9 editing effects in fungi. This comprehensive approach aids in understanding molecular changes, identifying off-target effects, and optimizing the editing protocols. Statistical and machine learning techniques are also crucial for analyzing multi-omics data, enabling the development of predictive models and identification of key molecular pathways affected by CRISPR-Cas9 editing. In conclusion, CRISPR-Cas9 technology is a powerful tool for exploring fungal NPs with the potential to accelerate the discovery of novel bioactive compounds. The integration of CRISPR-Cas9 with multi-omics approaches significantly enhances our ability to understand and manipulate fungal genomes for the production of valuable secondary metabolites and for promising new applications in medicine and industry.
Collapse
Affiliation(s)
- Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Edwind Rojas
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
| | - David Madariaga
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.L.); (D.M.); (M.J.C.)
| | - Kattia Nuñez-Montero
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Leticia Barrientos
- Instituto de Ciencias Aplicadas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile; (K.N.-M.); (L.B.)
| | - Olman Goméz-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile;
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectiology and Clinical Immunology, Center of Excellence in Translational Medicine, Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile;
- Jeffrey Modell Center of Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
24
|
Modaffari D, Finlayson A, Miao Y, Wallace EWJ, Sawin KE. Improved gene editing and fluorescent-protein tagging in Aspergillus nidulans using a Golden Gate-based CRISPR-Cas9 plasmid system. Wellcome Open Res 2024; 9:602. [PMID: 39640368 PMCID: PMC11617824 DOI: 10.12688/wellcomeopenres.23086.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
CRISPR-Cas9 systems can be used for precise genome editing in filamentous fungi, including Aspergillus nidulans. However, current CRISPR-Cas9 systems for A. nidulans rely on relatively complex or multi-step cloning methods to build a plasmid expressing both Cas9 and an sgRNA targeting a genomic locus. In this study we improve on existing plasmid-based CRISPR-Cas9 systems for Aspergilli by creating an extremely simple-to-use CRISPR-Cas9 system for A. nidulans genome editing. In our system, a plasmid containing both Cas9 and an sgRNA is assembled in a one-step Golden Gate reaction. We demonstrate precise, scarless genome editing with nucleotide-level DNA substitutions, and we demonstrate markerless gene tagging by fusing fluorescent-protein coding sequences to the endogenous coding sequences of several A. nidulans genes. We also describe A. nidulans codon-adjusted versions of multiple recent-generation fluorescent proteins, which will be useful to the wider Aspergillus community.
Collapse
Affiliation(s)
- Domenico Modaffari
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
- Institute for Cell Biology and Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh, Scotland, EH9 3BF, UK
| | - Aimée Finlayson
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Yuyang Miao
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Edward W. J. Wallace
- Institute for Cell Biology and Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Max Born Crescent, Edinburgh, Scotland, EH9 3BF, UK
| | - Kenneth E. Sawin
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
25
|
Yuan G, Deng S, Czajka JJ, Dai Z, Hofstad BA, Kim J, Pomraning KR. CRISPR-Cas9/Cas12a systems for efficient genome editing and large genomic fragment deletions in Aspergillus niger. Front Bioeng Biotechnol 2024; 12:1452496. [PMID: 39479294 PMCID: PMC11521959 DOI: 10.3389/fbioe.2024.1452496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
CRISPR technology has revolutionized fungal genetic engineering by accelerating the pace and expanding the feasible scope of experiments in this field. Among various CRISPR-Cas systems, Cas9 and Cas12a are widely used in genetic and metabolic engineering. In filamentous fungi, both Cas9 and Cas12a have been utilized as CRISPR nucleases. In this work we first compared efficacies and types of genetic edits for CRISPR-Cas9 and -Cas12a systems at the polyketide synthase (albA) gene locus in Aspergillus niger. By employing a tRNA-based gRNA polycistronic cassette, both Cas9 and Cas12a have demonstrated equally remarkable editing efficacy. Cas12a showed potential superiority over Cas9 protein when one gRNA was used for targeting, achieving an editing efficiency of 86.5% compared to 31.7% for Cas9. Moreover, when employing two gRNAs for targeting, both systems achieved up to 100% editing efficiency for single gene editing. In addition, the CRISPR-Cas9 system has been reported to induce large genomic deletions in various species. However, its use for engineering large chromosomal segments deletions in filamentous fungi still requires optimization. Here, we engineered Cas9 and -Cas12a-induced large genomic fragment deletions by targeting various genomic regions of A. niger ranging from 3.5 kb to 40 kb. Our findings demonstrate that targeted engineering of large chromosomal segments can be achieved, with deletions of up to 69.1% efficiency. Furthermore, by targeting a secondary metabolite gene cluster, we show that fragments over 100 kb can be efficiently and specifically deleted using the CRISPR-Cas9 or -Cas12a system. Overall, in this paper, we present an efficient multi-gRNA genome editing system utilizing Cas9 or Cas12a that enables highly efficient targeted editing of genes and large chromosomal regions in A. niger.
