1
|
Tawa M, Nakagawa K, Ohkita M. Soluble guanylate cyclase stimulators and activators as potential antihypertensive drugs. Hypertens Res 2025; 48:1458-1470. [PMID: 39833553 DOI: 10.1038/s41440-025-02110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025]
Abstract
Poor blood pressure control in treated patients with hypertension is an important topic in the field of hypertension, and an unmet need for new therapeutic drugs remains. Soluble guanylate cyclase (sGC), a key signal transduction enzyme responsible for vasodilation, has attracted increasing interest as a therapeutic target in various cardiovascular diseases. Two different sGC agonists, sGC stimulators and activators, can increase its enzymatic activity in reduced and oxidized/apo forms, respectively. With some sGC agonists being already in clinical use, drugs in this category are expected to become new therapeutic agents for various conditions, including hypertension. In this review, we summarize the current knowledge on the antihypertensive effects of sGC agonists in various preclinical studies involving animal models of spontaneous hypertension, salt-sensitive hypertension, nitric oxide-deficient hypertension, renin-angiotensin-aldosterone system-dependent hypertension, malignant hypertension, metabolic syndrome, renoprival hypertension, renovascular hypertension, drug-induced hypertension, pregnancy hypertension, and treatment-resistant hypertension. Our compilation provides a comprehensive rationale for advancing the clinical development of sGC agonists for the treatment of hypertension.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan.
| | - Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
2
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. Sci Rep 2024; 14:29307. [PMID: 39592775 PMCID: PMC11599588 DOI: 10.1038/s41598-024-80930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
Affiliation(s)
- Valeria Rudman-Melnick
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Davy Vanhoutte
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kaitlynn Stowers
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Michelle Sargent
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mike Adam
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA
| | - Anne Karina T Perl
- Division of Neonatology and Pulmonary biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander G Miethke
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Burg
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - E Steve S Woodle
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - J Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, 268-280 Albert Sabin Way, location T, floor 6, suite 272, Cincinnati, OH, 45229, USA.
| |
Collapse
|
3
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. RESEARCH SQUARE 2024:rs.3.rs-4746078. [PMID: 39184103 PMCID: PMC11343171 DOI: 10.21203/rs.3.rs-4746078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
4
|
Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q, Perl AKT, Miethke AG, Burg A, Shi T, Hildeman DA, Woodle ESS, Kofron JM, Devarajan P. Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594404. [PMID: 38798483 PMCID: PMC11118280 DOI: 10.1101/2024.05.15.594404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fibrosis is a common outcome of numerous pathologies, including chronic kidney disease (CKD), a progressive renal function deterioration. Current approaches to target activated fibroblasts, key effector contributors to fibrotic tissue remodeling, lack specificity. Here, we report Gucy1α1 as a specific kidney fibroblast marker. Gucy1α1 levels significantly increased over the course of two clinically relevant murine CKD models and directly correlated with established fibrosis markers. Immunofluorescent (IF) imaging showed that Gucy1α1 comprehensively labelled cortical and medullary quiescent and activated fibroblasts in the control kidney and throughout injury progression, respectively. Unlike traditionally used markers platelet derived growth factor receptor beta (Pdgfrβ) and vimentin (Vim), Gucy1α1 did not overlap with off-target populations such as podocytes. Notably, Gucy1α1 labelled kidney fibroblasts in both male and female mice. Furthermore, we observed elevated GUCY1α1 expression in the human fibrotic kidney and lung. Studies in the murine models of cardiac and liver fibrosis revealed Gucy1α1 elevation in activated Pdgfrβ-, Vim- and alpha smooth muscle actin (αSma)-expressing fibroblasts paralleling injury progression and resolution. Overall, we demonstrate Gucy1α1 as an exclusive fibroblast marker in both sexes. Due to its multiorgan translational potential, GUCY1α1 might provide a novel promising strategy to specifically target and mechanistically examine fibroblasts.
Collapse
|
5
|
Abstract
Salt (sodium chloride) is an essential nutrient required to maintain physiological functions. However, for most people, daily salt intake far exceeds their physiological need and is habitually greater than recommended upper thresholds. Excess salt intake leads to elevation in blood pressure which drives cardiovascular morbidity and mortality. Indeed, excessive salt intake is estimated to be responsible for ≈5 million deaths per year globally. For approximately one-third of otherwise healthy individuals (and >50% of those with hypertension), the effect of salt intake on blood pressure elevation is exaggerated; such people are categorized as salt sensitive and salt sensitivity of blood pressure is considered an independent risk factor for cardiovascular disease and death. The prevalence of salt sensitivity is higher in women than in men and, in both, increases with age. This narrative review considers the foundational concepts of salt sensitivity and the underlying effector systems that cause salt sensitivity. We also consider recent updates in preclinical and clinical research that are revealing new modifying factors that determine the blood pressure response to high salt intake.
Collapse
Affiliation(s)
- Matthew A Bailey
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
| | - Neeraj Dhaun
- Edinburgh Kidney, University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom (M.A.B., N.D.)
