1
|
Rybicka I, Kaźmierczak Z. The human phageome: niche-specific distribution of bacteriophages and their clinical implications. Appl Environ Microbiol 2025:e0178824. [PMID: 40237489 DOI: 10.1128/aem.01788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages (phages) play a crucial role in shaping the composition and diversity of the human microbiome across various body niches. Recent advancements in high-throughput sequencing technologies have enabled comprehensive analysis of the human phageome in different body sites. This review comprehensively analyzes phage populations across major human body niches, examining their distribution and dynamics through recent metagenomic discoveries. We explore how phage-bacteria interactions within different body sites contribute to homeostasis and disease development. Emerging evidence demonstrates that phageome perturbations can serve as early indicators of various disorders, particularly in the gut microbiome. Understanding these complex microbial interactions offers promising opportunities for developing novel diagnostic markers and therapeutic approaches. However, the causal relationship between phages, bacteria, and disease development remains unclear. Further research is needed to elucidate the role of phages in human health and disease and to explore their potential as diagnostic or therapeutic tools. Understanding the intricate interactions between phages, bacteria, and the human host is crucial for unraveling the complexities of the human microbiome and its impact on health and disease.
Collapse
Affiliation(s)
- Izabela Rybicka
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Laboratory of Phage Molecular Biology, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
- Faculty of Medicine, Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
2
|
Safarchi A, Al-Qadami G, Tran CD, Conlon M. Understanding dysbiosis and resilience in the human gut microbiome: biomarkers, interventions, and challenges. Front Microbiol 2025; 16:1559521. [PMID: 40104586 PMCID: PMC11913848 DOI: 10.3389/fmicb.2025.1559521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The healthy gut microbiome is important in maintaining health and preventing various chronic and metabolic diseases through interactions with the host via different gut-organ axes, such as the gut-brain, gut-liver, gut-immune, and gut-lung axes. The human gut microbiome is relatively stable, yet can be influenced by numerous factors, such as diet, infections, chronic diseases, and medications which may disrupt its composition and function. Therefore, microbial resilience is suggested as one of the key characteristics of a healthy gut microbiome in humans. However, our understanding of its definition and indicators remains unclear due to insufficient experimental data. Here, we review the impact of key drivers including intrinsic and extrinsic factors such as diet and antibiotics on the human gut microbiome. Additionally, we discuss the concept of a resilient gut microbiome and highlight potential biomarkers including diversity indices and some bacterial taxa as recovery-associated bacteria, resistance genes, antimicrobial peptides, and functional flexibility. These biomarkers can facilitate the identification and prediction of healthy and resilient microbiomes, particularly in precision medicine, through diagnostic tools or machine learning approaches especially after antimicrobial medications that may cause stable dysbiosis. Furthermore, we review current nutrition intervention strategies to maximize microbial resilience, the challenges in investigating microbiome resilience, and future directions in this field of research.
Collapse
Affiliation(s)
- Azadeh Safarchi
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Ghanyah Al-Qadami
- Microbiome for One Systems Health FSP, CSIRO, Westmead, NSW, Australia
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Cuong D Tran
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| | - Michael Conlon
- Health and Biosecurity Research Unit, CSIRO, Adelaide, SA, Australia
| |
Collapse
|
3
|
de Oliveira Neto NF, Caixeta RAV, Zerbinati RM, Zarpellon AC, Caetano MW, Pallos D, Junges R, Costa ALF, Aitken-Saavedra J, Giannecchini S, Braz-Silva PH. The Emergence of Saliva as a Diagnostic and Prognostic Tool for Viral Infections. Viruses 2024; 16:1759. [PMID: 39599873 PMCID: PMC11599014 DOI: 10.3390/v16111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Saliva has emerged as a promising diagnostic fluid for viral infections, enabling the direct analysis of viral genetic material and the detection of infection markers such as proteins, metabolites, microRNAs, and immunoglobulins. This comprehensive review aimed to explore the use of saliva as a diagnostic tool for viral infections, emphasizing its advantages and limitations. Saliva stands out due to its simplicity and safety in collection, along with the convenience of self-collection without the need for healthcare supervision, while potentially being comparable to urine and blood in terms of effectiveness. Herein, we highlighted the significant potential of saliva in assessing viral loads and diagnosing viral infections, such as herpesviruses, HPV, PyV, TTV, SARS-CoV-2, and MPXV. The detection of viral shedding in saliva underscores its utility in early diagnosis, the monitoring of infection progression, and evaluating treatment responses. The non-invasive nature of saliva collection makes it an appealing alternative to more invasive methods, promoting better patient compliance and facilitating large-scale screening and surveillance. As such, we further highlight current evidence on the use of saliva as a prognostic tool. Although a significant amount of data is already available, further investigations are warranted to more comprehensively assess the added benefit from the utilization of salivary biomarkers in the clinics. Salivary biomarkers show great promise for the early detection and prevention of viral infection complications, potentially improving disease management and control at the population level. Integrating these non-invasive tools into routine clinical practice could enhance personalized healthcare strategies and patient outcomes. Future studies should focus on establishing standardization protocols, validating the accuracy of salivary diagnostics, and expanding clinical research to enhance the diagnostic and monitoring capabilities of salivary biomarkers.
Collapse
Affiliation(s)
- Nilson Ferreira de Oliveira Neto
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rafael Antônio Velôso Caixeta
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Rodrigo Melim Zerbinati
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| | - Amanda Caroline Zarpellon
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Matheus Willian Caetano
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
| | - Debora Pallos
- School of Dentistry, University of Santo Amaro, São Paulo 04743-030, Brazil;
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway;
| | - André Luiz Ferreira Costa
- Postgraduate Program in Dentistry, Cruzeiro do Sul University (UNICSUL), São Paulo 1506-000, Brazil;
| | - Juan Aitken-Saavedra
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago 3311, Chile;
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (N.F.d.O.N.); (R.A.V.C.); (A.C.Z.); (M.W.C.)
