1
|
Guan S, Lu S, Zhang R, Wang Y, Yao X, Deng X, Lu J. Lactoferrin Alleviates LPS-Induced Oxidative Stress and Necroptosis in Liver by Promoting Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11948-11959. [PMID: 40323104 DOI: 10.1021/acs.jafc.4c12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Lactoferrin (LF) is an important component of dairy products. Studies have shown that LF has a protective effect against liver injury, but the mechanism of action remains incompletely understood. Lipopolysaccharide (LPS), a key component of bacterial endotoxins, can lead to liver injury when exposure is excessive. Necroptosis is a newly identified type of programmed cell death characterized by cell swelling, rupture, and necrosis, and its excessive activation contributes to tissue damage. In this study, we demonstrated that LF alleviates LPS-induced oxidative stress and necroptosis in liver cells by modulating the ROS-RIPK1-RIPK3 pathway. In further mechanistic studies, we discovered that LF promotes mitophagy in liver cells to promptly remove damaged mitochondria caused by LPS, thereby reducing the increase in reactive oxygen species (ROS) levels associated with damaged mitochondria and alleviating oxidative stress and necrosis. To validate our findings, we used mitophagy inhibitor cyclosporin A (CsA) as a negative control, and the results confirmed our findings. These results provide novel strategies and insights into utilizing LF to alleviate LPS-induced liver injury.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shujing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yuanmeng Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xinyu Yao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
2
|
Nàger M, Larsen KB, Bhujabal Z, Kalstad TB, Rössinger J, Myrmel T, Weinberger F, Birgisdottir AB. Mitophagy is induced in human engineered heart tissue after simulated ischemia and reperfusion. J Cell Sci 2025; 138:jcs263408. [PMID: 39912384 PMCID: PMC11959618 DOI: 10.1242/jcs.263408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
The paradoxical exacerbation of cellular injury and death during reperfusion remains a problem in the treatment of myocardial infarction. Mitochondrial dysfunction plays a key role in the pathogenesis of myocardial ischemia and reperfusion injury. Dysfunctional mitochondria can be removed by mitophagy, culminating in their degradation within acidic lysosomes. Mitophagy is pivotal in maintaining cardiac homeostasis and emerges as a potential therapeutic target. Here, we employed beating human engineered heart tissue (EHT) to assess mitochondrial dysfunction and mitophagy during ischemia and reperfusion simulation. Our data indicate adverse ultrastructural changes in mitochondrial morphology and impairment of mitochondrial respiration. Furthermore, our pH-sensitive mitophagy reporter EHTs, generated by a CRISPR/Cas9 endogenous knock-in strategy, revealed induced mitophagy flux in EHTs after ischemia and reperfusion simulation. The induced flux required the activity of the protein kinase ULK1, a member of the core autophagy machinery. Our results demonstrate the applicability of the reporter EHTs for mitophagy assessment in a clinically relevant setting. Deciphering mitophagy in the human heart will facilitate development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mireia Nàger
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
| | - Kenneth B. Larsen
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
- Department of Medical Biology, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Zambarlal Bhujabal
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Trine B. Kalstad
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
| | - Truls Myrmel
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20251 Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20251 Hamburg, Germany
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Asa B. Birgisdottir
- Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, 9019 Tromsø, Norway
- Department of Clinical Medicine, UiT-The Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
3
|
Tayir M, Wang YW, Chu T, Wang XL, Fan YQ, Cao L, Chen YH, Wu DD. The function of necroptosis in liver cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167828. [PMID: 40216370 DOI: 10.1016/j.bbadis.2025.167828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/20/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Liver cancer is one of the most lethal cancers, and apoptosis resistance is a major obstacle contributing to chemotherapy failure in liver cancer treatment. Inducing cancer cell death by bypassing the apoptotic pathway is considered a promising approach to overcome this problem. Necroptosis is a non-caspase-dependent regulated mode of cell death mainly mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) protein, and the utilization of necroptosis for treating hepatocellular carcinoma (HCC) also offers a new hope for addressing liver cancer in the clinic. In this paper, the role of necroptosis in HCC as well as the effect on differentiation of liver cancer are reviewed. We also comparatively analyze the relationship among necroptosis, apoptosis, and necrosis, as well as summarize the characteristics and functions of key proteins involved in this pathway. The bidirectional regulation of necroptosis and the mitochondrial machinery within this pathway deserve attention.
Collapse
Affiliation(s)
- Mukaddas Tayir
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xue-Li Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yong-Qi Fan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Lei Cao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Hang Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Wei X, Guo H, Huang G, Luo H, Gong L, Meng P, Liu J, Zhang W, Mei Z. SIRT1 Alleviates Mitochondrial Fission and Necroptosis in Cerebral Ischemia/Reperfusion Injury via SIRT1-RIP1 Signaling Pathway. MedComm (Beijing) 2025; 6:e70118. [PMID: 40008377 PMCID: PMC11850763 DOI: 10.1002/mco2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/20/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Programmed cell death, including necroptosis, plays a critical role in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI). Silent information regulator 1 (SIRT1) has been identified as a potential therapeutic target for CIRI, yet its precise role in regulating necroptosis remains controversial. Furthermore, the potential interaction between SIRT1 and receptor-interacting protein kinase 1 (RIP1) in this context is not fully understood. Sanpian Decoction (SPD), a classical traditional herbal formula, was previously shown to enhance SIRT1 expression in our studies. Our findings demonstrated that, both in vivo and in vitro, CIRI was associated with a decrease in SIRT1 levels and phosphorylated dynamin-related protein 1 (p-DRP1) at Ser637, alongside an increase in RIP1 and other necroptosis-related proteins. Co-immunoprecipitation and immunofluorescence analyses revealed a weakened interaction between SIRT1 and RIP1. Furthermore, abnormal mitochondrial fission and dysfunction were mediated through the phosphoglycerate mutase 5-DRP1 pathway. Notably, SPD treatment improved neurological outcomes and reversed these pathological changes by enhancing the SIRT1-RIP1 interaction. In conclusion, this study suggests that SIRT1 is a promising therapeutic target for CIRI, capable of inhibiting necroptosis and mitigating mitochondrial fission via the SIRT1-RIP1 pathway. SPD exhibits therapeutic potential by activating SIRT1, thereby attenuating necroptosis and mitochondrial fission during CIRI.