- Department of Renal Medicine, Royal Infirmary of Edinburgh, United Kingdom (N.D.)
| |
Collapse
|
6
|
Kraehling JR, Benardeau A, Schomber T, Popp L, Vienenkoetter J, Ellinger-Ziegelbauer H, Pavkovic M, Hartmann E, Siudak K, Freyberger A, Hagelschuer I, Mathar I, Hueser J, Hahn MG, Geiss V, Eitner F, Sandner P. The sGC Activator Runcaciguat Has Kidney Protective Effects and Prevents a Decline of Kidney Function in ZSF1 Rats. Int J Mol Sci 2023; 24:13226. [PMID: 37686032 PMCID: PMC10488129 DOI: 10.3390/ijms241713226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).
Collapse
Affiliation(s)
- Jan R. Kraehling
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Agnes Benardeau
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Novo Nordisk A/S, Global Drug Discovery, T1D-Kidney Disease, 2760 Måløv, Denmark
| | - Tibor Schomber
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Vincerx Pharma GmbH, 40789 Monheim, Germany
| | - Laura Popp
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Julia Vienenkoetter
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | | | - Mira Pavkovic
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Elke Hartmann
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Krystyna Siudak
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Alexius Freyberger
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ina Hagelschuer
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Ilka Mathar
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Joerg Hueser
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Michael G. Hahn
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Volker Geiss
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
| | - Frank Eitner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062 Aachen, Germany
| | - Peter Sandner
- Bayer AG, Research and Early Development, Pharma Research Center, 42096 Wuppertal, Germany
- Department of Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Bueno M, Calyeca J, Khaliullin T, Miller MP, Alvarez D, Rosas L, Brands J, Baker C, Nasser A, Shulkowski S, Mathien A, Uzoukwu N, Sembrat J, Mays BG, Fiedler K, Hahn SA, Salvatore SR, Schopfer FJ, Rojas M, Sandner P, Straub AC, Mora AL. CYB5R3 in type II alveolar epithelial cells protects against lung fibrosis by suppressing TGF-β1 signaling. JCI Insight 2023; 8:e161487. [PMID: 36749633 PMCID: PMC10077481 DOI: 10.1172/jci.insight.161487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Type II alveolar epithelial cell (AECII) redox imbalance contributes to the pathogenesis of idiopathic pulmonary fibrosis (IPF), a deadly disease with limited treatment options. Here, we show that expression of membrane-bound cytochrome B5 reductase 3 (CYB5R3), an enzyme critical for maintaining cellular redox homeostasis and soluble guanylate cyclase (sGC) heme iron redox state, is diminished in IPF AECIIs. Deficiency of CYB5R3 in AECIIs led to sustained activation of the pro-fibrotic factor TGF-β1 and increased susceptibility to lung fibrosis. We further show that CYB5R3 is a critical regulator of ERK1/2 phosphorylation and the sGC/cGMP/protein kinase G axis that modulates activation of the TGF-β1 signaling pathway. We demonstrate that sGC agonists (BAY 41-8543 and BAY 54-6544) are effective in reducing the pulmonary fibrotic outcomes of in vivo deficiency of CYB5R3 in AECIIs. Taken together, these results show that CYB5R3 in AECIIs is required to maintain resilience after lung injury and fibrosis and that therapeutic manipulation of the sGC redox state could provide a basis for treating fibrotic conditions in the lung and beyond.
Collapse
Affiliation(s)
- Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jazmin Calyeca
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Megan P. Miller
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diana Alvarez
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Judith Brands
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christian Baker
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amro Nasser
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie Shulkowski
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - August Mathien
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nneoma Uzoukwu
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brenton G. Mays
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kaitlin Fiedler
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott A. Hahn
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Francisco J. Schopfer
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology
- Pittsburgh Liver Research Center (PLRC), and
- Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Peter Sandner
- Bayer Pharmaceuticals Wuppertal, Germany
- Hannover Medical School, Hannover, Germany
| | | | - Ana L. Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Ataei Ataabadi E, Golshiri K, Jüttner AA, de Vries R, Van den Berg‐Garrelds I, Nagtzaam NMA, Khan HN, Leijten FPJ, Brandt RMC, Dik WA, van der Pluijm I, Danser AHJ, Sandner P, Roks AJM. Soluble guanylate cyclase activator BAY 54-6544 improves vasomotor function and survival in an accelerated ageing mouse model. Aging Cell 2022; 21:e13683. [PMID: 36029161 PMCID: PMC9470884 DOI: 10.1111/acel.13683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 01/24/2023] Open
Abstract
DNA damage is a causative factor in ageing of the vasculature and other organs. One of the most important vascular ageing features is reduced nitric oxide (NO)soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling. We hypothesized that the restoration of NO-sGC-cGMP signaling with an sGC activator (BAY 54-6544) may have beneficial effects on vascular ageing and premature death in DNA repair-defective mice undergoing accelerated ageing. Eight weeks of treatment with a non-pressor dosage of BAY 54-6544 restored the decreased in vivo microvascular cutaneous perfusion in progeroid Ercc1∆/- mice to the level of wild-type mice. In addition, BAY 54-6544 increased survival of Ercc1∆/- mice. In isolated Ercc1∆/- aorta, the decreased endothelium-independent vasodilation was restored after chronic BAY 54-6544 treatment. Senescence markers p16 and p21, and markers of inflammation, including Ccl2, Il6 in aorta and liver, and circulating IL-6 and TNF-α were increased in Ercc1∆/- , which was lowered by the treatment. Expression of antioxidant genes, including Cyb5r3 and Nqo1, was favorably changed by chronic BAY 54-6544 treatment. In summary, BAY 54-6544 treatment improved the vascular function and survival rates in mice with accelerated ageing, which may have implication in prolonging health span in progeria and normal ageing.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - Keivan Golshiri
