1
|
Stuttgen GM, Bobek JM, Penoske R, Wadding-Lee C, Lam M, Hader SN, Owens AP, Sahoo D. FFAR4 Deficiency Increases Necrotic Cores in Advanced Lesions of ApoE -/- Mice-Brief Report. Arterioscler Thromb Vasc Biol 2025; 45:675-682. [PMID: 40047073 DOI: 10.1161/atvbaha.124.322371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND FFAR4 (free fatty acid receptor 4) has emerged as a target for preventing cardiovascular disease through its ability to control macrophage inflammation and foam cell formation. Previous studies have shown that FFAR4 activation can protect against the accumulation of arterial plaque buildup in atherosclerotic animal models. The goal of our study is to test the hypothesis that FFAR4 deficiency will increase atherosclerotic plaque development in apoE-/- mice. METHODS Male and female apoE-/-/Ffar4-/- mice and their apoE-/- controls were fed a Western diet for 8 or 16 weeks to assess early and advanced atherosclerotic lesions, respectively. At the end of each study, atherosclerotic plaque severity was determined by analyzing the aortic sinus lesion area of the heart and the en face lesion area of the aortic arch. RESULTS Following 8 weeks of Western diet feeding, lesions from apoE-/-/Ffar4-/- male and female mice had 33% and 22% decreases, respectively, in the aortic sinus lesion area with no changes in the aortic arch lesion area. After 16 weeks of Western diet feeding, the lesions showed no changes in the area or volume of the aortic sinus between apoE-/-/Ffar4-/- mice and apoE-/- controls. However, male apoE-/-/Ffar4-/- mice had a 27% increase in the plaque lesion area in the aortic arch compared with apoE-/- controls. Despite similar sizes of lesions in the aortic sinus, apoE-/-/Ffar4-/- mice had larger necrotic cores compared with the apoE-/- control mice. In fact, male and female mice had 43% and 37% increases in the necrotic lesion area, respectively. CONCLUSIONS These data suggest a novel role for FFAR4 in reducing necrotic core lesion formation and support a protective role for FFAR4 in stabilizing atherosclerotic plaques.
Collapse
MESH Headings
- Animals
- Female
- Male
- Plaque, Atherosclerotic
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Necrosis
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Disease Models, Animal
- Mice, Knockout, ApoE
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Diet, Western
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Mice, Inbred C57BL
- Apolipoproteins E/genetics
- Apolipoproteins E/deficiency
- Mice
- Sinus of Valsalva/pathology
- Sinus of Valsalva/metabolism
- Mice, Knockout
- Severity of Illness Index
Collapse
Affiliation(s)
- Gage M Stuttgen
- Department of Biochemistry (G.M.S., J.M.B., M.L., S.N.H., D.S.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (G.M.S., J.M.B., R.P., D.S.), Medical College of Wisconsin, Milwaukee
- Center for Immunology (G.M.S., D.S.), Medical College of Wisconsin, Milwaukee
| | - Jordan M Bobek
- Department of Biochemistry (G.M.S., J.M.B., M.L., S.N.H., D.S.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (G.M.S., J.M.B., R.P., D.S.), Medical College of Wisconsin, Milwaukee
| | - Renee Penoske
- Cardiovascular Center (G.M.S., J.M.B., R.P., D.S.), Medical College of Wisconsin, Milwaukee
- Department of Medicine, Division of Endocrinology and Molecular Medicine (R.P., D.S.), Medical College of Wisconsin, Milwaukee
| | - Caris Wadding-Lee
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, OH (C.W.-L., A.P.O.)
| | - Michael Lam
- Department of Biochemistry (G.M.S., J.M.B., M.L., S.N.H., D.S.), Medical College of Wisconsin, Milwaukee
| | - Shelby N Hader
- Department of Biochemistry (G.M.S., J.M.B., M.L., S.N.H., D.S.), Medical College of Wisconsin, Milwaukee
| | - A Phillip Owens
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, OH (C.W.-L., A.P.O.)
| | - Daisy Sahoo
- Department of Biochemistry (G.M.S., J.M.B., M.L., S.N.H., D.S.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (G.M.S., J.M.B., R.P., D.S.), Medical College of Wisconsin, Milwaukee
- Center for Immunology (G.M.S., D.S.), Medical College of Wisconsin, Milwaukee
- Department of Medicine, Division of Endocrinology and Molecular Medicine (R.P., D.S.), Medical College of Wisconsin, Milwaukee
- H4930 Health Research Center (D.S.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
2
|
Staršíchová A. SR-B1-/-ApoE-R61h/h Mice Mimic Human Coronary Heart Disease. Cardiovasc Drugs Ther 2024; 38:1123-1137. [PMID: 37273155 PMCID: PMC10240136 DOI: 10.1007/s10557-023-07475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world. Atherosclerosis underlies the majority of these pathologies and may result in sudden life-threatening events such as myocardial infarction or stroke. Current concepts consider a rupture (resp. erosion) of "unstable/vulnerable" atherosclerotic plaques as a primary cause leading to thrombus formation and subsequent occlusion of the artery lumen finally triggering an acute clinical event. We and others described SR-B1-/-ApoE-R61h/h mice mimicking clinical coronary heart disease in all major aspects: from coronary atherosclerosis through vulnerable plaque ruptures leading to thrombus formation/coronary artery occlusion, finally resulting in myocardial infarction/ischemia. SR-B1-/-ApoE-R61h/h mouse provides a valuable model to study vulnerable/occlusive plaques, to evaluate bioactive compounds as well as new anti-inflammatory and "anti-rupture" drugs, and to test new technologies in experimental cardiovascular medicine. This review summarizes and discuss our knowledge about SR-B1-/-ApoE-R61h/h mouse model based on recent publications and experimental observations from the lab.
Collapse
Affiliation(s)
- Andrea Staršíchová
- Graduate School Cell Dynamics and Disease, University of Muenster, Muenster, Germany.
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany.