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil;
| |
Collapse
|
4
|
Banar M, Rokaya D, Azizian R, Khurshid Z, Banakar M. Oral bacteriophages: metagenomic clues to interpret microbiomes. PeerJ 2024; 12:e16947. [PMID: 38406289 PMCID: PMC10885796 DOI: 10.7717/peerj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Bacteriophages are bacterial viruses that are distributed throughout the environment. Lytic phages and prophages in saliva, oral mucosa, and dental plaque interact with the oral microbiota and can change biofilm formation. The interactions between phages and bacteria can be considered a portion of oral metagenomics. The metagenomic profile of the oral microbiome indicates various bacteria. Indeed, there are various phages against these bacteria in the oral cavity. However, some other phages, like phages against Absconditabacteria, Chlamydiae, or Chloroflexi, have not been identified in the oral cavity. This review gives an overview of oral bacteriophage and used for metagenomics. Metagenomics of these phages deals with multi-drug-resistant bacterial plaques (biofilms) in oral cavities and oral infection. Hence, dentists and pharmacologists should know this metagenomic profile to cope with predental and dental infectious diseases.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Dinesh Rokaya
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Reza Azizian
- Biomedical Innovation and Start-up student association (Biomino), Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
7
|
Peng R, Zhang Z, Qu Y, Chen W. The impact of Helicobacter pylori eradication with vonoprazan-amoxicillin dual therapy combined with probiotics on oral microbiota: a randomized double-blind placebo-controlled trial. Front Microbiol 2023; 14:1273709. [PMID: 37849923 PMCID: PMC10577438 DOI: 10.3389/fmicb.2023.1273709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Background Helicobacter pylori infection and eradication have been reported to cause dysbiosis of the oral microbiota. Probiotics are increasingly being used to maintain the balance of the oral microbiota. We aimed to investigate the effects of H. pylori infection, H. pylori eradication with vonoprazan-amoxicillin dual therapy, and probiotics supplementation on the oral microbiota. Methods H. pylori positive patients were randomly assigned to a vonoprazan-amoxicillin regimen plus probiotics (BtT group) or the placebo (PT group) for 14 days. H. pylori negative population served as normal controls. Tongue coating samples were collected from 60 H. pylori positive patients at three time points (before H. pylori eradication, after H. pylori eradication, and at confirmation of H. pylori infection cure) and 20 H. pylori negative subjects. 16S rRNA gene sequencing was used to analyze the oral microbiota. Results H. pylori was detected in the oral cavity in positive (34/60), negative (7/20), and eradicated (1/60) subjects using high-throughput sequencing. Compared with normal controls, H. pylori positive patients exhibited higher richness (p = 0.012) and comparable diversity (p = 0.075) of oral microbiota. Beta diversity and KEGG analysis showed oral flora composition and function differences in H. pylori positive and negative subjects. Alpha diversity dramatically decreased after H. pylori eradication and modestly increased with confirmation of H. pylori eradication. Beta diversity and LEfSe analysis revealed distinct structures, and KEGG analysis showed distinct signaling pathways of tongue coating flora at three time points. There was a significant reduction of Firmicutes and Lactobacillus after H. pylori erdication. The PT group and BtT group had identical compositional and functional differences of oral microbiota at three time points. Conclusion No substantial link existed between oral and stomach H. pylori, while removing gastric H. pylori helped eliminate oral H. pylori. H. pylori infection and vonoprazan-amoxicillin dual therapy affected oral microbiota diversity, structure, and function. H. pylori eradication demonstrated a suppressive impact on the proliferation of oral pathogens, specifically Firmicutes and Lactobacillus. Nevertheless, probiotics supplementation did not reduce the oral microbial disturbance caused by H. pylori eradication. Clinical trial registration https://www.chictr.org.cn/, identifiers CHICTR2200060023.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
8
|
Paietta EN, Kraberger S, Custer JM, Vargas KL, Espy C, Ehmke E, Yoder AD, Varsani A. Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA). Viruses 2023; 15:1821. [PMID: 37766228 PMCID: PMC10537320 DOI: 10.3390/v15091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Claudia Espy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
9
|
Tawfik SA, Azab M, Ramadan M, Shabayek S, Abdellah A, Al Thagfan SS, Salah M. The Eradication of Helicobacter pylori Was Significantly Associated with Compositional Patterns of Orointestinal Axis Microbiota. Pathogens 2023; 12:832. [PMID: 37375522 DOI: 10.3390/pathogens12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is significantly linked to various diseases that seriously impact human health, such as gastric ulcers, chronic gastritis and gastric adenocarcinoma. METHODS The compositional shifts in bacterial communities of the orointestinal axis were surveyed pre/post-eradication of H. pylori. In total, 60 samples, including stool and salivary specimens, were collected from 15 H. pylori-positive individuals (HPP) before beginning and 2 months after receiving the eradication therapy. The V3-V4 regions of the 16S rRNA gene were sequenced using MiSeq. RESULTS Overall, oral microbiomes were collectively more diverse than the gut microbiomes (Kruskal-Wallis; p = 3.69 × 10-5). Notably, the eradication of H. pylori was associated with a significant reduction in the bacterial diversity along the orointestinal axis (Wilcoxon rank sum test; p = 6.38 × 10-3). Interestingly, the oral microbiome of HPP showed a positive correlation between Proteobacteria and Fusobacteria, in addition to a significant predominance of Streptococcus, in addition to Eubacterium_eligens, Haemophilus, Ruminococcaceae, Actinomyces and Staphylococcus. On the other hand, Fusobacterium, Veillonella, Catenibacterium, Neisseria and Prevotella were significantly enriched upon eradication of H. pylori. Generally, Bacteroidetes and Fusobacteria positively coexisted during H. pylori infection along the orointestinal axis (r = 0.67; p = 0.0006). The eradication of H. pylori was positively linked to two distinctive orotypes (O3 and O4). Orotype O4 was characterized by a robust abundance of Veillonella and Fusobacteria. The gut microbiomes during H. pylori infection showed a remarkable predominance of Clostridium_sensu_stricto_1 and Escherichia_Shigella. Likewise, Bifidobacterium and Faecalibacterium were significantly enriched upon eradication of H. pylori. CONCLUSIONS Finally, the impact of eradication therapy clearly existed on the representation of certain genera, especially in the oral microbiome, which requires particular concern in order to counteract and limit their subsequent threats.
Collapse
Affiliation(s)
- Sally Ali Tawfik
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ali Abdellah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sultan S Al Thagfan
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munaearah 42353, Saudi Arabia
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
10
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
11
|
Ottmann M. [These viruses that inhabit and visit us: The human virome]. Med Sci (Paris) 2022; 38:1028-1038. [PMID: 36692282 DOI: 10.1051/medsci/2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in new sequencing technologies have opened the way to the deciphering of human virome. So far, human virome is defined as the complete list of viruses found in human body. Those viruses could be endogenous, prokaryotic, archaeal and eukaryotic. In addition, each compartment of the human body constitutes a different microenvironment with its own virome. Viral infections can be categorized according to the outcome of the acute phase and until recently, only symptomatic and pathological infections were studied. It is now well established that a healthy person has an extremely diverse virome. This review summarizes the current state of our knowledge and also proposes another classification of the human virome based on principles of ecology.
Collapse
Affiliation(s)
- Michèle Ottmann
- Centre international de recherche en infectiologie (CIRI), université Claude Bernard-Lyon 1, université de Lyon, Inserm U1111 - CNRS UMR 5308 - ENS, Laboratoire de virologie et pathologies humaines, Faculté de médecine RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
12
|
Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol 2022; 20:707-720. [PMID: 35906422 DOI: 10.1038/s41579-022-00768-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
Associations between age and the human microbiota are robust and reproducible. The microbial composition at several body sites can predict human chronological age relatively accurately. Although it is largely unknown why specific microorganisms are more abundant at certain ages, human microbiota research has elucidated a series of microbial community transformations that occur between birth and death. In this Review, we explore microbial succession in the healthy human microbiota from the cradle to the grave. We discuss the stages from primary succession at birth, to disruptions by disease or antibiotic use, to microbial expansion at death. We address how these successions differ by body site and by domain (bacteria, fungi or viruses). We also review experimental tools that microbiota researchers use to conduct this work. Finally, we discuss future directions for studying the microbiota's relationship with age, including designing consistent, well-powered, longitudinal studies, performing robust statistical analyses and improving characterization of non-bacterial microorganisms.