Collapse
Affiliation(s)
- Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Hanjing Guo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Guangshan Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Haoyue Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Lipeng Gong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Pan Meng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine DiagnosticsHunan University of Chinese MedicineChangshaHunanChina
| | - Wenli Zhang
- School of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Third‐Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese MedicineCollege of Medicine and Health SciencesChina Three Gorges UniversityYichangHubeiChina
| |
Collapse
|
5
|
Zhang X, Li H, Zhao Y, Zhao T, Wang Z, Tang Q. Neuronal Injury after Ischemic Stroke: Mechanisms of Crosstalk Involving Necroptosis. J Mol Neurosci 2025; 75:15. [PMID: 39903429 DOI: 10.1007/s12031-025-02313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide, largely due to its increasing incidence associated with an aging population. This condition results from arterial obstruction, significantly affecting patients' quality of life and imposing a substantial economic burden on healthcare systems. While current treatments primarily focus on the rapid restoration of blood flow through thrombolytic therapy or surgical interventions, a limited understanding of neuronal injury mechanisms hampers the development of more effective treatments.This article explores the interplay among various cell death pathways-necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis-in the context of ischemic stroke to identify novel therapeutic targets. Each mode of cell death displays unique characteristics and roles post-stroke, and the activation of these pathways may vary across different animal models, complicating the translation of therapeutic strategies to clinical settings. Notably, the interaction between apoptosis and necroptosis is highlighted; inhibiting apoptosis might heighten the risk of necroptosis. Therefore, a balanced regulation of these pathways could promote enhanced neuronal survival.Additionally, we introduce PANoptosis, a form of cell death that encompasses pyroptosis, apoptosis, and necroptosis, emphasizing the complexity and potential therapeutic implications of these interactions. In summary, understanding the relationships among these cell death mechanisms in ischemic stroke is vital for developing new neuroprotective agents. Future research should aim for combinatorial interventions targeting multiple pathways to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Xuanning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Tingting Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Zhihao Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Qi Y, Rajbanshi B, Hao R, Dang Y, Xu C, Lu W, Dai L, Zhang B, Zhang X. The dual role of PGAM5 in inflammation. Exp Mol Med 2025; 57:298-311. [PMID: 39930129 PMCID: PMC11873181 DOI: 10.1038/s12276-025-01391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 03/04/2025] Open
Abstract
In recent years, the focus on human inflammation in research has increased, with aging-related inflammation widely recognized as a defining characteristic of aging. Inflammation is strongly correlated with mitochondrial dysfunction. Phosphoglycerate mutase family member 5 (PGAM5) is a novel modulator of mitochondrial homeostasis in response to mechanical stimulation. Here we review the structure and sublocalization of PGAM5, introduce its importance in programmed cell death and summarize its crucial roles in the development and progression of inflammatory diseases such as pneumonia, hepatitis, neuroinflammation and aging. Notably, PGAM5 has dual effects on controlling inflammation: distinct PGAM5-mediated mitochondrial functions exhibit cellular heterogeneity, leading to its dual functions in inflammation control. We therefore highlight the double-edged sword nature of PGAM5 as a potential critical regulator and innovative therapeutic target in inflammation. Finally, the challenges and future directions of the use of PGAM5, which has dual properties, as a target molecule in the clinic are discussed. This review provides crucial insights to guide the development of intelligent therapeutic strategies targeting PGAM5-specific regulation to treat intractable inflammatory conditions, as well as the potential extension of its broader application to other diseases to achieve more precise and effective treatment outcomes.
Collapse
Affiliation(s)
- Yuxin Qi
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Facility for Translational Medicine, Shanghai, China
| | - Bhavana Rajbanshi
- Department of Dermatology and Venereology, Tongji University School of Medicine, Shanghai, China
| | - Ruihan Hao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Facility for Translational Medicine, Shanghai, China
| | - Yifan Dang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- National Facility for Translational Medicine, Shanghai, China
| | - Churong Xu
- National Facility for Translational Medicine, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Facility for Translational Medicine, Shanghai, China
| | - Bingjun Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Facility for Translational Medicine, Shanghai, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- National Facility for Translational Medicine, Shanghai, China.
| |
Collapse
|
7
|
Safakli RN, Gray SP, Bernardi N, Smyrnias I. Unveiling a novel signalling pathway involving NRF2 and PGAM5 in regulating the mitochondrial unfolded protein response in stressed cardiomyocytes. Int J Biochem Cell Biol 2025; 178:106704. [PMID: 39608747 DOI: 10.1016/j.biocel.2024.106704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) is a conserved signalling pathway that initiates a specific transcriptional programme to maintain mitochondrial and cellular homeostasis under stress. Previous studies have demonstrated that UPRmt activation has protective effects in the pressure-overloaded human heart, suggesting that robust UPRmt stimulation could serve as an intervention strategy for cardiovascular diseases. However, the precise mechanisms of UPRmt regulation remain unclear. In this study, we present evidence that the NRF2 transcription factor is involved in UPRmt activation in cardiomyocytes during conditions of mitochondrial stress. Silencing NRF2 partially reduces UPRmt activation, highlighting its essential role in this pathway. However, constitutive activation of NRF2 via inhibition of its cytosolic regulator KEAP1 does not increase levels of UPRmt activation markers, suggesting an alternative regulatory mechanism independent of the canonical KEAP1-NRF2 axis. Further analysis revealed that NRF2 likely affects UPRmt activation through its interaction with PGAM5 at the mitochondrial membrane. Disruption of PGAM5 in cardiomyocytes subjected to mitochondrial stress reduces the interaction between PGAM5 and NRF2, enhancing nuclear translocation of NRF2 and significantly upregulating the UPRmt in an NRF2-dependent manner. This NRF2-regulated UPRmt amplification improves mitochondrial respiration, reflecting an enhanced capacity for cardiomyocytes to meet elevated energetic demands during mitochondrial stress. Our findings highlight the therapeutic potential of targeting the NRF2-PGAM5-KEAP1 signalling complex to amplify the UPRmt in cardiomyocytes for cardiovascular and other diseases associated with mitochondrial dysfunction. Future studies should aim to elucidate the mechanisms via which NRF2 enhances the protective effects of UPRmt, thereby contributing to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Rahme Nese Safakli
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Stephen P Gray
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Nadia Bernardi
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Ioannis Smyrnias
- Department of Comparative Biomedical Sciences, University of Surrey, Guildford GU2 7AL, UK.
| |
Collapse
|
8
|
Tsurusaki S, Kizana E. Mechanisms and Therapeutic Potential of Multiple Forms of Cell Death in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:13492. [PMID: 39769255 PMCID: PMC11728078 DOI: 10.3390/ijms252413492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI). MIRI occurs when blood flow and oxygen return to an ischemic area, causing excessive production of reactive oxygen species. While this reperfusion is critical for treating myocardial infarction, it inevitably causes cellular damage via oxidative stress. Furthermore, this cellular damage triggers multiple forms of cardiomyocyte death, which is the primary cause of inflammation, cardiac tissue remodeling, and ensuing heart failure. Therefore, understanding the molecular mechanisms of various forms of cell death in MIRI is crucial for therapeutic target discovery. Developing therapeutic strategies to inhibit multiple cell death pathways simultaneously could provide effective protection against MIRI. In this paper, we review the fundamental molecular pathways and MIRI-specific mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis. Additionally, we suggest that the simultaneous suppression of multiple cell death pathways could be an effective therapy and identify potential therapeutic targets for implementing this strategy.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
9
|
Li W, Ma R, Fan X, Xiao Z. M1 macrophage-derived exosomes alleviate leukemia by causing mitochondrial dysfunction. Ann Hematol 2024:10.1007/s00277-024-06138-4. [PMID: 39663258 DOI: 10.1007/s00277-024-06138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Acute myeloid leukemia (AML) is one type of blood cancer that initially has a high cure rate but frequently relapses and leading to death. Therefore, there is an urgent need for innovative AML treatments. The leukemia C1498 cells were co-cultured with M1 macrophage-derived exosomes (M1-exo), and the proliferation and apoptosis of C1498 cells were investigated using CCK-8 and flow cytometry, respectively. qPCR and Western blot were applied to determine the PGAM5 expression in M1-exo treated C1498 cells. The role of M1-exo-derived PGAM5 in mitochondria was examined via fluorescence staining. The anti-inflammatory effects of M1-exo-derived PGAM5 and M1-exo were evaluated by flow cytometry, HE staining, and immunohistochemistry in xenograft and nude mouse tumorigenic models. M1-exo exhibited a potent capability to attenuate C1498 cell proliferation, and induce cell apoptosis. In vivo experimentation demonstrated that administration of M1-exo led to a reduction in leukocyte count, alleviated inflammatory infiltration, decreased liver and spleen weights, and significantly diminished tumor size. PGAM5 was elevated in M1-exo, and knockdown of PGAM5 in C1498 cells and M1-exo enhanced proliferation and reduced apoptosis in C1498 cells. Concurrently, M1-exo-derived PGAM5 decreased mitochondrial membrane potential and increased calcium influx in vitro. In vivo, studies showed that knockdown of PGAM5 in M1-exo elevated liver and spleen weights, augmented tumor size, and intensified hepatic inflammatory infiltration. Our study reveals that M1-exo induces mitochondrial dysfunction against leukemia through PGAM5.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, No. 7, Wei Wu Road, Zhengzhou, 450003, China
| | - Rufei Ma
- Department of Clinical Laboratory, Henan Provincial People's Hospital, No. 7, Wei Wu Road, Zhengzhou, 450003, China
| | - Xiaozhen Fan
- Department of Clinical Laboratory, Henan Provincial People's Hospital, No. 7, Wei Wu Road, Zhengzhou, 450003, China
| | - Zheng Xiao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, No. 7, Wei Wu Road, Zhengzhou, 450003, China.