Collapse
Affiliation(s)
- Guoliang Yuan
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Shuang Deng
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Jeffrey J. Czajka
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Ziyu Dai
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Beth A. Hofstad
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Joonhoon Kim
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| | - Kyle R. Pomraning
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
- US Department of Energy Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
26
|
Forrer S, Arentshorst M, Koolth Valappil P, Visser J, Ram AFJ. Competition between homologous chromosomal DNA and exogenous donor DNA to repair CRISPR/Cas9-induced double-strand breaks in Aspergillus niger. Fungal Biol Biotechnol 2024; 11:15. [PMID: 39407321 PMCID: PMC11481784 DOI: 10.1186/s40694-024-00184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Aspergillus niger is well-known for its high protein secretion capacity and therefore an important cell factory for homologous and heterologous protein production. The use of a strong promoter and multiple gene copies are commonly used strategies to increase the gene expression and protein production of the gene of interest (GOI). We recently presented a two-step CRISPR/Cas9-mediated approach in which glucoamylase (glaA) landing sites (GLSs) are introduced at predetermined sites in the genome (step 1), which are subsequently filled with copies of the GOI (step 2) to achieve high expression of the GOI. RESULTS Here we show that in a ku70 defective A. niger strain (Δku70), thereby excluding non-homologous end joining (NHEJ) as a mechanism to repair double-stranded DNA breaks (DSBs), the chromosomal glaA locus or homologous GLSs can be used to repair Cas9-induced DSBs, thereby competing with the integration of the donor DNA containing the GOI. In the absence of exogenously added donor DNA, the DSBs are repaired with homologous chromosomal DNA located on other chromosomes (inter-chromosomal repair) or, with higher efficiency, by a homologous DNA fragment located on the same chromosome (intra-chromosomal repair). Single copy inter-chromosomal homology-based DNA repair was found to occur in 13-20% of the transformants while 80-87% of the transformants were repaired by exogenously added donor DNA. The efficiency of chromosomal repair was dependent on the copy number of the potential donor DNA sequences in the genome. The presence of five homologous DNA sequences, resulted in an increased number (35-61%) of the transformants repaired by chromosomal DNA. The efficiency of intra-chromosomal homology based DSB repair in the absence of donor DNA was found to be highly preferred (85-90%) over inter-chromosomal repair. Intra-chromosomal repair was also found to be the preferred way of DNA repair in the presence of donor DNA and was found to be locus-dependent. CONCLUSION The awareness that homologous chromosomal DNA repair can compete with donor DNA to repair DSB and thereby affecting the efficiency of multicopy strain construction using CRISPR/Cas9-mediated genome editing is an important consideration to take into account in industrial strain design.
Collapse
Affiliation(s)
- Selina Forrer
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Mark Arentshorst
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Prajeesh Koolth Valappil
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Jaap Visser
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands
| | - Arthur F J Ram
- Institute Biology Leiden, Microbial Sciences, Fungal Genetics and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE, The Netherlands.