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - Annika A. Jüttner
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - René de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - Ingrid Van den Berg‐Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - Nicole M. A. Nagtzaam
- Laboratory Medical Immunology, Department of ImmunologyErasmus MCRotterdamthe Netherlands
| | - Hina N. Khan
- Department of Molecular GeneticsErasmus MC Rotterdamthe Netherlands
| | - Frank P. J. Leijten
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | | | - Willem A. Dik
- Laboratory Medical Immunology, Department of ImmunologyErasmus MCRotterdamthe Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular GeneticsErasmus MC Rotterdamthe Netherlands
- Department of Vascular SurgeryErasmus MC Rotterdamthe Netherlands
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center Wuppertal, Germany & Hannover Medical SchoolInstitute of PharmacologyHannoverGermany
| | - Anton J. M. Roks
- Division of Pharmacology and Vascular Medicine, Department of Internal MedicineErasmus MCRotterdamthe Netherlands
| |
Collapse
|
9
|
Yuan Z, De La Cruz LK, Yang X, Wang B. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacol Rev 2022; 74:823-873. [PMID: 35738683 PMCID: PMC9553107 DOI: 10.1124/pharmrev.121.000564] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbon monoxide (CO) has been firmly established as an endogenous signaling molecule with a variety of pathophysiological and pharmacological functions, including immunomodulation, organ protection, and circadian clock regulation, among many others. In terms of its molecular mechanism(s) of action, CO is known to bind to a large number of hemoproteins with at least 25 identified targets, including hemoglobin, myoglobin, neuroglobin, cytochrome c oxidase, cytochrome P450, soluble guanylyl cyclase, myeloperoxidase, and some ion channels with dissociation constant values spanning the range of sub-nM to high μM. Although CO's binding affinity with a large number of targets has been extensively studied and firmly established, there is a pressing need to incorporate such binding information into the analysis of CO's biologic response in the context of affinity and dosage. Especially important is to understand the reservoir role of hemoglobin in CO storage, transport, distribution, and transfer. We critically review the literature and inject a sense of quantitative assessment into our analyses of the various relationships among binding affinity, CO concentration, target occupancy level, and anticipated pharmacological actions. We hope that this review presents a picture of the overall landscape of CO's engagement with various targets, stimulates additional research, and helps to move the CO field in the direction of examining individual targets in the context of all of the targets and the concentration of available CO. We believe that such work will help the further understanding of the relationship of CO concentration and its pathophysiological functions and the eventual development of CO-based therapeutics. SIGNIFICANCE STATEMENT: The further development of carbon monoxide (CO) as a therapeutic agent will significantly rely on the understanding of CO's engagement with therapeutically relevant targets of varying affinity. This review critically examines the literature by quantitatively analyzing the intricate relationships among targets, target affinity for CO, CO level, and the affinity state of carboxyhemoglobin and provide a holistic approach to examining the molecular mechanism(s) of action for CO.
Collapse
Affiliation(s)
- Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Reverte V, Rodriguez F, Oltra L, Moreno JM, Llinas MT, Shea CM, Schwartzkopf CD, Buys ES, Masferrer JL, Salazar FJ. SGLT2 inhibition potentiates the cardiovascular, renal and metabolic effects of sGC stimulation in hypertensive rats with prolonged exposure to high fat diet. Am J Physiol Heart Circ Physiol 2022; 322:H523-H536. [PMID: 35119333 PMCID: PMC8917931 DOI: 10.1152/ajpheart.00386.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged high-fat diet (HFD) accelerates the cardiovascular, renal, and metabolic dysfunction in hypertensive rats with altered renal development (ARDev). Soluble guanylate cyclase (sGC) stimulation or sodium-glucose cotransporter 2 (SGLT2) inhibition may improve cardiovascular, renal, and metabolic function in settings of hypertension and obesity. This study examined whether 6 wk treatment with an SGLT2 inhibitor (empagliflozin, 7 mg/kg/day) enhances the cardiovascular, renal, and metabolic effects of a sGC stimulator (praliciguat, 10 mg/kg/day) in hypertensive rats with ARDev and prolonged exposure to HFD. Arterial pressure (AP), renal vascular resistance (RVR), fat abdominal volume (FAV), insulin resistance, leptin and triglycerides levels, and intrarenal infiltration of inflammatory cells were higher, but cardiac output and creatinine clearance were lower in hypertensive rats (n = 15) than in normotensive rats (n = 7). Praliciguat administration (n = 10) to hypertensive rats reduced (P < 0.05) AP, FAV, plasma concentrations of leptin and triglycerides, and increased (P < 0.05) cardiac output and creatinine clearance. Empagliflozin administration (n = 8) only increased (P < 0.05) glucosuria and creatinine clearance and decreased (P < 0.05) plasma leptin and triglycerides concentrations in hypertensive rats. Simultaneous administration of praliciguat and empagliflozin (n = 10) accelerated the decrease in AP, improved glucose tolerance, reduced (P < 0.05) incremental body weight gain, and decreased (P < 0.05) insulin resistance index, RVR, and the infiltration of T-CD3 lymphocytes in renal cortex and renal medulla. In summary, the combined administration of praliciguat and empagliflozin leads to a greater improvement of the cardiovascular, renal, and metabolic dysfunction secondary to prolonged exposure to HFD in hypertensive rats with ARDev than the treatment with either praliciguat or empagliflozin alone. NEW & NOTEWORTHY This is the first study, to our knowledge, showing that SGLT2 inhibition potentiates the beneficial cardiovascular, renal, and metabolic effects elicited by sGC stimulation in hypertensive rats with prolonged high-fat diet. The effects of the simultaneous administration of praliciguat and empagliflozin are greater than those elicited by either one alone. The effects of the simultaneous treatment may be related to a greater reduction in the inflammatory status.