| |
Collapse
|
10
|
Sun J, Li J, He Y, Kang W, Ye X. Identification and validation of protein biomarkers for predicting gastrointestinal stromal tumor recurrence. Comput Struct Biotechnol J 2024; 23:1065-1075. [PMID: 38455069 PMCID: PMC10918489 DOI: 10.1016/j.csbj.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
We conducted a proteomic analysis using mass spectrometry to identify and validate protein biomarkers for accurately predicting recurrence risk in gastrointestinal stromal tumors (GIST) patients, focusing on differentially expressed proteins in metastatic versus primary GIST tissues. We selected five biomarkers-GPX4, RBM4, TPM3, PFKFB2, and PGAM5-and validated their expressions in primary tumors of recurrent and non-recurrent GIST patients via immunohistochemistry. Our analysis of the association between these biomarkers with recurrence-free survival (RFS) and overall survival (OS), along with their interrelationships, revealed that immunohistochemistry confirmed significantly higher expressions of these biomarkers in primary GIST tissues of recurrent patients. Kaplan-Meier survival analysis showed that high expressions of GPX4, RBM4, TPM3, PFKFB2, and PGAM5 correlated with lower RFS, and GPX4 and RBM4 with lower OS. All biomarker pairs showed positive associations, with high expressions correlating with increased recurrence rates, and GPX4 and RBM4 with higher mortality rates. In conclusion, the biomarkers GPX4, RBM4, TPM3, PFKFB2, and PGAM5 are clinically relevant for predicting GIST recurrence, with their high expressions in primary tumors linked to poorer RFS and OS. They serve as potential prognostic indicators, enabling early treatment and improved outcomes. The observed interrelationships among these biomarkers further validate their accuracy in predicting GIST recurrence.
Collapse
Affiliation(s)
| | | | - Yixuan He
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Abadin X, de Dios C, Zubillaga M, Ivars E, Puigròs M, Marí M, Morales A, Vizuete M, Vitorica J, Trullas R, Colell A, Roca-Agujetas V. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel) 2024; 13:1440. [PMID: 39765769 PMCID: PMC11672511 DOI: 10.3390/antiox13121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant inflammatory response has become a topic of growing interest and research in neurodegeneration, with high translational potential. It has been postulated that the phenotypic shift of immune cells towards a proinflammatory state combined with the presence of immunogenic cell death fuels a vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochondria-generated reactive oxygen species are downstream effectors of different inflammatory signaling pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as important producers of damage-associated molecular patterns, which can amplify the immune response. Here, we review the major findings highlighting the role of mitochondria as a checkpoint of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge of these processes may help to find new druggable targets to modulate the inflammatory response.
Collapse
Affiliation(s)
- Xenia Abadin
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina de Dios
- High Technology Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Marlene Zubillaga
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Elia Ivars
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Margalida Puigròs
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Vicente Roca-Agujetas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| |
Collapse
|
12
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Zhang L, Hu Z, Li Z, Lin Y. Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 2024; 19:1660-1670. [PMID: 38103229 PMCID: PMC10960298 DOI: 10.4103/1673-5374.389361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 12/18/2023] Open
Abstract
Central nervous system injuries have a high rate of resulting in disability and mortality; however, at present, effective treatments are lacking. Programmed cell death, which is a genetically determined form of active and ordered cell death with many types, has recently attracted increasing attention due to its functions in determining the fate of cell survival. A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage. In this review, we provide an overview of the role of programmed cell death in central nervous system injuries, including the pathways involved in mitophagy, pyroptosis, ferroptosis, and necroptosis, and the underlying mechanisms by which mitophagy regulates pyroptosis, ferroptosis, and necroptosis. We also discuss the new direction of therapeutic strategies targeting mitophagy for the treatment of central nervous system injuries, with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury. In conclusion, based on these properties and effects, interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Khan I, Preeti K, Kumar R, Khatri DK, Singh SB. Activation of SIRT1 by silibinin improved mitochondrial health and alleviated the oxidative damage in experimental diabetic neuropathy and high glucose-mediated neurotoxicity. Arch Physiol Biochem 2024; 130:420-436. [PMID: 35943429 DOI: 10.1080/13813455.2022.2108454] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Silibinin (SBN), a sirtuin 1 (SIRT1) activator, has been evaluated for its anti-inflammatory activity in many inflammatory diseases. However, its role in diabetes-induced peripheral neuropathy (DPN) remains unknown. The SIRT1 activation convalesces nerve functions by improving mitochondrial biogenesis and mitophagy. METHODS DPN was induced by streptozotocin (STZ) at a dose of 55 mg/kg, i.p. in the male SD rats whereas neurotoxicity was induced in Neuro2A cells by 30 mM (high glucose) glucose. Neurobehavioural (nerve conduction velocity and nerve blood flow) western blot, immunohistochemistry, and immunocytochemistry were performed to evaluate the protein expression and their cellular localisation. RESULTS Two-week SBN treatment improved neurobehavioural symptoms, SIRT1, PGC-1α, and TFAM expression in the sciatic nerve and HG insulted N2A cells. It has also maintained the mitophagy by up-regulating PARL, PINK1, PGAM5, LC3 level and provided antioxidant defence by upregulating Nrf2. CONCLUSION SBN has shown neuroprotective potential in DPN through SIRT1 activation and antioxidant mechanism.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
15
|
Cai K, Jiang H, Zou Y, Song C, Cao K, Chen S, Wu Y, Zhang Z, Geng D, Zhang N, Liu B, Sun G, Tang M, Li Z, Zhang Y, Sun Y, Zhang Y. Programmed death of cardiomyocytes in cardiovascular disease and new therapeutic approaches. Pharmacol Res 2024; 206:107281. [PMID: 38942341 DOI: 10.1016/j.phrs.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Cardiovascular diseases (CVDs) have a complex pathogenesis and pose a major threat to human health. Cardiomyocytes have a low regenerative capacity, and their death is a key factor in the morbidity and mortality of many CVDs. Cardiomyocyte death can be regulated by specific signaling pathways known as programmed cell death (PCD), including apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, etc. Abnormalities in PCD can lead to the development of a variety of cardiovascular diseases, and there are also molecular-level interconnections between different PCD pathways under the same cardiovascular disease model. Currently, the link between programmed cell death in cardiomyocytes and cardiovascular disease is not fully understood. This review describes the molecular mechanisms of programmed death and the impact of cardiomyocyte death on cardiovascular disease development. Emphasis is placed on a summary of drugs and potential therapeutic approaches that can be used to treat cardiovascular disease by targeting and blocking programmed cell death in cardiomyocytes.
Collapse
Affiliation(s)
- Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Haoyue Jiang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China
| | - Bo Liu
- The first hospital of China Medical University, Department of cardiac surgery, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning 110001, People's Republic of China; Institute of health sciences, China medical university, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning 110001, People's Republic of China.
| |
Collapse
|
16
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
17
|
Forte M, D'Ambrosio L, Schiattarella GG, Salerno N, Perrone MA, Loffredo FS, Bertero E, Pilichou K, Manno G, Valenti V, Spadafora L, Bernardi M, Simeone B, Sarto G, Frati G, Perrino C, Sciarretta S. Mitophagy modulation for the treatment of cardiovascular diseases. Eur J Clin Invest 2024; 54:e14199. [PMID: 38530070 DOI: 10.1111/eci.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Defects of mitophagy, the selective form of autophagy for mitochondria, are commonly observed in several cardiovascular diseases and represent the main cause of mitochondrial dysfunction. For this reason, mitophagy has emerged as a novel and potential therapeutic target. METHODS In this review, we discuss current evidence about the biological significance of mitophagy in relevant preclinical models of cardiac and vascular diseases, such as heart failure, ischemia/reperfusion injury, metabolic cardiomyopathy and atherosclerosis. RESULTS Multiple studies have shown that cardiac and vascular mitophagy is an adaptive mechanism in response to stress, contributing to cardiovascular homeostasis. Mitophagy defects lead to cell death, ultimately impairing cardiac and vascular function, whereas restoration of mitophagy by specific compounds delays disease progression. CONCLUSIONS Despite previous efforts, the molecular mechanisms underlying mitophagy activation in response to stress are not fully characterized. A comprehensive understanding of different forms of mitophagy active in the cardiovascular system is extremely important for the development of new drugs targeting this process. Human studies evaluating mitophagy abnormalities in patients at high cardiovascular risk also represent a future challenge.
