1
|
Chen L, Tian L, Zhang Y, Shi Y, Yuan W, Zou Y, Zhang Q, Chen M, Zeng P. Updated Insights into Probiotic Interventions for Metabolic Syndrome: Mechanisms and Evidence. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10554-x. [PMID: 40332670 DOI: 10.1007/s12602-025-10554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
Metabolic syndrome (MetS) is a disease with complex and diverse etiologies. Extrinsic factors such as diet and lifestyle can induce dysbiosis of gut microbes, compromising intestinal barrier integrity and leading to inflammation and insulin resistance, thereby advancing MetS. Probiotic interventions have shown potential in ameliorating gut microbiota dysbiosis and regulating host metabolism by assimilating lipids, metabolizing carbohydrates, and producing short-chain fatty acids (SCFA), indole compounds, secondary bile acids, conjugated linoleic acid (CLA), and other active ingredients. An increasing number of new strains are being isolated and validated for their effective roles intervening on MetS in animal and population studies. This review aims to provide updated insights into the pathogenic mechanisms of MetS, highlight the newly identified probiotic strains that have demonstrated improvements in MetS, and elucidate their mechanisms of action, with the aim of offering contemporary perspectives for the future use of probiotics in mitigating MetS.
Collapse
Affiliation(s)
- Lili Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Yuqi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Ying Shi
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Wenyi Yuan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China
| | - Qin Zhang
- Sichuan International Travel Health Care Center (Chengdu Customs Port Clinic), Chengdu, 610000, People's Republic of China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong 510070, Guangzhou, China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, People's Republic of China.
| |
Collapse
|
2
|
Hauser G, Benjak Horvat I, Rajilić-Stojanović M, Krznarić-Zrnić I, Kukla M, Aljinović-Vučić V, Mikolašević I. Intestinal Microbiota Modulation by Fecal Microbiota Transplantation in Nonalcoholic Fatty Liver Disease. Biomedicines 2025; 13:779. [PMID: 40299326 PMCID: PMC12024620 DOI: 10.3390/biomedicines13040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Numerous factors are involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), which are responsible for its development and progression as an independent entity, but also thanks to their simultaneous action. This is explained by the hypothesis of multiple parallel hits. These factors are insulin resistance, lipid metabolism alteration, oxidative stress, endoplasmic reticulum stress, inflammatory cytokine liberation, gut microbiota dysbiosis or gut-liver axis activation. This is a systematic review which has an aim to show the connection between intestinal microbiota and the role of its disbalance in the development of NAFLD. The gut microbiota is made from a wide spectrum of microorganisms that has a systemic impact on human health, with a well-documented role in digestion, energy metabolism, the stimulation of the immune system, synthesis of essential nutrients, etc. It has been shown that dysbiosis is associated with all three stages of chronic liver disease. Thus, the modulation of the gut microbiota has attracted research interest as a novel therapeutic approach for the management of NAFLD patients. The modification of microbiota can be achieved by substantial diet modification and the application of probiotics or prebiotics, while the most radical effects are observed by fecal microbiota transplantation (FMT). Given the results of FMT in the context of metabolic syndrome (MetS) and NAFLD in animal models and scarce pilot studies on humans, FMT seems to be a promising treatment option that could reverse intestinal dysbiosis and thereby influence the course of NAFLD.
Collapse
Affiliation(s)
- Goran Hauser
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Indira Benjak Horvat
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- County Hospital Varaždin, 42000 Varaždin, Croatia
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering & Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Irena Krznarić-Zrnić
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
| | - Michail Kukla
- Department of Internal Medicine and Geriatrics, Jagiellonian University Medical College, 31-121 Cracow, Poland;
- Department of Endoscopy, University Hospital in Cracow, 30-688 Cracow, Poland
- 1st Infectious Diseases Ward, Gromkowski Regional Specialist Hospital, Wroclaw, 5 Koszarowa St., 50-149 Wroclaw, Poland
| | - Vedrana Aljinović-Vučić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Medical Affairs Department, Jadran Galenski Laboratorij d.d., 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Department of Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (G.H.); (I.K.-Z.); (I.M.)
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
da Silva Escouto L, Batista TJ, Peixoto P, Firmino FT, Ronchi SN, de Souza Barroso ME, Kampke EH, de Andrade TU, de Melo Junior AF, Bissoli NS. Probiotic Kefir Improves Renal Disorders in Ovariectomized Female SHR with High Fructose Intake-Induced Metabolic Syndrome. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10490-w. [PMID: 40080096 DOI: 10.1007/s12602-025-10490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/15/2025]
Abstract
Women in postmenopausal period may present several comorbidities linked to metabolic syndrome (MetS). Our hypothesis is that kefir may prevent the deleterious effects in renal function in an experimental model of metabolic syndrome (MetS) and ovarian hormone deficiency. Young female spontaneously hypertensive rats (SHR) were divided into four groups: ovariectomized (OVX) control, OVX fructose, OVX kefir, and OVX kefir + fructose. They received kefir (5% w/v) via gavage for 8 weeks, while fructose (10% w/v) was available ad libitum. In ponderal parameters and glucose metabolism, we observe that fructose-overloaded groups (OF and OKF) showed increased weight, visceral fat, and fasting blood glucose. However, OKF partially reduced glycemic peak in the glucose tolerance test. Moreover, the standard method for the measurement of renal function showed that OF and OKF groups had a reduction in glomerular filtration rate, and surprisingly OKF exhibited increased renal flow (RBF and RPF) and decreased resistance (RVR). These might be associated with the findings in oxidative stress and nitric oxide (NO) bioavailability, in which kefir in the OKF group was capable of increasing total nitrogen oxides (NOx), attenuate the generation of hydrogen peroxide (DCF) and peroxynitrite (HPF), and also decreased the elevated microalbuminuria promoted by fructose even though the systemic blood pressure between the groups did not differ. Taking together our results, in the present study, kefir showed favorable effects in the model of metabolic syndrome and ovarian hormone deficiency (OKF), potentially protecting the kidney from the deleterious effects of fructose.
Collapse
Affiliation(s)
- Leonardo da Silva Escouto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Thatiany Jardim Batista
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Pollyana Peixoto
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Felipe Tonon Firmino
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Silas Nascimento Ronchi
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Edgar Hell Kampke
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | | | - Antonio Ferreira de Melo Junior
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056, Lisbon, Portugal.
- Centro Clínico e Académico de Lisboa, 1156-056, Lisbon, Portugal.
| | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
4
|
Li M, Liu T, Zhang Y, Yang M, Li Z, He J, Li J. Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus). Neuroscience 2025; 568:139-153. [PMID: 39824341 DOI: 10.1016/j.neuroscience.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O2 and 5 % CO2). Subsequently, we performed transcriptome analysis on Gansu zokor brains incubated with ACSF containing 10 mM fructose and determined the contents of fructose, lactate, ATP, and UA. Whole brain RNA and proteins were extracted to detect the transcriptional levels of Glut5, Khk, Aldoc, and Cs and the translational levels of GLUT5, CS, NRF2, and c-FOS. The results showed that Gansu zokor brains exhibit higher levels of GLUT5 protein and Khk mRNA levels than SD rats to facilitate fructose uptake and metabolism, resulting in increased fructose, ATP, and lactate content in the brain during fructose incubation. Stable UA levels during fructose metabolism reduce the risk of oxidative stress and neuroinflammation, and activation of the Nrf2 pathway increases downstream antioxidant capacity, thereby reducing brain damage. Persistent fEPSP signaling suggests that fructose supports excitatory synaptic transmission in the CA1 region of the hippocampus of the Gansu zokor but leads to hippocampal dysfunction in SD rats. The unique insights about fructose metabolism in the brain of Gansu zokor obtained in our study will be useful for further studies on the evolution of subterranean rodents.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Tianyi Liu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yingying Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Maohong Yang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Zhuohang Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| | - Jingang Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
6
|
Tain YL, Hsu CN. Does maternal consumption of nutritive and non-nutritive sweeteners result in offspring hypertension? Front Nutr 2025; 12:1464269. [PMID: 39911806 PMCID: PMC11794092 DOI: 10.3389/fnut.2025.1464269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
The consumption of nutritive and non-nutritive sweeteners (NNS) has increased significantly in recent decades. The nutritional status of pregnant women plays a crucial role in determining the likelihood of their offspring developing hypertension in adulthood. While NNSs provide a sweet taste without adding to sugar intake, emerging evidence suggests that maternal consumption of not only nutritive sweeteners (such as fructose) but also NNS may lead to adverse outcomes in offspring, including hypertension. This review provides an overview of the latest research connecting maternal intake of sweeteners to the long-term risk of hypertension in offspring. We examine proposed mechanisms underlying the programming of offspring hypertension by sweeteners, encompassing oxidative stress, dysregulated nutrient sensing signals, abnormal renin-angiotensin system, transcriptome changes, and dysbiotic gut microbiota. Additionally, we outline preventive strategies that can help alleviate offspring hypertension programmed by maternal diets high in sweeteners. Recent advancements in understanding the mechanisms through which maternal consumption of nutritive and non-nutritive sweeteners contributes to offspring hypertension offer promise for addressing this widespread health concern at its developmental roots. Nonetheless, further research is needed to educate the public about the safety of sweetener consumption during pregnancy and lactation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Westerbeke FHM, Rios-Morales M, Attaye I, Nieuwdorp M. Fructose catabolism and its metabolic effects: Exploring host-microbiota interactions and the impact of ethnicity. J Physiol 2025. [PMID: 39805044 DOI: 10.1113/jp287316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis. Moreover, the fermentation of fructose by the gut microbiota can produce metabolites such as ethanol and acetate, both which serve as potential substrates for de novo lipogenesis (DNL) and could therefore contribute to the development of these metabolic conditions. Significant inter-ethnic differences in gut microbiota composition have been observed. Moreover, fructose consumption varies across ethnic groups, and fructose intake has been demonstrated to significantly alter gut microbiota composition, which can influence its fermenting properties and metabolic effects. Therefore, ethnic differences in gut microbiota composition, which may be influenced by variations in fructose consumption, could contribute to the observed health disparities. This review provides an overview of the complex interactions between host and microbial fructose catabolism, the role of ethnicity in shaping these metabolic processes and their impact on host health. Understanding these interactions could provide insights into the mechanisms driving ethnic health disparities to improve personalized nutrition strategies. KEY POINTS: Dietary fructose consumption has increased substantially over recent decades, which has been associated with the rising prevalence of obesity and non-communicable diseases (NCDs) such as type 2 diabetes and metabolic dysfunction-associated steatotic liver disease. Pronounced disparities among different ethnic groups in NCD prevalence and dietary fructose consumption underscore the need to elucidate the underlying mechanisms of fructose catabolism and its health effects. Together with the well-known toxic effects of hepatic fructose catabolism, emerging evidence highlights a role for the small intestinal microbiota in fermenting sugars like fructose into various bacterial products with potential deleterious metabolic effects. There are significant ethnic differences in gut microbiota composition that, combined with varying fructose consumption, could mediate the observed health disparities. To comprehensively understand the role of the gut microbiota in mediating fructose-induced adverse metabolic effects, future research should focus on the small intestinal microbiota. Future research on fructose - microbiota - host interactions should account for ethnic differences in dietary habits and microbial composition to elucidate the potential role of the gut microbiota in driving the mentioned health disparities.