- Novogenia Covid GmbH, Eugendorf, Austria.
| |
Collapse
|
3
|
Qiu Y, Ouyang Z, Zhong J, Jin L, Qin Y, Zeng Y. Syndecan-1 as a predictor of vulnerable atherosclerotic plaques. Front Cell Dev Biol 2024; 12:1415788. [PMID: 39175877 PMCID: PMC11338802 DOI: 10.3389/fcell.2024.1415788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Aims Cardiovascular disease remains a major global health concern, with atherosclerosis (AS) being a significant contributor. Vulnerable plaques play a critical role in acute cardiovascular events. Syndecan-1 (SDC-1), a vital membrane proteoglycan in the vascular endothelial glycocalyx, is believed to be associated with plaque progression. However, its precise relationship with severity and vulnerability of atherosclerotic plaque remains unclear. This study aimed to investigate SDC-1 expression and its potential correlation with plaque vulnerability in ApoE-/- atherosclerosis mouse model. Methods and results Eight-week-old mice were induced into the AS model using a high-fat diet (HFD) and/or partial ligation of the left common carotid artery (PLCA), with a chow diet (CD) control group. After 16 weeks, plaques in the aortic root showed the following order: HFD + PLCA group > HFD group > CD + PLCA group > CD group. Immunohistochemistry revealed heightened accumulation of lipid/foam cells and CD68-labeled macrophages in the plaques, elevated vascular endothelial growth factor (VEGF), and matrix Metalloproteinase-9 (MMP-9) in the HFD + PLCA group's plaques, along with reduced collagen and α-SMA-labeled smooth muscle cells, resulting in the highest vulnerability index value. Immunohistofluorescence analysis of frozen plaque sections showed significantly higher SDC-1 expression in the AS mice group compared to the CD group, both positively correlated with plaque vulnerability. Serum analysis demonstrated elevated levels of SDC1, sphingosine 1-phosphate (S1P), and VEGF-A in the AS mice, all positively correlated with plaque vulnerability. Multivariate analysis identified SDC1 as an independent predictor of plaque vulnerability. Conclusion This study enhances our understanding of plaque vulnerability mechanisms and presents SDC1 as a potential biomarker for atherosclerosis. These findings underscore the importance of addressing modifiable risk factors, such as diet and hemodynamics and suggest the utility of serum SDC1 as a valuable clinical marker. Ultimately, these insights may lead to more effective strategies in combating cardiovascular diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Wang Y, Liu XY, Wang Y, Zhao WX, Li FD, Guo PR, Fan Q, Wu XF. NOX2 inhibition stabilizes vulnerable plaques by enhancing macrophage efferocytosis via MertK/PI3K/AKT pathway. Redox Biol 2023; 64:102763. [PMID: 37354827 DOI: 10.1016/j.redox.2023.102763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023] Open
Abstract
NADPH oxidases 2 (NOX2) is the main source of ROS in macrophages, which plays a critical role in the formation of atherosclerosis. However, effects of NOX2 inhibition on established vulnerable plaques and the potential role involved remain unclear. The purpose of this study is to investigate the latent mechanism of NOX2-triggered vulnerable plaque development. We generated a vulnerable carotid plaque model induced by carotid branch ligation and renal artery constriction, combined with a high-fat diet in ApoE-/- mice. NOX2 specific inhibitor, GSK2795039 (10 mg/kg/day by intragastric administration for 8 weeks) significantly prevented vulnerable plaque, evaluated by micro-ultrasound imaging parameters. A profile of less intraplaque hemorrhage detection, increased collagen-lipid ratio, fibrous cap thickness and less necrotic core formation were also found in GSK2795039 treated group. Mechanistically, reduced 4-HNE, in situ lesional apoptosis and enhanced efferocytosis were involved in mice treated with NOX2 inhibitor. Further analysis in mouse macrophages confirmed the role of NOX2 inhibition in enhancing macrophage efferocytosis by regulating the MertK/PI3K/AKT pathway. In summary, our data defined previously few recognized roles of NOX2 in vulnerable plaque pathogenesis and an undescribed NOX2-ROS-MerTK axis acts involved in regulating macrophage efferocytosis in the formation of rupture-prone vulnerable plaques.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin-Yan Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wen-Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fa-Dong Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Peng-Rong Guo
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Fan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiao-Fan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
An J, Ouyang L, Yu C, Carr SM, Ramprasath T, Liu Z, Song P, Zou MH, Ding Y. Nicotine exacerbates atherosclerosis and plaque instability via NLRP3 inflammasome activation in vascular smooth muscle cells. Theranostics 2023; 13:2825-2842. [PMID: 37284455 PMCID: PMC10240824 DOI: 10.7150/thno.81388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Nicotine has been reported to be a strong risk factor for atherosclerosis. However, the underlying mechanism by which nicotine controls atherosclerotic plaque stability remain largely unknown. Objective: The aim of this study was to evaluate the impact of lysosomal dysfunction mediated NLRP3 inflammasome activation in vascular smooth muscle cell (VSMC) on atherosclerotic plaque formation and stability in advanced atherosclerosis at the brachiocephalic arteries (BA). Methods and Results: Features of atherosclerotic plaque stability and the markers for NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome were monitored in the BA from nicotine or vehicle-treated apolipoprotein E deficient (Apoe-/-) mice fed with Western-type diet (WD). Nicotine treatment for 6 weeks accelerated atherosclerotic plaque formation and enhanced the hallmarks of plaque instability in BA of Apoe-/- mice. Moreover, nicotine elevated interleukin 1 beta (IL-1β) in serum and aorta and was preferred to activate NLRP3 inflammasome in aortic vascular smooth muscle cells (VSMC). Importantly, pharmacological inhibition of Caspase1, a key downstream target of NLRP3 inflammasome complex, and genetic inactivation of NLRP3 significantly restrained nicotine-elevated IL-1β in serum and aorta, as well as nicotine-stimulated atherosclerotic plaque formation and plaque destabilization in BA. We further confirmed the role of VSMC-derived NLRP3 inflammasome in nicotine-induced plaque instability by using VSMC specific TXNIP (upstream regulator of NLRP3 inflammasome) deletion mice. Mechanistic study further showed that nicotine induced lysosomal dysfunction resulted in cathepsin B cytoplasmic release. Inhibition or knockdown of cathepsin B blocked nicotine-dependent inflammasome activation. Conclusions: Nicotine promotes atherosclerotic plaque instability by lysosomal dysfunction-mediated NLRP3 inflammasome activation in vascular smooth muscle cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
8
|
Bacterial Infections and Atherosclerosis – A Mini Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is the most challenging subsets of coronary artery disease in humans, in which risk factors emerge from childhood, and its prevalence increases with age. Experimental research demonstrates that infections due to bacteria stimulate atherogenic events. Atherosclerosis has complex pathophysiology that is linked with several bacterial infections by damaging the inner arterial wall and heart muscles directly and indirectly by provoking a systemic pro-inflammation and acute-phase protein. Repeated bacterial infections trigger an inflammatory cascade that triggers immunological responses that negatively impact cardiovascular biomarkers includes triglycerides, high-density lipoprotein, C-reactive protein, heat shock proteins, cytokines, fibrinogen, and leukocyte count. Herein, we intended to share the role of bacterial infection in atherosclerosis and evaluate existing evidence of animal and human trials on the association between bacterial infections and atherosclerosis on update.