Collapse
Affiliation(s)
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Nadia Salerno
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco S Loffredo
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy
| | - Edoardo Bertero
- Department of Internal Medicine, University of Genova, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino-Italian IRCCS Cardiology Network, Genoa, Italy
| | - Kalliopi Pilichou
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Girolamo Manno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Valenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- ICOT Istituto Marco Pasquali, Latina, Italy
| | | | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | | | | | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
18
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Xiong J, Fu Y, Huang J, Wang Y, Jin X, Wan X, Huang L, Huang Z. Metabolic and senescence characteristics associated with the immune microenvironment in ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1265525. [PMID: 38075052 PMCID: PMC10702973 DOI: 10.3389/fendo.2023.1265525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer is a highly malignant gynecological cancer influenced by the immune microenvironment, metabolic reprogramming, and cellular senescence. This review provides a comprehensive overview of these characteristics. Metabolic reprogramming affects immune cell function and tumor growth signals. Cellular senescence in immune and tumor cells impacts anti-tumor responses and therapy resistance. Targeting immune cell metabolism and inducing tumor cell senescence offer potential therapeutic strategies. However, challenges remain in identifying specific targets and biomarkers. Understanding the interplay of these characteristics can lead to innovative therapeutic approaches. Further research is needed to elucidate mechanisms, validate strategies, and improve patient outcomes in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liu Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
21
|
Zhang J, Qian J, Zhang W, Chen X. The pathophysiological role of receptor-interacting protein kinase 3 in cardiovascular disease. Biomed Pharmacother 2023; 165:114696. [PMID: 37329707 DOI: 10.1016/j.biopha.2023.114696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023] Open
Abstract
Recent studies have found that receptor interacting protein kinase 3 (RIPK3) can mediate CaMK Ⅱ phosphorylation and oxidation, open mitochondrial permeability transition pore (mPTP), and induce myocardial necroptosis. The increased expression or phosphorylation of RIPK3 is one of the important markers of necroptosis; Inhibition of CaMK Ⅱ phosphorylation or oxidation significantly reduces RIPK3 mediated myocardial necroptosis; Studies have shown that necroptosis plays an important role in the occurrence and development of cardiovascular diseases; Using the selective inhibitor GSK '872 of RIPK3 can effectively inhibit the occurrence and development of cardiovascular diseases, and can reverse cardiovascular and cardiac dysfunction caused by overexpression of RIPK3. In this review, we provide a brief overview of the current knowledge on RIPK3 in mediating necroptosis, inflammatory response, and oxidative stress, and discussed the role of RIPK3 in cardiovascular diseases such as atherosclerosis, myocardial ischaemia, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfen Chen
- Department of Pharmacy, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
22
|
Mercader-Barceló J, Martín-Medina A, Truyols-Vives J, Escarrer-Garau G, Elowsson L, Montes-Worboys A, Río-Bocos C, Muncunill-Farreny J, Velasco-Roca J, Cederberg A, Kadefors M, Molina-Molina M, Westergren-Thorsson G, Sala-Llinàs E. Mitochondrial Dysfunction in Lung Resident Mesenchymal Stem Cells from Idiopathic Pulmonary Fibrosis Patients. Cells 2023; 12:2084. [PMID: 37626894 PMCID: PMC10453747 DOI: 10.3390/cells12162084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an aberrant repair response with uncontrolled turnover of extracellular matrix involving mesenchymal cell phenotypes, where lung resident mesenchymal stem cells (LRMSC) have been supposed to have an important role. However, the contribution of LRMSC in lung fibrosis is not fully understood, and the role of LRMSC in IPF remains to be elucidated. Here, we performed transcriptomic and functional analyses on LRMSC isolated from IPF and control patients (CON). Both over-representation and gene set enrichment analyses indicated that oxidative phosphorylation is the major dysregulated pathway in IPF LRMSC. The most relevant differences in biological processes included complement activation, mesenchyme development, and aerobic electron transport chain. Compared to CON LRMSC, IPF cells displayed impaired mitochondrial respiration, lower expression of genes involved in mitochondrial dynamics, and dysmorphic mitochondria. These changes were linked to an impaired autophagic response and a lower mRNA expression of pro-apoptotic genes. In addition, IPF TGFβ-exposed LRMSC presented different expression profiles of mitochondrial-related genes compared to CON TGFβ-treated cells, suggesting that TGFβ reinforces mitochondrial dysfunction. In conclusion, these results suggest that mitochondrial dysfunction is a major event in LRMSC and that their occurrence might limit LRMSC function, thereby contributing to IPF development.
Collapse
Affiliation(s)
- Josep Mercader-Barceló
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Ana Montes-Worboys
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carlos Río-Bocos
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | | | - Julio Velasco-Roca
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Anna Cederberg
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | | | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Department, Son Espases University Hospital, 07120 Palma, Spain
| |
Collapse
|
23
|
Liang MZ, Lu TH, Chen L. Timely expression of PGAM5 and its cleavage control mitochondrial homeostasis during neurite re-growth after traumatic brain injury. Cell Biosci 2023; 13:96. [PMID: 37221611 DOI: 10.1186/s13578-023-01052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Patients suffered from severe traumatic brain injury (TBI) have twice the risk of developing into neurodegenerative diseases later in their life. Thus, early intervention is needed not only to treat TBI but also to reduce neurodegenerative diseases in the future. Physiological functions of neurons highly depend on mitochondria. Thus, when mitochondrial integrity is compromised by injury, neurons would initiate a cascade of events to maintain homeostasis of mitochondria. However, what protein senses mitochondrial dysfunction and how mitochondrial homeostasis is maintained during regeneration remains unclear. RESULTS We found that TBI-increased transcription of a mitochondrial protein, phosphoglycerate mutase 5 (PGAM5), during acute phase was via topological remodeling of a novel enhancer-promoter interaction. This up-regulated PGAM5 correlated with mitophagy, whereas presenilins-associated rhomboid-like protein (PARL)-dependent PGAM5 cleavage at a later stage of TBI enhanced mitochondrial transcription factor A (TFAM) expression and mitochondrial mass. To test whether PGAM5 cleavage and TFAM expression were sufficient for functional recovery, mitochondrial oxidative phosphorylation uncoupler carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to uncouple electron transport chain and reduce mitochondrial function. As a result, FCCP triggered PGAM5 cleavage, TFAM expression and recovery of motor function deficits of CCI mice. CONCLUSIONS Findings from this study implicate that PGAM5 may act as a mitochondrial sensor for brain injury to activate its own transcription at acute phase, serving to remove damaged mitochondria through mitophagy. Subsequently, PGAM5 is cleaved by PARL, and TFAM expression is increased for mitochondrial biogenesis at a later stage after TBI. Taken together, this study concludes that timely regulation of PGAM5 expression and its own cleavage are required for neurite re-growth and functional recovery.