Collapse
Affiliation(s)
- Florine H M Westerbeke
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Melany Rios-Morales
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ilias Attaye
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Fikry H, Saleh LA, Sadek DR, Alkhalek HAA. The possible protective effect of luteolin on cardiovascular and hepatic changes in metabolic syndrome rat model. Cell Tissue Res 2025; 399:27-60. [PMID: 39514020 DOI: 10.1007/s00441-024-03927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
The metabolic syndrome, or MetS, is currently a global health concern. The anti-inflammatory, anti-proliferative, and antioxidant properties of luteolin are some of its advantageous pharmacological characteristics. This research was designed to establish a MetS rat model and investigate the possible protective effect of luteolin on cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. Forty adult male albino rats were split into four groups: a negative control group, a group treated with luteolin, a group induced MetS (fed 20% fructose), and a group treated with luteolin (fed 20% fructose and given luteolin). Following the experiment after 8 weeks, biochemical, histological (light and electron), and immunohistochemistry analyses were performed on liver and heart tissues. Serum levels of cTnI, CK-MB, and LDH were significantly elevated in response to the cardiovascular effect of MetS. Furthermore, compared to the negative control group, the MetS group showed a marked increase in lipid peroxidation in the cardiac and hepatic tissues, as evidenced by elevated levels of MDA and a decline in the antioxidant defense system, as demonstrated by lower activities of GSH and SOD. The fatty liver-induced group exhibited histological alterations, including disrupted hepatic architecture, dilated and congested central veins, blood sinusoids, and portal veins. In addition to nuclear structural alterations, most hepatocytes displayed varying degrees of cytoplasmic vacuolation, mitochondrial alterations, and endoplasmic reticulum dilatation. These alterations were linked to inflammatory cellular infiltrations, collagen fiber deposition, active hepatic stellate cells, and scattered hypertrophied Kupffer cells, as demonstrated by electron microscopy and validated by immunohistochemical analysis. It is interesting to note that eosinophils were seen between the liver cells and in dilated blood sinusoids. Moreover, the biochemical (hepatic and cardiac) and histological (liver) changes were significantly less severe in luteolin-treated rat on a high-fructose diet. These results suggested that luteolin protects against a type of metabolic syndrome that is produced experimentally.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Doaa Ramadan Sadek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| | - Hadwa Ali Abd Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St, Abbasiya Sq., Cairo, Egypt
| |
Collapse
|
9
|
Yalçın Buğdaycı A, Akarca Dizakar SÖ, Demirel MA, Ömeroğlu S, Akar F, Uludağ MO. Investigation of the relationship between inflammation and microbiota in the intestinal tissue of female and male rats fed with fructose: Modulatory role of metformin. Daru 2024; 32:515-535. [PMID: 38884844 PMCID: PMC11554967 DOI: 10.1007/s40199-024-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND It has been reported that High-Fructose (HF) consumption, considered one of the etiological factors of Metabolic Syndrome (MetS), causes changes in the gut microbiota and metabolic disorders. There is limited knowledge on the effects of metformin in HF-induced intestinal irregularities in male and female rats with MetS. OBJECTIVES In this study, we investigated the sex-dependent effects of metformin treatment on the gut microbiota, intestinal Tight Junction (TJ) proteins, and inflammation parameters in HF-induced MetS. METHODS Fructose was given to the male and female rats as a 20% solution in drinking water for 15 weeks. Metformin (200 mg/kg) was administered by gastric tube once a day during the final seven weeks. Biochemical, histopathological, immunohistochemical, and bioinformatics analyses were performed. Differences were considered statistically significant at p < 0.05. RESULTS The metformin treatment in fructose-fed rats promoted glucose, insulin, Homeostasis Model Assessment of Insulin Resistance Index (HOMA-IR), and Triglyceride (TG) values in both sexes. The inflammation score was significantly decreased with metformin treatment in fructose-fed male and female rats (p < 0.05). Moreover, metformin treatment significantly decreased Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) in ileum tissue from fructose-fed males (p < 0.05). Intestinal immunoreactivity of Occludin and Claudin-1 was increased with metformin treatment in fructose-fed female rats. HF and metformin treatment changed the gut microbial composition. Firmicutes/Bacteroidetes (F/B) ratio increased with HF in females. In the disease group, Bifidobacterium pseudolongum; in the treatment group, Lactobacillus helveticus and Lactobacillus reuteri are the prominent species in both sexes. When the male and female groups were compared, Akkermansia muciniphila was prominent in the male treatment group. CONCLUSION In conclusion, metformin treatment promoted biochemical parameters in both sexes of fructose-fed rats. Metformin showed a sex-dependent effect on inflammation parameters, permeability factors, and gut microbiota. Metformin has partly modulatory effects on fructose-induced intestinal changes.
Collapse
Affiliation(s)
| | | | - Mürşide Ayşe Demirel
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Gazi University, Ankara, Turkey
| | - Suna Ömeroğlu
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Fatma Akar
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Ankara, Turkey
| | - Mecit Orhan Uludağ
- Faculty of Pharmacy, Department of Clinical Pharmacy, Near East University, TRNC, Lefkosa, Turkey
| |
Collapse
|
10
|
Shad NS, Shaikh NI, Cunningham SA. Migration Spurs Changes in the Human Microbiome: a Review. J Racial Ethn Health Disparities 2024; 11:3618-3632. [PMID: 37843778 DOI: 10.1007/s40615-023-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
International migration often results in major changes in living environments and lifestyles, and these changes may lead to the observed increases in obesity and diabetes among foreign-born people after resettling in higher-income countries. A possible mechanism linking changes in living environments to the onset of health conditions may be changes in the microbiome. Previous research has shown that unfavorable changes in the composition of the microbiome can increase disposition to diseases such as diabetes, obesity, kidney disease, and inflammatory bowel disease. We investigated the relationship between human migration and microbiome composition through a review using microbiome- and migration-related search terms in PubMed and Web of Science. We included articles examining the gut, oral, or oropharyngeal microbiome in people who migrated internationally. Nine articles met eligibility criteria. All but one examined migration from a non-Western to a Western country. Four of these found a difference in the microbiome of migrants compared with non-migrating residents of their country of birth, seven found differences in the microbiome of migrants compared with the native-born population in the country of resettlement, and five found microbiome differences associated with duration of stay in the country of resettlement. Microbiome composition varies with country of birth, age at migration, time since immigration, and country of resettlement. The results suggest that migration may lead to changes in the microbiome; thus, microbiome characteristics are a plausible pathway to examine changes in health after resettlement in a new country.
Collapse
Affiliation(s)
| | - Nida I Shaikh
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
12
|
Agarwal V, Das S, Kapoor N, Prusty B, Das B. Dietary Fructose: A Literature Review of Current Evidence and Implications on Metabolic Health. Cureus 2024; 16:e74143. [PMID: 39712814 PMCID: PMC11663027 DOI: 10.7759/cureus.74143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
With the increasing intake of dietary fructose, primarily from sucrose and sweetened beverages, metabolic illnesses such as type 2 diabetes mellitus, hypertension, fatty liver disease, dyslipidemia, and hyperuricemia have become more prevalent worldwide, and there is also growing concern about the development of malignancies. These negative health impacts have been validated in various meta-analyses and randomized controlled trials. In contrast, the naturally occurring fructose found in fruits and vegetables contains only a minimal amount of fructose and, when consumed in moderation, may be a healthier choice. This review focuses on the biology of fructose, including its dietary sources, the physiology of its metabolism, and the pathological basis of various disorders related to high dietary fructose intake.
Collapse
Affiliation(s)
- Vishal Agarwal
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sambit Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nitin Kapoor
- Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital, Vellore, IND
| | - Binod Prusty
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Bijay Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
13
|
Yemula N, Sheikh R. Gut microbiota in axial spondyloarthritis : genetics, medications and future treatments. ARP RHEUMATOLOGY 2024; 3:216-225. [PMID: 39243363 DOI: 10.63032/wuii1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Axial spondyloarthritis, also referred to as ankylosing spondylitis, is a chronic inflammatory condition that predominantly affects the axial spine but may also present with peripheral arthritis. It falls within the umbrella of disorders known as spondyloarthropathies. In addition to axial spondyloarthritis, this group includes psoriatic arthritis, enteropathic arthritis, reactive arthritis, and undifferentiated spondyloarthropathy, with axial spondyloarthritis being one of the most common. The overall mechanisms underlying the development of axial spondyloarthritis are complex and multifactorial. There is a significant and well-recognized association between axial spondyloarthritis and the HLA-B27 gene, but there have also been non-HLA genes identified in the disease process, as well as certain inflammatory cytokines that play a role in the inflammatory process, such as tumor necrosis factor (TNF). More recently, there has been research and new evidence linking changes in the gut microbiota to the disease process of axial spondyloarthritis. Research into the role of the gut microbiota and gut dysbiosis is a large, ever-growing field. It has been associated with a multitude of conditions, including axial spondyloarthritis. This mini-review highlights the symbiotic relationship of the gut microbiota with the pathogenesis, therapeutic agents and future treatments of axial spondyloarthritis.