Collapse
|
9
|
Elishaev M, Hodonsky CJ, Ghosh SKB, Finn AV, von Scheidt M, Wang Y. Opportunities and Challenges in Understanding Atherosclerosis by Human Biospecimen Studies. Front Cardiovasc Med 2022; 9:948492. [PMID: 35872917 PMCID: PMC9300954 DOI: 10.3389/fcvm.2022.948492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, new high-throughput biotechnologies and bioinformatic methods are revolutionizing our way of deep profiling tissue specimens at the molecular levels. These recent innovations provide opportunities to advance our understanding of atherosclerosis using human lesions aborted during autopsies and cardiac surgeries. Studies on human lesions have been focusing on understanding the relationship between molecules in the lesions with tissue morphology, genetic risk of atherosclerosis, and future adverse cardiovascular events. This review will highlight ways to utilize human atherosclerotic lesions in translational research by work from large cardiovascular biobanks to tissue registries. We will also discuss the opportunities and challenges of working with human atherosclerotic lesions in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Maria Elishaev
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Chani J. Hodonsky
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | | | - Aloke V. Finn
- Cardiovascular Pathology Institute, Gaithersburg, MD, United States
| | - Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Chen B, Hang J, Zhao Y, Geng Y, Li X, Gu Z, Li J, Jiang C, Tao L, Yu H. Correlation between Plasma Levels of RIP3 and Acute Ischemic Stroke with Large-Artery Atherosclerosis. Curr Neurovasc Res 2022; 19:30-37. [PMID: 35156583 DOI: 10.2174/1567202619666220214105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Receptor-interacting serine-threonine protein kinase 3 (RIP3) was previously discovered to be an important medium in the occurrence and development of major atherosclerotic cerebral infarction. However, the role of RIP3 in acute ischemic stroke remains unclear. OBJECTIVE This study aimed to explore the correlation between plasma levels of RIP3 and acute ischemic stroke with large-artery atherosclerosis (LAA). METHODS This prospective study enrolled 116 patients with LAA, 40 healthy controls and 30 acute ischemic stroke patients with small-artery occlusion. The patients with LAA were divided according to the quartile of plasma levels of RIP3. Logistic regression model was used for comparison. The ROC curve was performed to evaluate the predictive value. RESULTS In patients with LAA, the RIP3 levels in patients with poor outcomes as well as neurological deterioration were significantly higher than those with good outcomes (P < 0.001) and without neurological deterioration (P = 0.014) respectively. Patients in the highest levels of plasma RIP3 quartile were more likely to have neurological deterioration (OR, 11.07; 95% CI, 1.990-61.582) and poor outcomes (OR, 35.970; 95% CI, 5.392-239.980) compared with the lowest. The optimal cut-off value for neurological deterioration was 1127.75 pg/mL (specificity, 66.7%; sensitivity, 69.2%), that for poor prognosis was 1181.82 pg/mL (specificity, 89.7%; sensitivity, 62.1%). CONCLUSION Elevated levels of plasma RIP3 were significantly associated with neurological deterioration and poor prognosis in patients with LAA. Significant increase in plasma RIP3 levels can predict neurological deterioration and poor prognosis of these patients.
Collapse
Affiliation(s)
- Beilei Chen
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jing Hang
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yuanyuan Zhao
- Department of Neurology, Bazhong Central Hospital, Bazhong, Sichuang
| | - Yang Geng
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xiaobo Li
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhie Gu
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jun Li
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chao Jiang
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Luhang Tao
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hailong Yu
- Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
11
|
Edsfeldt A, Swart M, Singh P, Dib L, Sun J, Cole JE, Park I, Al-Sharify D, Persson A, Nitulescu M, Borges PDN, Kassiteridi C, Goddard ME, Lee R, Volkov P, Orho-Melander M, Maegdefessel L, Nilsson J, Udalova I, Goncalves I, Monaco C. Interferon regulatory factor-5-dependent CD11c+ macrophages contribute to the formation of rupture-prone atherosclerotic plaques. Eur Heart J 2022; 43:1864-1877. [PMID: 35567557 PMCID: PMC9113304 DOI: 10.1093/eurheartj/ehab920] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
AIMS Inflammation is a key factor in atherosclerosis. The transcription factor interferon regulatory factor-5 (IRF5) drives macrophages towards a pro-inflammatory state. We investigated the role of IRF5 in human atherosclerosis and plaque stability. METHODS AND RESULTS Bulk RNA sequencing from the Carotid Plaque Imaging Project biobank were used to mine associations between major macrophage associated genes and transcription factors and human symptomatic carotid disease. Immunohistochemistry, proximity extension assays, and Helios cytometry by time of flight (CyTOF) were used for validation. The effect of IRF5 deficiency on carotid plaque phenotype and rupture in ApoE-/- mice was studied in an inducible model of plaque rupture. Interferon regulatory factor-5 and ITGAX/CD11c were identified as the macrophage associated genes with the strongest associations with symptomatic carotid disease. Expression of IRF5 and ITGAX/CD11c correlated with the vulnerability index, pro-inflammatory plaque cytokine levels, necrotic core area, and with each other. Macrophages were the predominant CD11c-expressing immune cells in the plaque by CyTOF and immunohistochemistry. Interferon regulatory factor-5 immunopositive areas were predominantly found within CD11c+ areas with a predilection for the shoulder region, the area of the human plaque most prone to rupture. Accordingly, an inducible plaque rupture model of ApoE-/-Irf5-/- mice had significantly lower frequencies of carotid plaque ruptures, smaller necrotic cores, and less CD11c+ macrophages than their IRF5-competent counterparts. CONCLUSION Using complementary evidence from data from human carotid endarterectomies and a murine model of inducible rupture of carotid artery plaque in IRF5-deficient mice, we demonstrate a mechanistic link between the pro-inflammatory transcription factor IRF5, macrophage phenotype, plaque inflammation, and its vulnerability to rupture.