Collapse
Affiliation(s)
- Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Hsuan Lu
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
24
|
Barbero NM, Oller J, Sanz AB, Ramos AM, Ortiz A, Ruiz-Ortega M, Rayego-Mateos S. Mitochondrial Dysfunction in the Cardio-Renal Axis. Int J Mol Sci 2023; 24:ijms24098209. [PMID: 37175915 PMCID: PMC10179675 DOI: 10.3390/ijms24098209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cardiovascular disease (CVD) frequently complicates chronic kidney disease (CKD). The risk of all-cause mortality increases from 20% to 500% in patients who suffer both conditions; this is referred to as the so-called cardio-renal syndrome (CRS). Preclinical studies have described the key role of mitochondrial dysfunction in cardiovascular and renal diseases, suggesting that maintaining mitochondrial homeostasis is a promising therapeutic strategy for CRS. In this review, we explore the malfunction of mitochondrial homeostasis (mitochondrial biogenesis, dynamics, oxidative stress, and mitophagy) and how it contributes to the development and progression of the main vascular pathologies that could be affected by kidney injury and vice versa, and how this knowledge may guide the development of novel therapeutic strategies in CRS.
Collapse
Affiliation(s)
- Nerea Mendez Barbero
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Jorge Oller
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, 28037 Madrid, Spain
| | - Ana B Sanz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Adrian M Ramos
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Spain Nephrology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
| | - Marta Ruiz-Ortega
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- REDINREN Spain/Ricors2040, 28029 Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| |
Collapse
|
25
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
26
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
27
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
28
|
Zou R, Tao J, He J, Wang C, Tan S, Xia Y, Chang X, Li R, Wang G, Zhou H, Fan X. PGAM5-Mediated PHB2 Dephosphorylation Contributes to Diabetic Cardiomyopathy by Disrupting Mitochondrial Quality Surveillance. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0001. [PMID: 39285950 PMCID: PMC11404314 DOI: 10.34133/research.0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/15/2022] [Indexed: 09/19/2024]
Abstract
Disruption of the mitochondrial quality surveillance (MQS) system contributes to mitochondrial dysfunction in diabetic cardiomyopathy (DCM). In this study, we observed that cardiac expression of phosphoglycerate mutase 5 (PGAM5), a mitochondrial Ser/Thr protein phosphatase, is upregulated in mice with streptozotocin-induced DCM. Notably, DCM-related cardiac structural and functional deficits were negated in cardiomyocyte-specific Pgam5 knockout (Pgam5CKO ) mice. Hyperglycemic stress impaired adenosine triphosphate production, reduced respiratory activity, and prolonged mitochondrial permeability transition pore opening in acutely isolated neonatal cardiomyocytes from control Pgam5f/f mice, and these effects were markedly prevented in cardiomyocytes from Pgam5CKO mice. Likewise, three main MQS-governed processes-namely, mitochondrial fission/fusion cycling, mitophagy, and biogenesis-were disrupted by hyperglycemia in Pgam5f/f , but not in Pgam5CKO , cardiomyocytes. On the basis of bioinformatics prediction of interaction between PGAM5 and prohibitin 2 (PHB2), an inner mitochondrial membrane-associated scaffolding protein, co-immunoprecipitation, and immunoblot assays demonstrated that PGAM5 dephosphorylates PHB2 on Ser91. Transfection of cardiomyocytes with phosphodefective or phosphomimetic Ser91 mutants of PHB2 confirmed a critical role for PGAM5-mediated dephosphorylation of PHB2 in mitochondrial dysfunction associated with hyperglycemic stress. Furthermore, knockin mice expressing phosphomimetic PHB2S91D were resistant to diabetes-induced cardiac dysfunction. Our findings highlight the PGAM-PHB2 axis as a novel and critical regulator of mitochondrial dysfunction in DCM.
Collapse
Affiliation(s)
- Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China
| | - Jie He
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Chaojie Wang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Songtao Tan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Yu Xia
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Xing Chang
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ruibing Li
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Ge Wang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| |
Collapse
|
29
|
Tu M, Tan VP, Yu JD, Tripathi R, Bigham Z, Barlow M, Smith JM, Brown JH, Miyamoto S. RhoA signaling increases mitophagy and protects cardiomyocytes against ischemia by stabilizing PINK1 protein and recruiting Parkin to mitochondria. Cell Death Differ 2022; 29:2472-2486. [PMID: 35760846 PMCID: PMC9751115 DOI: 10.1038/s41418-022-01032-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023] Open
Abstract
Mitophagy, a mitochondria-specific form of autophagy, removes dysfunctional mitochondria and is hence an essential process contributing to mitochondrial quality control. PTEN-induced kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin are critical molecules involved in stress-induced mitophagy, but the intracellular signaling mechanisms by which this pathway is regulated are unclear. We tested the hypothesis that signaling through RhoA, a small GTPase, induces mitophagy via modulation of the PINK1/Parkin pathway as a protective mechanism against ischemic stress. We demonstrate that expression of constitutively active RhoA as well as sphingosine-1-phosphate induced activation of endogenous RhoA in cardiomyocytes result in an accumulation of PINK1 at mitochondria. This is accompanied by translocation of Parkin to mitochondria and ubiquitination of mitochondrial proteins leading to recognition of mitochondria by autophagosomes and their lysosomal degradation. Expression of RhoA in cardiomyocytes confers protection against ischemia, and this cardioprotection is attenuated by siRNA-mediated PINK1 knockdown. In vivo myocardial infarction elicits increases in mitochondrial PINK1, Parkin, and ubiquitinated mitochondrial proteins. AAV9-mediated RhoA expression potentiates these responses and a concurrent decrease in infarct size is observed. Interestingly, induction of mitochondrial PINK1 accumulation in response to RhoA signaling is neither mediated through its transcriptional upregulation nor dependent on depolarization of the mitochondrial membrane, the canonical mechanism for PINK1 accumulation. Instead, our results reveal that RhoA signaling inhibits PINK1 cleavage, thereby stabilizing PINK1 protein at mitochondria. We further show that active RhoA localizes at mitochondria and interacts with PINK1, and that the mitochondrial localization of RhoA is regulated by its downstream effector protein kinase D. These findings demonstrate that RhoA activation engages a unique mechanism to regulate PINK1 accumulation, induce mitophagy and protect against ischemic stress, and implicates regulation of RhoA signaling as a potential strategy to enhance mitophagy and confer protection under stress conditions.
Collapse
Affiliation(s)
- Michelle Tu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Valerie P Tan
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Justin D Yu
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Raghav Tripathi
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Zahna Bigham
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Melissa Barlow
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Jeffrey M Smith
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0636, USA.
| |
Collapse
|
30
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
31
|
Fan ZG, Xu Y, Chen X, Ji MY, Ma GS. Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Drug Des Devel Ther 2022; 16:2017-2030. [PMID: 35789742 PMCID: PMC9250321 DOI: 10.2147/dddt.s371506] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 01/01/2023] Open
Abstract
Objective Dapagliflozin (DAPA) has been reported to have significant cardiac protective effects on heart failure (HF). However, the dose and time, as well as the underlying mechanisms, for DAPA treatment in acute myocardial infarction (AMI) remain controversial. The aim of this study aimed to assess the efficacy and safety of DAPA treatment along with an increased concentration gradient for AMI and explore the potential mechanisms. Methods Non-diabetic Sprague-Dawley rats were used for establishing AMI models and then were treated with three different concentrations of DAPA [0.5 mg/kg, 1 mg/kg and 1.5 mg/kg, described as AMI+DAPA Low, AMI+DAPA Medium (Med) and AMI+DAPA High, respectively] for six weeks from the onsetting of AMI. Echocardiography, histological staining and Western blot were performed to assess the relevant cardiac protective effects. Mitochondrial biogenesis and myocardial apoptosis were evaluated via the electron microscopy and TUNEL assay, respectively, as well as the Immunoblotting. In vitro, H9c2 cells were subjected to hypoxic treatment to assess the efficacy of DAPA on mitochondrial biogenesis and apoptosis. Results The medium dose of DAPA treatment could significantly reduce the infarct size (P < 0.01) and the echocardiography results showed that the MI-induced damage in cardiac function got partly repaired, showing no significant difference in left ventricle ejection fraction (LVEF) versus the Sham group (Sham vs AMI+DAPA Med group: 70.47% vs 61.73%). The Western blotting results confirmed the relevant benefits and the underlying mechanisms might be through the activation of PGAM5/Drp1 signaling pathway to normalize the mitochondrial fission and reduce cardiomyocyte apoptosis. Moreover, a medium dose of DAPA treatment could avoid increased damage to the bladder endothelium following higher treatment doses. Conclusion Appropriate dose of DAPA treatment could improve the cardiac remodeling and reduce the cardiomyocyte apoptosis after AMI, without increased damage to bladder endothelium, which might be more preferred for MI patients without diabetes.