Collapse
|
14
|
Reveles KR, Hickmott AJ, Strey KA, Mustoe AC, Arroyo JP, Power ML, Ridenhour BJ, Amato KR, Ross CN. Developing the Common Marmoset as a Translational Geroscience Model to Study the Microbiome and Healthy Aging. Microorganisms 2024; 12:852. [PMID: 38792682 PMCID: PMC11123169 DOI: 10.3390/microorganisms12050852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging data support associations between the depletion of the healthy gut microbiome and aging-related physiological decline and disease. In humans, fecal microbiota transplantation (FMT) has been used successfully to restore gut microbiome structure and function and to treat C. difficile infections, but its application to healthy aging has been scarcely investigated. The marmoset is an excellent model for evaluating microbiome-mediated changes with age and interventional treatments due to their relatively shorter lifespan and many social, behavioral, and physiological functions that mimic human aging. Prior work indicates that FMT is safe in marmosets and may successfully mediate gut microbiome function and host health. This narrative review (1) provides an overview of the rationale for FMT to support healthy aging using the marmoset as a translational geroscience model, (2) summarizes the prior use of FMT in marmosets, (3) outlines a protocol synthesized from prior literature for studying FMT in aging marmosets, and (4) describes limitations, knowledge gaps, and future research needs in this field.
Collapse
Affiliation(s)
- Kelly R. Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Alexana J. Hickmott
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Kelsey A. Strey
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
| | - Aaryn C. Mustoe
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Juan Pablo Arroyo
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Michael L. Power
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA;
| | - Benjamin J. Ridenhour
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83844, USA;
| | - Katherine R. Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA;
| | - Corinna N. Ross
- Graduate School of Biomedical Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (A.J.H.); (A.C.M.); (J.P.A.); (C.N.R.)
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
15
|
Sia T, Tanaka RO, Mousad A, Narayan AP, Si K, Bacchus L, Ouerghi H, Patel A, Patel A, Cunningham E, Epstein T, Fu J, Liu S, Khuda R, McDonald P, Mallik S, McNulty J, Pan M, Leung J. Fructose malabsorption and fructan malabsorption are associated in patients with irritable bowel syndrome. BMC Gastroenterol 2024; 24:143. [PMID: 38654193 PMCID: PMC11040878 DOI: 10.1186/s12876-024-03230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.
Collapse
Affiliation(s)
- Twan Sia
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Riki O Tanaka
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Albert Mousad
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Aditya P Narayan
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Kristen Si
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Leeon Bacchus
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Hind Ouerghi
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Aashka Patel
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Arnav Patel
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Evan Cunningham
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Taylor Epstein
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Jerry Fu
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Stanley Liu
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Raisa Khuda
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Paige McDonald
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Shibani Mallik
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Joanna McNulty
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - Michelle Pan
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA
| | - John Leung
- Boston Specialists, 65 Harrison Ave #201, Boston, MA, 02111, USA.
| |
Collapse
|
16
|
Kashyap Y, Wang ZJ. Gut microbiota dysbiosis alters chronic pain behaviors in a humanized transgenic mouse model of sickle cell disease. Pain 2024; 165:423-439. [PMID: 37733476 PMCID: PMC10843763 DOI: 10.1097/j.pain.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. However, the role of gut microbiota in SCD pain is yet to be explored. We sought to evaluate the compositional differences in the gut microbiota of transgenic mice with SCD and nonsickle control mice and investigate the role of gut microbiota in SCD pain by using antibiotic-mediated gut microbiota depletion and fecal material transplantation (FMT). The antibiotic-mediated gut microbiota depletion did not affect evoked pain but significantly attenuated ongoing spontaneous pain in mice with SCD. Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
| | - Zaijie Jim Wang
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
- Department of Neurology & Rehabilitation, and Sickle Cell Center, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
17
|
Feješ A, Belvončíková P, Porcel Sanchis D, Borbélyová V, Celec P, Džunková M, Gardlík R. The Effect of Cross-Sex Fecal Microbiota Transplantation on Metabolism and Hormonal Status in Adult Rats. Int J Mol Sci 2024; 25:601. [PMID: 38203771 PMCID: PMC10778742 DOI: 10.3390/ijms25010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Increasing evidence of sexual dimorphism in the pathophysiology of metabolic complications caused by sex steroids is under investigation. The gut microbiota represents a complex microbial ecosystem involved in energy metabolism, immune response, nutrition acquisition, and the health of host organisms. Gender-specific differences in composition are present between females and males. The purpose of this study was to use cross-sex fecal microbiota transplantation (FMT) for the detection of sex-dependent metabolic, hormonal, and gut microbiota changes in female and male recipients. Healthy non-obese female and male Wistar rats were divided into donor, same-sex, and cross-sex recipient groups. After a 30-day period of FMT administration, biochemical markers (glucose and lipid metabolism) and sex hormones were measured, and the gut microbiota was analyzed. The cross-sex male recipients displayed a significantly lower testosterone concentration compared to the males that received same-sex FMT. Sex-dependent changes caused by cross-sex FMT were detected, while several bacterial taxa correlated with plasma testosterone levels. This study represents the first to study the effect of cross-sex changes in the gut microbiome concerning metabolic and hormonal changes/status in adult non-obese Wistar rats. Herein, we present cross-sex FMT as a potential tool to modify sex-specific pathologies.
Collapse
Affiliation(s)
- Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Paulína Belvončíková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Dafne Porcel Sanchis
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| | - Mária Džunková
- Institute for Integrative Systems Biology, University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 469 80 Valencia, Spain; (D.P.S.)
| | - Roman Gardlík
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (A.F.); (P.B.); (V.B.); (P.C.)
| |
Collapse
|
18
|
Brandt A, Csarmann K, Hernández-Arriaga A, Baumann A, Staltner R, Halilbasic E, Trauner M, Camarinha-Silva A, Bergheim I. Antibiotics attenuate diet-induced nonalcoholic fatty liver disease without altering intestinal barrier dysfunction. J Nutr Biochem 2024; 123:109495. [PMID: 37871765 DOI: 10.1016/j.jnutbio.2023.109495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
To date the role of the alterations of intestinal microbiota in the development of intestinal barrier dysfunction in settings of nonalcoholic fatty liver disease (NAFLD) has not been fully understood. Here, we assessed the effect of antibiotics on development of NAFLD and their impact on intestinal barrier dysfunction. Male C57BL/6J mice were either pair-fed a liquid control diet (C) or fat- and fructose-rich diet (FFr) +/- antibiotics (AB, ampicillin/vancomycin/metronidazole/gentamycin) for 7 weeks. Fasting blood glucose was determined and markers of liver damage, inflammation, intestinal barrier function, and microbiota composition were assessed. The development of hepatic steatosis with early signs of inflammation found in FFr-fed mice was significantly abolished in FFr+AB-fed mice. Also, while prevalence of bacteria in feces was not detectable and TLR4 ligand levels in portal plasma were at the level of controls in FFr+AB-fed mice, impairments of intestinal barrier function like an increased permeation of xylose and iNOS protein levels persisted to a similar extent in both FFr-fed groups irrespective of AB use. Exposure of everted small intestinal tissue sacs of naïve mice to fructose resulted in a significant increase in tissue permeability and loss of tight junction proteins, being not affected by the presence of AB, whereas the concomitant treatment of tissue sacs with the NOS inhibitor aminoguanidine attenuated these alterations. Taken together, our data suggest that intestinal barrier dysfunction in diet-induced NAFLD in mice may not be predominantly dependent on changes in intestinal microbiota but rather that fructose-induced alterations of intestinal NO-homeostasis might be critically involved.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Katja Csarmann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Angélica Hernández-Arriaga
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria
| | - Emina Halilbasic
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Amélia Camarinha-Silva
- Livestock Microbial Ecology Department, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Long L, Zhao X, Chen J, Wang Z, Tang Y, Huang J, Yin Y. Piglet growth performance improved by dietary supplementation of porous or nano particles of zinc oxide may be related to the gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:159-172. [PMID: 38023375 PMCID: PMC10679868 DOI: 10.1016/j.aninu.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Previous studies on porous or nano particles zinc oxide (ZnO) in the piglets have mainly focused on growth performance and intestinal inflammation, but have scarcely explored the efficacy on gut microbiota. In addition, the efficacy of nano particles ZnO, which is related to its product quality, remains undefined. This study aimed to determine the efficacy of dietary 500 mg/kg porous or nano particles ZnO on the growth performance and gut microbiota of the weaned piglets. A total of 128 weaned piglets were randomly assigned to the dietary groups: NC (basal diet), PC (basal diet + 3,000 mg/kg conventional ZnO), 500HiZ (basal diet + 500 mg/kg porous particles ZnO), and 500ZNP (basal diet + 500 mg/kg nano particles ZnO). Compared with the NC diet group, both 500HiZ and 500ZNP increased (P < 0.05) average daily feed intake (1 to 28 d) and average daily gain (1 to 28 d), and the 500ZNP tended to decrease feed to gain ratio (F:G ratio, 1 to 28 d) (P = 0.09). Both 500HiZ and 500ZNP decreased crypt depth of the ileum and increased claudin-2 in the duodenum and zonula occludens-1 in the ileum (P < 0.05). Moreover, both 500HiZ and 500ZNP decreased IL-1β and tumor necrosis factor-α (TNF-α) in the jejunum and decreased TNF-α and IL-6 in the ileum (P < 0.05). Both 500HiZ and 500ZNP increased microbial β-diversity index in the ileum and microbial α-diversity indices in the colon of piglets (P < 0.05). The probiotic genera Coprococcus (500ZNP) and Blautia (500HiZ) were positively correlated with the F:G ratio (1 to 28 d) in colon of piglets (P < 0.05). In addition, 500HiZ promoted mitochondrial fusion protein 1 (MFN1) and zinc transporter-1 (ZnT-1) in the jejunum (P < 0.05), whilst 500ZNP decreased MFN1 in the jejunum and ZnT-1 in the ileum (P < 0.05). In summary, both 500HiZ and 500ZNP improved the growth performance of piglets, which is likely via the genera Blautia and Coprococcus, respectively. Both 500HiZ and 500ZNP improved barrier function and inflammation of the intestine, and 500HiZ achieved better efficacy than 500ZNP on intestine mitochondrial functions.