| |
Collapse
|
27
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
28
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
29
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
30
|
Chen X, Moran Torres JP, Tedjai SVK, Lugones LG, Wösten HAB. Functional analysis of FlbA-regulated transcription factor genes in Aspergillus niger using a multiplexed CRISPRoff system. Int J Biol Macromol 2024; 277:134326. [PMID: 39089555 DOI: 10.1016/j.ijbiomac.2024.134326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
FlbA of Aspergillus niger (indirectly) regulates 36 transcription factor (TF) genes. As a result, it promotes sporulation and represses vegetative growth, protein secretion and lysis. In this study, the functions of part of the FlbA-regulated TF genes were studied by using CRISPRoff. This system was recently introduced as an epigenetic tool for modulating gene expression in A. niger. A plasmid encompassing an optimized CRISPRoff system as well as a library of sgRNA genes that target the promoters of the 36 FlbA-regulated TF genes was introduced in A. niger. Out of 24 transformants that exhibited a sporulation phenotype, 12 and 18 strains also showed a biomass and secretion phenotype, respectively. The transforming sgRNAs, and thus the genes responsible for the phenotypes, were identified from five of the transformants. The results show that the genes dofA, dofB, dofC, dofD, and socA are involved in sporulation and extracellular enzyme activity, while dofA and socA also play roles in biomass formation. Overall, this study shows that the multiplexed CRISPRoff system can be effectively used for functional analysis of genes in a fungus.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - S Vyanjan K Tedjai
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, the Netherlands.
| |
Collapse
|
31
|
Han Y, Guo Y, Zhang N, Xu F, Limwachiranon J, Xiong Z, Xu L, Mao XM, Scharf DH. Biosynthesis of iron-chelating terramides A-C and their role in Aspergillus terreus infection. Commun Chem 2024; 7:221. [PMID: 39349940 PMCID: PMC11442908 DOI: 10.1038/s42004-024-01311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Fungal natural products from various species often feature hydroxamic acid motifs that have the ability to chelate iron. These compounds have an array of medicinally and ecologically relevant activities. Through genome mining, gene deletion in the host Aspergillus terreus, and heterologous expression experiments, this study has revealed that a nonribosomal peptide synthetase (NRPS) TamA and a specialized cytochrome P450 monooxygenase TamB catalyze the sequential biosynthetic reactions in the formation of terramides A-C, a series of diketopiperazines (DKPs) with hydroxamic acid motifs. Feeding experiments showed that TamB catalyzes an unprecedented di-hydroxylation of the amide nitrogens in the diketopiperazine core. This tailoring reaction led to the formation of two bidentate iron-binding sites per molecule with an unusual iron-binding stoichiometry. The structure of the terramide A-Fe complex was characterized by liquid chromatography-mass spectrometry (LC-MS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and electron paramagnetic resonance spectroscopy (EPR). Antimicrobial assays showed that the iron-binding motifs are crucial for the activity against bacteria and fungi. Murine infection experiments indicated that terramide production is crucial for the virulence of A. terreus and could be a potential antifungal drug target.
Collapse
Affiliation(s)
- Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Affiliated Hospital, International School of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu-Ming Mao
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
- The Fourth Affiliated Hospital, International School of Medicine, Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
32
|
Grüttner S, Kempken F. A user-friendly CRISPR/Cas9 system for mutagenesis of Neurospora crassa. Sci Rep 2024; 14:20469. [PMID: 39227671 PMCID: PMC11372047 DOI: 10.1038/s41598-024-71540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
As a widely used eukaryotic model organism, Neurospora crassa offers advantages in genetic studies due to its diverse biology and rapid growth. Traditional genetic manipulation methods, such as homologous recombination, require a considerable amount of time and effort. In this study, we present an easy-to-use CRIPSR/Cas9 system for N. crassa, in which the cas9 sequence is incorporated into the fungal genome and naked guide RNA is introduced via electroporation. Our approach eliminates the need for constructing multiple vectors, speeding up the mutagenesis process. Using cyclosporin-resistant-1 (csr-1) as a selectable marker gene, we achieved 100% editing efficiency under selection conditions. Furthermore, we successfully edited the non-selectable gene N-acylethanolamine amidohydrolase-2 (naa-2), demonstrating the versatility of the system. Combining gRNAs targeting csr-1 and naa-2 simultaneously increased the probability of finding mutants carrying the non-selectable mutation. The system is not only user-friendly but also effective, providing a rapid and efficient method for generating loss-of-function mutants in N. crassa compared to traditional methods.
Collapse
Affiliation(s)
- Stefanie Grüttner
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098, Kiel, Germany.