Collapse
Affiliation(s)
- Andreas Edsfeldt
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden,Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - Maarten Swart
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Pratibha Singh
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Lea Dib
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Jiangming Sun
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Jennifer E Cole
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Inhye Park
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Dania Al-Sharify
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Ana Persson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Mihaela Nitulescu
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Patricia Das Neves Borges
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Christina Kassiteridi
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Michael E Goddard
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, Oxford, University of Oxford
| | - Petr Volkov
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden,Department of Vascular and Endovascular Surgery, Technical University Munich and DZHK Partner Site Munich, Munich, Germany
| | - Jan Nilsson
- Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden
| | - Irina Udalova
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, UK
| | | | - Claudia Monaco
- Corresponding author. Tel: +44 1865 612636, Fax: +44 1865 612601,
| |
Collapse
|
12
|
Bonaterra GA, Struck N, Zuegel S, Schwarz A, Mey L, Schwarzbach H, Strelau J, Kinscherf R. Characterization of atherosclerotic plaques in blood vessels with low oxygenated blood and blood pressure (Pulmonary trunk): role of growth differentiation factor-15 (GDF-15). BMC Cardiovasc Disord 2021; 21:601. [PMID: 34920697 PMCID: PMC8684150 DOI: 10.1186/s12872-021-02420-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is linked to inflammation, cancer, and atherosclerosis. GDF-15 is expressed in most tissues but is extremely induced under pathological conditions. Elevated serum levels are suggested as a risk factor and a marker for cardiovascular diseases. However, the cellular sources and the effects of GDF-15 on the cardiovascular system have not been completely elucidated including progression, and morphology of atherosclerotic plaques. Thus, this work aimed to characterize the influence of GDF-15 deficiency on the morphology of atherosclerotic plaques in blood vessels with low-oxygen blood and low blood pressure as the pulmonary trunk (PT), in hypercholesterolemic ApoE-/- mice. METHODS GDF-15-/- ApoE-/- mice were generated by crossbreeding of ApoE-/-- and GDF-15-/- mice. After feeding a cholesterol-enriched diet (CED) for 20 weeks, samples of the brachiocephalic trunk (BT) and PT were dissected and lumen stenosis (LS) was measured. Furthermore, changes in the cellularity of the PT, amounts of apoptosis-, autophagy-, inflammation- and proliferation-relevant proteins were immunohisto-morphometrically analyzed. Additionally, we examined an atherosclerotic plaque in a human post mortem sample of the pulmonary artery. RESULTS After CED the body weight of GDF-15-/-ApoE-/- was 22.9% higher than ApoE-/-. Double knockout mice showed also an 35.3% increase of plasma triglyceride levels, whereas plasma cholesterol was similar in both genotypes. LS in the BT and PT of GDF-15-/-ApoE-/- mice was significantly reduced by 19.0% and by 6.7% compared to ApoE-/-. Comparing LS in PT and BT of the same genotype revealed a significant 38.8% (ApoE-/-) or 26.4% (GDF-15-/-ApoE-/-) lower LS in the PT. Immunohistomorphometry of atherosclerotic lesions in PT of GDF-15-/-ApoE-/- revealed significantly increased levels (39.8% and 7.3%) of CD68 + macrophages (MΦ) and α-actin + smooth muscle cells than in ApoE-/-. The density of TUNEL + , apoptotic cells was significantly (32.9%) higher in plaques of PT of GDF-15-/-ApoE-/- than in ApoE-/-. Analysis of atherosclerotic lesion of a human pulmonary artery showed sm-α-actin, CD68+, TUNEL+, Ki67+, and APG5L/ATG+ cells as observed in PT. COX-2+ and IL-6+ immunoreactivities were predominantly located in endothelial cells and subendothelial space. In BT and PT of GDF15-/-ApoE-/- mice the necrotic area was 10% and 6.5% lower than in ApoE-/-. In BT and PT of GDF15-/-ApoE-/- we found 40% and 57% less unstable plaques than ApoE-/- mice. CONCLUSIONS Atherosclerotic lesions occur in both, BT and PT, however, the size is smaller in PT, possibly due to the effect of the low-oxygen blood and/or lower blood pressure. GDF-15 is involved in atherosclerotic processes in BT and PT, although different mechanisms (e.g. apoptosis) in these two vessels seem to exist.
Collapse
Affiliation(s)
- G A Bonaterra
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany.
| | - N Struck
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - S Zuegel
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - A Schwarz
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - L Mey
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - H Schwarzbach
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| | - J Strelau
- Department of Functional Neuroanatomy, University of Heidelberg, 69120, Heidelberg, Germany
| | - R Kinscherf
- Institute for Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, 35032, Marburg, Germany
| |
Collapse
|
13
|
Tsantilas P, Lao S, Wu Z, Eberhard A, Winski G, Vaerst M, Nanda V, Wang Y, Kojima Y, Ye J, Flores A, Jarr KU, Pelisek J, Eckstein HH, Matic L, Hedin U, Tsao PS, Paloschi V, Maegdefessel L, Leeper NJ. Chitinase 3 like 1 is a regulator of smooth muscle cell physiology and atherosclerotic lesion stability. Cardiovasc Res 2021; 117:2767-2780. [PMID: 33471078 PMCID: PMC8848327 DOI: 10.1093/cvr/cvab014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/17/2020] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS Atherosclerotic cerebrovascular disease underlies the majority of ischaemic strokes and is a major cause of death and disability. While plaque burden is a predictor of adverse outcomes, plaque vulnerability is increasingly recognized as a driver of lesion rupture and risk for clinical events. Defining the molecular regulators of carotid instability could inform the development of new biomarkers and/or translational targets for at-risk individuals. METHODS AND RESULTS Using two independent human endarterectomy biobanks, we found that the understudied glycoprotein, chitinase 3 like 1 (CHI3L1), is up-regulated in patients with carotid disease compared to healthy controls. Further, CHI3L1 levels were found to stratify individuals based on symptomatology and histopathological evidence of an unstable fibrous cap. Gain- and loss-of-function studies in cultured human carotid artery smooth muscle cells (SMCs) showed that CHI3L1 prevents a number of maladaptive changes in that cell type, including phenotype switching towards a synthetic and hyperproliferative state. Using two murine models of carotid remodelling and lesion vulnerability, we found that knockdown of Chil1 resulted in larger neointimal lesions comprised by de-differentiated SMCs that failed to invest within and stabilize the fibrous cap. Exploratory mechanistic studies identified alterations in potential downstream regulatory genes, including large tumour suppressor kinase 2 (LATS2), which mediates macrophage marker and inflammatory cytokine expression on SMCs, and may explain how CHI3L1 modulates cellular plasticity. CONCLUSION CHI3L1 is up-regulated in humans with carotid artery disease and appears to be a strong mediator of plaque vulnerability. Mechanistic studies suggest this change may be a context-dependent adaptive response meant to maintain vascular SMCs in a differentiated state and to prevent rupture of the fibrous cap. Part of this effect may be mediated through downstream suppression of LATS2. Future studies should determine how these changes occur at the molecular level, and whether this gene can be targeted as a novel translational therapy for subjects at risk of stroke.