Collapse
Affiliation(s)
- Lina Long
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xichen Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Chen
- Foshan Guangmuxing Feed Co., Ltd, Foshan 528000, China
| | - Zixi Wang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yanfang Tang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jian Huang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yulong Yin
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
20
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
21
|
Kriger-Sharabi O, Malnick SDH, Fisher D. Manipulation of the intestinal microbiome-a slow journey to primetime. World J Clin Cases 2023; 11:4975-4988. [PMID: 37583860 PMCID: PMC10424025 DOI: 10.12998/wjcc.v11.i21.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
The gut microbiota has important functions in the regulation of normal body functions. Alterations of the microbiota are being increasingly linked to various disease states. The microbiome has been manipulated via the administration of stool from animals or humans, for more than 1000 years. Currently, fecal microbiota transplantation can be performed via endoscopic administration of fecal matter to the duodenum or colon or via capsules of lyophilized stools. More recently fecal microbial transplantation has been shown to be very effective for recurrent Clostridoides difficile infection (CDI). In addition there is some evidence of efficacy in the metabolic syndrome and its hepatic manifestation, metabolic associated fatty liver disease (MAFLD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We review the current literature regarding the microbiome and the pathogenesis and treatment of CDI, MAFLD, IBS and IBD.
Collapse
Affiliation(s)
- Ofra Kriger-Sharabi
- Institute of Gastroenterology, Assuta Medical Center, Ashdod 7747629, Israel
| | - Stephen D H Malnick
- Department of Internal Medicine, Kaplan Medical Center, Rehovot 76100, Israel
| | - David Fisher
- Department of Endocrinology, Soroka Medical Center, Beer Sheva POB 151, Israel
| |
Collapse
|
22
|
Liu Y, Zhong W, Li X, Shen F, Ma X, Yang Q, Hong S, Sun Y. Diets, Gut Microbiota and Metabolites. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:268-284. [PMID: 37325710 PMCID: PMC10260722 DOI: 10.1007/s43657-023-00095-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The gut microbiota refers to the gross collection of microorganisms, estimated trillions of them, which reside within the gut and play crucial roles in the absorption and digestion of dietary nutrients. In the past decades, the new generation 'omics' (metagenomics, transcriptomics, proteomics, and metabolomics) technologies made it possible to precisely identify microbiota and metabolites and describe their variability between individuals, populations and even different time points within the same subjects. With massive efforts made, it is now generally accepted that the gut microbiota is a dynamically changing population, whose composition is influenced by the hosts' health conditions and lifestyles. Diet is one of the major contributors to shaping the gut microbiota. The components in the diets vary in different countries, religions, and populations. Some special diets have been adopted by people for hundreds of years aiming for better health, while the underlying mechanisms remain largely unknown. Recent studies based on volunteers or diet-treated animals demonstrated that diets can greatly and rapidly change the gut microbiota. The unique pattern of the nutrients from the diets and their metabolites produced by the gut microbiota has been linked with the occurrence of diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cardiovascular disease, neural diseases, and more. This review will summarize the recent progress and current understanding of the effects of different dietary patterns on the composition of gut microbiota, bacterial metabolites, and their effects on the host's metabolism.
Collapse
Affiliation(s)
- Yilian Liu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Wanglei Zhong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Xiao Li
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442001 Hubei China
| | - Xiaonan Ma
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Qi Yang
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Human Phenome Institute, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200433 China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| |
Collapse
|
23
|
Lin HR, Xu F, Chen D, Xie K, Yang Y, Hu W, Li BY, Jiang Z, Liang Y, Tang XY, Zheng JS, Chen YM. The gut microbiota-bile acid axis mediates the beneficial associations between plasma vitamin D and metabolic syndrome in Chinese adults: A prospective study. Clin Nutr 2023; 42:887-898. [PMID: 37086617 DOI: 10.1016/j.clnu.2023.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND & AIMS Previous studies have suggested that circulating 25-hydroxyvitamin D (25 [OH]D, VD) and the gut microbiota-bile acid axis play crucial roles in metabolic health. Exploring the mediating role of the gut microbiota-bile acid axis would improve our understanding of the mechanisms underlying the effects of VD on human metabolic health. This study examined the association between plasma 25(OH)D and the prevalence/incidence of metabolic syndrome (MetS) and the mediating role of the gut microbiota-bile acid axis. METHODS This prospective study included 3180 participants with plasma 25(OH)D data at baseline and 2966 participants with a 9-year follow-up. MetS was determined every three years. The gut microbiota was analyzed by 16S rRNA sequencing in 1752 participants, and targeted bile acid metabolites in feces were further determined in 974 participants using UPLC‒MS/MS at the middle of the study. Mediating roles of microbiota and bile acids in the VD-MetS associations were analyzed using mediation/path analyses adjusted for potential confounders. RESULTS Among the 2966 participants who were followed-up, 1520, 193, 647, and 606 were MetS-free (normal), recovered, had incident MetS, and had persistent MetS, respectively. The multivariable-adjusted ORs (95% CIs) of MetS prevalence were 0.65 (0.50, 0.84) for baseline MetS and 0.46 (0.33, 0.65) for 9-year persistent MetS in quartile 4 (compared to quartile 1) of plasma 25(OH)D (median: 37.7 vs. 19.6, ng/ml). The corresponding HR (95% CI) of 9-year MetS incidence was 0.71 (0.56, 0.90) (all P-trend < 0.05). Higher VD concentrations were associated with greater α-diversity of the gut microbiota, which was inversely correlated with MetS risk. The groups classified by VD and MetS status had significantly different β-diversity. Ruminiclostridium-6 and Christensenellaceae R-7 group were enriched in the high-VD group and were inversely associated with MetS. However, opposite associations were observed for Lachnoclostridium and Acidaminococcus. The overlapping differential microbial score (ODMS) developed from the four differential genera explained 12.2% of the VD-MetS associations (Pmediation = 0.015). Furthermore, the fecal bile acid score created from 11 differential bile acids related to ODMS and MetS mediated 34.2% of the association between ODMS and MetS (Pmediation = 0.029). Path analyses showed that the inverse association between plasma 25(OH)D and MetS could be mediated by the gut microbiota-bile acid axis. CONCLUSIONS The findings suggest that the gut microbiota-bile acid axis partially mediates the beneficial association between plasma 25(OH)D and the risk of persistent MetS and incident MetS in the Chinese population.
Collapse
Affiliation(s)
- Hong-Rou Lin
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyu Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Keliang Xie
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingdi Yang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Bang-Yan Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yuhui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xin-Yi Tang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet. J Nutr Biochem 2023; 113:109247. [PMID: 36496062 DOI: 10.1016/j.jnutbio.2022.109247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.
Collapse
|
25
|
Ghorbani Y, Schwenger KJP, Sharma D, Jung H, Yadav J, Xu W, Lou W, Poutanen S, Hota SS, Comelli EM, Philpott D, Jackson TD, Okrainec A, Gaisano HY, Allard JP. Effect of faecal microbial transplant via colonoscopy in patients with severe obesity and insulin resistance: A randomized double-blind, placebo-controlled Phase 2 trial. Diabetes Obes Metab 2023; 25:479-490. [PMID: 36239189 DOI: 10.1111/dom.14891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
AIM To assess the effects of faecal microbial transplant (FMT) from lean people to subjects with obesity via colonoscopy. MATERIAL AND METHODS In a double-blind, randomized controlled trial, subjects with a body mass index ≥ 35 kg/m2 and insulin resistance were randomized, in a 1:1 ratio in blocks of four, to either allogenic (from healthy lean donor; n = 15) or autologous FMT (their own stool; n = 13) delivered in the caecum and were followed for 3 months. The main outcome was homeostatic model assessment of insulin resistance (HOMA-IR) and secondary outcomes were glycated haemoglobin levels, lipid profile, weight, gut hormones, endotoxin, appetite measures, intestinal microbiome (IM), metagenome, serum/faecal metabolites, quality of life, anxiety and depression scores. RESULTS In the allogenic versus autologous groups, HOMA-IR and clinical variables did not change significantly, but IM and metabolites changed favourably (P < 0.05): at 1 month, Coprococcus, Bifidobacterium, Bacteroides and Roseburia increased, and Streptococcus decreased; at 3 months, Bacteroides and Blautia increased. Several species also changed significantly. For metabolites, at 1 month, serum kynurenine decreased and faecal indole acetic acid and butenylcarnitine increased, while at 3 months, serum isoleucine, leucine, decenoylcarnitine and faecal phenylacetic acid decreased. Metagenomic pathway representations and network analyses assessing relationships with clinical variables, metabolites and IM were significantly enhanced in the allogenic versus autologous groups. LDL and appetite measures improved in the allogenic (P < 0.05) but not in the autologous group. CONCLUSIONS Overall, in those with obeisty, allogenic FMT via colonoscopy induced favourable changes in IM, metabolites, pathway representations and networks even though other metabolic variables did not change. LDL and appetite variables may also benefit.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Divya Sharma
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hyejung Jung
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Jitender Yadav
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wendy Lou
- Dalla Lana Public Health Department, University of Toronto, Toronto, Ontario, Canada
| | - Susan Poutanen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Sinai Health System, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Susy S Hota
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
- Infection Prevention and Control Department, University Health Network, Toronto, Ontario, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Timothy D Jackson
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of General Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Role of oral and gut microbiota in childhood obesity. Folia Microbiol (Praha) 2023; 68:197-206. [PMID: 36626083 DOI: 10.1007/s12223-023-01033-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Childhood obesity not only causes damage to children's respiratory, cardiovascular, endocrine, motor, and other systems but also is a significant risk factor for metabolic diseases such as obesity in adulthood, which has become one of the serious public health problems worldwide. The etiology and pathogenesis of obesity are complex. In addition to genetic and lifestyle factors, recent studies have found that the microbes in the digestive tract play a crucial role in the occurrence and development of obesity. Among them, the gut microbiota has been confirmed to be one of the important pathogenic factors of obesity, which can mediate the occurrence and development of obesity by interfering with the balance of host energy metabolism and inducing low-grade chronic inflammation throughout the host. Targeting the gut microbiota to treat obesity through various methods such as fecal microbiota transplantation, dietary intervention, and probiotic supplementation has become a research hotspot in obesity treatment. In addition, the oral microbiota is also considered closely related to the occurrence and development of obesity due to its regulatory effect on the balance of gut microbiota. Exploring the relationship between oral and gut microbiota and childhood obesity elucidates the pathogenesis and treatment concepts of childhood obesity from a new perspective. It may provide new methods for the prevention and treatment of childhood obesity in the future.