Collapse
Affiliation(s)
- Virginia Reverte
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Francisca Rodriguez
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Lidia Oltra
- Biomedical Research Institute, Murcia, Spain
| | - Juan M Moreno
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Maria T Llinas
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| | - Courtney M Shea
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - Emmanuel S Buys
- Cyclerion Therapeutics, Cambridge, Massachusetts, United States
| | | | - F Javier Salazar
- Department of Physiology, School of Medicine, CEIR Mare Nostrum University of Murcia, Murcia, Spain.,Biomedical Research Institute, Murcia, Spain
| |
Collapse
|
12
|
Hu L, Chen Y, Zhou X, Hoek M, Cox J, Lin K, Liu Y, Blumenschein W, Grein J, Swaminath G. Effects of soluble guanylate cyclase stimulator on renal function in ZSF-1 model of diabetic nephropathy. PLoS One 2022; 17:e0261000. [PMID: 35085251 PMCID: PMC8794189 DOI: 10.1371/journal.pone.0261000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Diabetic nephropathy is associated with endothelial dysfunction and oxidative stress, in which the nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling pathway is impaired. We hypothesize that sGC stimulator Compound 1 can enhance NO signaling, reduce proteinuria in a diabetic nephropathy preclinical model with diminished NO bioavailability and increased oxidized sGC. Therefore, we evaluated the effect of sGC stimulator Compound 1 on the renal effect in obese ZSF1 (ZSF1 OB) rats. MATERIALS AND METHODS The sGC stimulator Compound 1, the standard of care agent Enalapril, and a combination of Compound 1 and Enalapril were administered chronically to obese ZSF1 rats for 6 months. Mean arterial pressure, heart rate, creatinine clearance for glomerular filtration rate (eGFR), urinary protein excretion to creatinine ratio (UPCR), and urinary albumin excretion ratio (UACR) were determined during the study. The histopathology of glomerular and interstitial lesions was assessed at the completion of the study. RESULTS While both Compound 1 and Enalapril significantly reduced blood pressure, the combination of Compound 1 and Enalapril normalized blood pressure levels. Compound 1 improved eGFR and reduced UPCR and UACR. A combination of Enalapril and Compound 1 resulted in a marked reduction in UPCR and UACR and improved GFR. CONCLUSION The sGC stimulator Compound 1 as a monotherapy slowed renal disease progression, and a combination of the sGC stimulator with Enalapril provided greater renal protection in a rodent model of diabetic nephropathy.
Collapse
Affiliation(s)
- Lufei Hu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Yinhong Chen
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Xiaoyan Zhou
- Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Maarten Hoek
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Biology Department, Maze Therapeutics, San Francisco, CA, United States of America
| | - Jason Cox
- Chemistry, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Discovery Chemistry, Kinnate Biopharma, San Diego, CA, United States of America
| | - Ken Lin
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ, United States of America
- Drug Metabolism and Pharmacokinetics, BridgeBio, Palo Alto, CA, United States of America
| | - Yang Liu
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Wendy Blumenschein
- Department of Molecular Discovery Profiling and Expression, Merck & Co. Inc., Kenilworth, NJ, United States of America
| | - Jeff Grein
- Department of Molecular Discovery Profiling and Expression, Merck & Co. Inc., Kenilworth, NJ, United States of America
| | - Gayathri Swaminath
- Department of Cardiometabolic Diseases, Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
13
|
Bénardeau A, Kahnert A, Schomber T, Meyer J, Pavkovic M, Kretschmer A, Lawrenz B, Hartmann E, Mathar I, Hueser J, Kraehling JR, Eitner F, Hahn MG, Stasch JP, Sandner P. Runcaciguat, a novel soluble guanylate cyclase activator, shows renoprotection in hypertensive, diabetic, and metabolic preclinical models of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2363-2379. [PMID: 34550407 PMCID: PMC8592982 DOI: 10.1007/s00210-021-02149-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023]
Abstract
Chronic kidney diseaQueryse (CKD) is associated with oxidative stress which can interrupt the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling and decrease cyclic guanosine monophosphate (cGMP) production. Low cGMP concentrations can cause kidney damage and progression of CKD. The novel sGC activator runcaciguat targets the oxidized and heme-free form of sGC, restoring cGMP production under oxidative stress. The purpose of this study is to investigate if runcaciguat could provide an effective treatment for CKD. Runcaciguat was used for the treatment not only in rat CKD models with different etiologies and comorbidities, namely of hypertensive rats, the renin transgenic (RenTG) rat, and angiotensin-supplemented (ANG-SD) rat, but also in rats with diabetic and metabolic CKD, the Zucker diabetic fatty (ZDF) rat. The treatment duration was 2 to 42 weeks and runcaciguat was applied orally in doses from 1 to 10 mg/kg/bid. In these different rat CKD models, runcaciguat significantly reduced proteinuria (urinary protein to creatinine ratio; uPCR). These effects were also significant at doses which did not or only moderately decrease systemic blood pressure. Moreover, runcaciguat significantly decreased kidney injury biomarkers and attenuated morphological kidney damages. In RenTG rats, runcaciguat improved survival rates and markers of heart injury. These data demonstrate that the sGC activator runcaciguat exhibits cardio-renal protection at doses which did not reduce blood pressure and was effective in hypertensive as well as diabetic and metabolic CKD models. These data, therefore, suggest that runcaciguat, with its specific mode of action, represents an efficient treatment approach for CKD and associated CV diseases.