Collapse
MESH Headings
- Animals
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/physiopathology
- Cell Differentiation
- Cells, Cultured
- Chitinase-3-Like Protein 1/genetics
- Chitinase-3-Like Protein 1/metabolism
- Disease Models, Animal
- Fibrosis
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Plaque, Atherosclerotic
- Rupture, Spontaneous
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Pavlos Tsantilas
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Shen Lao
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou 510120, China
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
| | - Anne Eberhard
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Greg Winski
- Department of Medicine, Karolinska Institute, Stockholm, Solnavägen 1, 171 77 Solna, Sweden
| | - Monika Vaerst
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Vivek Nanda
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Ying Wang
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Jianqin Ye
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Alyssa Flores
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| | - Jaroslav Pelisek
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
- Department for Vascular Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785 Berlin, Germany, partner site Munich Heart Alliance
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Solnavägen 1, 171 77 Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Solnavägen 1, 171 77 Solna, Sweden
| | - Philip S Tsao
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, 870 Quarry Road, Stanford, CA 94305, USA
- Veterans Affairs (VA) Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Valentina Paloschi
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785 Berlin, Germany, partner site Munich Heart Alliance
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Solnavägen 1, 171 77 Solna, Sweden
- German Center for Cardiovascular Research (DZHK), Potsdamer Str. 58, 10785 Berlin, Germany, partner site Munich Heart Alliance
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Alway Bldg., M121 Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive Stanford, CA 94305, USA
| |
Collapse
|
14
|
Gurzeler E, Ruotsalainen AK, Laine A, Valkama T, Kettunen S, Laakso M, Ylä-Herttuala S. SUR1-E1506K mutation impairs glucose tolerance and promotes vulnerable atherosclerotic plaque phenotype in hypercholesterolemic mice. PLoS One 2021; 16:e0258408. [PMID: 34767557 PMCID: PMC8589160 DOI: 10.1371/journal.pone.0258408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Diabetes is a major risk factor of atherosclerosis and its complications. The loss-of-function mutation E1506K in the sulfonylurea receptor 1 (SUR1-E1506K) induces hyperinsulinemia in infancy, leading to impaired glucose tolerance and increased risk of type 2 diabetes. In this study, we investigate the effect of SUR1-E1506K mutation on atherogenesis in hypercholesterolemic LDLR-/- mice. METHODS SUR1-E1506K mutated mice were cross-bred with LDLR-/- mice (SUR1Δ/LDLR-/-), 6 months old mice were fed a western-diet (WD) for 6 months to induce advanced atherosclerotic plaques. At the age of 12 months, atherosclerosis and plaque morphology were analyzed and mRNA gene expression were measured from aortic sections and macrophages. Glucose metabolism was characterized before and after WD. Results were compared to age-matched LDLR-/- mice. RESULTS Advanced atherosclerotic plaques did not differ in size between the two strains. However, in SUR1Δ/LDLR-/- mice, plaque necrotic area was increased and smooth muscle cell number was reduced, resulting in higher plaque vulnerability index in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice. SUR1Δ/LDLR-/- mice exhibited impaired glucose tolerance and elevated fasting glucose after WD. The positive staining area of IL-1β and NLRP3 inflammasome were increased in aortic sections in SUR1Δ/LDLR-/- mice compared to LDLR-/- mice, and IL-18 plasma level was elevated in SUR1Δ/LDLR-/- mice. Finally, the mRNA expression of IL-1β and IL-18 were increased in SUR1Δ/LDLR-/- bone marrow derived macrophages in comparison to LDLR-/- macrophages in response to LPS. CONCLUSIONS SUR1-E1506K mutation impairs glucose tolerance and increases arterial inflammation, which promotes a vulnerable atherosclerotic plaque phenotype in LDLR-/- mice.
Collapse
MESH Headings
- Animals
- Aorta/pathology
- Aortic Diseases/blood
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Blood Glucose/metabolism
- Cells, Cultured
- Diet, Western/adverse effects
- Disease Models, Animal
- Gene Expression
- Glucose Intolerance/genetics
- Hypercholesterolemia/blood
- Hypercholesterolemia/etiology
- Hypercholesterolemia/genetics
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Necrosis
- Phenotype
- Plaque, Atherosclerotic/blood
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- RNA, Messenger/genetics
- Receptors, LDL/genetics
- Sulfonylurea Receptors/genetics
Collapse
Affiliation(s)
- Erika Gurzeler
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Anssi Laine
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Teemu Valkama
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sanna Kettunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| |
Collapse
|
15
|
Goncalves I, Sun J, Tengryd C, Nitulescu M, Persson AF, Nilsson J, Edsfeldt A. Plaque Vulnerability Index Predicts Cardiovascular Events: A Histological Study of an Endarterectomy Cohort. J Am Heart Assoc 2021; 10:e021038. [PMID: 34325529 PMCID: PMC8475655 DOI: 10.1161/jaha.120.021038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background The balance between stabilizing and destabilizing atherosclerotic plaque components is used in experimental studies and in imaging studies to identify rupture prone plaques. However, we lack the evidence that this balance predicts future cardiovascular events. Here we explore whether a calculated histological ratio, referred to as vulnerability index (VI), can predict patients at higher risk to suffer from future cardiovascular events. Methods and Results Carotid plaques and clinical information from 194 patients were studied. Tissue sections were used for histological analysis to calculate the VI (CD68 [cluster of differentiation 68], alpha‐actin, Oil red O, Movat pentachrome, and glycophorin A). Postoperative cardiovascular events were identified through the Swedish National Inpatient Health Register (2005–2013). During the follow‐up (60 months) 45 postoperative cardiovascular events were registered. Patients with a plaque VI in the fourth quartile compared with the first to third quartiles had significantly higher risk to suffer from a future cardiovascular event (P=0.0002). The VI was an independent predictor and none of the 5 histological variables analyzed separately predicted events. In the 13 patients who underwent bilateral carotid endarterectomy, the VI of the right plaque correlated with the VI of the left plaque and vice versa (r=0.7, P=0.01). Conclusions Our findings demonstrate that subjects with a high plaque VI have an increased risk of future cardiovascular events, independently of symptoms and other known cardiovascular risk factors . This strongly supports that techniques which image such plaques can facilitate risk stratification for subjects in need of more intense treatment.
Collapse
Affiliation(s)
- Isabel Goncalves
- Clinical Sciences Malmö Lund University Malmo Sweden.,Department of Cardiology Skåne University Hospital Lund/Malmö Sweden
| | - Jiangming Sun
- Clinical Sciences Malmö Lund University Malmo Sweden
| | | | | | - Ana F Persson
- Clinical Sciences Malmö Lund University Malmo Sweden
| | - Jan Nilsson
- Clinical Sciences Malmö Lund University Malmo Sweden
| | - Andreas Edsfeldt
- Clinical Sciences Malmö Lund University Malmo Sweden.,Department of Cardiology Skåne University Hospital Lund/Malmö Sweden.,Wallenberg Center for Molecular Medicine Lund University Lund Sweden
| |
Collapse
|
16
|
Alsaigh T, Di Bartolo BA, Mulangala J, Figtree GA, Leeper NJ. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease. Circ Res 2021; 128:1927-1943. [PMID: 34110900 PMCID: PMC8208504 DOI: 10.1161/circresaha.121.318265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral arterial disease is a growing worldwide problem with a wide spectrum of clinical severity and is projected to consume >$21 billion per year in the United States alone. While vascular researchers have brought several therapies to the clinic in recent years, few of these approaches have leveraged advances in high-throughput discovery screens, novel translational models, or innovative trial designs. In the following review, we discuss recent advances in unbiased genomics and broader omics technology platforms, along with preclinical vascular models designed to enhance our understanding of disease pathobiology and prioritize targets for additional investigation. Furthermore, we summarize novel approaches to clinical studies in subjects with claudication and ischemic ulceration, with an emphasis on streamlining and accelerating bench-to-bedside translation. By providing a framework designed to enhance each aspect of future clinical development programs, we hope to enrich the pipeline of therapies that may prevent loss of life and limb for those with peripheral arterial disease.