Collapse
|
27
|
Oxidative stress in metabolic diseases: current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478:185-196. [PMID: 35764861 DOI: 10.1007/s11010-022-04496-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
The metabolic syndrome is a clustering condition of increased abdominal obesity in concert with hyperglycemia, insulin resistance, hypertension, and dyslipidemia. It confers higher risk of metabolic diseases such as diabetes and ischemic heart disease and has been observed to be associated with high morbidity and mortality. It is a progressive pathological process for diabetes-induced complications and appears to be multifactorial in origin. Several preclinical, clinical, and epidemiological reports have shown a persistent link between the metabolic syndrome and oxidative stress. There is pronounced imbalance between pro-oxidants and anti-oxidants with increased production of oxidizing molecules, depletion of anti-oxidants, and consequently accumulation of protein and lipid oxidation products in the cell in metabolic syndrome. The increased cellular pro-oxidant activity also results in altered molecular pathways, mitochondrial dysfunction, deregulation in cell cycle control, chromosomal aberrations, inflammation, and overall decreased biological activity as well as impairment of the antioxidant systems. Here, the focus of our review article will be on the formation of oxidative species, the interplay between metabolic syndrome and oxidative stress, and its potential implications in therapeutic approaches.
Collapse
|
28
|
Hamamah S, Gheorghita R, Lobiuc A, Sirbu IO, Covasa M. Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Front Med (Lausanne) 2022; 9:1060581. [PMID: 36569149 PMCID: PMC9773399 DOI: 10.3389/fmed.2022.1060581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Fecal microbiota transplant (FMT) is a therapeutic method that aims to restore normal gut microbial composition in recipients. Currently, FMT is approved in the USA to treat recurrent and refractory Clostridioides difficile infection and has been shown to have great efficacy. As such, significant research has been directed toward understanding the potential role of FMT in other conditions associated with gut microbiota dysbiosis such as obesity, type 2 diabetes mellitus, metabolic syndrome, neuropsychiatric disorders, inflammatory bowel disease, irritable bowel syndrome, decompensated cirrhosis, cancers and graft-versus-host disease. This review examines current updates and efficacy of FMT in treating conditions other than Clostridioides difficile infection. Further, protocols for administration of FMT are also discussed including storage of fecal samples in stool banks, inclusion/exclusion criteria for donors, fecal sample preparation and methods of treatment administration. Overall, understanding the mechanisms by which FMT can manipulate gut microbiota to provide therapeutic benefit as well as identifying potential adverse effects is an important step in clarifying its long-term safety and efficacy in treating multiple conditions in the future.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Gheorghita
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania
| | - Ioan-Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania,Center for Complex Network Science, Victor Babeş University of Medicine and Pharmacy Timisoara, Timişoara, Romania
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States,Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, Suceava, Romania,*Correspondence: Mihai Covasa,
| |
Collapse
|
29
|
Dietary Supplementation with D-Ribose-L-Cysteine Prevents Hepatic Stress and Pro-Inflammatory Responses in Male Wistar Rats Fed a High-Fructose High-Fat Diet. PATHOPHYSIOLOGY 2022; 29:631-639. [PMID: 36412634 PMCID: PMC9680386 DOI: 10.3390/pathophysiology29040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Diets rich in fats and fructose are associated with the pathogenesis of oxidative stress-induced non-alcoholic fatty liver disease. Therefore, we investigated the effect of D-ribose-L-cysteine (DRLC) in high-fructose high-fat (HFHF) diet-fed rats. Twenty rats (n = 5), divided into four groups, were simultaneously exposed to HFHF and/or DRLC (250 mg/kg) orally during the 8 weeks of the study. Results showed that HFHF precipitated pro-inflammation and selective disruption of the oxidative stress markers. There were significant decreases in the level of antioxidants such as superoxide dismutase (SOD), glutathione peroxidase (GPX), total antioxidant capacity (TAC), hepatic SOD and GPX. Significant increases in serum levels of uric acid (UA), tumour necrosis factor-alpha (TNF-α), C-reactive protein (CRP) and hepatic Xanthine oxidase (XO) were observed in the HFHF compared to the control. In the HFHF + DRLC group, oxidative stress was mitigated due to differences in serum levels of SOD, GPX, TAC, TNF-α, liver SOD, and XO relative to control. The administration of DRLC alone caused significant reductions in malondialdehyde, UA and CRP and a significant increase in SOD compared to the control. DRLC prevents hepatic and systemic oxidative stress and pro-inflammatory events in HFHF diet-fed rats.
Collapse
|
30
|
Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis. Front Immunol 2022; 13:1010572. [PMID: 36311749 PMCID: PMC9608452 DOI: 10.3389/fimmu.2022.1010572] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ankylosing spondylitis (AS), a chronic condition that commonly influences the spine and sacroiliac joints, usually progresses to stiffness and progressive functional limitation. Its fundamental etiology and pathogenesis are likely multifactorial and remain elusive. As environmental factors, gut microbiota performs critical functions in the pathogenesis of AS through various mechanisms, including interacting with genes, enhancing intestinal permeability, activating the gut mucosa immune system, and affecting the intestinal microbiota metabolites. This review provides an overview of recent advances in investigating gut microbiota in AS pathogenesis and discusses potential methods for future therapeutic intervention.
Collapse
Affiliation(s)
- Zi-Yi Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Duo Yuan
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
31
|
El-Domiaty HF, Sweed E, Kora MA, Zaki NG, Khodir SA. Activation of angiotensin-converting enzyme 2 ameliorates metabolic syndrome-induced renal damage in rats by renal TLR4 and nuclear transcription factor κB downregulation. Front Med (Lausanne) 2022; 9:904756. [PMID: 36035416 PMCID: PMC9411523 DOI: 10.3389/fmed.2022.904756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is an independent risk factor for chronic kidney disease (CKD) through many mechanisms, including activation of the renin-angiotensin system. The deleterious effects of angiotensin II (Ang II) can be counterbalanced by angiotensin-converting enzyme 2 (ACE2). Diminazene aceturate (DIZE), an anti-trypanosomal drug, can activate ACE2. OBJECTIVE This study aimed to investigate the possible reno-protective effects of DIZE in MetS rats with elucidation of related mechanisms. MATERIALS AND METHODS Thirty adult male Wistar albino rats were divided equally into control, MetS, and MetS + DIZE groups. Body weight, systolic blood pressure (SBP), and urinary albumin levels were measured. Serum levels of fasting blood glucose (FBG), insulin, uric acid, lipid profile, urea, and creatinine were measured. Homeostasis Model Assessment Index (HOMA-IR) was estimated. Subsequently, renal levels of ACE2, Ang II, malondialdehyde (MDA), reduced glutathione (GSH), and tumor necrosis factor-α (TNF-α) were measured with histopathological and immunohistochemical assessment of TLR4 and NF-κB in renal tissues. RESULTS MetS caused dyslipidemia with significant increases in body weight, SBP, FBG, serum insulin, HOMA-IR, uric acid, urea, creatinine, urinary albumin, and renal levels of Ang II, MDA, and TNF-α, whereas renal ACE2 and GSH were significantly decreased. Renal TLR4 and NF-κB immunoreactivity in MetS rats was upregulated. DIZE supplementation of MetS rats induced significant improvements in renal function parameters; this could be explained by the ability of DIZE to activate renal ACE2 and decrease renal Ang II levels with downregulation of renal TLR4 and NF-κB expression. CONCLUSION DIZE exerts a reno-protective effect in MetS, mainly by downregulating renal TLR4 and NF-κB levels.