Collapse
Affiliation(s)
- Cameron Martino
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Hazel Dilmore
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA, USA
| | - Zachary M Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica L Metcalf
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dilip Jeste
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Sam and Rose Stein Institute for Research on Aging, University of California, San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Paediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
14
|
Moltzau Anderson J, Lachnit T, Lipinski S, Falk-Paulsen M, Rosenstiel P. Impact of antibiotic perturbation on fecal viral communities in mice. G3 (BETHESDA, MD.) 2022; 13:6839982. [PMID: 36413074 PMCID: PMC9836353 DOI: 10.1093/g3journal/jkac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Viruses and bacteriophages have a strong impact on intestinal barrier function and the composition and functional properties of commensal bacterial communities. Shifts of the fecal virome might be involved in human diseases, including inflammatory bowel disease (IBD). Loss-of-function variants in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene are associated with an increased risk of developing Crohn's disease, a subtype of human chronic IBD, where specific changes in fecal viral communities have also been described. To improve our understanding of the dynamics of the enteric virome, we longitudinally characterized the virome in fecal samples from wild-type C57BL/6J and NOD2 knock-out mice in response to an antibiotic perturbation. Sequencing of virus-like particles demonstrated both a high diversity and high interindividual variation of the murine fecal virome composed of eukaryotic viruses and bacteriophages. Antibiotics had a significant impact on the fecal murine virome. Viral community composition only partially recovered in the observation period (10 weeks after cessation of antibiotics) irrespective of genotype. However, compositional shifts in the virome and bacteriome were highly correlated, suggesting that the loss of specific phages may contribute to prolonged dysregulation of the bacterial community composition. We suggest that therapeutic interference with the fecal virome may represent a novel approach in microbiota-targeted therapies.
Collapse
Affiliation(s)
- Jacqueline Moltzau Anderson
- Present address for Jacqueline Moltzau Anderson: Department of Medicine, University of California San Francisco, 94117 San Francisco, CA, USA
| | | | - Simone Lipinski
- Present address for Simone Lipinski: University Cancer Center Schleswig-Holstein, University Medical Center Campus Kiel, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, 24098 Kiel, Germany
| | - Philip Rosenstiel
- Corresponding author: Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University (CAU) Kiel, Rosalind-Franklin-Str. 12, Kiel 24105, Germany.
| |
Collapse
|
15
|
Andersson T, Makenga G, Francis F, Minja DTR, Overballe-Petersen S, Tang MHE, Fuursted K, Baraka V, Lood R. Enrichment of antibiotic resistance genes within bacteriophage populations in saliva samples from individuals undergoing oral antibiotic treatments. Front Microbiol 2022; 13:1049110. [PMID: 36425042 PMCID: PMC9678940 DOI: 10.3389/fmicb.2022.1049110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Spread of antibiotic resistance is a significant challenge for our modern health care system, and even more so in developing countries with higher prevalence of both infections and resistant bacteria. Faulty usage of antibiotics has been pinpointed as a driving factor in spread of resistant bacteria through selective pressure. However, horizontal gene transfer mediated through bacteriophages may also play an important role in this spread. In a cohort of Tanzanian patients suffering from bacterial infections, we demonstrate significant differences in the oral microbial diversity between infected and non-infected individuals, as well as before and after oral antibiotics treatment. Further, the resistome carried both by bacteria and bacteriophages vary significantly, with blaCTX-M1 resistance genes being mobilized and enriched within phage populations. This may impact how we consider spread of resistance in a biological context, as well in terms of treatment regimes.
Collapse
Affiliation(s)
- Tilde Andersson
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Geofrey Makenga
- National Institute for Medical Research, Tanga Center, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Center, Tanzania
- Karolinska Institutet, Solna, Sweden
| | | | | | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Bacterial Reference Center, Statens Serum Institute, Copenhagen, Denmark
| | - Vito Baraka
- National Institute for Medical Research, Tanga Center, Tanzania
| | - Rolf Lood
- Department of Clinical Sciences, Lund University, Lund, Sweden
- *Correspondence: Rolf Lood,
| |
Collapse
|
16
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Girija AS, Ganesh PS. Functional biomes beyond the bacteriome in the oral ecosystem. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:217-226. [PMID: 35814739 PMCID: PMC9260289 DOI: 10.1016/j.jdsr.2022.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Selective constraint and pressures upon the host tissues often signifies a beneficial microbiome in any species. In the context of oral microbiome this displays a healthy microbial cosmos resisting the colonization and helps in rendering protection. This review highlights the endeavors of the oral microbiome beyond the bacteriome encompassing virome, mycobiome, protozoa and archaeomes in maintaining the oral homeostasis in health and disease. Scientific data based on the peer-reviewed publications on the microbial communities of the oral microbiome were selected and collated from the scientific database collection sites of web of science (WOS), pubmed central, Inspec etc., from 2010 to 2021 using the search key words like oral microbiome, oral microbiota, oral virome, oral bacteriome, oral mycobiome and oral archaeome. Data excluded were from conference proceedings, abstracts and book chapters. The oral homeostasis in both the health and disease conditions, mostly is balanced by the unrevealed virome, mycobiome, oral protozoa and archaeome. The review documents the need to comprehend the diversity that prevails among the kingdoms in order to determine the specific role played by each domain. Oral microbiome is also a novel research arena to develop drug and targeted therapies to treat various oro-dental infections.
Collapse
|
18
|
Guo R, Li S, Zhang Y, Zhang Y, Wang G, Ullah H, Ma Y, Yan Q. Dysbiotic Oral and Gut Viromes in Untreated and Treated Rheumatoid Arthritis Patients. Microbiol Spectr 2022; 10:e0034822. [PMID: 36040159 PMCID: PMC9603985 DOI: 10.1128/spectrum.00348-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is influenced by oral and gut bacteria; however, much less is known about the relationship between oral or gut viromes and RA. Here, we performed whole-oral- and whole-gut-virome analyses based on shotgun sequencing of 497 samples. A comparative analysis of the oral and gut viromes in healthy controls and untreated and treated RA patients was performed, and system interaction networks among viruses, bacteria, and RA-associated clinical indices were constructed to address the potential relationship between the virome and RA by principal-coordinate analysis, distance-based redundancy analysis, permutational multivariate analysis, Spearman correlation coefficient analysis, and random-forest model analysis. The results showed that the viromes could be profiled in dental plaque, saliva, and fecal samples, among which saliva had the highest within-sample diversity. Importantly, significantly different diversities and compositions of the oral (i.e., dental plaque and saliva) viromes were observed not only between RA patients and healthy controls but also between untreated and treated RA patients, yet there were relatively minor differences in the gut viromes. Furthermore, to understand how these viruses affected the bacteriome, a virus-bacterium interaction network was constructed from dental plaque, saliva, and fecal samples of RA patients. Additionally, some RA-associated oral taxa, including Lactococcus phage (vOTU70), Bacteroides vulgatus, Lactococcus lactis, Escherichia coli, and Neisseria elongata, were correlated with the RA-related clinical indices. Whole-virome analysis illustrated the potential role of the oral and gut viromes in affecting our body either directly or via bacteria, which characterized neglected and new candidates contributing to the development of RA. IMPORTANCE Our results demonstrated community variation among dental plaque, saliva, and fecal viromes. In oral and gut samples from untreated and treated RA patients, the perturbance of viral composition and the correlation network of microbes and RA-associated clinical indices might be involved in the pathogenicity of RA. The findings in this study expand the knowledge of the potential role of oral and gut viral communities in the development of RA and may contribute to research on correlations between viruses and other diseases.