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098, Kiel, Germany
| |
Collapse
|
33
|
Zhu H, Wang H, Wang L, Zheng Z. CRISPR/Cas9-based genome engineering in the filamentous fungus Rhizopus oryzae and its application to L-lactic acid production. Biotechnol J 2024; 19:e2400309. [PMID: 39295562 DOI: 10.1002/biot.202400309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024]
Abstract
The filamentous fungus Rhizopus oryzae is one of the main industrial strains for the production of a series of important chemicals such as ethanol, lactic acid, and fumaric acid. However, the lack of efficient gene editing tools suitable for R. oryzae makes it difficult to apply technical methods such as metabolic engineering regulation and synthetic biology modification. A CRISPR-Cas9 system suitable for efficient genome editing in R. oryzae was developed. Firstly, four endogenous U6 promoters of R. oryzae were identified and screened with the highest transcriptional activity for application to sgRNA transcription. It was then determined that the U6 promoter mediated CRISPR/Cas9 system has the ability to efficiently edit the genome of R. oryzae through NHEJ and HDR-mediated events. Furthermore, the newly constructed CRISPR-Cas9 dual sgRNAs system can simultaneously disrupt or insert different fragments of the R. oryzae genome. Finally, this CRISPR-Cas9 system was applied to the genome editing of R. oryzae by knocking out pyruvate carboxylase gene (PYC) and pyruvate decarboxylase gene (pdcA) and knocking in phosphofructokinase (pfkB) from Escherichia coli and L-lactate dehydrogenase (L-LDH) from Heyndrickxia coagulans, which resulted in a substantial increase in L-LA production. In summary, this study showed that the CRISPR/Cas9-based genome editing tool is efficient for manipulating genes in R. oryzae.
Collapse
Affiliation(s)
- Haodong Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Han Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Li Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
| | - Zhiming Zheng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei, Anhui, P. R. China
| |
Collapse
|
34
|
Thai HD, Trinh MT, Do LTBX, Le TH, Nguyen DT, Tran QT, Tran VKT, Mai LTD, Pham DN, Le DH, Vu TX, Tran VT. Gene function characterization in Aspergillus niger using a dual resistance marker transformation system mediated by Agrobacterium tumefaciens. J Microbiol Methods 2024; 224:106989. [PMID: 38996925 DOI: 10.1016/j.mimet.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Aspergillus niger is a well-known workhorse for the industrial production of enzymes and organic acids. This fungus can also cause postharvest diseases in fruits. Although Agrobacterium tumefaciens-mediated transformation (ATMT) based on antibiotic resistance markers has been effectively exploited for inspecting functions of target genes in wild-type fungi, it still needs to be further improved in A. niger. In the present study, we re-examined the ATMT in the wild-type A. niger strains using the hygromycin resistance marker and introduced the nourseothricin resistance gene as a new selection marker for this fungus. Unexpectedly, our results revealed that the ATMT method using the resistance markers in A. niger led to numerous small colonies as false-positive transformants on transformation plates. Using the top agar overlay technique to restrict false positive colonies, a transformation efficiency of 87 ± 18 true transformants could be achieved for 106 conidia. With two different selection markers, we could perform both the deletion and complementation of a target gene in a single wild-type A. niger strain. Our results also indicated that two key regulatory genes (laeA and veA) of the velvet complex are required for A. niger to infect apple fruits. Notably, we demonstrated for the first time that a laeA homologous gene from the citrus postharvest pathogen Penicillium digitatum was able to restore the acidification ability and pathogenicity of the A. niger ΔlaeA mutant. The dual resistance marker ATMT system from our work represents an improved genetic tool for gene function characterization in A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Minh Thi Trinh
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Thu-Hang Le
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Thanh Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Que Thi Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Khanh Tong Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Linh Thi Dam Mai
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Duc-Ngoc Pham
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Diep Hong Le
- Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology of Vietnam, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam; Faculty of Biology, University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
35
|
Benites-Pariente JS, Samolski I, Ludeña Y, Villena GK. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci Rep 2024; 14:19661. [PMID: 39179646 PMCID: PMC11344075 DOI: 10.1038/s41598-024-70397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.