Collapse
Affiliation(s)
- Agnès Bénardeau
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
- Novo Nordisk, Bagsværd, Denmark
| | - Antje Kahnert
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Tibor Schomber
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Jutta Meyer
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Mira Pavkovic
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Axel Kretschmer
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Bettina Lawrenz
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Elke Hartmann
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Ilka Mathar
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Joerg Hueser
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Jan R Kraehling
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Frank Eitner
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, 52062, Aachen, Germany
| | - Michael G Hahn
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany
- Institute of Pharmacy, Martin Luther University, 06120, Halle, Germany
| | - Peter Sandner
- Cardiovascular Research, Pharma Research Center, Bayer AG, Aprather Weg 18A, 42096, Wuppertal, Germany.
- Institute of Pharmacology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Fleischmann D, Harloff M, Maslanka Figueroa S, Schlossmann J, Goepferich A. Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-β Pathway. Int J Mol Sci 2021; 22:ijms22052557. [PMID: 33806499 PMCID: PMC7961750 DOI: 10.3390/ijms22052557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 01/01/2023] Open
Abstract
Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3′,5′-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor β (TGF-β) signaling pathway and the resulting pro-fibrotic remodeling by 50–100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Manuela Harloff
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, 93053 Regensburg, Germany; (M.H.); (J.S.)
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany; (D.F.); (S.M.F.)
- Correspondence:
| |
Collapse
|
15
|
Harloff M, Prüschenk S, Seifert R, Schlossmann J. Activation of soluble guanylyl cyclase signalling with cinaciguat improves impaired kidney function in diabetic mice. Br J Pharmacol 2021; 179:2460-2475. [PMID: 33651375 DOI: 10.1111/bph.15425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy is the leading cause for end-stage renal disease worldwide. Until now, there is no specific therapy available. Standard treatment with inhibitors of the renin-angiotensin system just slows down progression. However, targeting the NO/sGC/cGMP pathway using sGC activators does prevent kidney damage. Thus, we investigated if the sGC activator cinaciguat was beneficial in a mouse model of diabetic nephropathy, and we analysed how mesangial cells (MCs) were affected by related conditions in cell culture. EXPERIMENTAL APPROACH Type 1 diabetes was induced with streptozotocin in wild-type and endothelial NOS knockout (eNOS KO) mice for 8 or 12 weeks.. Half of these mice received cinaciguat in their chow for the last 4 weeks. Kidneys from the diabetic mice were analysed with histochemical assays and by RT-PCR and western blotting. . Additionally, primary murine MCs under diabetic conditions were stimulated with 8-Br-cGMP or cinaciguat to activate the sGC/cGMP pathway. KEY RESULTS The diabetic eNOS KO mice developed most characteristics of diabetic nephropathy, most marked at 12 weeks. Treatment with cinaciguat markedly improved GFR, serum creatinine, mesangial expansion and kidney fibrosis in these animals. We determined expression levels of related signalling proteins. Thrombospondin 1, a key mediator in kidney diseases, was strongly up-regulated under diabetic conditions and this increase was suppressed by activation of sGC/cGMP signalling. CONCLUSION AND IMPLICATIONS Activation of the NO/sGC/PKG pathway with cinaciguat was beneficial in a model of diabetic nephropathy. Activators of sGC might be an appropriate therapy option in patients with Type 1 diabetes.
Collapse
Affiliation(s)
- Manuela Harloff
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Sally Prüschenk
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany.,Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Jens Schlossmann
- Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Novel therapeutics for the treatment of hypertension and its associated complications: peptide- and nonpeptide-based strategies. Hypertens Res 2021; 44:740-755. [PMID: 33731923 PMCID: PMC7967108 DOI: 10.1038/s41440-021-00643-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is responsible for maintaining blood pressure and vascular tone. Modulation of the RAAS, therefore, interferes with essential cellular processes and leads to high blood pressure, oxidative stress, inflammation, fibrosis, and hypertrophy. Consequently, these conditions cause fatal cardiovascular and renal complications. Thus, the primary purpose of hypertension treatment is to diminish or inhibit overactivated RAAS. Currently available RAAS inhibitors have proven effective in reducing blood pressure; however, beyond hypertension, they have failed to treat end-target organ injury. In addition, RAAS inhibitors have some intolerable adverse effects, such as hyperkalemia and hypotension. These gaps in the available treatment for hypertension require further investigation of the development of safe and effective therapies. Current research is focused on the combination of existing and novel treatments that neutralize the angiotensin II type I (AT1) receptor-mediated action of the angiotensin II peptide. Preclinical studies of peptide- and nonpeptide-based therapeutic agents demonstrate their conspicuous impact on the treatment of cardiovascular diseases in animal models. In this review, we will discuss novel therapeutic agents being developed as RAAS inhibitors that show prominent effects in both preclinical and clinical studies. In addition, we will also highlight the need for improvement in the efficacy of existing drugs in the absence of new prominent antihypertensive drugs.