Collapse
Affiliation(s)
- Ruochun Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yu Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Manrique P, Zhu Y, van der Oost J, Herrema H, Nieuwdorp M, de Vos WM, Young M. Gut bacteriophage dynamics during fecal microbial transplantation in subjects with metabolic syndrome. Gut Microbes 2022; 13:1-15. [PMID: 33794724 PMCID: PMC8023239 DOI: 10.1080/19490976.2021.1897217] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabolic Syndrome (MetS) is a growing public health concern worldwide. Individuals with MetS have an increased risk for cardiovascular (CV) disease and type 2 diabetes (T2D). These diseases - in part preventable with the treatment of MetS - increase the chances of premature death and pose a great economic burden to health systems. A healthy gut microbiota is associated with a reduction in MetS, T2D, and CV disease. Treatment of MetS with fecal microbiota transplantation (FMT) can be effective, however, its success rate is intermediate and difficult to predict. Because bacteriophages significantly affect the microbiota membership and function, the aim of this pilot study was to explore the dynamics of the gut bacteriophage community after FMT in MetS subjects. We performed a longitudinal study of stool bacteriophages from healthy donors and MetS subjects before and after FMT treatment. Subjects were assigned to either a control group (self-stool transplant, n = 3) or a treatment group (healthy-donor-stool transplant; n-recipients = 6, n-donors = 5). Stool samples were collected over an 18-week period and bacteriophage-like particles were purified and sequenced. We found that FMT from healthy donors significantly alters the gut bacteriophage community. Subjects with better clinical outcome clustered closer to the heathy donor group, suggesting that throughout the treatment, their bacteriophage community was more similar to healthy donors. Finally, we identified bacteriophage groups that could explain these differences and we examined their prevalence in individuals from a larger cohort of MetS FMT trial.Trial information- http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2705; NTR 2705.
Collapse
Affiliation(s)
- Pilar Manrique
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| | - Yifan Zhu
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, AZ Amsterdam, The Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,RPU Human Microbiology, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Mark Young
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA,CONTACT Mark Young Department of Plant Sciences & Plant Pathology, Montana State University, P.O. Box 173150, Bozeman, MT59717-3150, USA
| |
Collapse
|
20
|
Lawrence D, Campbell DE, Schriefer LA, Rodgers R, Walker FC, Turkin M, Droit L, Parkes M, Handley SA, Baldridge MT. Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes 2022; 14:2029673. [PMID: 35130125 PMCID: PMC8824198 DOI: 10.1080/19490976.2022.2029673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
As our understanding of the importance of the human microbiota in health and disease grows, so does our need to carefully resolve and delineate its genomic content. 16S rRNA gene-based analyses yield important insights into taxonomic composition, and metagenomics-based approaches reveal the functional potential of microbial communities. However, these methods generally fail to directly link genetic features, including bacterial genes and mobile genetic elements, to each other and to their source bacterial genomes. Further, they are inadequate to capture the microdiversity present within a genus, species, or strain of bacteria within these complex communities. Here, we present a method utilizing fluorescence-activated cell sorting for isolation of single bacterial cells, amplifying their genomes, screening them by 16S rRNA gene analysis, and selecting cells for genomic sequencing. We apply this method to both a cultured laboratory strain of Escherichia coli and human stool samples. Our analyses reveal the capacity of this method to provide nearly complete coverage of bacterial genomes when applied to isolates and partial genomes of bacterial species recovered from complex communities. Additionally, this method permits exploration and comparison of conserved and variable genomic features between individual cells. We generate assemblies of novel genomes within the Ruminococcaceae family and the Holdemanella genus by combining several 16S rRNA gene-matched single cells, and report novel prophages and conjugative transposons for both Bifidobacterium and Ruminococcaceae. Thus, we demonstrate an approach for flow cytometric separation and sequencing of single bacterial cells from the human microbiota, which yields a variety of critical insights into both the functional potential of individual microbes and the variation among those microbes. This method definitively links a variety of conserved and mobile genomic features, and can be extended to further resolve diverse elements present in the human microbiota.
Collapse
Affiliation(s)
- Dylan Lawrence
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Forrest C. Walker
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marissa Turkin
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miles Parkes
- Division of Gastroenterology Addenbrooke’s Hospital and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Guo Y, Huang X, Sun X, Yu Y, Wang Y, Zhang B, Cao J, Wen S, Li Y, Wang X, Cai S, Xia W, Wei F, Duan J, Dong H, Guo S, Zhang F, Zheng D, Sun Z. The Underrated Salivary Virome of Men Who Have Sex With Men Infected With HIV. Front Immunol 2021; 12:759253. [PMID: 34925329 PMCID: PMC8674211 DOI: 10.3389/fimmu.2021.759253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Salivary virome is important for oral ecosystem, but there are few reports on people living with HIV. We performed metagenomic sequencing to compare composition and functional genes of salivary virobiota between one HIV-negative and four HIV-positive groups in which participants were all men who have sex with men (MSM) with different immunosuppression statuses (five samples per group) to find the evidence that salivary virobiota plays a role in the pathogenesis of oral disease. Acute-stage subjects achieved a positive result of HIV RNA, but HIV antibody negative or indeterminate, whereas individuals with mild, moderate, and severe immunosuppression exhibited CD4+ T-lymphocyte counts of at least 500, 200–499, and less than 200 cells/μL or opportunistic infection, respectively. The results showed the composition of salivary virus genera in subjects with mild immunosuppression was the most similar to that in healthy people, followed by that in the acute stage; under severe immunosuppression, virus genera were suppressed and more similar to that under moderate immunosuppression. Furthermore, abnormally high abundance of Lymphocryptovirus was particularly obvious in MSM with HIV infection. Analysis of KEGG Pathway revealed that Caulobacter cell cycle, which affects cell duplication, became shorter in HIV-positive subjects. It is worth noting that in acute-stage participants, protein digestion and absorption related to the anti-HIV-1 activity of secretory leukocyte protease inhibitor was increased. Moreover, in the severely immunosuppressed subjects, glutathione metabolism, which is associated with the activation of lymphocytes, was enhanced. Nevertheless, the ecological dysbiosis in HIV-positive salivary virobiota possibly depended on the changes in blood viral load, and salivary dysfunction of MSM infected with HIV may be related to CD4 counts. Ribonucleoside diphosphate reductase subunit M1 in purine metabolism was negatively correlated, though weakly, to CD4 counts, which may be related to the promotion of HIV-1 DNA synthesis in peripheral blood lymphocytes. 7-Cyano-7-deazaguanine synthase in folate biosynthesis was weakly positively correlated with HIV viral load, suggesting that this compound was produced excessively to correct oral dysfunction for maintaining normal cell development. Despite the limited number of samples, the present study provided insight into the potential role of salivary virome in the oral function of HIV infected MSM.