Collapse
Affiliation(s)
- J S Benites-Pariente
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - I Samolski
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - Y Ludeña
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - G K Villena
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru.
| |
Collapse
|
36
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
37
|
Erdmann EA, Brandhorst AKM, Gorbushina AA, Schumacher J. The Tet-on system for controllable gene expression in the rock-inhabiting black fungus Knufia petricola. Extremophiles 2024; 28:38. [PMID: 39105933 PMCID: PMC11303440 DOI: 10.1007/s00792-024-01354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Knufia petricola is a black fungus that colonizes sun-exposed surfaces as extreme and oligotrophic environments. As ecologically important heterotrophs and biofilm-formers on human-made surfaces, black fungi form one of the most resistant groups of biodeteriorating organisms. Due to its moderate growth rate in axenic culture and available protocols for its transformation and CRISPR/Cas9-mediated genome editing, K. petricola is used for studying the morpho-physiological adaptations shared by extremophilic and extremotolerant black fungi. In this study, the bacteria-derived tetracycline (TET)-dependent promoter (Tet-on) system was implemented to enable controllable gene expression in K. petricola. The functionality i.e., the dose-dependent inducibility of TET-regulated constructs was investigated by using GFP fluorescence, pigment synthesis (melanin and carotenoids) and restored uracil prototrophy as reporters. The newly generated cloning vectors containing the Tet-on construct, and the validated sites in the K. petricola genome for color-selectable or neutral insertion of expression constructs complete the reverse genetics toolbox. One or multiple genes can be expressed on demand from different genomic loci or from a single construct by using 2A self-cleaving peptides, e.g., for localizing proteins and protein complexes in the K. petricola cell or for using K. petricola as host for the expression of heterologous genes.
Collapse
Affiliation(s)
- Eileen A Erdmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Antonia K M Brandhorst
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Anna A Gorbushina
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.
- Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Fritsche S, Reinfurt A, Fronek F, Steiger MG. NHEJ and HDR can occur simultaneously during gene integration into the genome of Aspergillus niger. Fungal Biol Biotechnol 2024; 11:10. [PMID: 39103967 DOI: 10.1186/s40694-024-00180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.
Collapse
Affiliation(s)
- Susanne Fritsche
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Aline Reinfurt
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Felix Fronek
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria
| | - Matthias G Steiger
- Austrian Centre of Industrial Biotechnology, Muthgasse 18, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Biochemistry, Technische Universität Wien, Gumpendorferstrasse 1A, Vienna, 1060, Austria.
| |
Collapse
|
39
|
Thomsen PT, Nielsen SR, Borodina I. Recent advances in engineering microorganisms for the production of natural food colorants. Curr Opin Chem Biol 2024; 81:102477. [PMID: 38878611 DOI: 10.1016/j.cbpa.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 08/13/2024]
Abstract
Food colorants are frequently added to processed foods since color is an important tool in the marketing of food products, influencing consumer perceptions, preferences, and purchasing behavior. While synthetic dyes currently dominate the food colorant market, consumer concern regarding their safety and sustainability is driving a demand for their replacement with naturally derived alternatives. However, natural colorants are costly compared to their synthetic counterparts as the pigment content in the native sources is usually very low and extraction can be challenging. Recent advances in the engineering of microbial metabolism have sparked interest in the development of cell factories capable of producing natural colorants from renewable resources. This review summarizes major developments within metabolic engineering for the production of nature-identical food colorants by fermentation. Additionally, it highlights common applications, formulations, and physicochemical characteristics of prevalent pigment classes. Lastly, it outlines a workflow for accelerating the optimization of cell factories for the production or derivatization of nature-identical food colorants.
Collapse
Affiliation(s)
- Philip Tinggaard Thomsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Susanne Roenfeldt Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
40
|
Jain D, Kalia A, Sharma S, Manchanda P. Genome editing tools based improved applications in macrofungi. Mol Biol Rep 2024; 51:873. [PMID: 39080117 DOI: 10.1007/s11033-024-09809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 02/06/2025]
Abstract
Macrofungi commonly referred to as Mushrooms are distributed worldwide and well known for their nutritional, medicinal, and organoleptic properties. Strain improvement in mushrooms is lagging due to paucity of efficient genome modification techniques. Thus, for advanced developments in research and commercial or economical viability and benefit, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) emerged as an efficient genome editing tool. The higher efficiency and precision of the desired genetic modification(s) are the most valuable attributes of this recent technology. The present review comprehensively summarizes various conventional methods utilized for strain improvement in mushrooms including hybridization, protoplast fusion, and di-mon mating. Furthermore, the problems associated with these techniques have been discussed besides providing the potential recluses. The significance of CRISPR/Cas9 strategies employed for improvement in various mushroom genera has been deliberated, as these strategies will paves the way forward for obtaining improved strain and effective cultivation methods for enhancing the yield and quality of the fruit bodies.