Collapse
|
17
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
18
|
Shea CM, Price GM, Liu G, Sarno R, Buys ES, Currie MG, Masferrer JL. Soluble guanylate cyclase stimulator praliciguat attenuates inflammation, fibrosis, and end-organ damage in the Dahl model of cardiorenal failure. Am J Physiol Renal Physiol 2019; 318:F148-F159. [PMID: 31608671 DOI: 10.1152/ajprenal.00247.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduced nitric oxide (NO) and a decrease in cGMP signaling mediated by soluble guanylate cyclase (sGC) has been linked to the development of several cardiorenal diseases. Stimulation of sGC is a potential means for enhancing cGMP production in conditions of reduced NO bioavailability. The purpose of our studies was to determine the effects of praliciguat, a clinical-stage sGC stimulator, in a model of cardiorenal failure. Dahl salt-sensitive rats fed a high-salt diet to induce hypertension and organ damage were treated with the sGC stimulator praliciguat to determine its effects on hemodynamics, biomarkers of inflammation, fibrosis, tissue function, and organ damage. Praliciguat treatment reduced blood pressure, improved cardiorenal damage, and attenuated the increase in circulating markers of inflammation and fibrosis. Notably, praliciguat affected markers of renal damage at a dose that had minimal effect on blood pressure. In addition, liver fibrosis and circulating markers of tissue damage were attenuated in praliciguat-treated rats. Stimulation of the NO-sGC-cGMP pathway by praliciguat attenuated or normalized indicators of chronic inflammation, fibrosis, and tissue dysfunction in the Dahl salt-sensitive rat model. Stimulation of sGC by praliciguat may present an effective mechanism for treating diseases linked to NO deficiency, particularly those associated with cardiac and renal failure. Praliciguat is currently being evaluated in patients with diabetic nephropathy and heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
| | | | - Guang Liu
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Renee Sarno
- Cyclerion Therapeutics, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
19
|
Tong Y, Jiao Q, Liu Y, Lv J, Wang R, Zhu L. Maprotiline Prevents Monocrotaline-Induced Pulmonary Arterial Hypertension in Rats. Front Pharmacol 2018; 9:1032. [PMID: 30298002 PMCID: PMC6160570 DOI: 10.3389/fphar.2018.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease caused by increased pulmonary artery pressure and pulmonary vascular resistance, eventually leading to right heart failure until death. Soluble guanylate cyclase (sGC) has been regarded as an attractive drug target in treating PAH. In this study, we discovered that maprotiline, a tetracyclic antidepressant, bound to the full-length recombinant sGC with a high affinity (KD = 0.307 μM). Further study demonstrated that maprotiline concentration-dependently inhibited the proliferation of hypoxia-induced human pulmonary artery smooth muscle cells. Moreover, in a monocrotaline (MCT) rat model of PAH, maprotiline (ip, 10 mg/kg once daily) reduced pulmonary hypertension, inhibited the development of right ventricular hypertrophy and pathological changes of the pulmonary vascular remodeling. Taken together, our studies showed that maprotiline may contribute to attenuate disease progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Yi Tong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuanru Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiankun Lv
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
20
|
Witte J, Mühlbauer M, Braun D, Steinbach A, Golchert J, Rettig R, Grisk O. Renal Soluble Guanylate Cyclase Is Downregulated in Sunitinib-Induced Hypertension. J Am Heart Assoc 2018; 7:e009557. [PMID: 30371202 PMCID: PMC6222942 DOI: 10.1161/jaha.118.009557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The tyrosine kinase inhibitor sunitinib causes hypertension associated with reduced nitric oxide (NO) availability, elevated renal vascular resistance, and decreased fractional sodium excretion. We tested whether (1) nitrate supplementation mitigates sunitinib‐induced hypertension and NO contributes less to renal vascular resistance as well as fractional sodium excretion regulation in sunitinib‐treated rats than in controls; and (2) renal soluble guanylate cyclase (sGC) is downregulated and sGC activation lowers arterial pressure in rats with sunitinib‐induced hypertension. Methods and Results Arterial pressure responses to nitrate supplementation and the effects of systemic and intrarenal NO synthase (NOS) inhibition on renal hemodynamics and fractional sodium excretion were assessed in sunitinib‐treated rats and controls. Renal NOS and sGC mRNA as well as protein abundances were determined by quantitative polymerase chain reaction and Western blot. The effect of the sGC activator cinaciguat on arterial pressure was investigated in sunitinib‐treated rats. Nitrate supplementation did not mitigate sunitinib‐induced hypertension. Endothelium‐dependent reductions in renal vascular resistance were similar in control and sunitinib‐treated animals without and with systemic NOS inhibition. Selective intrarenal NOS inhibition lowered renal medullary blood flow in control but not in sunitinib‐treated rats without significant effects on fractional sodium excretion. Renal cortical sGC mRNA and sGC α1‐subunit protein abundance were less in sunitinib‐treated rats than in controls, and cinaciguat effectively lowered arterial pressure by 15‐20 mm Hg in sunitinib‐treated rats. Conclusions Renal cortical sGC is downregulated in the presence of intact endothelium‐dependent renal vascular resistance regulation in developing sunitinib‐induced hypertension. This suggests that sGC downregulation occurs outside the renal vasculature, increases renal sodium retention, and contributes to nitrate resistance of sunitinib‐induced hypertension.