Collapse
Affiliation(s)
- Ying Guo
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xintong Sun
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yixi Yu
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Baojin Zhang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jie Cao
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wen
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuchen Li
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Siyu Cai
- Center for Clinical Epidemiology and Evidence-Based Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Xia
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junyi Duan
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haozhi Dong
- Department of Stomatology, Beijing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Shan Guo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Dongxiang Zheng
- Department of Stomatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zheng Sun
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Humphrey S, San Millán Á, Toll-Riera M, Connolly J, Flor-Duro A, Chen J, Ubeda C, MacLean RC, Penadés JR. Staphylococcal phages and pathogenicity islands drive plasmid evolution. Nat Commun 2021; 12:5845. [PMID: 34615859 PMCID: PMC8494744 DOI: 10.1038/s41467-021-26101-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Conjugation has classically been considered the main mechanism driving plasmid transfer in nature. Yet bacteria frequently carry so-called non-transmissible plasmids, raising questions about how these plasmids spread. Interestingly, the size of many mobilisable and non-transmissible plasmids coincides with the average size of phages (~40 kb) or that of a family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs, ~11 kb). Here, we show that phages and PICIs from Staphylococcus aureus can mediate intra- and inter-species plasmid transfer via generalised transduction, potentially contributing to non-transmissible plasmid spread in nature. Further, staphylococcal PICIs enhance plasmid packaging efficiency, and phages and PICIs exert selective pressures on plasmids via the physical capacity of their capsids, explaining the bimodal size distribution observed for non-conjugative plasmids. Our results highlight that transducing agents (phages, PICIs) have important roles in bacterial plasmid evolution and, potentially, in antimicrobial resistance transmission.
Collapse
Affiliation(s)
- Suzanne Humphrey
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | - John Connolly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alejandra Flor-Duro
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-FISABIO, 46020, Valencia, Spain
| | - John Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, Singapore
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-FISABIO, 46020, Valencia, Spain
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain
| | - R Craig MacLean
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, 46113, Spain.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Pennycook JH, Scanlan PD. Ecological and Evolutionary responses to Antibiotic Treatment in the Human Gut Microbiota. FEMS Microbiol Rev 2021; 45:fuab018. [PMID: 33822937 PMCID: PMC8498795 DOI: 10.1093/femsre/fuab018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The potential for antibiotics to affect the ecology and evolution of the human gut microbiota is well recognised and has wide-ranging implications for host health. Here, we review the findings of key studies that surveyed the human gut microbiota during antibiotic treatment. We find several broad patterns including the loss of diversity, disturbance of community composition, suppression of bacteria in the Actinobacteria phylum, amplification of bacteria in the Bacteroidetes phylum, and promotion of antibiotic resistance. Such changes to the microbiota were often, but not always, recovered following the end of treatment. However, many studies reported unique and/or contradictory results, which highlights our inability to meaningfully predict or explain the effects of antibiotic treatment on the human gut microbiome. This problem arises from variation between existing studies in three major categories: differences in dose, class and combinations of antibiotic treatments used; differences in demographics, lifestyles, and locations of subjects; and differences in measurements, analyses and reporting styles used by researchers. To overcome this, we suggest two integrated approaches: (i) a top-down approach focused on building predictive models through large sample sizes, deep metagenomic sequencing, and effective collaboration; and (ii) a bottom-up reductionist approach focused on testing hypotheses using model systems.
Collapse
Affiliation(s)
- Joseph Hugh Pennycook
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pauline Deirdre Scanlan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
24
|
Kullberg RF, Hugenholtz F, Brands X, Kinsella CM, Peters-Sengers H, Butler JM, Deijs M, Klein M, Faber DR, Scicluna BP, Van der Poll T, Van der Hoek L, Wiersinga WJ, Haak BW. Rectal bacteriome and virome signatures and clinical outcomes in community-acquired pneumonia: An exploratory study. EClinicalMedicine 2021; 39:101074. [PMID: 34611613 PMCID: PMC8478680 DOI: 10.1016/j.eclinm.2021.101074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background Bacterial intestinal communities interact with the immune system and may contribute to protection against community-acquired pneumonia (CAP). Intestinal viruses are closely integrated with these bacterial communities, yet the composition and clinical significance of these communities in CAP patients are unknown. The aims of this exploratory study were to characterise the composition of the rectal bacteriome and virome at hospital admission for CAP, and to determine if microbiota signatures correlate with clinical outcomes. Methods We performed a prospective observational cohort study in CAP patients, admitted to a university or community hospital in the Netherlands between October 2016 and July 2018, and controls. Rectal bacteriome and virome composition were characterised using 16S ribosomal RNA gene sequencing and virus discovery next-generation sequencing, respectively. Unsupervised multi-omics factor analysis was used to assess the co-variation of bacterial and viral communities, which served as primary predictor. The clinical outcomes of interest were the time to clinical stability and the length of hospital stay. Findings 64 patients and 38 controls were analysed. Rectal bacterial alpha (p = 0•0015) and beta diversity (r2 =0•023, p = 0•004) of CAP patients differed from controls. Bacterial and viral microbiota signatures correlated with the time to clinical stability (hazard ratio 0•43, 95% confidence interval 0•20-0•93, p = 0•032) and the length of hospital stay (hazard ratio 0•37, 95% confidence interval 0•17-0•81, p = 0•012), although only the latter remained significant following p-value adjustment for examining multiple candidate cut-points (p = 0•12 and p = 0•046, respectively). Interpretation This exploratory study provides preliminary evidence that intestinal bacteriome and virome signatures could be linked with clinical outcomes in CAP. Such exploratory data, when validated in independent cohorts, could inform the development of a microbiota-based diagnostic panel used to predict clinical outcomes in CAP. Funding Netherlands Organization for Scientific Research and Netherlands Organization for Health Research and Development.
Collapse
Affiliation(s)
- Robert F.J. Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
- Corresponding author.
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
| | - Xanthe Brands
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
| | - Cormac M. Kinsella
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
| | - Joe M. Butler
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Michelle Klein
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Daniël R. Faber
- Department of Internal Medicine, BovenIJ hospital, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom Van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lia Van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan W. Haak
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Meibergdreef 9, Room G2-130, Amsterdam 1105 AZ, the Netherlands
| |
Collapse
|
25
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
26
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
27
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
28
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Fernández L, Duarte AC, Rodríguez A, García P. The relationship between the phageome and human health: are bacteriophages beneficial or harmful microbes? Benef Microbes 2021; 12:107-120. [PMID: 33789552 DOI: 10.3920/bm2020.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the context of the global antibiotic resistance crisis, bacteriophages are increasingly becoming promising antimicrobial agents against multi-resistant bacteria. Indeed, a huge effort is being made to bring phage-derived products to the market, a process that will also require revising the current regulations in order to facilitate their approval. However, despite the evidence supporting the safety of phages for humans, the general public would still be reluctant to use 'viruses' for therapeutic purposes. In this scenario, we consider that it is important to discuss the role of these microorganisms in the equilibrium of the microbiota and how this relates to human health. To do that, this review starts by examining the role of phages as key players in bacterial communities (including those that naturally inhabit the human body), modulating the species composition and contributing to maintain a 'healthy' status quo. Additionally, in specific situations, e.g. an infectious disease, bacteriophages can be used as target-specific antimicrobials against pathogenic bacteria (phage therapy), while being harmless to the desirable microbiota. Apart from that, incipient research shows the potential application of these viruses to treat diseases caused by bacterial dysbiosis. This latter application would be comparable to the use of probiotics or prebiotics, since bacteriophages can indirectly improve the growth of beneficial bacteria in the gastrointestinal tract by removing undesirable competitors. On the other hand, possible adverse effects do not appear to be an impediment to promote phage therapy. Nonetheless, it is important to remember their potentially negative impact, mainly concerning their immunogenicity or their potential spread of virulence and antibiotic resistance genes, especially by temperate phages. Overall, we believe that phages should be largely considered beneficial microbes, although it is paramount not to overlook their potential risks.