Collapse
Affiliation(s)
- Deepali Jain
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| | - Shivani Sharma
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
41
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
42
|
Ropero-Pérez C, Marcos JF, Manzanares P, Garrigues S. Increasing the efficiency of CRISPR/Cas9-mediated genome editing in the citrus postharvest pathogen Penicillium digitatum. Fungal Biol Biotechnol 2024; 11:8. [PMID: 39003486 PMCID: PMC11245846 DOI: 10.1186/s40694-024-00179-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate its practical use. RESULTS Increasing the culture time by performing additional culture streaks under selection conditions in a medium that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54-83%. To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no visually associated phenotype and were targeted to confirm the high efficiency of the protocol. CONCLUSION Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via CRISPR/Cas9 is still low.
Collapse
Affiliation(s)
- Carolina Ropero-Pérez
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
43
|
Zhou J, Pan Q, Xue Y, Dong Y, Chen Y, Huang L, Zhang B, Liu ZQ, Zheng Y. Synthetic biology for Monascus: From strain breeding to industrial production. Biotechnol J 2024; 19:e2400180. [PMID: 39014924 DOI: 10.1002/biot.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Traditional Chinese food therapies often motivate the development of modern medicines, and learning from them will bring bright prospects. Monascus, a conventional Chinese fungus with centuries of use in the food industry, produces various metabolites, including natural pigments, lipid-lowering substances, and other bioactive ingredients. Recent Monascus studies focused on the metabolite biosynthesis mechanisms, strain modifications, and fermentation process optimizations, significantly advancing Monascus development on a lab scale. However, the advanced manufacture for Monascus is lacking, restricting its scale production. Here, the synthetic biology techniques and their challenges for engineering filamentous fungi were summarized, especially for Monascus. With further in-depth discussions of automatic solid-state fermentation manufacturing and prospects for combining synthetic biology and process intensification, the industrial scale production of Monascus will succeed with the help of Monascus improvement and intelligent fermentation control, promoting Monascus applications in food, cosmetic, agriculture, medicine, and environmental protection industries.
Collapse
Affiliation(s)
- Junping Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Qilu Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yinan Xue
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yaping Dong
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yihong Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Lianggang Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
44
|
Huang L, Li N, Song Y, Gao J, Nian L, Zhou J, Zhang B, Liu Z, Zheng Y. Development of a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in Fusarium fujikuroi. Biotechnol J 2024; 19:e2400164. [PMID: 39014928 DOI: 10.1002/biot.202400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Iterative metabolic engineering of Fusarium fujikuroi has traditionally been hampered by its low homologous recombination efficiency and scarcity of genetic markers. Thus, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas9) system has emerged as a promising tool for precise genome editing in this organism. Some integrated CRISPR/Cas9 strategies have been used to engineer F. fujikuroi to improve GA3 production capabilities, but low editing efficiency and possible genomic instability became the major obstacle. Herein, we developed a marker recyclable CRISPR/Cas9 system for scarless and multigene editing in F. fujikuroi. This system, based on an autonomously replicating sequence, demonstrated the capability of a single plasmid harboring all editing components to achieve 100%, 75%, and 37.5% editing efficiency for single, double, and triple gene targets, respectively. Remarkably, even with a reduction in homologous arms to 50 bp, we achieved a 12.5% gene editing efficiency. By employing this system, we successfully achieved multicopy integration of the truncated 3-hydroxy-3-methyl glutaryl coenzyme A reductase gene (tHMGR), leading to enhanced GA3 production. A key advantage of our plasmid-based gene editing approach was the ability to recycle selective markers through a simplified protoplast preparation and recovery process, which eliminated the need for additional genetic markers. These findings demonstrated that the single-plasmid CRISPR/Cas9 system enables rapid and precise multiple gene deletions/integrations, laying a solid foundation for future metabolic engineering efforts aimed at industrial GA3 production.