Collapse
Affiliation(s)
- Jeannine Witte
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Melanie Mühlbauer
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Diana Braun
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Antje Steinbach
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Janine Golchert
- 2 Interfaculty Institute for Genetics and Functional Genomics University of Greifswald Greifswald Germany
| | - Rainer Rettig
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Olaf Grisk
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| |
Collapse
|
21
|
Tobin JV, Zimmer DP, Shea C, Germano P, Bernier SG, Liu G, Long K, Miyashiro J, Ranganath S, Jacobson S, Tang K, Im GYJ, Sheppeck J, Moore JD, Sykes K, Wakefield J, Sarno R, Banijamali AR, Profy AT, Milne GT, Currie MG, Masferrer JL. Pharmacological Characterization of IW-1973, a Novel Soluble Guanylate Cyclase Stimulator with Extensive Tissue Distribution, Antihypertensive, Anti-Inflammatory, and Antifibrotic Effects in Preclinical Models of Disease. J Pharmacol Exp Ther 2018; 365:664-675. [PMID: 29643251 DOI: 10.1124/jpet.117.247429] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/20/2018] [Indexed: 01/24/2023] Open
Abstract
Soluble guanylate cyclase (sGC), a key signal-transduction enzyme, increases the conversion of guanosine-5'-triphosphate to cGMP upon binding of nitric oxide (NO). Endothelial dysfunction and/or reduced NO signaling have been implicated in cardiovascular disease pathogenesis and complications of diabetes and have been associated with other disease states and aging. Soluble guanylate cyclase (sGC) stimulators are small-molecule drugs that bind sGC and enhance NO-mediated cGMP signaling. The pharmacological characterization of IW-1973 [1,1,1,3,3,3-hexafluoro-2-(((5-fluoro-2-(1-(2-fluorobenzyl)-5-(isoxazol-3-yl)-1H-pyrazol-3-yl) pyrimidin-4-yl)amino)methyl)propan-2-ol], a novel clinical-stage sGC stimulator under clinical investigation for treatment of heart failure with preserved ejection fraction and diabetic nephropathy, is described. In the presence of NO, IW-1973 stimulated sGC in a human purified enzyme assay and a HEK-293 whole cell assay. sGC stimulation by IW-1973 in cells was associated with increased phosphorylation of vasodilator-stimulated phosphoprotein. IW-1973, at doses of 1-10 mg/kg, significantly lowered blood pressure in normotensive and spontaneously hypertensive rats. In a Dahl salt-sensitive hypertension model, IW-1973 significantly reduced blood pressure, inflammatory cytokine levels, and renal disease markers, including proteinuria and renal fibrotic gene expression. The results were affirmed in mouse lipopolysaccharide-induced inflammation and rat unilateral ureteral obstruction renal fibrosis models. A quantitative whole-body autoradiography study of IW-1973 revealed extensive tissue distribution and pharmacokinetic studies showed a large volume of distribution and a profile consistent with predicted once-a-day dosing in humans. In summary, IW-1973 is a potent, orally available sGC stimulator that exhibits renoprotective, anti-inflammatory, and antifibrotic effects in nonclinical models.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang Liu
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Kim Long
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Kim Tang
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Joel D Moore
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - Renee Sarno
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | | - G Todd Milne
- Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | | | | |
Collapse
|
22
|
Childers KC, Garcin ED. Structure/function of the soluble guanylyl cyclase catalytic domain. Nitric Oxide 2018; 77:53-64. [PMID: 29702251 PMCID: PMC6005667 DOI: 10.1016/j.niox.2018.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5′-triphosphate (GTP) into cyclic guanosine 3′,5′-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.
Collapse
Affiliation(s)
- Kenneth C Childers
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA
| | - Elsa D Garcin
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, Baltimore, USA.
| |
Collapse
|
23
|
Mergia E, Thieme M, Hoch H, Daniil G, Hering L, Yakoub M, Scherbaum CR, Rump LC, Koesling D, Stegbauer J. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice. Int J Mol Sci 2018; 19:ijms19040967. [PMID: 29570672 PMCID: PMC5979494 DOI: 10.3390/ijms19040967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S-nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.