Collapse
Affiliation(s)
- Zhong-guo Fan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Yang Xu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Xi Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Ming-yue Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
- Department of Cardiology, Lianshui People’s Hospital, Huaian, People’s Republic of China
| | - Gen-shan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
32
|
Mao Y, Ren J, Yang L. FUN14 Domain Containing 1 (FUNDC1): A Promising Mitophagy Receptor Regulating Mitochondrial Homeostasis in Cardiovascular Diseases. Front Pharmacol 2022; 13:887045. [PMID: 35645834 PMCID: PMC9136072 DOI: 10.3389/fphar.2022.887045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria, the intracellular organelles for cellular aerobic respiration and energy production, play an important role in the regulation of cell metabolism and cell fate. Mitophagy, a selective form of autophagy, maintains dynamic homeostasis of cells through targeting long-lived or defective mitochondria for timely clearance and recycling. Dysfunction in mitophagy is involved in the molecular mechanism responsible for the onset and development of human diseases. FUN14 domain containing 1 (FUNDC1) is a mitochondrial receptor located in the outer mitochondria membrane (OMM) to govern mitophagy process. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to the occurrence, progression and prognosis of cardiovascular diseases, indicating a novel role for this mitophagy receptor in the regulation of mitochondrial homeostasis in cardiovascular system. Here we review mitophagy mediated by FUNDC1 in mitochondria and its role in various forms of cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- *Correspondence: Jun Ren, ; Lifang Yang,
| | - Lifang Yang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Jun Ren, ; Lifang Yang,
| |
Collapse
|
33
|
Gasparotto M, Lee YS, Palazzi A, Vacca M, Filippini F. Nuclear and Cytoplasmatic Players in Mitochondria-Related CNS Disorders: Chromatin Modifications and Subcellular Trafficking. Biomolecules 2022; 12:biom12050625. [PMID: 35625553 PMCID: PMC9138954 DOI: 10.3390/biom12050625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Aberrant mitochondrial phenotypes are common to many central nervous system (CNS) disorders, including neurodegenerative and neurodevelopmental diseases. Mitochondrial function and homeostasis depend on proper control of several biological processes such as chromatin remodeling and transcriptional control, post-transcriptional events, vesicle and organelle subcellular trafficking, fusion, and morphogenesis. Mutation or impaired regulation of major players that orchestrate such processes can disrupt cellular and mitochondrial dynamics, contributing to neurological disorders. The first part of this review provides an overview of a functional relationship between chromatin players and mitochondria. Specifically, we relied on specific monogenic CNS disorders which share features with mitochondrial diseases. On the other hand, subcellular trafficking is coordinated directly or indirectly through evolutionarily conserved domains and proteins that regulate the dynamics of membrane compartments and organelles, including mitochondria. Among these “building blocks”, longin domains and small GTPases are involved in autophagy and mitophagy, cell reshaping, and organelle fusion. Impairments in those processes significantly impact CNS as well and are discussed in the second part of the review. Hopefully, in filling the functional gap between the nucleus and cytoplasmic organelles new routes for therapy could be disclosed.
Collapse
Affiliation(s)
- Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
| | - Yi-Shin Lee
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
- Pharmacology Division, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Faculty of Medicine and surgery, University of Naples Federico II, Via Pansini 5, Building 19 (Biological Tower), 80131 Naples, Italy
| | - Alessandra Palazzi
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy; (Y.-S.L.); (A.P.); (M.V.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Via Ugo Bassi 58/B, 35131 Padua, Italy;
- Correspondence:
| |
Collapse
|
34
|
Role of Butylphthalide in Immunity and Inflammation: Butylphthalide May Be a Potential Therapy for Anti-Inflammation and Immunoregulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7232457. [PMID: 35422893 PMCID: PMC9005281 DOI: 10.1155/2022/7232457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
Inflammation and immunity play an essential role in disease pathogenesis. 3-N-Butylphthalide (NBP), a group of compounds extracted from seeds of Apium graveolens (Chinese celery), has been demonstrated as an efficient and effective therapy for ischemic stroke. The amount of research on NBP protective effect is increasing at pace, such as microcircular reconstruction, alleviating inflammation, ameliorating brain edema and blood-brain barrier (BBB) damage, mitochondrial function protection, antiplatelet aggregation, antithrombosis, decreasing oxidative damage, and reducing neural cell apoptosis. There has been increasing research emphasizing the association between NBP and immunity and inflammation in the past few years. Hence, it is aimed at reviewing the related literature and summarizing the underlying anti-inflammatory and immunoregulatory function of NBP in various disorders.
Collapse
|
35
|
Yang YD, Li ZX, Hu XM, Wan H, Zhang Q, Xiao R, Xiong K. Insight into Crosstalk Between Mitophagy and Apoptosis/Necroptosis: Mechanisms and Clinical Applications in Ischemic Stroke. Curr Med Sci 2022; 42:237-248. [PMID: 35391618 DOI: 10.1007/s11596-022-2579-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
Abstract
Ischemic stroke is a serious cerebrovascular disease with high morbidity and mortality. As a result of ischemia-reperfusion, a cascade of pathophysiological responses is triggered by the imbalance in metabolic supply and demand, resulting in cell loss. These cellular injuries follow various molecular mechanisms solely or in combination with this disorder. Mitochondria play a driving role in the pathophysiological processes of ischemic stroke. Once ischemic stroke occurs, damaged cells would respond to such stress through mitophagy. Mitophagy is known as a conservatively selective autophagy, contributing to the removal of excessive protein aggregates and damaged intracellular components, as well as aging mitochondria. Moderate mitophagy may exert neuroprotection against stroke. Several pathways associated with the mitochondrial network collectively contribute to recovering the homeostasis of the neurovascular unit. However, excessive mitophagy would also promote ischemia-reperfusion injury. Therefore, mitophagy is a double-edged sword, which suggests that maximizing the benefits of mitophagy is one of the direction of future efforts. This review emphasized the role of mitophagy in ischemic stroke, and highlighted the crosstalk between mitophagy and apoptosis/necroptosis.
Collapse
Affiliation(s)
- Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi-Xin Li
- Clinical Medicine Eight-year Program, 03 Class, 18 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xi-Min Hu
- Clinical Medicine Eight-Year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Rui Xiao
- Administrative Office, the Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
36
|
Islam T, Afonso MB, Rodrigues CMP. The role of RIPK3 in liver mitochondria bioenergetics and function. Eur J Clin Invest 2022; 52:e13648. [PMID: 34219227 DOI: 10.1111/eci.13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3) is a key player of regulated necrosis or necroptosis, an inflammatory form of cell death possibly governing outcomes in chronic liver diseases, such as nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. METHODS This narrative review is based on literature search using PubMed. RESULTS RIPK3 activation depends on post-transcriptional modifications, including phosphorylation, hence coordinating the assembly of macromolecular death complex named 'necrosome', which may also involve diverse mitochondrial components. Curiously, recent studies suggested a potential link between RIPK3 and mitochondrial bioenergetics. RIPK3 can modulate mitochondrial function and quality through the regulation of mitochondrial reactive oxygen species production, sequestration of metabolic enzymes and resident mitochondrial proteins, activity of mitochondrial respiratory chain complexes, mitochondrial biogenesis and fatty acid oxidation. CONCLUSIONS Since mitochondrial dysfunction and RIPK3-mediated necroptosis are intimately involved in chronic liver disease pathogenesis, understanding the role of RIPK3 in mitochondrial bioenergetics and its potential translational application are of great interest.