Collapse
Affiliation(s)
- Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ningning Li
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yixin Song
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie Gao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Lu Nian
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
45
|
Tang T, Ding Y, Guo W. Development of an Efficient CRISPR/Cas9 System in Fusarium verticillioides and Its Application in Reducing Mycotoxin Contamination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14229-14240. [PMID: 38797952 DOI: 10.1021/acs.jafc.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fusarium verticillioides (F. verticillioides) is a globally recognized and highly impactful fungal pathogen of maize, causing yield losses and producing harmful mycotoxins that pose a threat to human and animal health. However, the genetic tools available for studying this crucial fungus are currently limited in comparison to other important fungal pathogens. To address this, an efficient CRISPR/Cas9 genome editing system based on an autonomously replicating plasmid with an AMA1 sequence was established in this study. First, gene disruption of pyrG and pyrE via nonhomologous end-joining (NHEJ) pathway was successfully achieved, with efficiency ranging from 66 to 100%. Second, precise gene deletions were achieved with remarkable efficiency using a dual sgRNA expression strategy. Third, the developed genome editing system can be applied to generate designer chromosomes in F. verticillioides, as evidenced by the deletion of a crucial 38 kb fragment required for fumonisin biosynthesis. Fourth, the pyrG recycling system has been established and successfully applied in F. verticillioides. Lastly, the developed ΔFUM1 and ΔFUM mutants can serve as biocontrol agents to reduce the fumonisin B1 (FB1) contamination produced by the toxigenic strain. Taken together, these significant advancements in genetic manipulation and biocontrol strategies provide valuable tools for studying and mitigating the impact of F. verticillioides on maize crops.
Collapse
Affiliation(s)
- Tingting Tang
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| | - Yi Ding
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| | - Wei Guo
- Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Beijing 100193, P. R. China
| |
Collapse
|
46
|
Coca-Ruiz V, Cabrera-Gómez N, Collado IG, Aleu J. Improved Protoplast Production Protocol for Fungal Transformations Mediated by CRISPR/Cas9 in Botrytis cinerea Non-Sporulating Isolates. PLANTS (BASEL, SWITZERLAND) 2024; 13:1754. [PMID: 38999594 PMCID: PMC11244380 DOI: 10.3390/plants13131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Botrytis cinerea is a necrotrophic fungus that causes considerable economic losses in commercial crops. Fungi of the genus Botrytis exhibit great morphological and genetic variability, ranging from non-sporogenic and non-infective isolates to highly virulent sporogenic ones. There is growing interest in the different isolates in terms of their methodological applications aimed at gaining a deeper understanding of the biology of these fungal species for more efficient control of the infections they cause. This article describes an improvement in the protoplast production protocol from non-sporogenic isolates, resulting in viable protoplasts with regenerating capacity. The method improvements consist of a two-day incubation period with mycelium plugs and orbital shaking. Special mention is made of our preference for the VinoTaste Pro enzyme in the KC buffer as a replacement for Glucanex, as it enhances the efficacy of protoplast isolation in B459 and B371 isolates. The methodology described here has proven to be very useful for biotechnological applications such as genetic transformations mediated by the CRISPR/Cas9 tool.
Collapse
Affiliation(s)
- Víctor Coca-Ruiz
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Nuria Cabrera-Gómez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Josefina Aleu
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
- Instituto de Investigación en Biomoléculas (INBIO), Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
47
|
Wassano NS, da Silva GB, Reis AH, A Gerhardt J, Antoniel EP, Akiyama D, Rezende CP, Neves LX, Vasconcelos EJR, de Figueiredo FL, Almeida F, de Castro PA, Pinzan CF, Goldman GH, Paes Leme AF, Fill TP, Moretti NS, Damasio A. Sirtuin E deacetylase is required for full virulence of Aspergillus fumigatus. Commun Biol 2024; 7:704. [PMID: 38851817 PMCID: PMC11162503 DOI: 10.1038/s42003-024-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Aspergillus fumigatus represents a public health problem due to the high mortality rate in immunosuppressed patients and the emergence of antifungal-resistant isolates. Protein acetylation is a crucial post-translational modification that controls gene expression and biological processes. The strategic manipulation of enzymes involved in protein acetylation has emerged as a promising therapeutic approach for addressing fungal infections. Sirtuins, NAD+-dependent lysine deacetylases, regulate protein acetylation and gene expression in eukaryotes. However, their role in the human pathogenic fungus A. fumigatus remains unclear. This study constructs six single knockout strains of A. fumigatus and a strain lacking all predicted sirtuins (SIRTKO). The mutant strains are viable under laboratory conditions, indicating that sirtuins are not essential genes. Phenotypic assays suggest sirtuins' involvement in cell wall integrity, secondary metabolite production, thermotolerance, and virulence. Deletion of sirE attenuates virulence in murine and Galleria mellonella infection models. The absence of SirE alters the acetylation status of proteins, including histones and non-histones, and triggers significant changes in the expression of genes associated with secondary metabolism, cell wall biosynthesis, and virulence factors. These findings encourage testing sirtuin inhibitors as potential therapeutic strategies to combat A. fumigatus infections or in combination therapy with available antifungals.