Collapse
Affiliation(s)
- Evanthia Mergia
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Manuel Thieme
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Henning Hoch
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Georgios Daniil
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Lydia Hering
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Christina Rebecca Scherbaum
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Lars Christian Rump
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Sömmer A, Sandner P, Behrends S. BAY 60–2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: Evidence for stable insertion of activator drugs. Biochem Pharmacol 2018; 147:10-20. [DOI: 10.1016/j.bcp.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
|
25
|
Czirok S, Fang L, Radovits T, Szabó G, Szénási G, Rosivall L, Merkely B, Kökény G. Cinaciguat ameliorates glomerular damage by reducing ERK1/2 activity and TGF-ß expression in type-1 diabetic rats. Sci Rep 2017; 7:11218. [PMID: 28894114 PMCID: PMC5593847 DOI: 10.1038/s41598-017-10125-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023] Open
Abstract
Decreased soluble guanylate cyclase activity and cGMP levels in diabetic kidneys were shown to influence the progression of nephropathy. The regulatory effects of soluble guanylate cyclase activators on renal signaling pathways are still unknown, we therefore investigated the renal molecular effects of the soluble guanylate cyclase activator cinaciguat in type-1 diabetic (T1DM) rats. Male adult Sprague-Dawley rats were divided into 2 groups after induction of T1DM with 60 mg/kg streptozotocin: DM, untreated (DM, n = 8) and 2) DM + cinaciguat (10 mg/kg per os daily, DM-Cin, n = 8). Non-diabetic untreated and cinaciguat treated rats served as controls (Co (n = 10) and Co-Cin (n = 10), respectively). Rats were treated for eight weeks, when renal functional and molecular analyses were performed. Cinaciguat attenuated the diabetes induced proteinuria, glomerulosclerosis and renal collagen-IV expression accompanied by 50% reduction of TIMP-1 expression. Cinaciguat treatment restored the glomerular cGMP content and soluble guanylate cyclase expression, and ameliorated the glomerular apoptosis (TUNEL positive cell number) and podocyte injury. These effects were accompanied by significantly reduced TGF-ß overexpression and ERK1/2 phosphorylation in cinaciguat treated diabetic kidneys. We conclude that the soluble guanylate cyclase activator cinaciguat ameliorated diabetes induced glomerular damage, apoptosis, podocyte injury and TIMP-1 overexpression by suppressing TGF-ß and ERK1/2 signaling.
Collapse
Affiliation(s)
- Szabina Czirok
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Lilla Fang
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
26
|
Bai Y, Zhang Q, Yang Z, Meng Z, Zhao Q. The vasorelaxant mechanisms of methanol on isolated rat aortic rings: Involvement of ion channels and signal transduction pathways. Hum Exp Toxicol 2016; 36:1031-1038. [PMID: 27852936 DOI: 10.1177/0960327116678301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is reported that methanol is generally used as an industrial solvent, antifreeze, windshield washer fluid, cooking fuel and perfume. Methanol ingestion can lead to severe metabolic disturbances, blindness, or even death. So far, few studies about its negative effects on cardiovascular system have been reported. The purpose of this study was to determine the vasoactive effect of methanol and roles of ion channels and signal transduction pathways on isolated rat aorta. The results suggested that the mechanism of methanol-induced vasorelaxation at low concentrations (<500 mM) was mediated by ATP-sensitive K+ (KATP) and L-type Ca2+ channels, but the mechanism at high concentrations (>600 mM) was related to KATP, voltage-dependent K+, big-conductance Ca2+-activated K+, L-type Ca2+ channels as well as prostacyclin, protein kinase C, β-adrenoceptors pathways. In addition, methanol induced a dose-dependent inhibition of vasoconstrictions caused by calcium chloride, potassium chloride, or norepinephrine. Further work is needed to investigate the relative contribution of each channel and pathway in methanol-induced vasoactive effect.
Collapse
Affiliation(s)
- Y Bai
- 1 Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan, People's Republic of China
| | - Q Zhang
- 1 Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan, People's Republic of China
| | - Z Yang
- 1 Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan, People's Republic of China
| | - Z Meng
- 1 Institute of Environmental Medicine and Toxicology, Institute of Environmental Science, Shanxi University, Taiyuan, People's Republic of China
| | - Q Zhao
- 2 State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
27
|
Luo T, Ji WJ, Yuan F, Guo ZZ, Li YX, Dong Y, Ma YQ, Zhou X, Li YM. Th17/Treg Imbalance Induced by Dietary Salt Variation Indicates Inflammation of Target Organs in Humans. Sci Rep 2016; 6:26767. [PMID: 27353721 PMCID: PMC4926124 DOI: 10.1038/srep26767] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023] Open
Abstract
The functions of T helper 17 (Th17) and regulatory T (Treg) cells are tightly orchestrated through independent differentiation pathways that are involved in the secretion of pro- and anti-inflammatory cytokines induced by high-salt dietary. However, the role of imbalanced Th17/Treg ratio implicated in inflammation and target organ damage remains elusive. Here, by flow cytometry analysis, we demonstrated that switching to a high-salt diet resulted in decreased Th17 cells and reciprocally increased Treg cells, leading to a decreased Th17/Treg ratio. Meanwhile, Th17-related pathway was down-regulated after one day of high salt loading, with the increase in high salt loading as shown by microarray and RT-PCR. Subsequently, blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) observed hypoxia in the renal medulla (increased R2* signal) during high-salt loading, which was regressed to its baseline level in a step-down fashion during low-salt feeding. The flow-mediated vasodilatation (FMD) of the branchial artery was significantly higher on the first day of high salt loading. Collectively, these observations indicate that a short-term increase in dietary salt intake could induce reciprocal switches in Th17/Treg ratio and related cytokines, which might be the underlying cellular mechanism of high-salt dietary induced end organ inflammation and potential atherosclerotic risk.
Collapse
Affiliation(s)
- Tao Luo
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China.,Department of Cardiology, No. 254 Hospital of PLA, Tianjin, P.R. China
| | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Fei Yuan
- MRI Department, Pingjin Hospital, Tianjin, P.R. China
| | - Zhao-Zeng Guo
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Yun-Xiao Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Yan Dong
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Yong-Qiang Ma
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, P.R. China
| |
Collapse
|