Collapse
Affiliation(s)
- L Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A C Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - A Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - P García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.,DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
30
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Salvador R, Zhang A, Horai R, Caspi RR. Microbiota as Drivers and as Therapeutic Targets in Ocular and Tissue Specific Autoimmunity. Front Cell Dev Biol 2021; 8:606751. [PMID: 33614621 PMCID: PMC7893107 DOI: 10.3389/fcell.2020.606751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Autoimmune uveitis is a major cause of blindness in humans. Activation of retina-specific autoreactive T cells by commensal microbiota has been shown to trigger uveitis in mice. Although a culprit microbe and/or its immunogenic antigen remains to be identified, studies from inducible and spontaneous mouse models suggest the potential of microbiota-modulating therapies for treating ocular autoimmune disease. In this review, we summarize recent findings on the contribution of microbiota to T cell-driven, tissue-specific autoimmunity, with an emphasis on autoimmune uveitis, and analyze microbiota-altering interventions, including antibiotics, probiotics, and microbiota-derived metabolites (e.g., short-chain fatty acids), which have been shown to be effective in other autoimmune diseases. We also discuss the need to explore more translational animal models as well as to integrate various datasets (microbiomic, transcriptomic, proteomic, metabolomic, and other cellular measurements) to gain a better understanding of how microbiota can directly or indirectly modulate the immune system and contribute to the onset of disease. It is hoped that deeper understanding of these interactions may lead to more effective treatment interventions.
Collapse
Affiliation(s)
- Ryan Salvador
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy Zhang
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Abstract
The human body hosts vast microbial communities, termed the microbiome. Less well known is the fact that the human body also hosts vast numbers of different viruses, collectively termed the 'virome'. Viruses are believed to be the most abundant and diverse biological entities on our planet, with an estimated 1031 particles on Earth. The human virome is similarly vast and complex, consisting of approximately 1013 particles per human individual, with great heterogeneity. In recent years, studies of the human virome using metagenomic sequencing and other methods have clarified aspects of human virome diversity at different body sites, the relationships to disease states and mechanisms of establishment of the human virome during early life. Despite increasing focus, it remains the case that the majority of sequence data in a typical virome study remain unidentified, highlighting the extent of unexplored viral 'dark matter'. Nevertheless, it is now clear that viral community states can be associated with adverse outcomes for the human host, whereas other states are characteristic of health. In this Review, we provide an overview of research on the human virome and highlight outstanding recent studies that explore the assembly, composition and dynamics of the human virome as well as host-virome interactions in health and disease.
Collapse
|
33
|
Santiago-Rodriguez TM, Hollister EB. Potential Applications of Human Viral Metagenomics and Reference Materials: Considerations for Current and Future Viruses. Appl Environ Microbiol 2020; 86:e01794-20. [PMID: 32917759 PMCID: PMC7642086 DOI: 10.1128/aem.01794-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viruses are ubiquitous particles comprising genetic material that can infect bacteria, archaea, and fungi, as well as human and other animal cells. Given that determining virus composition and function in association with states of human health and disease is of increasing interest, we anticipate that the field of viral metagenomics will continue to expand and be applied in a variety of areas ranging from surveillance to discovery and will rely heavily upon the continued development of reference materials and databases. Information regarding viral composition and function readily translates into biological and clinical applications, including the rapid sequence identification of pathogenic viruses in various sample types. However, viral metagenomic approaches often lack appropriate standards and reference materials to enable cross-study comparisons and assess potential biases which can be introduced at the various stages of collection, storage, processing, and sequence analysis. In addition, implementation of appropriate viral reference materials can aid in the benchmarking of current and development of novel assays for virus identification, discovery, and surveillance. As the field of viral metagenomics expands and standardizes, results will continue to translate into diverse applications.
Collapse
|
34
|
da Costa AC, Moron AF, Forney LJ, Linhares IM, Sabino E, Costa SF, Mendes-Correa MC, Witkin SS. Identification of bacteriophages in the vagina of pregnant women: a descriptive study. BJOG 2020; 128:976-982. [PMID: 32970908 DOI: 10.1111/1471-0528.16528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the presence and identity of extracellular bacteriophage (phage) families, genera and species in the vagina of pregnant women. DESIGN Descriptive, observational cohort study. SETTING São Paulo, Brazil. POPULATION Pregnant women at 21-24 weeks' gestation. METHODS Vaginal samples from 107 women whose vaginal microbiome and pregnancy outcomes were previously determined were analysed for phages by metagenomic sequencing. MAIN OUTCOME MEASURES Identification of phage families, genera and species. RESULTS Phages were detected in 96 (89.7%) of the samples. Six different phage families were identified: Siphoviridae in 69.2%, Myoviridae in 49.5%, Microviridae in 37.4%, Podoviridae in 20.6%, Herelleviridae in 10.3% and Inviridae in 1.9% of the women. Four different phage families were present in 14 women (13.1%), three families in 20 women (18.7%), two families in 31 women (29.1%) and one family in 31 women (29.1%). The most common phage species detected were Bacillus phages in 48 (43.6%), Escherichia phages in 45 (40.9%), Staphylococcus phages in 40 (36.4%), Gokushovirus in 33 (30.0%) and Lactobacillus phages in 29 (26.4%) women. In a preliminary exploratory analysis, there were no associations between a particular phage family, the number of phage families present in the vagina or any particular phage species and either gestational age at delivery or the bacterial community state type present in the vagina. CONCLUSIONS Multiple phages are present in the vagina of most mid-trimester pregnant women. TWEETABLE ABSTRACT Bacteriophages are present in the vagina of most pregnant women.
Collapse
Affiliation(s)
- A C da Costa
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - A F Moron
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Obstetrics, Federal University of São Paulo, São Paulo, Brazil
| | - L J Forney
- Department of Biological Sciences and the Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, USA
| | - I M Linhares
- Department of Gynaecology and Obstetrics, University of São Paulo Medical School, São Paulo, Brazil
| | - E Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - S F Costa
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - M C Mendes-Correa
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - S S Witkin
- Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
35
|
Segal JP, Mullish BH, Quraishi MN, Iqbal T, Marchesi JR, Sokol H. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol 2020; 13:1756284820946904. [PMID: 32952613 PMCID: PMC7475788 DOI: 10.1177/1756284820946904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 02/04/2023] Open
Abstract
Faecal microbiota transplantation (FMT) is currently a recommended therapy for recurrent/refractory Clostridioides difficile infection (CDI). The success of FMT for CDI has led to interest in its therapeutic potential in many other disorders. The mechanisms that underpin the efficacy of FMT are not fully understood. Importantly, FMT remains a crucial treatment in managing CDI and understanding the mechanisms that underpin its success will be critical to improve its clinical efficacy, safety and usability. Furthermore, a deeper understanding of this may allow us to expose FMT's full potential as a therapeutic tool for other disease states. This review will explore the current understanding of the mechanisms underlying the efficacy of FMT across a variety of diseases.