Collapse
Affiliation(s)
- Heba F. El-Domiaty
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mona A. Kora
- Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Nader G. Zaki
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Suzan A. Khodir
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
32
|
Portincasa P, Celano G, Serale N, Vitellio P, Calabrese FM, Chira A, David L, Dumitrascu DL, De Angelis M. Clinical and Metabolomic Effects of Lactiplantibacillus plantarum and Pediococcus acidilactici in Fructose Intolerant Patients. Nutrients 2022; 14:2488. [PMID: 35745219 PMCID: PMC9231202 DOI: 10.3390/nu14122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
Fructose intolerance (FI) is a widespread non-genetic condition in which the incomplete absorption of fructose leads to gastro-intestinal disorders. The crucial role of microbial dysbiosis on the onset of these intolerance symptoms together with their persistence under free fructose diets are driving the scientific community towards the use of probiotics as a novel therapeutic approach. In this study, we evaluated the prevalence of FI in a cohort composed of Romanian adults with Functional Grastrointestinal Disorders (FGIDs) and the effectiveness of treatment based on the probiotic formulation EQBIOTA® (Lactiplantibacillus plantarum CECT 7484 and 7485 and Pediococcus acidilactici CECT 7483). We evaluated the impact of a 30-day treatment both on FI subjects and healthy volunteers. The gastrointestinal symptoms and fecal volatile metabolome were evaluated. A statistically significant improvement of symptoms (i.e., bloating, and abdominal pain) was reported in FI patient after treatment. On the other hand, at the baseline, the content of volatile metabolites was heterogeneously distributed between the two study arms, whereas the treatment led differences to decrease. From our analysis, how some metabolomics compounds were correlated with the improvement and worsening of clinical symptoms clearly emerged. Preliminary observations suggested how the improvement of gastrointestinal symptoms could be induced by the increase of anti-inflammatory and protective substrates. A deeper investigation in a larger patient cohort subjected to a prolonged treatment would allow a more comprehensive evaluation of the probiotic treatment effects.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Nadia Serale
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Paola Vitellio
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Francesco Maria Calabrese
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| | - Alexandra Chira
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Liliana David
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, ‘Iuliu Hatieganu’ University of Medicine and Farmacy, 400012 Cluj-Napoca, Romania; (A.C.); (L.D.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università Degli Studi di Bari Aldo Moro, 70126 Bari, Italy; (G.C.); (N.S.); (P.V.); (F.M.C.)
| |
Collapse
|
33
|
Administration of Hookworm Excretory/Secretory Proteins Improves Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Biomolecules 2022; 12:biom12050637. [PMID: 35625566 PMCID: PMC9138508 DOI: 10.3390/biom12050637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetes is recognised as the world’s fastest growing chronic condition globally. Helminth infections have been shown to be associated with a lower prevalence of type 2 diabetes (T2D), in part due to their ability to induce a type 2 immune response. Therefore, to understand the molecular mechanisms that underlie the development of T2D-induced insulin resistance, we treated mice fed on normal or diabetes-promoting diets with excretory/secretory products (ES) from the gastrointestinal helminth Nippostrongylus brasiliensis. We demonstrated that treatment with crude ES products from adult worms (AES) or infective third-stage larvae (L3ES) from N. brasiliensis improved glucose tolerance and attenuated body weight gain in mice fed on a high glycaemic index diet. N. brasiliensis ES administration to mice was associated with a type 2 immune response measured by increased eosinophils and IL-5 in peripheral tissues but not IL-4, and with a decrease in the level of IL-6 in adipose tissue and corresponding increase in IL-6 levels in the liver. Moreover, treatment with AES or L3ES was associated with significant changes in the community composition of the gut microbiota at the phylum and order levels. These data highlight a role for N. brasiliensis ES in modulating the immune response associated with T2D, and suggest that N. brasiliensis ES contain molecules with therapeutic potential for treating metabolic syndrome and T2D.
Collapse
|
34
|
Curcumin Alleviates DSS-Induced Anxiety-Like Behaviors via the Microbial-Brain-Gut Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6244757. [PMID: 35345829 PMCID: PMC8957039 DOI: 10.1155/2022/6244757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The anxiety and depression caused by inflammatory bowel diseases (IBD) are known to greatly affect the mental health of patients. The mechanism of psychiatric disorders caused by IBD is not fully understood. Previous research has suggested that the gut microbiome plays a key role in IBD. Curcumin is a yellow polyphenol extracted from the rhizome of the ginger plant, which has been shown to have effects against both depression and anxiety. Research has indicated that curcumin affects the gut microbiome and exerts antianxiety and neuroprotective effects through the microbiota-gut-brain axis (MGB). However, whether curcumin can alleviate the psychiatric disorders caused by IBD and how curcumin affects the MGB axis through the gut microbiota have not been fully understood. Therefore, this study was aimed at determining the metabolic parameters and microbiological environment in the peripheral and central nervous system to determine the effects of curcumin against anxiety induced by dextran sulfate sodium salt (DSS) in mice. To elaborate on the link between the gut microbiota and how curcumin alleviates anxiety-like behaviors, we performed a fecal microbiota transplantation (FMT) experiment. The results suggested that curcumin can effectively relieve anxiety-like behaviors caused by DSS in mice. Further, curcumin treatment can alleviate disturbances in the gut microbiota and systemic disorders of lipid metabolism caused by DSS. Finally, through FMT, we verified that curcumin increased phosphatidylcholine in the prefrontal cortex of the mice and alleviated DSS-induced anxiety-like behaviors by modulating specific gut microbiota. We also revealed that Muribaculaceae may be a key part of the gut microbiota for curcumin to alleviate DSS-induced anxiety-like behaviors through the MGB axis.
Collapse
|
35
|
Hsu CN, Yu HR, Chan JYH, Wu KLH, Lee WC, Tain YL. The Impact of Gut Microbiome on Maternal Fructose Intake-Induced Developmental Programming of Adult Disease. Nutrients 2022; 14:nu14051031. [PMID: 35268005 PMCID: PMC8912426 DOI: 10.3390/nu14051031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/11/2022] Open
Abstract
Excessive or insufficient maternal nutrition can influence fetal development and the susceptibility of offspring to adult disease. As eating a fructose-rich diet is becoming more common, the effects of maternal fructose intake on offspring health is of increasing relevance. The gut is required to process fructose, and a high-fructose diet can alter the gut microbiome, resulting in gut dysbiosis and metabolic disorders. Current evidence from animal models has revealed that maternal fructose consumption causes various components of metabolic syndrome in adult offspring, while little is known about how gut microbiome is implicated in fructose-induced developmental programming and the consequential risks for developing chronic disease in offspring. This review will first summarize the current evidence supporting the link between fructose and developmental programming of adult diseases. This will be followed by presenting how gut microbiota links to common mechanisms underlying fructose-induced developmental programming. We also provide an overview of the reprogramming effects of gut microbiota-targeted therapy on fructose-induced developmental programming and how this approach may prevent adult-onset disease. Using gut microbiota-targeted therapy to prevent maternal fructose diet-induced developmental programming, we have the potential to mitigate the global burden of fructose-related disorders.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (J.Y.H.C.); (K.L.H.W.)
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
36
|
Ye Y, Shi L, Wang P, Yang M, Zhan P, Tian H, Liu J. Water extract of Ferula lehmanni Boiss. prevents high-fat diet-induced overweight and liver injury by modulating the intestinal microbiota in mice. Food Funct 2022; 13:1603-1616. [PMID: 35076647 DOI: 10.1039/d1fo03518e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity, often accompanied by hepatic steatosis, has been associated with an increased risk of health complications such as fatty liver disease and certain cancers. Ferula lehmannii Boiss., a food and medicine homologue, has been used for centuries as a seasoning showing anti-bacterial and anti-oxidant effects on digestive discomfort. In the present study, we sought to investigate whether a short-term oral administration of water extract of Ferula lehmanni Boiss. (WEFL) could prevent high-fat diet (HFD)-induced abnormal weight gain and hepatic steatosis in mice and its underlying mechanisms. WEFL reduced HFD-increased body weight, liver injury markers and inflammatory cytokines (i.e. IL-6 and IL-1β), and inhibited the elevation of AMPKα, SREBP-1c and FAS in HFD. Moreover, WEFL reconstructed the gut microbiota composition by increasing the relative abundances of beneficial bacteria, e.g. Akkermansia spp., while decreasing Desulfovibrio spp. and so on, thereby reversing the detrimental effects of HFD in mice. Removal of the gut microbiota with antibiotics partially eliminated the hepatoprotective effects of WEFL. Notably, WEFL substantially promoted the levels of short-chain fatty acids, especially butyric acid. To clarify the functional components at play in WEFL, we used UPLC-MS/MS to comprehensively detect its substance composition and found it to be a collection of polyphenol-rich compounds. Together, our findings demonstrate that WEFL prevented HFD-induced obesity and liver injury through the hepatic-microbiota axis, and such health-promoting value might be explained by the enriched abundant polyphenols.
Collapse
Affiliation(s)
- Yuting Ye
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Minmin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China. .,Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an, China
| |
Collapse
|
37
|
Neoagarooligosaccharides modulate gut microbiota and alleviate body weight gain and metabolic syndrome in high-fat diet-induced obese rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
38
|
Murphy EA, Velázquez KT. The role of diet and physical activity in influencing the microbiota/microbiome. DIET, INFLAMMATION, AND HEALTH 2022:693-745. [DOI: 10.1016/b978-0-12-822130-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Lin Q, Yang L, Han L, Wang Z, Luo M, Zhu D, Liu H, Li X, Feng Y. Effects of soy hull polysaccharide on dyslipidemia and pathoglycemia in rats induced by a high-fat-high-sucrose diet. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Huang HC, Tsai MH, Chang CC, Pun CK, Huang YH, Hou MC, Lee FY, Hsu SJ. Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats. Clin Sci (Lond) 2021; 135:2709-2728. [PMID: 34870313 DOI: 10.1042/cs20210602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Liver cirrhosis and portal hypertension is the end of chronic liver injury with hepatic, splanchnic and portosystemic collateral systems dysregulation. Liver injury is accompanied by gut dysbiosis whereas dysbiosis induces liver fibrosis, splanchnic angiogenesis and dysregulated vascular tones vice versa, making portal hypertension aggravated. It has been proved that intestinal microbiota transplantation alleviates dysbiosis. Nevertheless, the influences of microbiota transplantation on cirrhosis-related portal hypertension are not so clear. Liver cirrhosis with portal hypertension was induced by bile duct ligation (BDL) in rats. Sham rats were surgical controls. Rats randomly received vehicle, fecal or gut (terminal ileum) material transplantation. The results showed that microbiota transplantation from feces or gut material significantly reduced portal pressure in cirrhotic rats (P=0.010, 0.044). Hepatic resistance, vascular contractility, fibrosis and relevant protein expressions were not significantly different among cirrhotic rats. However, microbiota transplantation ameliorated splanchnic hyperdynamic flow and vasodilatation. Mesenteric angiogenesis, defined by whole mesenteric window vascular density, decreased in both transplantation groups and phosphorylated endothelial nitric-oxide synthase (eNOS) was down-regulated. Portosystemic shunts determined by splenorenal shunt (SRS) flow decreased in both transplantation groups (P=0.037, 0.032). Shunting severity assessed by microsphere distribution method showed consistent results. Compared with sham rats, cirrhotic rats lacked Lachnospiraceae. Both microbiota transplants increased Bifidobacterium. In conclusion, microbiota transplantation in cirrhotic rats reduced portal pressure, alleviated splanchnic hyperdynamic circulation and portosystemic shunts. The main beneficial effects may be focused on portosystemic collaterals-related events, such as hepatic encephalopathy and gastroesophageal variceal hemorrhage. Further clinical investigations are mandatory.