Collapse
Affiliation(s)
- Tawhidul Islam
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Downregulation of phosphoglycerate mutase 5 improves microglial inflammasome activation after traumatic brain injury. Cell Death Discov 2021; 7:290. [PMID: 34642327 PMCID: PMC8511105 DOI: 10.1038/s41420-021-00686-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023] Open
Abstract
Traumatic brain injury (TBI) is considered as the most common cause of disability and death, and therefore an effective intervention of cascade pathology of secondary brain injury promptly can be a potential therapeutic direction for TBI prognosis. Further study of the physiological mechanism of TBI is urgent and important. Phosphoglycerate mutase 5 (Pgam5), a mitochondrial protein, mediate mitochondrial homeostasis, cellular senescence, and necroptosis. This study evaluated the effects of Pgam5 on neurological deficits and neuroinflammation of controlled cortical impact-induced TBI mouse model in vivo and LPS + ATP-induced microglia model in vitro. Pgam5 was overexpressed post-TBI. Pgam5 depletion reduced pyroptosis-related molecules and improved microglia activation, neuron damage, tissue lesion, and neurological dysfunctions in TBI mice. RNA-seq analysis and molecular biology experiments demonstrated that Pgam5 might regulate inflammatory responses by affecting the post-translational modification and protein expression of related genes, including Nlrp3, caspase1, Gsdmd, and Il-1β. In microglia, Pgam5-sh abrogated LPS + ATP-induced Il-1β secretion through Asc oligomerization-mediated caspase-1 activation, which was independent of Rip3. The data demonstrate the critical role Pgam5 plays in nerve injury in the progression of TBI, which regulates Asc polymerization and subsequently caspase1 activation, and thus reveals a fundamental mechanism linking microglial inflammasome activation to Asc/caspase1-generated Il-1β-mediated neuroinflammation. Thus, our data indicate Pgam5 worsens physiological and neurological outcomes post-TBI, which may be a potential therapeutic target to improve neuroinflammation after TBI.
Collapse
|
38
|
Liang MZ, Ke TL, Chen L. Mitochondrial Protein PGAM5 Emerges as a New Regulator in Neurological Diseases. Front Mol Neurosci 2021; 14:730604. [PMID: 34630036 PMCID: PMC8496500 DOI: 10.3389/fnmol.2021.730604] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
As mitochondrial dysfunction has increasingly been implicated in neurological diseases, much of the investigation focuses on the response of the mitochondria. It appears that mitochondria can respond to external stimuli speedy fast, in seconds. Understanding how mitochondria sense the signal and communicate with cytosolic pathways are keys to understand mitochondrial regulation in diseases or in response to trauma. It was not until recently that a novel mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5) has emerged to be a new regulator of mitochondrial homeostasis. Although controversial results reveal beneficial as well as detrimental roles of PGAM5 in cancers, these findings also suggest PGAM5 may have diverse regulation on cellular physiology. Roles of PGAM5 in neuronal tissues remain to be uncovered. This review discusses current knowledge of PGAM5 in neurological diseases and provides future perspectives.
Collapse
Affiliation(s)
- Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Ling Ke
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
39
|
Yin Y, Shen H. Advances in Cardiotoxicity Induced by Altered Mitochondrial Dynamics and Mitophagy. Front Cardiovasc Med 2021; 8:739095. [PMID: 34616789 PMCID: PMC8488107 DOI: 10.3389/fcvm.2021.739095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the most abundant organelles in cardiac cells, and are essential to maintain the normal cardiac function, which requires mitochondrial dynamics and mitophagy to ensure the stability of mitochondrial quantity and quality. When mitochondria are affected by continuous injury factors, the balance between mitochondrial dynamics and mitophagy is broken. Aging and damaged mitochondria cannot be completely removed in cardiac cells, resulting in energy supply disorder and accumulation of toxic substances in cardiac cells, resulting in cardiac damage and cardiotoxicity. This paper summarizes the specific underlying mechanisms by which various adverse factors interfere with mitochondrial dynamics and mitophagy to produce cardiotoxicity and emphasizes the crucial role of oxidative stress in mitophagy. This review aims to provide fresh ideas for the prevention and treatment of cardiotoxicity induced by altered mitochondrial dynamics and mitophagy.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| | - Haitao Shen
- Department of Emergency Medicine, ShengJing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 914] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
41
|
Xu Y, Zhou Y, Yu D, Hu W, Wu X, Wang J, Huang S, Zhao S, Fan X, Chu Z, Ma L. The Autophagy Signaling Pathway in Necroptosis-Dependent Cerebral Ischemia/Reperfusion Injury. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol 2021; 18:2114-2127. [PMID: 34321623 PMCID: PMC8429580 DOI: 10.1038/s41423-021-00740-6] [Citation(s) in RCA: 827] [Impact Index Per Article: 206.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome is a cytosolic multiprotein complex composed of the innate immune receptor protein NLRP3, adapter protein ASC, and inflammatory protease caspase-1 that responds to microbial infection, endogenous danger signals, and environmental stimuli. The assembled NLRP3 inflammasome can activate the protease caspase-1 to induce gasdermin D-dependent pyroptosis and facilitate the release of IL-1β and IL-18, which contribute to innate immune defense and homeostatic maintenance. However, aberrant activation of the NLRP3 inflammasome is associated with the pathogenesis of various inflammatory diseases, such as diabetes, cancer, and Alzheimer's disease. Recent studies have revealed that NLRP3 inflammasome activation contributes to not only pyroptosis but also other types of cell death, including apoptosis, necroptosis, and ferroptosis. In addition, various effectors of cell death have been reported to regulate NLRP3 inflammasome activation, suggesting that cell death is closely related to NLRP3 inflammasome activation. In this review, we summarize the inextricable link between NLRP3 inflammasome activation and cell death and discuss potential therapeutics that target cell death effectors in NLRP3 inflammasome-associated diseases.
Collapse
Affiliation(s)
- Yi Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
43
|
Methods to Monitor Mitophagy and Mitochondrial Quality: Implications in Cancer, Neurodegeneration, and Cardiovascular Diseases. Methods Mol Biol 2021; 2310:113-159. [PMID: 34096002 DOI: 10.1007/978-1-0716-1433-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles that participate in a broad array of molecular functions within the cell. They are responsible for maintaining the appropriate energetic levels and control the cellular homeostasis throughout the generation of intermediary metabolites. Preserving a healthy and functional mitochondrial population is of fundamental importance throughout the life of the cells under pathophysiological conditions. Hence, cells have evolved fine-tuned mechanisms of quality control that help to preserve the right amount of functional mitochondria to meet the demand of the cell. The specific recycling of mitochondria by autophagy, termed mitophagy, represents the primary contributor to mitochondrial quality control. During this process, damaged or unnecessary mitochondria are recognized and selectively degraded. In the past few years, the knowledge in mitophagy has seen rapid progress, and a growing body of evidence confirms that mitophagy holds a central role in controlling cellular functions and the progression of various human diseases.In this chapter, we will discuss the pathophysiological roles of mitophagy and provide a general overview of the current methods used to monitor and quantify mitophagy. We will also outline the main established approaches to investigate the mitochondrial function, metabolism, morphology, and protein damage.