Collapse
Affiliation(s)
- Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Belinda A. Di Bartolo
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | | | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
17
|
CD13 is a critical regulator of cell-cell fusion in osteoclastogenesis. Sci Rep 2021; 11:10736. [PMID: 34031489 PMCID: PMC8144195 DOI: 10.1038/s41598-021-90271-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
The transmembrane aminopeptidase CD13 is highly expressed in cells of the myeloid lineage, regulates dynamin-dependent receptor endocytosis and recycling and is a necessary component of actin cytoskeletal organization. Here, we show that CD13-deficient mice present a low bone density phenotype with increased numbers of osteoclasts per bone surface, but display a normal distribution of osteoclast progenitor populations in the bone marrow and periphery. In addition, the bone formation and mineral apposition rates are similar between genotypes, indicating a defect in osteoclast-specific function in vivo. Lack of CD13 led to exaggerated in vitro osteoclastogenesis as indicated by significantly enhanced fusion of bone marrow-derived multinucleated osteoclasts in the presence of M-CSF and RANKL, resulting in abnormally large cells containing remarkably high numbers of nuclei. Mechanistically, while expression levels of the fusion-regulatory proteins dynamin and DC-STAMP1 must be downregulated for fusion to proceed, these are aberrantly sustained at high levels even in CD13-deficient mature multi-nucleated osteoclasts. Further, the stability of fusion-promoting proteins is maintained in the absence of CD13, implicating CD13 in protein turnover mechanisms. Together, we conclude that CD13 may regulate cell–cell fusion by controlling the expression and localization of key fusion regulatory proteins that are critical for osteoclast fusion.
Collapse
|
18
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Che X, Xiao Q, Song W, Zhang H, Sun B, Geng N, Tao Z, Shao Q, Pu J. Protective Functions of Liver X Receptor α in Established Vulnerable Plaques: Involvement of Regulating Endoplasmic Reticulum-Mediated Macrophage Apoptosis and Efferocytosis. J Am Heart Assoc 2021; 10:e018455. [PMID: 33969692 PMCID: PMC8200716 DOI: 10.1161/jaha.120.018455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Liver X receptor (LXR) belongs to the metabolic nuclear receptor superfamily, which plays a critical regulatory role in vascular physiology/pathology. However, effects of systemic LXR activation on established vulnerable plaques and the potential isotype‐specific role involved remain unclear. Methods and Results The 8‐week‐old male apolipoprotein E−/− mice went through carotid branch ligation and renal artery constriction, combined with a high‐fat diet. Plaques in the left carotid artery acquired vulnerable features 4 weeks later, confirmed by magnetic resonance imaging scans and histological analysis. From that time on, mice were injected intraperitoneally daily with PBS or GW3965 (10 mg/kg per day) for an additional 4 weeks. Treatment with LXR agonists reduced the lesion volume by 52.61%, compared with the vehicle group. More important, a profile of less intraplaque hemorrhage detection and necrotic core formation was found. These actions collectively attenuated the incidence of plaque rupture. Mechanistically, reduced lesional apoptosis, enhanced efferocytosis, and alleviated endoplasmic reticulum stress are involved in the process. Furthermore, genetic ablation of LXRα, but not LXRβ, blunted the protective effects of LXR on the endoplasmic reticulum stress–elicited C/EBP‐homologous protein pathway in peritoneal macrophages. In concert with the LXRα‐predominant role in vitro, activated LXR failed to stabilize vulnerable plaques and correct the acquired cellular anomalies in LXRα−/− apolipoprotein E−/− mice. Conclusions Our results revealed that LXRα mediates the capacity of LXR activation to stabilize vulnerable plaques and prevent plaque rupture via amelioration of macrophage endoplasmic reticulum stress, lesional apoptosis, and defective efferocytosis. These findings might expand the application scenarios of LXR therapeutics for atherosclerosis.
Collapse
Affiliation(s)
- Xinyu Che
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Qingqing Xiao
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Wei Song
- Cardiovascular Department of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hengyuan Zhang
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Beibei Sun
- Department of Radiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Na Geng
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Zhenyu Tao
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Qin Shao
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Jun Pu
- Department of Cardiology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
20
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|
21
|
Jarr KU, Ye J, Kojima Y, Nanda V, Flores AM, Tsantilas P, Wang Y, Hosseini-Nassab N, Eberhard AV, Lotfi M, Käller M, Smith BR, Maegdefessel L, Leeper NJ. 18F-Fluorodeoxyglucose-Positron Emission Tomography Imaging Detects Response to Therapeutic Intervention and Plaque Vulnerability in a Murine Model of Advanced Atherosclerotic Disease-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2821-2828. [PMID: 33086865 DOI: 10.1161/atvbaha.120.315239] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study sought to determine whether 18F-fluorodeoxyglucose-positron emission tomography/computed tomography could be applied to a murine model of advanced atherosclerotic plaque vulnerability to detect response to therapeutic intervention and changes in lesion stability. Approach and Results: To analyze plaques susceptible to rupture, we fed ApoE-/- mice a high-fat diet and induced vulnerable lesions by cast placement over the carotid artery. After 9 weeks of treatment with orthogonal therapeutic agents (including lipid-lowering and proefferocytic therapies), we assessed vascular inflammation and several features of plaque vulnerability by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography and histopathology, respectively. We observed that 18F-fluorodeoxyglucose-positron emission tomography/computed tomography had the capacity to resolve histopathologically proven changes in plaque stability after treatment. Moreover, mean target-to-background ratios correlated with multiple characteristics of lesion instability, including the corrected vulnerability index. CONCLUSIONS These results suggest that the application of noninvasive 18F-fluorodeoxyglucose-positron emission tomography/computed tomography to a murine model can allow for the identification of vulnerable atherosclerotic plaques and their response to therapeutic intervention. This approach may prove useful as a drug discovery and prioritization method.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Atorvastatin/pharmacology
- CD47 Antigen/antagonists & inhibitors
- Carotid Artery Diseases/diagnostic imaging
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/pathology
- Carotid Artery, Common/diagnostic imaging
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/pathology
- Disease Models, Animal
- Fluorodeoxyglucose F18/administration & dosage
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Positron Emission Tomography Computed Tomography
- Predictive Value of Tests
- Radiopharmaceuticals/administration & dosage
- Rupture, Spontaneous
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Jianqin Ye
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Yoko Kojima
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Vivek Nanda
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Department of Pathology, The University of Alabama at Birmingham (V.N.)
| | - Alyssa M Flores
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Pavlos Tsantilas
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (P.T., L.M.)
| | - Ying Wang
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | | | - Anne V Eberhard
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Mozhgan Lotfi
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Max Käller
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Bryan R Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing (B.R.S.)
