1
|
Li S, Mu A, Jing Z, Liu Z, Cao X, Guo J, Xi Y, Guo Q. Cross ethnic Mendelian randomization analysis reveals causal relationship between air pollution and risk of kidney stones. Sci Rep 2025; 15:12132. [PMID: 40204920 PMCID: PMC11982192 DOI: 10.1038/s41598-025-97436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 04/04/2025] [Indexed: 04/11/2025] Open
Abstract
Accumulating evidence has indicated that exposures to air pollution increase the odds of kidney stones. However, the previous research methods were limited. To address this gap, we employed genome-wide association studies (GWAS) datasets and Mendelian randomization (MR) to verify the causation. Applying publicly accessible summary datasets from UK Biobank, FinnGen consortium and Biobank Japan, a two-sample MR, and further multivariate MR were carried out to calculate the causality between air pollution [particulate matter 2.5 (PM2.5), PM2.5 absorbance, PM2.5-10, PM10, nitrogen dioxide, and nitrogen oxides] and kidney stone risk in three different populations (European, East Asian, and South Asian). The inverse variance weighted (IVW) was utilized for its first-step assessment, supplemented with MR-Egger, weighted median, Cochran's Q test, MR-Egger intercept and leave-one-out analysis to ensure the robustness. Employing IVW, we discovered in the European population that PM2.5 absorbance was statistically correlated with kidney stone risk (odds ratio (OR) = 1.40; 95% confidence interval (CI), 1.01-1.94; P = 0.04), with no heterogeneity, pleiotropy, or sensitivity observed. Additionally, the MVMR result revealed the directly causative connection between a single PM2.5 absorbance and the increase in kidney stone risk (OR = 1.77, 95%CI: 1.06-2.98, p = 0.03). Our investigation proposed the correlation between PM2.5 absorbance and an increased risk of kidney stones in European populations. The control of air pollution, especially PM2.5, may have crucial implications for the prevention of kidney stones.
Collapse
Affiliation(s)
- Shuangping Li
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Aijia Mu
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Zhinan Jing
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Ziyi Liu
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Xinfang Cao
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Jincheng Guo
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China
| | - Yujia Xi
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China.
| | - Qiang Guo
- Department of Urology, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
- Male Reproductive Health Research Center, Shanxi Medical University, Shanxi Province, Jinzhong, China.
| |
Collapse
|
2
|
Lee BJ, Flood TR, Russell SL, McCormick JJ, Fujii N, Kenny GP. Impacts of age, type 2 diabetes, and hypertension on circulating neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 after prolonged work in the heat in men. Eur J Appl Physiol 2024; 124:2923-2939. [PMID: 38753017 DOI: 10.1007/s00421-024-05505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/05/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE Prolonged work in the heat increases the risk of acute kidney injury (AKI) in young men. Whether aging and age-associated chronic disease may exacerbate the risk of AKI remains unclear. METHODS We evaluated plasma neutrophil gelatinase-associated lipocalin (NGAL) and serum kidney injury molecule-1 (KIM1) before and after 180 min of moderate-intensity work (200 W/m2) in temperate (wet-bulb globe temperature [WBGT] 16 °C) and hot (32 °C) environments in healthy young (n = 13, 22 years) and older men (n = 12, 59 years), and older men with type 2 diabetes (T2D; n = 9, 60 years) or hypertension (HTN; n = 9, 60 years). RESULTS There were no changes in NGAL or KIM1 concentrations following prolonged work in temperate conditions in any group. Despite a similar work tolerance, the relative change in NGAL was greater in the older group when compared to the young group following exercise in the hot condition (mean difference + 82 ng/mL; p < 0.001). Baseline concentrations of KIM1 were ~ 22 pg/mL higher in the older relative to young group, increasing by ~ 10 pg/mL in each group after exercise in the heat (both p ≤ 0.03). Despite a reduced work tolerance in the heat in older men with T2D (120 ± 40 min) and HTN (108 ± 42 min), elevations in NGAL and KIM1 were similar to their healthy counterparts. CONCLUSION Age may be associated with greater renal stress following prolonged work in the heat. The similar biomarker responses in T2D and HTN compared to healthy older men, alongside reduced exercise tolerance in the heat, suggest these individuals may exhibit greater vulnerability to heat-induced AKI if work is prolonged.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Physical Activity, Sport and Exercise Science, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Sophie L Russell
- Clinical Sciences and Translational Medicine Theme, Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Shang Z, Gao YM, Deng ZL, Wang Y. Long-term exposure to ambient air pollutants and increased risk of end-stage renal disease in patients with type 2 diabetes mellitus and chronic kidney disease: a retrospective cohort study in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5429-5443. [PMID: 38123768 PMCID: PMC10799089 DOI: 10.1007/s11356-023-31346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Limited data have examined the association between air pollution and the risk of end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD). We aimed to investigate whether long-term exposure to air pollutants is related to the development of ESRD among patients with T2DM and CKD. A total of 1,738 patients with T2DM and CKD hospitalized in Peking University Third Hospital from January 1, 2013, to December 31, 2021 were enrolled in this study. The outcome was defined as the occurrence of ESRD. Data on six air pollutants (PM2.5, PM10, CO, NO2, SO2, and O3) from 35 monitoring stations were obtained from the Beijing Municipal Ecological and Environmental Monitoring Center. Long-term exposure to air pollutants during the follow-up period was measured using the ordinary Kriging method. During a mean follow-up of 41 months, 98 patients developed ESRD. Multivariate logistic regression analysis showed that an increase of 10 μg/m3 in PM2.5 (odds ratio [OR] 1.19, 95% confidence interval [CI] 1.03-1.36) and PM10 (OR 1.15, 95% CI 1.02-1.30) concentration were positively associated with ESRD. An increase of 1 mg/m3 in CO (2.80, 1.05-7.48) and an increase of 1 μg/m3 in SO2 (1.06, 1.00-1.13) concentration were also positively associated with ESRD. Apart from O3 and NO2, all the above air pollutants have additional predictive value for ESRD in patients with T2DM and CKD. The results of Bayesian kernel machine regression and the weighted quantile sum regression all showed that PM2.5 was the most important air pollutant. Backward stepwise logistic regression showed that PM2.5 was the only pollutant remaining in the prediction model. In patients with T2DM and CKD, long-term exposure to ambient PM2.5, PM10, CO, and SO2 was positively associated with the development of ESRD.