Collapse
|
44
|
Liu X, Yu T, Hu Y, Zhang L, Zheng J, Wei X. The molecular mechanism of acute liver injury and inflammatory response induced by Concanavalin A. MOLECULAR BIOMEDICINE 2021; 2:24. [PMID: 35006454 PMCID: PMC8607380 DOI: 10.1186/s43556-021-00049-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute liver injury is a common but urgent clinical condition, and its underlying mechanism remains to be further elucidated. Concanavalin A (ConA)-induced liver injury was investigated in the study. Different from the caspase-dependent cell apoptosis in lipopolysaccharide/D-aminogalactose (LPS/D-GalN) induced liver injury, ConA-induced hepatocyte death was independent on caspase. Increased hepatocytic expressions of mixed lineage kinase domain like (MLKL) and receptor-interacting protein kinase 1 (RIPK1), and higher serum concentration of tumor necrosis factor-α (TNF-α) were noticed in mice with ConA-induced liver injury. Inhibition of RIPK1 protein or deletion of MLKL gene could significantly attenuate the acute liver injury and improve mice survival. Besides, the ConA treatment induced severe hepatic inflammation in wide type (WT) mice in comparison with Mlkl-/- mice, suggesting the RIPK1-MLKL-mediated hepatocellular necroptosis might participate in the process of liver injury. Moreover, mitochondrial damage associated molecular patterns (DAMPs) were subsequently released after the hepatocyte death, and further activated the p38 mitogen-activated protein kinase (MAPK) pathway, which could be reduced by deletion or inhibition of Toll-like receptor 9 (TLR9). Taken together, our research revealed that ConA-induced acute liver injury was closely related to TNF-α-mediated cell necroptosis, and inhibiting RIPK1 or deleting MLKL gene could alleviate liver injury in mice. The mitochondrial DNA released by dead hepatocytes further activated neutrophils through TLR9, thus resulting in the exacerbation of liver injury.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Ting Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhu Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Junnian Zheng
- Department of Radiation Oncology, Cancer Center, Affiliated Hospital of Xuzhou Medical University, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Dhanabalan K, Mzezewa S, Huisamen B, Lochner A. Mitochondrial Oxidative Phosphorylation Function and Mitophagy in Ischaemic/Reperfused Hearts from Control and High-Fat Diet Rats: Effects of Long-Term Melatonin Treatment. Cardiovasc Drugs Ther 2021; 34:799-811. [PMID: 32458321 DOI: 10.1007/s10557-020-06997-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Oxidative stress causes mitochondrial dysfunction in myocardial ischaemia/reperfusion (I/R) as well as in obesity. Mitochondrial depolarization triggers mitophagy to degrade damaged mitochondria, a process important for quality control. The aims of this study were to evaluate (i) the effect of I/R on mitochondrial oxidative phosphorylation and its temporal relationship with mitophagy in hearts from obese rats and their age-matched controls, and (ii) the role of oxidative stress in these processes using melatonin, a free radical scavenger. METHODS Male Wistar rats were divided into 4 groups: control (normal diet ± melatonin) and high-fat sucrose diet (HFSD ± melatonin). Rats received melatonin orally (10 mg/kg/day). After 16 weeks, hearts were removed and subjected to 40-min stabilization, and 25-min global ischaemia/10-min reperfusion for preparation of mitochondria. Mitochondrial oxidative phosphorylation was measured polarographically. Western blotting was used for evaluation of PINK1, Parkin, p62/SQSTM1 (p62) and TOM 70. Infarct size was measured using tetrazolium staining. RESULTS Ischaemia and reperfusion respectively reduced and increased mitochondrial QO2 (state 3) and the ox-phos rate in both control and HFSD mitochondria, showing no major changes between the groups, while melatonin pretreatment had little effect. p62 as indicator of mitophagic flux showed up- and downregulation of mitophagy by ischaemia and reperfusion respectively, with melatonin having no significant effect. Melatonin treatment caused a significant reduction in infarct size in hearts from both control and diet groups. CONCLUSIONS The results suggest that I/R (i) affects mitochondria from control and HFSD hearts similarly and (ii) melatonin-induced cardioprotection is not associated with reversal of mitochondrial dysfunction or changes in the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Karthik Dhanabalan
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Sibonginkosi Mzezewa
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa
| | - Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
46
|
Li S, Zhang J, Liu C, Wang Q, Yan J, Hui L, Jia Q, Shan H, Tao L, Zhang M. The Role of Mitophagy in Regulating Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6617256. [PMID: 34113420 PMCID: PMC8154277 DOI: 10.1155/2021/6617256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/27/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are multifaceted organelles that serve to power critical cellular functions, including act as power generators of the cell, buffer cytosolic calcium overload, production of reactive oxygen species, and modulating cell survival. The structure and the cellular location of mitochondria are critical for their function and depend on highly regulated activities such as mitochondrial quality control (MQC) mechanisms. The MQC is regulated by several sets of processes: mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy, and other mitochondrial proteostasis mechanisms such as mitochondrial unfolded protein response (mtUPR) or mitochondrial-derived vesicles (MDVs). These processes are important for the maintenance of mitochondrial homeostasis, and alterations in the mitochondrial function and signaling are known to contribute to the dysregulation of cell death pathways. Recent studies have uncovered regulatory mechanisms that control the activity of the key components for mitophagy. In this review, we discuss how mitophagy is controlled and how mitophagy impinges on health and disease through regulating cell death.
Collapse
Affiliation(s)
- Sunao Li
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Jiaxin Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Chao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianliang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Hui
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Qiufang Jia
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Luyang Tao
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Department of Forensic Sciences, School of Basic Medicine and Biological Sciences, Affilated Guangji Hospital, Soochow University, Suzhou, China
| |
Collapse
|
47
|
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, Schlütermann D, Stuhldreier F, Cox J, Schmitz K, Seggewiß S, Peter C, Kasof G, Stefanski A, Stühler K, Tschapek A, Gödecke A, Stork B. The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death. Cell Rep 2021; 31:107547. [PMID: 32320653 DOI: 10.1016/j.celrep.2020.107547] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk. Here, we identify RIPK1 as a substrate of ULK1. ULK1-dependent phosphorylation of RIPK1 reduces complex IIb/necrosome assembly and tumor necrosis factor (TNF)-induced cell death, whereas deprivation of ULK1 enhances TNF-induced cell death. We observe that ULK1 phosphorylates multiple sites of RIPK1, but it appears that especially phosphorylation of S357 within the intermediate domain of RIPK1 mediates this cell-death-inhibiting effect. We propose that ULK1 is a regulator of RIPK1-mediated cell death.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaojing Wang
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Nora Wallot-Hieke
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Philip Böhler
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Cox
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schmitz
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sabine Seggewiß
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University, Düsseldorf, Germany
| | - Astrid Tschapek
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
48
|
Sun X, Alford J, Qiu H. Structural and Functional Remodeling of Mitochondria in Cardiac Diseases. Int J Mol Sci 2021; 22:ijms22084167. [PMID: 33920673 PMCID: PMC8072869 DOI: 10.3390/ijms22084167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.
Collapse
Affiliation(s)
| | | | - Hongyu Qiu
- Correspondence: ; Tel.: +404-413-3371; Fax: +404-413-9566
| |
Collapse
|
49
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:3903. [PMID: 33918863 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| |
Collapse
|
50
|
An intestinal organoid-based platform that recreates susceptibility to T-cell-mediated tissue injury. Blood 2021; 135:2388-2401. [PMID: 32232483 DOI: 10.1182/blood.2019004116] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
A goal in precision medicine is to use patient-derived material to predict disease course and intervention outcomes. Here, we use mechanistic observations in a preclinical animal model to design an ex vivo platform that recreates genetic susceptibility to T-cell-mediated damage. Intestinal graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. We found that intestinal GVHD in mice deficient in Atg16L1, an autophagy gene that is polymorphic in humans, is reversed by inhibiting necroptosis. We further show that cocultured allogeneic T cells kill Atg16L1-mutant intestinal organoids from mice, which was associated with an aberrant epithelial interferon signature. Using this information, we demonstrate that pharmacologically inhibiting necroptosis or interferon signaling protects human organoids derived from individuals harboring a common ATG16L1 variant from allogeneic T-cell attack. Our study provides a roadmap for applying findings in animal models to individualized therapy that targets affected tissues.
Collapse
|