Collapse
Affiliation(s)
- Hui-Chun Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hung Tsai
- Division of Gastroenterology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chih Chang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chon Kit Pun
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fa-Yauh Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shao-Jung Hsu
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 2021; 9:e12293. [PMID: 34721980 PMCID: PMC8542369 DOI: 10.7717/peerj.12293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbiota (GM) dysbiosis is closely related to bone loss and the occurrence of osteoporosis in animals and human. However, little is known about the effect and the mechanisms of fecal microbiota transplantation (FMT) on bone in the treatment of senile osteoporosis. Methods Aged female rats were randomly divided into the FMT group and the control group. 3-month-old female rats were used as fecal donors. The rats were sacrificed at 12 and 24 weeks following transplantation and the serum, intestine, bone, and feces were collected for subsequent analyses. Results The bone turnover markers of osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and carboxy-terminal peptide (CTX) decreased significantly at 12 and 24 weeks following FMT (P < 0.05). At 12 weeks following transplantation, histomorphometric parameters including the bone volume (BV), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the FMT group were comparable to the control group. However, at 24 weeks following transplantation, these parameters of the FMT group were significantly higher than those of the control group (P < 0.05). Besides, the GM aggregated at 12 and 24 weeks following FMT, and the ecological distance was close between the rats in the FMT group and the donor rats. Alpha diversity, shown by the Shannon index and Simpson index, and the Firmicutes/Bacteroidetes ratio decreased significantly after FMT at 24 weeks. Furthermore, FMT restored the GM composition in aged rats at the phylum and family level, and the intestinal microbiota of the aged rats was similar to that of the donor rats. Correlation network analysis indirectly suggested the causality of FMT on alleviating osteoporosis. FMT improved the intestinal structure and up-regulated the expression of tight junction proteins of occludin, claudin, and ZO-1, which might be associated with the protective effects of FMT on bone. Conclusions GM transplanted from young rats alleviated bone loss in aged rats with senile osteoporosis by improving gut microbiome composition and intestinal barrier function. These data might provide a scientific basis for future clinical treatment of osteoporosis through FMT.
Collapse
Affiliation(s)
- Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Impacts of Fructose on Intestinal Barrier Function, Inflammation and Microbiota in a Piglet Model. Nutrients 2021; 13:nu13103515. [PMID: 34684516 PMCID: PMC8541567 DOI: 10.3390/nu13103515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolic disorder caused by excessive fructose intake was reported extensively and often accompanied by intestinal barrier dysfunction. And the rising dietary fructose was consumed at an early age of human. However, related researches were almost conducted in rodent models, while in the anatomy and physiology of gastrointestinal tract, pig is more similar to human beings than rodents. Hence, weaned piglets were chosen as the model animals in our study to investigate the fructose’s impacts on intestinal tight junction, inflammation response and microbiota structure of piglets. Herein, growth performance, inflammatory response, oxidation resistance and ileal and colonic microbiota of piglet were detected after 35-day fructose supplementation. Our results showed decreased tight junction gene expressions in piglets after fructose addition, with no obvious changes in the growth performance, antioxidant resistance and inflammatory response. Moreover, fructose supplementation differently modified the microbiota structures in ileum and colon. In ileum, the proportions of Streptococcus and Faecalibacterium were higher in Fru group (fructose supplementation). In colon, the proportions of Blautia and Clostridium sensu stricto 1 were higher in Fru group. All the results suggested that tight junction dysfunction might be an earlier fructose-induced event than inflammatory response and oxidant stress and that altered microbes in ileum and colon might be the potential candidates to alleviate fructose-induced intestinal permeability alteration.
Collapse
|
43
|
Liptak R, Gromova B, Gardlik R. Fecal Microbiota Transplantation as a Tool for Therapeutic Modulation of Non-gastrointestinal Disorders. Front Med (Lausanne) 2021; 8:665520. [PMID: 34557498 PMCID: PMC8452915 DOI: 10.3389/fmed.2021.665520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
Fecal microbiota transplantation has been primarily investigated as a therapeutic tool for a number of gut disorders. Optimistic results from clinical studies on Clostridium difficile infection, inflammatory bowel disease and irritable bowel syndrome have stimulated the expansion of possible indications in which FMT might represent a game changing approach. Microbial dysbiosis was shown in a number of non-gastrointestinal disorders. Moreover, FMT was proven to be effective in therapy of numerous animal models of disease. However, only a proportion of these disorders have been addressed in clinical studies using FMT. These include obesity, non-alcoholic fatty liver disease, cardiovascular inflammation and neurological disorders such as autism, depression and Parkinson's disease. Results from preclinical and clinical studies also outlined possible molecular mechanisms that contribute to alleviation of the disease. These range from increasing the circulating levels of microbial metabolites (trimethylamine N-oxide, lipopolysaccharide, short chain fatty acids) to stimulation of the enteric nervous system. Several methodological shortcomings are still to be addressed; however, positive results of the clinical studies indicate that further investigation of FMT as a therapeutic tool for non-gastrointestinal disorders can be expected in upcoming years.
Collapse
Affiliation(s)
- Robert Liptak
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Emergency Department, University Hospital in Bratislava, Bratislava, Slovakia
| | - Barbora Gromova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
44
|
Franco-Juárez B, Gómez-Manzo S, Hernández-Ochoa B, Cárdenas-Rodríguez N, Arreguin-Espinosa R, Pérez de la Cruz V, Ortega-Cuellar D. Effects of High Dietary Carbohydrate and Lipid Intake on the Lifespan of C. elegans. Cells 2021; 10:cells10092359. [PMID: 34572007 PMCID: PMC8465757 DOI: 10.3390/cells10092359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Health and lifespan are influenced by dietary nutrients, whose balance is dependent on the supply or demand of each organism. Many studies have shown that an increased carbohydrate–lipid intake plays a critical role in metabolic dysregulation, which impacts longevity. Caenorhabditis elegans has been successfully used as an in vivo model to study the effects of several factors, such as genetic, environmental, diet, and lifestyle factors, on the molecular mechanisms that have been linked to healthspan, lifespan, and the aging process. There is evidence showing the causative effects of high glucose on lifespan in different diabetic models; however, the precise biological mechanisms affected by dietary nutrients, specifically carbohydrates and lipids, as well as their links with lifespan and longevity, remain unknown. Here, we provide an overview of the deleterious effects caused by high-carbohydrate and high-lipid diets, as well as the molecular signals that affect the lifespan of C. elegans; thus, understanding the detailed molecular mechanisms of high-glucose- and lipid-induced changes in whole organisms would allow the targeting of key regulatory factors to ameliorate metabolic disorders and age-related diseases.
Collapse
Affiliation(s)
- Berenice Franco-Juárez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, UNAM, Ciudad de México 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Ciudad de México 14269, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico
- Correspondence: ; Tel.: +52-55-1084-0900
| |
Collapse
|
45
|
Basu S, Liu C, Zhou XK, Nishiguchi R, Ha T, Chen J, Johncilla M, Yantiss RK, Montrose DC, Dannenberg AJ. GLUT5 is a determinant of dietary fructose-mediated exacerbation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2021; 321:G232-G242. [PMID: 34133236 DOI: 10.1152/ajpgi.00059.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Western diet has been suggested to contribute to the rising incidence of inflammatory bowel diseases. This has led to the hypothesis that fructose, a component of the Western diet, could play a role in the pathogenesis of inflammatory bowel diseases. A high-fructose diet is known to exacerbate experimental colitis. This study tested whether the expression of GLUT5, the fructose transporter, is a determinant of the severity of experimental colitis during elevated fructose consumption and whether ileal inflammation is associated with altered GLUT5 expression in Crohn's disease. Studies in genetically engineered mice showed that in comparison to Glut5+/+ mice, feeding a 15 kcal% fructose diet to Glut5-/- mice led to worse dextran sodium sulfate (DSS)-induced colitis. This effect was associated with elevated levels of colonic fructose and a shift in the fecal microbiota in Glut5-/- mice. Importantly, treatment with broad-spectrum antibiotics protected against the worsening of colitis mediated by dietary fructose in Glut5-/- mice. Gene expression analysis revealed that GLUT5 levels are reduced in the intestines of patients with ileal Crohn's disease. Moreover, levels of GLUT5 negatively correlated with expression of proinflammatory mediators in these samples. Collectively, these results demonstrate that dietary constituent (fructose)-host gene (GLUT5) interactions can shape the colonic microbiota, thereby impacting the severity of colitis.NEW & NOTEWORTHY This study provides the first evidence that reduced levels of GLUT5, the fructose transporter, worsen experimental colitis upon fructose feeding, an effect mediated by changes in the gut microbiota. Moreover, GLUT5 expression is reduced in Crohn's ileitis. Overall, these findings demonstrate the importance of interactions between dietary fructose and host GLUT5 as determinants of both the composition of colonic microbiota and severity of experimental colitis.
Collapse
Affiliation(s)
- Srijani Basu
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Catherine Liu
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | | | - Taehoon Ha
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | - Justin Chen
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Melanie Johncilla
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Rhonda K Yantiss
- Department of Pathology & Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | |
Collapse
|
46
|
Gamil NMB, El Agaty SM, Megahed GK, Mansour RS, Abdel-Latif MS. Reversion to regular diet with alternate day fasting can cure grade-I non-alcoholic fatty liver disease (NAFLD) in high-fructose-intake-associated metabolic syndrome. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00128-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is an emerging global health problem that accompanied the obesity epidemic and is considered as the hepatic component of metabolic syndrome (MetS). Modification of lifestyle of MetS patients remains the focus to reverse and prevent progression of hepatic steatosis to NAFLD and its worsening to severe forms. The present study investigates the possible curability of metabolic syndrome -associated grade-1 NAFLD merely by alternate day fasting with or without reversion to regular diet in adult male rats. The present study was performed on 66 local strain male rats aged (6–10 m.) distributed randomly into C group (n = 12), on regular rat diet; and M group (n = 54) on high fructose- intake. On the 8th week, then rats were subjected to measurement of BW, BMI, WC, FBG, IPGTT, HDL-C, TGs, and liver histopathology, to include MetS rats randomly into four experimental groups for 4 weeks as follows: MS (n = 14); MSRD (n = 12); MSF (n = 13); and MSRDF (n = 12). On the 12th week, all rats were subjected to measurements of BW, BMI, WC, LW, LW/BW, VFW, VFW/BW, FBG, IPGTT, Ins., HOMA-IR, HbA1C, TGs, TC, LDL-C, HDL-C, CRP, Alb., bilirubin, ALT, L-MDA, and liver histopathology.