Collapse
Affiliation(s)
- Jonathan P. Segal
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, South Wharf Rd, London W2 1NY, UK
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, UK
| | - Benjamin H. Mullish
- Departments of Gastroenterology and Hepatology, St Mary’s Hospital, Imperial College Healthcare NHS Trust, London, UK
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
| | - Mohammed N. Quraishi
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Tariq Iqbal
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Imperial College London, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, CRSA, AP-HP, Sorbonne Université, Saint Antoine Hospital, Paris, France
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
36
|
The Role of Rhizosphere Bacteriophages in Plant Health. Trends Microbiol 2020; 28:709-718. [DOI: 10.1016/j.tim.2020.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
37
|
Ji Y, Liang X, Lu H. Analysis of by high-throughput sequencing: Helicobacter pylori infection and salivary microbiome. BMC Oral Health 2020; 20:84. [PMID: 32197614 PMCID: PMC7333272 DOI: 10.1186/s12903-020-01070-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background There have been reports of Helicobacter pylori (H. pylori) in the oral cavity and it has been suggested that the oral cavity may be a reservoir for H. pylori reflux from the stomach. High-throughput sequencing was used to assess the structure and composition of oral microbiota communities in individuals with or without confirmed H. pylori infection. Methods Saliva samples were obtained from 34 H. pylori infected and 24 H. pylori uninfected subjects. Bacterial genomic DNA was extracted and examined by sequencing by amplification of the 16S rDNA V3-V4 hypervariable regions followed by bioinformatics analysis. Saliva sampling was repeated from 22 of the 34 H. pylori infected subjects 2 months after H. pylori eradication. Results High-quality sequences (2,812,659) clustered into 95,812 operational taxonomic units (OTUs; 97% identity). H. pylori was detected in the oral cavity in infected (12/34), uninfected (11/24) and eradicated (15/22) subjects by technique of high-throughput sequencing, occupying 0.0139% of the total sequences. Alpha diversity of H. pylori infected subjects was similar to that of uninfected subjects (Shannon: 1417.58 vs. 1393.60, p > 0.05, ACE: 1491.22 vs. 1465.97, p > 0.05, Chao 1: 1417.58 vs. 1393.60, p > 0.05, t-test). Eradication treatment decreased salivary bacterial diversity (Shannon, p = 0.015, ACE, p = 0.003, Chao 1, p = 0.002, t-test). Beta diversity analysis based on unweighted UniFrac distances showed that the salivary microbial community structure differed between H. pylori infected and uninfected subjects (PERMANOVAR, pseudo-F: 1.49, p = 0.033), as well as before and after H. pylori eradication (PERMANOVAR, pseudo-F: 3.34, p = 0.001). Using LEfSe analysis, 16 differentially abundant genera were defined between infected and uninfected subjects, 12 of which had a further alteration after successful eradication. Conclusions Our study using high-throughput sequencing showed that H. pylori was present commonly in the oral cavity with no clear relation to H. pylori infection of the stomach. Both H. pylori infection and eradication therapy caused alterations in community and structure of the oral microbiota. Trial registration clinicaltrials.gov, NCT03730766. Registered 2 Nov 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/ NCT03730766.
Collapse
Affiliation(s)
- Yingjie Ji
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths in both the USA and the world. Recent research has demonstrated the involvement of the gut microbiota in CRC development and progression. Microbial biomarkers of disease have focused primarily on the bacterial component of the microbiome; however, the viral portion of the microbiome, consisting of both bacteriophages and eukaryotic viruses, together known as the virome, has been lesser studied. Here we review the recent advancements in high-throughput sequencing (HTS) technologies and bioinformatics, which have enabled scientists to better understand how viruses might influence the development of colorectal cancer. We discuss the contemporary findings revealing modulations in the virome and their correlation with CRC development and progression. While a variety of challenges still face viral HTS detection in clinical specimens, we consider herein numerous next steps for future basic and clinical research. Clinicians need to move away from a single infectious agent model for disease etiology by grasping new, more encompassing etiological paradigms, in which communities of various microbial components interact with each other and the host. The reporting and indexing of patient health information, socioeconomic data, and other relevant metadata will enable identification of predictive variables and covariates of viral presence and CRC development. Altogether, the virome has a more profound role in carcinogenesis and cancer progression than once thought, and viruses, specific for either human cells or bacteria, are clinically relevant in understanding CRC pathology, patient prognosis, and treatment development.
Collapse
|
39
|
Schulfer A, Santiago-Rodriguez TM, Ly M, Borin JM, Chopyk J, Blaser MJ, Pride DT. Fecal Viral Community Responses to High-Fat Diet in Mice. mSphere 2020; 5:e00833-19. [PMID: 32102942 PMCID: PMC7045389 DOI: 10.1128/msphere.00833-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD.IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities.
Collapse
Affiliation(s)
| | | | - Melissa Ly
- Department of Pathology, University of California, San Diego, California, USA
| | - Joshua M Borin
- Division of Biological Sciences, University of California, San Diego, California, USA
| | - Jessica Chopyk
- Department of Pathology, University of California, San Diego, California, USA
| | - Martin J Blaser
- New York University, New York, New York, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - David T Pride
- Department of Pathology, University of California, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
40
|
Abstract
The discovery of bacteria in the female urinary bladder has fundamentally changed current dogma regarding the urinary tract and related urinary disorders. Previous research characterized many of the bacterial components of the female urinary tract, but the viral fraction of this community is largely unknown. Viruses within the human microbiota far outnumber bacterial cells, with the most abundant viruses being those that infect bacteria (bacteriophages). Similar to observations within the microbiota of the gut and oral cavity, preliminary surveys of the urinary tract and bladder microbiota indicate a rich diversity of uncharacterized bacteriophage (phage) species. Phages are vital members of the microbiota, having critical roles in shaping bacterial metabolism and community structure. Although phages have been discovered in the urinary tract, such as phages that infect Escherichia coli, sampling them is challenging owing to low biomass, possible contamination when using non-invasive methods and the invasiveness of methods that reduce the potential for contamination. Phages could influence bladder health, but an understanding of the association between phage communities, bacterial populations and bladder health is in its infancy. However, evidence suggests that phages can defend the host against pathogenic bacteria and, therefore, modulation of the microbiome using phages has therapeutic potential for lower urinary tract symptoms. Furthermore, as natural predators of bacteria, phages have garnered renewed interest for their use as antimicrobial agents, for instance, in the treatment of urinary tract infections.
Collapse
|
41
|
Balcázar JL. Implications of bacteriophages on the acquisition and spread of antibiotic resistance in the environment. Int Microbiol 2020; 23:475-479. [PMID: 32002743 DOI: 10.1007/s10123-020-00121-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Although bacteriophages (or simply phages) are the most abundant biological entities and have the potential to transfer genetic material between bacterial hosts, their contribution to the acquisition and spread of antibiotic resistance genes in the environment has not been extensively studied. The environment is continually exposed to a wide variety of pollutants from anthropogenic sources, which may promote horizontal gene transfer events, including those mediated by phages. Considering the significant and growing concern of antibiotic resistance, phages should be taken into consideration during the implementation of mitigation measures. This review is focused on the emergence and spread of antibiotic resistance in the environment, with a special emphasis on the role of phages.
Collapse
Affiliation(s)
- José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain.