- Institute for Quantitative Health Science and Engineering, East Lansing, MI (B.R.S.)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (P.T., L.M.)
- German Center for Cardiovascular Research (DZHK partner site Munich), Germany (L.M.)
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (N.J.L.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute, Stanford University, CA (N.J.L.)
| |
Collapse
|
22
|
González-Ramos S, Fernández-García V, Recalde M, Rodríguez C, Martínez-González J, Andrés V, Martín-Sanz P, Boscá L. Deletion or Inhibition of NOD1 Favors Plaque Stability and Attenuates Atherothrombosis in Advanced Atherogenesis †. Cells 2020; 9:cells9092067. [PMID: 32927803 PMCID: PMC7564689 DOI: 10.3390/cells9092067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Atherothrombosis, the main cause of acute coronary syndromes (ACS), is characterized by the rupture of the atherosclerotic plaque followed by the formation of thrombi. Fatal plaque rupture sites show large necrotic cores combined with high levels of inflammation and thin layers of collagen. Plaque necrosis due to the death of macrophages and smooth muscle cells (SMCs) remains critical in the process. To determine the contribution of the innate immunity receptor NOD1 to the stability of atherosclerotic plaque, Apoe-/- and Apoe-/- Nod1-/- atherosclerosis prone mice were placed on a high-fat diet for 16 weeks to assess post-mortem advanced atherosclerosis in the aortic sinus. The proliferation and apoptosis activity were analyzed, as well as the foam cell formation capacity in these lesions and in primary cultures of macrophages and vascular SMCs obtained from both groups of mice. Our results reinforce the preeminent role for NOD1 in human atherosclerosis. Advanced plaque analysis in the Apoe-/- atherosclerosis model suggests that NOD1 deficiency may decrease the risk of atherothrombosis by decreasing leukocyte infiltration and reducing macrophage apoptosis. Furthermore, Nod1-/- SMCs exhibit higher proliferation rates and decreased apoptotic activity, contributing to thicker fibrous caps with reduced content of pro-thrombotic collagen. These findings demonstrate a direct link between NOD1 and plaque vulnerability through effects on both macrophages and SMCs, suggesting promising insights for early detection of biomarkers for treating patients before ACS occurs.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Gene Deletion
- Humans
- Macrophages
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle
- Nod1 Signaling Adaptor Protein/physiology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
Collapse
Affiliation(s)
- Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| | - Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
| | - Miriam Recalde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
| | - Cristina Rodríguez
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB Sant Pau, 08041 Barcelona, Spain
| | - José Martínez-González
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), IIB Sant Pau, 08041 Barcelona, Spain
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Laboratory of Molecular and Genetic Cardiovascular Pathophysiology, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), 28029 Madrid, Spain; (V.F.-G.); (M.R.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (C.R.); (J.M.-G.); (V.A.)
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-(0)91-497-2747 (ext. 5345) (L.B.)
| |
Collapse
|
23
|
Silvestre-Roig C, Braster Q, Wichapong K, Lee EY, Teulon JM, Berrebeh N, Winter J, Adrover JM, Santos GS, Froese A, Lemnitzer P, Ortega-Gómez A, Chevre R, Marschner J, Schumski A, Winter C, Perez-Olivares L, Pan C, Paulin N, Schoufour T, Hartwig H, González-Ramos S, Kamp F, Megens RTA, Mowen KA, Gunzer M, Maegdefessel L, Hackeng T, Lutgens E, Daemen M, von Blume J, Anders HJ, Nikolaev VO, Pellequer JL, Weber C, Hidalgo A, Nicolaes GAF, Wong GCL, Soehnlein O. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019; 569:236-240. [PMID: 31043745 PMCID: PMC6716525 DOI: 10.1038/s41586-019-1167-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.
Collapse
Affiliation(s)
- Carlos Silvestre-Roig
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany.
- Department of Pathology, AMC, Amsterdam, The Netherlands.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| | - Quinte Braster
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- Department of Pathology, AMC, Amsterdam, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kanin Wichapong
- Department of Biochemistry, CARIM, University Maastricht, Maastricht, The Netherlands
| | - Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Nihel Berrebeh
- Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Janine Winter
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
| | - José M Adrover
- Area of Developmental and Cell Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Patricia Lemnitzer
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
| | - Almudena Ortega-Gómez
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Raphael Chevre
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
| | - Julian Marschner
- Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
| | - Ariane Schumski
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Carla Winter
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Chang Pan
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
| | - Nicole Paulin
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
| | - Tom Schoufour
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | - Helene Hartwig
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | | | - Frits Kamp
- BMC, Metabolic Biochemistry, LMU München, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- Department of Biomedical Engineering, CARIM, University Maastricht, Maastricht, The Netherlands
| | | | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Lars Maegdefessel
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Tilman Hackeng
- Department of Biochemistry, CARIM, University Maastricht, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- Department of Medical Biochemistry, AMC, Amsterdam, The Netherlands
| | - Mat Daemen
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | | | | | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | | | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, CARIM, University Maastricht, Maastricht, The Netherlands
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany
- Area of Developmental and Cell Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gerry A F Nicolaes
- Department of Biochemistry, CARIM, University Maastricht, Maastricht, The Netherlands
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU München, Munich, Germany.
- Department of Pathology, AMC, Amsterdam, The Netherlands.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Babinska A, Clement CC, Przygodzki T, Talar M, Li Y, Braun M, Wzorek J, Swiatkowska M, Ehrlich YH, Kornecki E, Watala C, Salifu MO. A peptide antagonist of F11R/JAM-A reduces plaque formation and prolongs survival in an animal model of atherosclerosis. Atherosclerosis 2019; 284:92-101. [DOI: 10.1016/j.atherosclerosis.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 12/29/2022]
|
25
|
CD80 Is Upregulated in a Mouse Model with Shear Stress-Induced Atherosclerosis and Allows for Evaluating CD80-Targeting PET Tracers. Mol Imaging Biol 2017; 19:90-99. [PMID: 27430577 DOI: 10.1007/s11307-016-0987-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE A shear stress-induced atherosclerosis mouse model was characterized for its expression of inflammation markers with focus on CD80. With this model, we evaluated two positron emission tomography (PET) radiotracers targeting CD80 as well as 2-deoxy-2-[18F]fluoro-D-mannose ([18F]FDM) in comparison with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). PROCEDURE A flow constrictive cuff implanted around the common carotid artery in apolipoprotein E knockout mice resulted in plaque formation. CD80 expression levels and plaque histopathology were evaluated. Serial PET/X-ray computed tomography scans were performed to follow inflammation. RESULTS Plaque formation with increased levels of CD80 was observed. Histologically, plaques presented macrophage-rich and large necrotic areas covered by a thin fibrous cap. Of the CD80-specific tracers, one displayed an increased uptake in plaques by PET. Both [18F]FDG and [18F]FDM accumulated in atherosclerotic plaques. CONCLUSION This mouse model presented, similar to humans, an increased expression of CD80 which renders it suitable for non-invasively targeting CD80-positive immune cells and evaluating CD80-specific radiotracers.