Collapse
Affiliation(s)
- Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| | - Gabriela B da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Artur H Reis
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaqueline A Gerhardt
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Everton P Antoniel
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Akiyama
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Caroline P Rezende
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Leandro X Neves
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | | | - Fernanda L de Figueiredo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Faculty of Medicine from Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Patrícia A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila F Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H Goldman
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Adriana F Paes Leme
- Brazilian Bioscience National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Taicia P Fill
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Paulist School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Canada.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| |
Collapse
|
48
|
Peng T, Guo J, Tong X. Advances in biosynthesis and metabolic engineering strategies of cordycepin. Front Microbiol 2024; 15:1386855. [PMID: 38903790 PMCID: PMC11188397 DOI: 10.3389/fmicb.2024.1386855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Cordyceps militaris, also called as bei-chong-cao, is an insect-pathogenic fungus from the Ascomycota phylum and the Clavicipitaceae family. It is a valuable filamentous fungus with medicinal and edible properties that has been utilized in traditional Chinese medicine (TCM) and as a nutritious food. Cordycepin is the bioactive compound firstly isolated from C. militaris and has a variety of nutraceutical and health-promoting properties, making it widely employed in nutraceutical and pharmaceutical fields. Due to the low composition and paucity of wild resources, its availability from natural sources is limited. With the elucidation of the cordycepin biosynthetic pathway and the advent of synthetic biology, a green cordycepin biosynthesis in Saccharomyces cerevisiae and Metarhizium robertsii has been developed, indicating a potential sustainable production method of cordycepin. Given that, this review primarily focused on the metabolic engineering and heterologous biosynthesis strategies of cordycepin.
Collapse
Affiliation(s)
| | - Jinlin Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
49
|
Chen X, Moran Torres JP, Jan Vonk P, Damen JMA, Reiding KR, Dijksterhuis J, Lugones LG, Wösten HAB. The pleiotropic phenotype of FlbA of Aspergillus niger is explained in part by the activity of seven of its downstream-regulated transcription factors. Fungal Genet Biol 2024; 172:103894. [PMID: 38657897 DOI: 10.1016/j.fgb.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Juan P Moran Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
50
|
Steinert K, Atanasoff-Kardjalieff AK, Messner E, Gorfer M, Niehaus EM, Humpf HU, Studt-Reinhold L, Kalinina SA. Tools to make Stachybotrys chartarum genetically amendable: Key to unlocking cryptic biosynthetic gene clusters. Fungal Genet Biol 2024; 172:103892. [PMID: 38636782 DOI: 10.1016/j.fgb.2024.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
The soil and indoor fungus Stachybotrys chartarum can induce respiratory disorders, collectively referred to as stachybotryotoxicosis, owing to its prolific production of diverse bioactive secondary metabolites (SMs) or mycotoxins. Although many of these toxins responsible for the harmful effects on animals and humans have been identified in the genus Stachybotrys, however a number of SMs remain elusive. Through in silico analyses, we have identified 37 polyketide synthase (PKS) genes, highlighting that the chemical profile potential of Stachybotrys is far from being fully explored. Additionally, by leveraging phylogenetic analysis of known SMs produced by non-reducing polyketide synthases (NR-PKS) in other filamentous fungi, we showed that Stachybotrys possesses a rich reservoir of untapped SMs. To unravel natural product biosynthesis in S. chartarum, genetic engineering methods are crucial. For this purpose, we have developed a reliable protocol for the genetic transformation of S. chartarum and applied it to the ScPKS14 biosynthetic gene cluster. This cluster is homologous to the already known Claviceps purpurea CpPKS8 BGC, responsible for the production of ergochromes. While no novel SMs were detected, we successfully applied genetic tools, such as the generation of deletionand overexpression strains of single cluster genes. This toolbox can now be readily employed to unravel not only this particular BGC but also other candidate BGCs present in S. chartarum, making this fungus accessible for genetic engineering.
Collapse
Affiliation(s)
| | - Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Elias Messner
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | - Markus Gorfer
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Eva-Maria Niehaus
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria.
| | | |
Collapse
|