Results
On the 8th week, M group developed MerS and grade-I NAFLD with score-4 hepatosteatosis (69%). On the 12th week, MS group had grade-1 NAFLD with score-4 hepatosteatosis (82%) with significantly increased Ins., HOMA-IR, HDL-C, LW, LW/BW, L-MDA, ALT, CRP, and significantly decreased Alb. than C rats. Both MSRD and MSF groups had grade-1 NAFLD with score-3 hepatosteatosis (42%) with significantly decreased Ins., HOMA-IR, TC, LDL-C, LW, LW/BW, L-MDA, ALT, CRP, and significantly increased HDL-C and Alb. than MS group. MSRDF rats showed cure of grade-1 NAFLD and significantly decreased LW than other groups and normalized HOMA-IR, HbA1C TC, LDL-C, ALT, and CRP.
Conclusion
One month of alternate-day fasting and regular rat diet could cure grade-I NAFLD associated with Mets due to high fructose intake possibly by attenuating metabolic disorders. These two interventions might be recommended in the management of MetS patients with grade 1-NAFLD disease.
Collapse
|
47
|
Gunawan S, Aulia A, Soetikno V. Development of rat metabolic syndrome models: A review. Vet World 2021; 14:1774-1783. [PMID: 34475697 PMCID: PMC8404106 DOI: 10.14202/vetworld.2021.1774-1783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) has become a global problem. With the increasing prevalence of MetS worldwide, understanding its pathogenesis and treatment modalities are essential. Animal models should allow an appropriate representation of the clinical manifestations of human conditions. Rats are the most commonly used experimental animals for the study. The development of a proper MetS model using rats will contribute to the successful application of research findings to the clinical setting. Various intervention methods are used to induce MetS through diet induction with various compositions, chemicals, or a combination of both. This review will provide a comprehensive overview of several studies on the development of rat MetS models, along with the characteristics of the clinical manifestations resulting from each study.
Collapse
Affiliation(s)
- Shirly Gunawan
- Department of Pharmacology, Faculty of Medicine, Universitas Tarumanagara, Jakarta, Indonesia
- Doctoral Programme in Biomedical Science Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
48
|
Cao Y, Ren G, Zhang Y, Qin H, An X, Long Y, Chen J, Yang L. A new way for punicalagin to alleviate insulin resistance: regulating gut microbiota and autophagy. Food Nutr Res 2021; 65:5689. [PMID: 34262422 PMCID: PMC8254469 DOI: 10.29219/fnr.v65.5689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Background Insulin resistance, defined as a diminished ability to respond to the stimulation of insulin, is the main line for a variety of metabolic-related diseases. Punicalagin (PU), a hydrolyzable tannin of pomegranate juice, exhibits multiple biological properties, including anti-oxidant, anti-cancer and anti-inflammatory activities. Objective This research study aimed at determining the protective effect of PU on insulin resistance and to uncover the underlying mechanism based on the gut microbiota, IKKβ/NF-κB pathway, and autophagy. Design An insulin resistance animal model was established using C57BL/6 mice fed with a high-fat diet (HFD) for 8 weeks. The model included two groups continuing a HFD for 12 weeks with or without administering via gavage with PU 20 mg/kg/day. Changes in fasting plasma glucose levels, fasting serum insulin levels, glucose and insulin tolerance, glycolipid metabolism, gut microbiota composition (16S rRNA gene sequencing), inflammatory responses, and autophagy in the liver were evaluated. Body weight gain, glycolipid metabolic disorder, liver injury, as well as systemic and hepatic insulin sensitivity, were significantly attenuated after supplementing with PU. Results This research study revealed that PU alleviated HFD-induced glucose and lipid disorders, liver injury and insulin resistance; decreased the Firmicutes/Bacteroides ratio, decreased the abundance of Coprococcus and Anaerotruncus, and increased Rikenellaceae; and decreased serum and liver tumor necrosis factor-alpha and interleukin-1β levels, inhibited liver IKKβ and NF-κB phosphorylation; and increased liver autophagy-related proteins LC3-II, P62, and Beclin1, and increased the number of liver autophagosomes. Conclusion PU can improve HFD-induced insulin resistance, improved liver glucose and lipid metabolism disorder and liver injury, and the potential mechanism is that PU inhibited the IKKβ/NF-κB inflammatory pathway by regulating gut microbiota homeostasis and up-regulating liver autophagy activity.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Guofeng Ren
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yahui Zhang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xin An
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lina Yang
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
49
|
Alemán JO, Henderson WA, Walker JM, Ronning A, Jones DR, Walter PJ, Daniel SG, Bittinger K, Vaughan R, MacArthur R, Chen K, Breslow JL, Holt PR. Excess dietary fructose does not alter gut microbiota or permeability in humans: A pilot randomized controlled study. J Clin Transl Sci 2021; 5:e143. [PMID: 34422323 PMCID: PMC8358846 DOI: 10.1017/cts.2021.801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver disease that accompanies obesity and the metabolic syndrome. Excess fructose consumption can initiate or exacerbate NAFLD in part due to a consequence of impaired hepatic fructose metabolism. Preclinical data emphasized that fructose-induced altered gut microbiome, increased gut permeability, and endotoxemia play an important role in NAFLD, but human studies are sparse. The present study aimed to determine if two weeks of excess fructose consumption significantly alters gut microbiota or permeability in humans. METHODS We performed a pilot double-blind, cross-over, metabolic unit study in 10 subjects with obesity (body mass index [BMI] 30-40 mg/kg/m2). Each arm provided 75 grams of either fructose or glucose added to subjects' individual diets for 14 days, substituted isocalorically for complex carbohydrates, with a 19-day wash-out period between arms. Total fructose intake provided in the fructose arm of the study totaled a mean of 20.1% of calories. Outcome measures included fecal microbiota distribution, fecal metabolites, intestinal permeability, markers of endotoxemia, and plasma metabolites. RESULTS Routine blood, uric acid, liver function, and lipid measurements were unaffected by the fructose intervention. The fecal microbiome (including Akkermansia muciniphilia), fecal metabolites, gut permeability, indices of endotoxemia, gut damage or inflammation, and plasma metabolites were essentially unchanged by either intervention. CONCLUSIONS In contrast to rodent preclinical findings, excess fructose did not cause changes in the gut microbiome, metabolome, and permeability as well as endotoxemia in humans with obesity fed fructose for 14 days in amounts known to enhance NAFLD.
Collapse
Affiliation(s)
- José O. Alemán
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
- New York University Langone Health Metabolomics Core Resource Laboratory, New York, NY, USA
| | - Wendy A. Henderson
- Institute for Collaboration on Health, Intervention and Policy, University of Connecticut, Storrs, CT, USA
| | - Jeanne M. Walker
- Clinical Research, The Rockefeller University Hospital, New York, NY, USA
| | - Andrea Ronning
- Bionutrition, The Rockefeller University Hospital, New York, NY, USA
| | - Drew R. Jones
- New York University Langone Health Metabolomics Core Resource Laboratory, New York, NY, USA
| | - Peter J. Walter
- NIDDK Clinical Mass Spectrometry Core, National Institutes of Health, Bethesda, MD, USA
| | - Scott G. Daniel
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyle Bittinger
- PennCHOP Microbiome Program, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roger Vaughan
- Biostatistics, The Rockefeller University, New York, NY, USA
| | - Robert MacArthur
- Research Pharmacy, The Rockefeller University Hospital, New York, NY, USA
| | - Kun Chen
- Institute for Collaboration on Health, Intervention and Policy, University of Connecticut, Storrs, CT, USA
| | - Jan L. Breslow
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
| | - Peter R. Holt
- Laboratory of Biochemical Genetics and Metabolism, Rockefeller University, New York, NY, USA
| |
Collapse
|
50
|
Mazzoli A, Gatto C, Crescenzo R, Cigliano L, Iossa S. Prolonged Changes in Hepatic Mitochondrial Activity and Insulin Sensitivity by High Fructose Intake in Adolescent Rats. Nutrients 2021; 13:nu13041370. [PMID: 33921866 PMCID: PMC8073121 DOI: 10.3390/nu13041370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Persistence of damage induced by unhealthy diets during youth has been little addressed. Therefore, we investigated the impact of a short-term fructose-rich diet on liver metabolic activity in adolescent rats and the putative persistence of alterations after removing fructose from the diet. Adolescent rats were fed a fructose-rich diet for three weeks and then switched to a control diet for further three weeks. Body composition and energy balance were not affected by fructose-rich diet, while increased body lipids and lipid gain were found after the rescue period. Switching to a control diet reversed the upregulation of plasma fructose, uric acid, lipocalin, and haptoglobin, while plasma triglycerides, alanine aminotransferase, lipopolysaccharide, and tumor necrosis factor alpha remained higher. Hepatic steatosis and ceramide were increased by fructose-rich diet, but reversed by returning to a control diet, while altered hepatic response to insulin persisted. Liver fatty acid synthase and stearoyl-CoA desaturase (SCD) activities were upregulated by fructose-rich diet, and SCD activity remained higher after returning to the control diet. Fructose-induced upregulation of complex II-driven mitochondrial respiration, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, and peroxisome proliferator activated receptor α also persisted after switching to control diet. In conclusion, our results show prolonged fructose-induced dysregulation of liver metabolic activity.
Collapse
|