Collapse
Affiliation(s)
- Zhi Shang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yue-Ming Gao
- Department of Nephrology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Zhen-Ling Deng
- Department of Nephrology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yue Wang
- Department of Nephrology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
5
|
Shamsedini N, Dehghani M, Samaei MR, Nozari M, Bahrany S, Tabatabaei Z, Azhdarpoor A, Hoseini M, Fararoei M, Roosta S. Non-carcinogenic and cumulative risk assessment of exposure of kitchen workers in restaurants and local residents in the vicinity of polycyclic aromatic hydrocarbons. Sci Rep 2023; 13:6649. [PMID: 37095265 PMCID: PMC10125965 DOI: 10.1038/s41598-023-33193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are often formed when organic substances do not burn completely. This study evaluates the non-carcinogenic and cumulative risks associated with PAHs levels by testing blood and urine samples in kitchen workers and residents near restaurants in Shiraz, Iran. Metabolites of PAH in the urine samples as well as clinical parameters in the blood samples were measured. The non-carcinogenic and cumulative risk assessments from exposure of the study groups to PAH metabolites were also evaluated. The highest average concentrations of PAH metabolites were related to kitchen workers (2126.7 ng/g creatinine (ng/g cr)). The metabolites of 1-Hydroxypyrene (1-OHP) and 9-Phenanthrene (9-OHPhe) had the highest and lowest mean concentrations, respectively. A direct correlation was observed between the levels of PAH metabolites with malondialdehyde (MDA) and total antioxidation capacity (TAC) levels (p < 0.05). Hazard Index (HIi) was obtained less than one (HIi < 1), indicating low-risk negative health impacts on the target groups. Nevertheless, conducting more studies to determine the health status of these people is quite evident.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Nozari
- Department of Environmental Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Tabatabaei
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararoei
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Liu W, Cao S, Ma J, Shi D, Yu L, Ye Z, Yang M, Wang B, Chen W. Exposures to volatile organic compounds, serum vitamin D, and kidney function: association and interaction assessment in the US adult population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7605-7616. [PMID: 36044140 DOI: 10.1007/s11356-022-22637-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The relationships of exposures to volatile organic compounds (VOCs) with vitamin D and kidney function remain unclear. Our analyses included 6070 adults from 2003 to 2010 survey cycles of the National Health and Nutrition Examination Survey to explore associations of six VOCs with serum vitamin D, albumin-to-creatinine ratio (ACR), and estimated glomerular filtration rate (eGFR). The results suggested that dibromochloromethane was positively associated with ACR, and chloroform was inversely associated with ACR. U-shaped associations of toluene, m-/p-xylene, bromodichloromethane, and 1,4-dichlorobenzene with ACR were observed. Toluene, m-/p-xylene, and 1,4-dichlorobenzene were associated with eGFR in U-shaped manners, while bromodichloromethane and chloroform were inversely associated with eGFR. Elevation in 1,4-dichlorobenzene was associated with decrease in vitamin D, while chloroform and m-/p-xylene were in U-shaped associations with vitamin D. VOCs mixture was U-shaped associated with ACR, inversely associated with eGFR, and inversely associated with vitamin D. Vitamin D was in a U-shaped association with ACR. Vitamin D significantly interacted with VOCs on the two kidney parameters. In the US adult population, exposures to VOCs were associated with kidney function and serum vitamin D level decline, and the serum vitamin D may have interaction effects with VOCs exposures on kidney function.
Collapse
Affiliation(s)
- Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shuting Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Da Shi
- