1
|
Wei Q, Foyn H, Landskron J, Wang S, Rye IH, Skånland SS, Russnes HEG, Klaveness J, Ahmad R, Taskén K. Identification of a group of 9-amino-acridines that selectively downregulate regulatory T cell functions through FoxP3. iScience 2025; 28:111931. [PMID: 40034859 PMCID: PMC11872463 DOI: 10.1016/j.isci.2025.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are responsible for immune homeostasis by suppressing excessive anti-self-immunity. Tregs facilitate tumor growth by inhibiting anti-tumor immunity. Here, we explored the targeting of FoxP3 as a basis for new immunotherapies. In a high-throughput phenotypic screening of a drug repurposing library using human primary T cells, we identified quinacrine as a FoxP3 downregulator. In silico searches based on the structure of quinacrine, testing of sub-libraries of analogs in vitro, and validation identified a subset of 9-amino-acridines that selectively abrogated Treg suppressive functions. Mechanistically, these acridines interfered with the DNA-binding activity of FoxP3 and inhibited FoxP3-regulated downstream gene regulation. Release from Treg suppression by 9-amino-acridines increased anti-tumor immune responses both in cancer patient samples and in mice in a syngeneic tumor model. Our study highlights the feasibility of screening for small molecular inhibitors of FoxP3 as an approach to pursuing Treg-based immunotherapy.
Collapse
Affiliation(s)
- Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Håvard Foyn
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes Landskron
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Shixiong Wang
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Inga Hansine Rye
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| | - Hege Elisabeth Giercksky Russnes
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pathology, Division of Laboratory Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Rafi Ahmad
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Department of Biotechnology, University of Inland Norway, 2317 Hamar, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Norwegian Centre for Clinical Cancer Research, MATRIX, Division of Cancer Medicine, Oslo University Hospital, 0424 Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
2
|
Liu Y, Luo Z. Repurposing Anticancer Drugs Targeting the MAPK/ERK Signaling Pathway for the Treatment of Respiratory Virus Infections. Int J Mol Sci 2024; 25:6946. [PMID: 39000055 PMCID: PMC11240997 DOI: 10.3390/ijms25136946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory virus infections remain a significant challenge to human health and the social economy. The symptoms range from mild rhinitis and nasal congestion to severe lower respiratory tract dysfunction and even mortality. The efficacy of therapeutic drugs targeting respiratory viruses varies, depending upon infection time and the drug resistance engendered by a high frequency of viral genome mutations, necessitating the development of new strategies. The MAPK/ERK pathway that was well delineated in the 1980s represents a classical signaling cascade, essential for cell proliferation, survival, and differentiation. Since this pathway is constitutively activated in many cancers by oncogenes, several drugs inhibiting Raf/MEK/ERK have been developed and currently used in anticancer treatment. Two decades ago, it was reported that viruses such as HIV and influenza viruses could exploit the host cellular MAPK/ERK pathway for their replication. Thus, it would be feasible to repurpose this category of the pathway inhibitors for the treatment of respiratory viral infections. The advantage is that the host genes are not easy to mutate such that the drug resistance rarely occurs during short-period treatment of viruses. Therefore, in this review we will summarize the research progress on the role of the MAPK/ERK pathway in respiratory virus amplification and discuss the potential of the pathway inhibitors (MEK inhibitors) in the treatment of respiratory viral infections.
Collapse
Affiliation(s)
| | - Zhijun Luo
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China;
| |
Collapse
|
3
|
Koch-Heier J, Vogel AB, Füll Y, Ebensperger M, Schönsiegel A, Zinser RS, Planz O. MEK-inhibitor treatment reduces the induction of regulatory T cells in mice after influenza A virus infection. Front Immunol 2024; 15:1360698. [PMID: 38979428 PMCID: PMC11228811 DOI: 10.3389/fimmu.2024.1360698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | | | | | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | - Raphael S. Zinser
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
4
|
Yang Y, Liu Y, Xia Y, Cheng J, Liu P. Tandem mass tag (TMT) quantitative proteomics and phosphoproteomic of Takifugu rubripes infected with Cryptocaryon irritans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101124. [PMID: 37647835 DOI: 10.1016/j.cbd.2023.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In this study, we identified the differentially expressed proteins in gills stimulated by infected ciliates and analyzed the immune mechanisms of T. rubripes infected with the ciliate Cryptocaryon irritans. Through liquid chromatography analysis, a total of 144 proteins were identified with significant differences, of which 58 were upregulated and 86 were downregulated. Among phosphorylated proteins, we identified a total of 167 significantly different phosphorylated proteins, of which 44 were upregulated, 123 were downregulated, 60 were upregulated, and 208 were downregulated. We analyzed the data of proteomics and Phosphorylated proteome quantification protein omics to finally identify three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases(CaMKII and MAPK1) as potential biomarkers for T. rubripes immune responses. We finally identified three phosphorylated proteins (RPS27, eNOS and CaM) and two phosphorylated protein kinases (CaMKII and MAPK1) as potential biomarkers of immune response of T. rubripes. Our research findings provide new insights into the immune mechanism of T. rubripes, which may serve as an effective indicator of C. irritans infection in T. rubripes.
Collapse
Affiliation(s)
- Yi Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China
| | - Yanyun Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianxin Cheng
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Pengfei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
5
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. The antiviral effects of a MEK1/2 inhibitor promote tumor regression in a preclinical model of human papillomavirus infection-induced tumorigenesis. Antiviral Res 2023; 216:105667. [PMID: 37429527 PMCID: PMC10530289 DOI: 10.1016/j.antiviral.2023.105667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades and beyond. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in three-dimensional tissue cultures. Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo. We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses reveal that inhibition of MEK/ERK signaling reduces E6/E7 mRNA, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent antiviral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies.
Collapse
Affiliation(s)
- Adrian J Luna
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jesse M Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Rosa T Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Fred A Schultz
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Donna F Kusewitt
- Department of Pathology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, Biostatistics and Preventive Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Luna AJ, Young JM, Sterk RT, Bondu V, Schultz FA, Kusewitt DF, Kang H, Ozbun MA. Inhibition of Cellular MEK/ERK Signaling Suppresses Murine Papillomavirus Type 1 Replicative Activities and Promotes Tumor Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532042. [PMID: 36993217 PMCID: PMC10054951 DOI: 10.1101/2023.03.14.532042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Human papillomaviruses (HPVs) are a significant public health concern due to their widespread transmission, morbidity, and oncogenic potential. Despite efficacious vaccines, millions of unvaccinated individuals and those with existing infections will develop HPV-related diseases for the next two decades. The continuing burden of HPV-related diseases is exacerbated by the lack of effective therapies or cures for most infections, highlighting the need to identify and develop antivirals. The experimental murine papillomavirus type 1 (MmuPV1) model provides opportunities to study papillomavirus pathogenesis in cutaneous epithelium, the oral cavity, and the anogenital tract. However, to date the MmuPV1 infection model has not been used to demonstrate the effectiveness of potential antivirals. We previously reported that inhibitors of cellular MEK/ERK signaling suppress oncogenic HPV early gene expression in vitro . Herein, we adapted the MmuPV1 infection model to determine whether MEK inhibitors have anti-papillomavirus properties in vivo . We demonstrate that oral delivery of a MEK1/2 inhibitor promotes papilloma regression in immunodeficient mice that otherwise would have developed persistent infections. Quantitative histological analyses revealed that inhibition of MEK/ERK signaling reduces E6/E7 mRNAs, MmuPV1 DNA, and L1 protein expression within MmuPV1-induced lesions. These data suggest that MEK1/2 signaling is essential for both early and late MmuPV1 replication events supporting our previous findings with oncogenic HPVs. We also provide evidence that MEK inhibitors protect mice from developing secondary tumors. Thus, our data suggest that MEK inhibitors have potent anti-viral and anti-tumor properties in a preclinical mouse model and merit further investigation as papillomavirus antiviral therapies. Significance Statement Persistent human papillomavirus (HPV) infections cause significant morbidity and oncogenic HPV infections can progress to anogenital and oropharyngeal cancers. Despite the availability of effective prophylactic HPV vaccines, millions of unvaccinated individuals, and those currently infected will develop HPV-related diseases over the next two decades and beyond. Thus, it remains critical to identify effective antivirals against papillomaviruses. Using a mouse papillomavirus model of HPV infection, this study reveals that cellular MEK1/2 signaling supports viral tumorigenesis. The MEK1/2 inhibitor, trametinib, demonstrates potent antiviral activities and promotes tumor regression. This work provides insight into the conserved regulation of papillomavirus gene expression by MEK1/2 signaling and reveals this cellular pathway as a promising therapeutic target for the treatment of papillomavirus diseases.
Collapse
|
7
|
Cheng J, Xia Y, Zhou C, Li X, Liu P. Proteomics and Phosphoproteomic Analysis to Identify Spleen of Takifugu rubripes Infected Cryptocaryon irritans. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:291-313. [PMID: 37039930 DOI: 10.1007/s10126-023-10205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023]
Abstract
Takifugu rubripes is important commercially fish species in China and it is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic losses. In this study, we used proteomics and phosphoproteomic analysis to identify differentially abundant proteins in the spleen of T. rubripes infected with the Cryptocaryon irritans. We identified 5,307 proteins and 6,644 phosphorylated sites on 2,815 phosphoproteins using high-throughput proteomics analysis of the spleen of T. rubripes based on 26,421 unique peptides and 5,013 modified peptides, respectively. The 5,307 quantified host proteins, 40 were upregulated and 43 were downregulated in the infection group compared to the control group. Among the 2815 phosphoproteins, 44/120 were upregulated/downregulated, and 62/151 were upregulated/downregulated in the 6644 quantified phosphosites. Using the combination of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, screening for significantly different phosphoproteins, motif analysis and protein-protein interaction analysis, we ultimately identified three phosphorylated proteins (G-protein-signaling modulator 1-like, zinc finger protein 850-like, and histone H1-like) and three phosphorylated protein kinases (serine/threonine-protein kinase homolog isoform X2, mitogen-activated protein kinase 5-like, and protein kinase C theta type) as potential biomarkers for T. rubripes immune responses. We then screened the phosphorylation sites of these biomarker proteins for further verification. Based on our results, we speculate that phosphorylation modification of the phosphorylation sites is involved in the immunity of T. rubripes against C. irritans.
Collapse
Affiliation(s)
- Jianxin Cheng
- College of Life Science, Liaoning Normal University, Dalian, 116081, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cheng Zhou
- College of Marine Technology and Environment, Dalian Ocean University, No.52, Heishijiao Road, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Xiaohao Li
- College of Marine Technology and Environment, Dalian Ocean University, No.52, Heishijiao Road, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China
| | - Pengfei Liu
- College of Marine Technology and Environment, Dalian Ocean University, No.52, Heishijiao Road, Dalian, 116023, China.
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, 52 Heishijiao Street, Dalian, 116023, China.
| |
Collapse
|
8
|
MEK inhibitors as novel host-targeted antivirals with a dual-benefit mode of action against hyperinflammatory respiratory viral diseases. Curr Opin Virol 2023; 59:101304. [PMID: 36841033 PMCID: PMC10091867 DOI: 10.1016/j.coviro.2023.101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Acute hyperinflammatory virus infections, such as influenza or coronavirus disease-19, are still a major health burden worldwide. In these diseases, a massive overproduction of pro-inflammatory cytokines and chemokines (cytokine storm syndrome) determine the severity of the disease, especially in late stages. Direct-acting antivirals against these pathogens have to be administered very early after infection to be effective and may induce viral resistance. Here, we summarize data on a host-targeted strategy using inhibitors of the cellular Raf/MEK/ERK kinase cascade that not only block replication of different RNA viruses but also suppress the hyperinflammatory cytokine response upon infection. In the first phase-II clinical trial of that approach, the MEK inhibitor Zapnometinib shows evidence of clinical benefit.
Collapse
|
9
|
Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat Commun 2023; 14:478. [PMID: 36717589 PMCID: PMC9885066 DOI: 10.1038/s41467-023-36123-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.
Collapse
|
10
|
Füll Y, Wallasch C, Hilton A, Planz O. Pharmacokinetics, absorption, distribution, metabolism and excretion of the MEK inhibitor zapnometinib in rats. Front Pharmacol 2022; 13:1050193. [PMID: 36545320 PMCID: PMC9760738 DOI: 10.3389/fphar.2022.1050193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Zapnometinib is a MEK inhibitor currently under clinical development for the treatment of COVID-19 and influenza. Zapnometinib has both antiviral and immunomodulatory effects. Information concerning the absorption, distribution, metabolism, and excretion of the compound following single oral doses of 30 mg/kg [14C]-zapnometinib to rats was required to support pharmacology and toxicology studies in animals and clinical studies in man. As part of the development and safety assessment of this substance, zapnometinib was radioactively labeled and used for the investigation of time-dependent plasma concentrations, the rates and routes of excretion, the extent and time-course of compound distribution in body tissues, the metabolite profiles in plasma, urine and feces and the chemical nature of its metabolites. The present study reveals a rapid but low absorption of zapnometinib from the gastrointestinal tract, with more than 90% of the compound being excreted within 48 h, mainly via feces. Whole body autoradiography confirms that zapnometinib was rapidly and widely distributed, with greatest concentrations in the circulatory and visceral tissues. Maximum plasma and tissue concentrations occurred between two and 8 h post dose. Penetration into the brain was low, and elimination from most tissues almost complete after 168 h. Metabolic profiles showed that the main clearance routes were metabolism via oxidative reactions and glucuronidation. These results further strengthen the knowledge of zapnometinib with respect to the clinical development of the drug.
Collapse
Affiliation(s)
- Yvonne Füll
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany,Atriva Therapeutics GmbH, Tuebingen, Germany
| | | | - Ashley Hilton
- Labcorp Early Development Laboratories Ltd., Huntingdon, United Kingdom
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany,Atriva Therapeutics GmbH, Tuebingen, Germany,*Correspondence: Oliver Planz,
| |
Collapse
|
11
|
Koch-Heier J, Schönsiegel A, Waidele LM, Volk J, Füll Y, Wallasch C, Canisius S, Burnet M, Planz O. Pharmacokinetics, Pharmacodynamics and Antiviral Efficacy of the MEK Inhibitor Zapnometinib in Animal Models and in Humans. Front Pharmacol 2022; 13:893635. [PMID: 35784712 PMCID: PMC9240354 DOI: 10.3389/fphar.2022.893635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022] Open
Abstract
The mitogen-activated protein kinase (MEK) inhibitor zapnometinib is in development to treat acute viral infections like COVID-19 and influenza. While the antiviral efficacy of zapnometinib is well documented, further data on target engagement/pharmacodynamics (PD) and pharmacokinetics (PK) are needed. Here, we report zapnometinib PK and PD parameters in mice, hamsters, dogs, and healthy human volunteers. Mice received 25 mg/kg/day zapnometinib (12.5 mg/kg p. o. twice daily, 8 h interval). Syrian hamsters received 30 mg/kg (15 mg/kg twice daily) or 60 mg/kg/day once daily. Beagle dogs were administered 300 mg/kg/day, and healthy human volunteers were administered 100, 300, 600 and 900 mg zapnometinib (once daily p. o.). Regardless of species or formulation, zapnometinib maximum plasma concentration (Cmax) was reached between 2–4 h after administration with an elimination half-life of 4–5 h in dogs, 8 h in mice or hamsters and 19 h in human subjects. Doses were sufficient to cause up to 80% MEK inhibition. Across all species approximately 10 μg/ml zapnometinib was appropriate to inhibit 50% of peripheral blood mononuclear cells (PBMC) MEK activity. In mice, a 50%–80% reduction of MEK activity was sufficient to reduce influenza virus titer in the lungs by more than 90%. In general, while >50% MEK inhibition was reached in vivo at most doses, 80% inhibition in PBMCs required significantly higher doses and appeared to be the practical maximal level obtained in vivo. However, the period of reduced phosphorylated extracellular-signal regulated kinase (pERK), a measure of MEK inhibition, was maintained even after elimination of zapnometinib from plasma, suggesting a sustained effect on MEK consistent with regulatory effects or a slow off-rate. These data suggest a target plasma Cmax of at least 10 μg/ml zapnometinib in further clinical studies.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - Lara Maria Waidele
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - Julian Volk
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - Yvonne Füll
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | | | | | | | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
- *Correspondence: Oliver Planz,
| |
Collapse
|
12
|
DiPeri TP, Demirhan M, Karp DD, Fu S, Hong DS, Subbiah V, Lim J, Ballester LY, Tayar JH, Suarez-Almazor ME, Javle M, Meric-Bernstam F. Corticosteroid-Refractory Myositis After Dual BRAF and MEK Inhibition in a Patient with BRAF V600E-Mutant Metastatic Intrahepatic Cholangiocarcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:26-30. [PMID: 35663835 PMCID: PMC9138421 DOI: 10.36401/jipo-21-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Intrahepatic cholangiocarcinoma is a rare malignancy, which is rich in actionable alterations. Genomic aberrations in the mitogen-activated protein kinase (MAPK) pathway are common, and BRAF exon 15 p.V600E mutations are present in 5–7% of biliary tract cancers (BTC). Dual inhibition of BRAF and MEK has been established for BRAF-mutated melanoma and lung cancer, and recent basket trials have shown efficacy of this combination in BRAF V600E-mutant BTCs. Here, we report on a patient with BRAF exon 15 p.V600E mutant metastatic intrahepatic cholangiocarcinoma who was started on BRAF and MEK inhibition with vemurafenib and combimetinib. Shortly thereafter, he developed debilitating myositis, which was refractory to corticosteroids, requiring therapeutic plasma exchange and intravenous immunoglobulin. We also review BRAF as a target in BTCs, relevant clinical trials, and adverse events associated with BRAF and MEK inhibition.
Collapse
Affiliation(s)
- Timothy P. DiPeri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet Demirhan
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Elmhurst Hospital Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Daniel D. Karp
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S. Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joann Lim
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leomar Y. Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Jean H. Tayar
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria E. Suarez-Almazor
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Ziogas DC, Mandellos D, Theocharopoulos C, Lialios PP, Bouros S, Ascierto PA, Gogas H. Neuromuscular Complications of Targeted Anticancer Agents: Can Tyrosine Kinase Inhibitors Induce Myasthenia Gravis? Getting Answers From a Case Report up to a Systematic Review. Front Oncol 2021; 11:727010. [PMID: 34722270 PMCID: PMC8554100 DOI: 10.3389/fonc.2021.727010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
More than 40 tyrosine kinase inhibitors (TKIs) have received hematological or oncological indications over the past 20 years, following the approval of imatinib, and many others are currently being tested in clinical and preclinical level. Beyond their common toxicities, no certain agent from this large class of molecularly targeted therapies was strongly associated with “off-target” impairment of neuromuscular transmission, and although myasthenia gravis (MG) is a well-characterized autoimmune disorder, only few sporadic events proven by serologically detected causative autoantibodies and/or by positive electrophysiological tests are reported in the literature. Herein, we present the first case of anti-MUSK (+) MG in a woman with metastatic BRAF-mutant melanoma after long-term treatment with dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor). Triggered by this report, a systematic literature review was conducted, summarizing all other cancer cases that developed MG, after exposure to any type of targeted agent and regardless of the underlying malignancy. All available data on the clinical diagnosis, the potential of administered TKIs to induce a seropositive myasthenic syndrome, the immune and non-immune-mediated pathogenesis of postsynaptic damage, and the challenging management of this neuromuscular toxicity were collected and discussed. In the presented case, MG was confirmed by both autoantibodies and nerve-conduction tests, while its reactivation after TKIs rechallenge supports a more than coincidental association. The following review identified 12 cancer cases with TKI-related MG in six case reports and one case series. In most of them, the myasthenia diagnosis was challenging, since the clinical symptomatology of fatigable weakness was not corroborating with consistent laboratory and electrophysiological findings. In fact, anti-AchR titers were positive in five and anti-MuSK only in the abovementioned individual. The symptomatology corresponded to TKI discontinuation and standard treatment with pyridostigmine and prednisolone; intravenous immunoglobulin was added only in three, and two required mechanical ventilation. In an era where TKIs will be prescribed more frequently for various malignancies, even in combinations with immune-checkpoint inhibitors, this report synthesizes their risk for neuromuscular complications and increases the clinicians’ awareness in order to extend the on-treatment and overall survival of TKI-treated cancer patients.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | | | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Spyros Bouros
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens, School of Medicine, Laiko General Hospital, Athens, Greece
| |
Collapse
|
14
|
Shi W, Huang Q, Xie J, Wang H, Yu X, Zhou Y. CKS1B as Drug Resistance-Inducing Gene-A Potential Target to Improve Cancer Therapy. Front Oncol 2020; 10:582451. [PMID: 33102238 PMCID: PMC7545642 DOI: 10.3389/fonc.2020.582451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is a threat to human health and life. Although previously centered on chemical drug treatments, cancer treatment has entered an era of precision targeted therapy. Targeted therapy entails precise guidance, allowing the selective killing of cancer cells and thereby reducing damage to healthy tissues. Therefore, the need to explore potential targets for tumor treatment is vital. Cyclin-dependent kinase regulatory subunit 1B (CKS1B), a member of the conserved cyclin kinase subunit 1 (CKS1) protein family, plays an essential role in cell cycling. A large number of studies have shown that CKS1B is associated with the pathogenesis of many human cancers and closely related to drug resistance. Here, we describe the current understanding of the cellular functions of CKS1B and its underlying mechanisms, summarize a recent study of CKS1B as a target for cancer treatment and discuss the potential of CKS1B as a therapeutic target.
Collapse
Affiliation(s)
- Wenwen Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiudi Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiacui Xie
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - He Wang
- Center of Cancer Research, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology, The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Ruiz-Camps I, Aguilar-Company J. Epidermal Growth Factor Receptor Inhibitors and Other Tyrosine Kinase Inhibitors for Solid Tumors. Infect Dis Clin North Am 2020; 34:257-270. [PMID: 32334988 DOI: 10.1016/j.idc.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article analyzes the risk of infection associated with small molecule kinase inhibitors used to treat solid organ malignancies and establishes specific recommendations. Most of these drugs are orally administered and have the ability to inhibit distinct kinases, which play a major role in cancer initiation and progression. Although the true extent of adverse events is not yet known, risk of infection does not seem to be a major problem with these drugs. Because of the limited clinical experience and the constant evolution of targeted therapies, recommendations may evolve in the near future.
Collapse
Affiliation(s)
- Isabel Ruiz-Camps
- Infectious Diseases Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain
| | - Juan Aguilar-Company
- Infectious Diseases Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Oncology Department, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain.
| |
Collapse
|
16
|
Zeng Z, Gao ZL, Zhang ZP, Jiang HB, Yang CQ, Yang J, Xia XB. Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway. Int J Mol Med 2019; 44:103-114. [PMID: 31115482 PMCID: PMC6559318 DOI: 10.3892/ijmm.2019.4183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma (RB) is a common neoplasm that is exhibited in individuals globally. Increasing evidence demonstrated that cyclin‑dependent kinase regulatory subunit 1B (CKS1B) may be involved in the pathogenesis of various tumor types, including multiple myeloma and breast cancer. In the present study, the hypothesis that CKS1B downregulation would effectively inhibit the proliferation, invasion and angiogenesis of RB cells through the mitogen‑activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) signaling pathway was examined. Initial investigation of the expression profile of CKS1B in RB and adjacent retina tissues was performed using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. A total of three RB cell lines, SO‑RB50, Y79 and HXO‑RB44, were examined for selection of the cell line with the highest expression of CKS1B, and human normal retinal vascular endothelial cells (ACBRI‑181) were also evaluated. CKS1B short hairpin RNA (shRNA) sequences (shRNA CKS1B‑1, shRNA CKS1B‑2 and shRNA CKS1B‑3) and negative control shRNA sequences were constructed and transfected into cells at the third generation to evaluate the role of shCKS1B and the MEK/ERK signaling pathway in RB. Furthermore, the effect of shCKS1B on cell proliferation, migration, invasion, apoptosis and angiogenesis was investigated. CKS1B was determined to be highly expressed in RB tissue, compared with adjacent retina tissue. SO‑RB50 and HXO‑RB44 cells treated with shRNA CKS1B‑1 and shRNA CKS1B‑2 were selected for the present experiments. Activation of the MEK/ERK signaling pathway increases the expression of MEK, ERK, B‑cell lymphoma 2, proliferating cell nuclear antigen, cyclin D1, vascular endothelia growth factor and basic fibroblast growth factor, enhances cell proliferation, migration, invasion and lumen formation, and decreases apoptosis. Following silencing CKS1B, the aforementioned conditions were reversed. The key observations of the present study demonstrated that shCKS1B can inhibit the proliferation, invasion and angiogenesis of RB cells by suppressing the MEK/ERK signaling pathway. Thus, CKS1B represents a potential research target in the development of therapeutics for RB.
Collapse
Affiliation(s)
- Zhou Zeng
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Zhao-Lin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Zhi-Pei Zhang
- Department of Ophthalmology, The First People's Hospital of Changde City, Changde, Hunan 415000, P.R. China
| | - Hai-Bo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Chang-Quan Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Jie Yang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Xiao-Bo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| |
Collapse
|
17
|
Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol 2019; 10:962. [PMID: 31134013 PMCID: PMC6514247 DOI: 10.3389/fmicb.2019.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
The biology and clinical efficacy of immune cells from patients with infectious diseases or cancer are associated with metabolic programming. Host immune- and stromal-cell genetic and epigenetic signatures in response to the invading pathogen shape disease pathophysiology and disease outcomes. Directly linked to the immunometabolic axis is the role of the host microbiome, which is also discussed here in the context of productive immune responses to lung infections. We also present host-directed therapies (HDT) as a clinically viable strategy to refocus dysregulated immunometabolism in patients with infectious diseases, which requires validation in early phase clinical trials as adjuncts to conventional antimicrobial therapy. These efforts are expected to be continuously supported by newly generated basic and translational research data to gain a better understanding of disease pathology while devising new molecularly defined platforms and therapeutic options to improve the treatment of patients with pulmonary infections, particularly in relation to multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| |
Collapse
|
18
|
Reinwald M, Silva JT, Mueller NJ, Fortún J, Garzoni C, de Fijter JW, Fernández-Ruiz M, Grossi P, Aguado JM. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Intracellular signaling pathways: tyrosine kinase and mTOR inhibitors). Clin Microbiol Infect 2018; 24 Suppl 2:S53-S70. [PMID: 29454849 DOI: 10.1016/j.cmi.2018.02.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biologic therapies. AIMS To review, from an infectious diseases perspective, the safety profile of therapies targeting different intracellular signaling pathways and to suggest preventive recommendations. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Although BCR-ABL tyrosine kinase inhibitors modestly increase the overall risk of infection, dasatinib has been associated with cytomegalovirus and hepatitis B virus reactivation. BRAF/MEK kinase inhibitors do not significantly affect infection susceptibility. The effect of Bruton tyrosine kinase inhibitors (ibrutinib) among patients with B-cell malignancies is difficult to distinguish from that of previous immunosuppression. However, cases of Pneumocystis jirovecii pneumonia (PCP), invasive fungal infection and progressive multifocal leukoencephalopathy have been occasionally reported. Because phosphatidylinositol-3-kinase inhibitors (idelalisib) may predispose to opportunistic infections, anti-Pneumocystis prophylaxis and prevention strategies for cytomegalovirus are recommended. No increased rates of infection have been observed with venetoclax (antiapoptotic protein Bcl-2 inhibitor). Therapy with Janus kinase inhibitors markedly increases the incidence of infection. Pretreatment screening for chronic hepatitis B virus and latent tuberculosis infection must be performed, and anti-Pneumocystis prophylaxis should be considered for patients with additional risk factors. Cancer patients receiving mTOR inhibitors face an increased incidence of overall infection, especially those with additional risk factors (prior therapies or delayed wound healing). IMPLICATIONS Specific preventive approaches are warranted in view of the increased risk of infection associated with some of the reviewed agents.
Collapse
Affiliation(s)
- M Reinwald
- Department of Hematology and Oncology, Klinikum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Brandenburg an der Havel, Germany.
| | - J T Silva
- Department of Infectious Diseases, University Hospital of Badajoz, Fundación para la Formación e Investigación de los Profesionales de la Salud (FundeSalud), Badajoz, Spain
| | - N J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - J Fortún
- Department of Infectious Diseases, Hospital Universitario 'Ramon y Cajal', Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - C Garzoni
- Department of Internal Medicine, Clinica Luganese, Lugano, Switzerland; Department of Infectious Disease, Clinica Luganese, Lugano, Switzerland
| | - J W de Fijter
- Department of Medicine, Division of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - P Grossi
- Department of Infectious and Tropical Diseases, University of Insubria, Ospedale di Circolo-Fondazioni Macchi, Varese, Italy
| | - J M Aguado
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Jayashankar L, Hafner R. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Front Immunol 2016; 7:577. [PMID: 28018344 PMCID: PMC5159487 DOI: 10.3389/fimmu.2016.00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on “immuno-oncology” are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.
Collapse
Affiliation(s)
- Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|