- University of Girona, 17004, Girona, Spain.
| |
Collapse
|
42
|
Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol 2020; 323:113085. [PMID: 31654639 PMCID: PMC6918675 DOI: 10.1016/j.expneurol.2019.113085] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Most spinal cord injury (SCI) research programs focus only on the injured spinal cord with the goal of restoring locomotor function by overcoming mechanisms of cell death or axon regeneration failure. Given the importance of the spinal cord as a locomotor control center and the public perception that paralysis is the defining feature of SCI, this "spinal-centric" focus is logical. Unfortunately, such a focus likely will not yield new discoveries that reverse other devastating consequences of SCI including cardiovascular and metabolic disease, bladder/bowel dysfunction and infection. The current review considers how SCI changes the physiological interplay between the spinal cord, the gut and the immune system. A suspected culprit in causing many of the pathological manifestations of impaired spinal cord-gut-immune axis homeostasis is the gut microbiota. After SCI, the composition of the gut microbiota changes, creating a chronic state of gut "dysbiosis". To date, much of what we know about gut dysbiosis was learned from 16S-based taxonomic profiling studies that reveal changes in the composition and abundance of various bacteria. However, this approach has limitations and creates taxonomic "blindspots". Notably, only bacteria can be analyzed. Thus, in this review we also discuss how the application of emerging sequencing technologies can improve our understanding of how the broader ecosystem in the gut is affected by SCI. Specifically, metagenomics will provide researchers with a more comprehensive look at post-injury changes in the gut virome (and mycome). Metagenomics also allows changes in microbe population dynamics to be linked to specific microbial functions that can affect the development and progression of metabolic disease, immune dysfunction and affective disorders after SCI. As these new tools become more readily available and used across the research community, the development of an "ecogenomic" toolbox will facilitate an Eco-Systems Biology approach to study the complex interplay along the spinal cord-gut-immune axis after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Kylie Zane
- The Ohio State University College of Medicine, USA
| | - Kia Adams
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA
| | - Matthew B Sullivan
- Departments of Microbiology, Civil, Environmental and Geodetic Engineering at The Ohio State University, USA
| | - Phillip G Popovich
- The Belford Center for Spinal Cord Injury, the Center for Brain and Spinal Cord Repair, Department of Neuroscience, Wexner Medical Center at The Ohio State University, USA.
| |
Collapse
|
43
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
44
|
Bacteriophage and the Innate Immune System: Access and Signaling. Microorganisms 2019; 7:microorganisms7120625. [PMID: 31795262 PMCID: PMC6956183 DOI: 10.3390/microorganisms7120625] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.
Collapse
|
45
|
Affiliation(s)
- Juliet Roshini Mohan Raj
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| |
Collapse
|
46
|
Redondoviridae, a Family of Small, Circular DNA Viruses of the Human Oro-Respiratory Tract Associated with Periodontitis and Critical Illness. Cell Host Microbe 2019; 25:719-729.e4. [PMID: 31071295 DOI: 10.1016/j.chom.2019.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.
Collapse
|
47
|
Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J Infect 2019; 79:471-489. [PMID: 31629863 DOI: 10.1016/j.jinf.2019.10.008] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Antibiotics change the composition of the intestinal microbiota. The magnitude of the effect of antibiotics on the microbiota and whether the effects are short-term or persist long-term remain uncertain. In this review, we summarise studies that have investigated the effect of antibiotics on the composition of the human intestinal microbiota. METHODS A systematic search was done to identify original studies that have investigated the effect of systemic antibiotics on the intestinal microbiota in humans. RESULTS We identified 129 studies investigating 2076 participants and 301 controls. Many studies reported a decrease in bacterial diversity with antibiotic treatment. Penicillin only had minor effects on the intestinal microbiota. Amoxicillin, amoxcillin/clavulanate, cephalosporins, lipopolyglycopeptides, macrolides, ketolides, clindamycin, tigecycline, quinolones and fosfomycin all increased abundance of Enterobacteriaea other than E. coli (mainly Citrobacter spp., Enterobacter spp. and Klebsiella spp.). Amoxcillin, cephalosporins, macrolides, clindamycin, quinolones and sulphonamides decreased abundance of E. coli, while amoxcillin/clavulante, in contrast to other penicillins, increased abundance of E. coli. Amoxicllin, piperacillin and ticarcillin, cephalosporins (except fifth generation cephalosporins), carbapenems and lipoglycopeptides were associated with increased abundance of Enterococcus spp., while macrolides and doxycycline decreased its abundance. Piperacillin and ticarcillin, carbapenems, macrolides, clindamycin and quinolones strongly decreased the abundance of anaerobic bacteria. In the studies that investigated persistence, the longest duration of changes was reported after treatment with ciprofloxacin (one year), clindamycin (two years) and clarithromycin plus metronidazole (four years). Many antibiotics were associated with a decrease in butyrate or butryrate-producing bacteria. CONCLUSION Antibiotics have profound and sometimes persisting effects on the intestinal microbiota, characterised by diminished abundance of beneficial commensals and increased abundance of potentially detrimental microorganisms. Understanding these effects will help tailor antibiotic treatment and the use of probiotics to minimise this 'collateral damage'.
Collapse
Affiliation(s)
- Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
| |
Collapse
|
48
|
Ghose C, Ly M, Schwanemann LK, Shin JH, Atab K, Barr JJ, Little M, Schooley RT, Chopyk J, Pride DT. The Virome of Cerebrospinal Fluid: Viruses Where We Once Thought There Were None. Front Microbiol 2019; 10:2061. [PMID: 31555247 PMCID: PMC6742758 DOI: 10.3389/fmicb.2019.02061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/21/2019] [Indexed: 01/21/2023] Open
Abstract
Traditionally, medicine has held that some human body sites are sterile and that the introduction of microbes to these sites results in infections. This paradigm shifted significantly with the discovery of the human microbiome and acceptance of these commensal microbes living across the body. However, the central nervous system (CNS) is still believed by many to be sterile in healthy people. Using culture-independent methods, we examined the virome of cerebrospinal fluid (CSF) from a cohort of mostly healthy human subjects. We identified a community of DNA viruses, most of which were identified as bacteriophages. Compared to other human specimen types, CSF viromes were not ecologically distinct. There was a high alpha diversity cluster that included feces, saliva, and urine, and a low alpha diversity cluster that included CSF, body fluids, plasma, and breast milk. The high diversity cluster included specimens known to have many bacteria, while other specimens traditionally assumed to be sterile formed the low diversity cluster. There was an abundance of viruses shared among CSF, breast milk, plasma, and body fluids, while each generally shared less with urine, feces, and saliva. These shared viruses ranged across different virus families, indicating that similarities between these viromes represent more than just a single shared virus family. By identifying a virome in the CSF of mostly healthy individuals, it is now less likely that any human body site is devoid of microbes, which further highlights the need to decipher the role that viral communities may play in human health.
Collapse
Affiliation(s)
| | - Melissa Ly
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Leila K Schwanemann
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ji Hyun Shin
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Katayoon Atab
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Mark Little
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Robert T Schooley
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jessica Chopyk
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - David T Pride
- Department of Pathology, University of California, San Diego, San Diego, CA, United States.,Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
49
|
What is (not) known about the dynamics of the human gut virome in health and disease. Curr Opin Virol 2019; 37:52-57. [DOI: 10.1016/j.coviro.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
50
|
Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019; 12:1756284819836620. [PMID: 30936943 PMCID: PMC6435874 DOI: 10.1177/1756284819836620] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023] Open
Abstract
The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK Gut Health Group, The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Jonathan P. Segal
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, Norfolk, UK Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Ailsa L. Hart
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | | |
Collapse
|