Collapse
|
26
|
Soehnlein O, Silvestre-Roig C. Standardizing animal atherosclerosis studies to improve reproducibility. Nat Rev Cardiol 2017; 14:574-575. [DOI: 10.1038/nrcardio.2017.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Szostak J, Martin F, Talikka M, Peitsch MC, Hoeng J. Semi-Automated Curation Allows Causal Network Model Building for the Quantification of Age-Dependent Plaque Progression in ApoE -/- Mouse. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:95-103. [PMID: 27840576 PMCID: PMC5100841 DOI: 10.4137/grsb.s40031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 11/05/2022]
Abstract
The cellular and molecular mechanisms behind the process of atherosclerotic plaque destabilization are complex, and molecular data from aortic plaques are difficult to interpret. Biological network models may overcome these difficulties and precisely quantify the molecular mechanisms impacted during disease progression. The atherosclerosis plaque destabilization biological network model was constructed with the semiautomated curation pipeline, BELIEF. Cellular and molecular mechanisms promoting plaque destabilization or rupture were captured in the network model. Public transcriptomic data sets were used to demonstrate the specificity of the network model and to capture the different mechanisms that were impacted in ApoE-/- mouse aorta at 6 and 32 weeks. We concluded that network models combined with the network perturbation amplitude algorithm provide a sensitive, quantitative method to follow disease progression at the molecular level. This approach can be used to investigate and quantify molecular mechanisms during plaque progression.
Collapse
Affiliation(s)
- Justyna Szostak
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
de Vries MR, Quax PHA. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr Opin Lipidol 2016; 27:499-506. [PMID: 27472406 DOI: 10.1097/mol.0000000000000339] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The review discusses the recent literature on plaque angiogenesis and its relation to inflammation and plaque destabilization. Furthermore, it discusses how plaque angiogenesis can be used to monitor atherosclerosis and serve as a therapeutic target. RECENT FINDINGS Histopathologic studies have shown a clear relationship between plaque angiogenesis, intraplaque hemorrhage (IPH), plaque vulnerability, and cardiovascular events. Hypoxia is a main driver of plaque angiogenesis and the mechanism behind angiogenesis is only partly known. IPH, as the result of immature neovessels, is associated with increased influx of inflammatory cells in the plaques. Experimental models displaying certain features of human atherosclerosis such as plaque angiogenesis or IPH are developed and can contribute to unraveling the mechanism behind plaque vulnerability. New imaging techniques are established, with which plaque angiogenesis and vulnerability can be detected. Furthermore, antiangiogenic therapies in atherosclerosis gain much attention. SUMMARY Plaque angiogenesis, IPH, and inflammation contribute to plaque vulnerability. Histopathologic and imaging studies together with specific experimental studies have provided insights in plaque angiogenesis and plaque vulnerability. However, more extensive knowledge on the underlying mechanism is required for establishing new therapies for patients at risk.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Viola JR, Lemnitzer P, Jansen Y, Csaba G, Winter C, Neideck C, Silvestre-Roig C, Dittmar G, Döring Y, Drechsler M, Weber C, Zimmer R, Cenac N, Soehnlein O. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ Res 2016; 119:1030-1038. [PMID: 27531933 DOI: 10.1161/circresaha.116.309492] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Atheroprogression is a consequence of nonresolved inflammation, and currently a comprehensive overview of the mechanisms preventing resolution is missing. However, in acute inflammation, resolution is known to be orchestrated by a switch from inflammatory to resolving lipid mediators. Therefore, we hypothesized that lesional lipid mediator imbalance favors atheroprogression. OBJECTIVE To understand the lipid mediator balance during atheroprogression and to establish an interventional strategy based on the delivery of resolving lipid mediators. METHODS AND RESULTS Aortic lipid mediator profiling of aortas from Apoe-/- mice fed a high-fat diet for 4 weeks, 8 weeks, or 4 months revealed an expansion of inflammatory lipid mediators, Leukotriene B4 and Prostaglandin E2, and a concomitant decrease of resolving lipid mediators, Resolvin D2 (RvD2) and Maresin 1 (MaR1), during advanced atherosclerosis. Functionally, aortic Leukotriene B4 and Prostaglandin E2 levels correlated with traits of plaque instability, whereas RvD2 and MaR1 levels correlated with the signs of plaque stability. In a therapeutic context, repetitive RvD2 and MaR1 delivery prevented atheroprogression as characterized by halted expansion of the necrotic core and accumulation of macrophages along with increased fibrous cap thickness and smooth muscle cell numbers. Mechanistically, RvD2 and MaR1 induced a shift in macrophage profile toward a reparative phenotype, which secondarily stimulated collagen synthesis in smooth muscle cells. CONCLUSIONS We present evidence for the imbalance between inflammatory and resolving lipid mediators during atheroprogression. Delivery of RvD2 and MaR1 successfully prevented atheroprogression, suggesting that resolving lipid mediators potentially represent an innovative strategy to resolve arterial inflammation.
Collapse
Affiliation(s)
- Joana R Viola
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Patricia Lemnitzer
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Yvonne Jansen
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Gergely Csaba
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carla Winter
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carlos Neideck
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Carlos Silvestre-Roig
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Gunnar Dittmar
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Maik Drechsler
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Ralf Zimmer
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Nicolas Cenac
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), LMU Munich, Germany (J.R.V., P.L., Y.J., C.W., C.N., C.S.-R., Y.D., M.D., C.W., O.S.); Department of Pathology, Academic Medical Center (AMC), Amsterdam University, The Netherlands (J.R.V., C.S.-R., M.D., O.S.); Department of Informatics, Institute of Bioinformatics, LMU Munich, Germany (G.C., R.Z.); DZHK, Partner Site Munich Heart Alliance, Germany (C.W., Y.D., M.D., C.W., O.S.); Mass Spectrometry Core Facility, Max-Delbrück Center, Berlin Institute of Health, Germany (G.D.); and Inserm U1043, CHU Purpan, Toulouse, France (N.C.).
| |
Collapse
|
30
|
Longitudinal imaging of the ageing mouse. Mech Ageing Dev 2016; 160:93-116. [PMID: 27530773 DOI: 10.1016/j.mad.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging.
Collapse
|
31
|
Gleissner CA. Translational atherosclerosis research: From experimental models to coronary artery disease in humans. Atherosclerosis 2016; 248:110-6. [DOI: 10.1016/j.atherosclerosis.2016.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 01/23/2023]
|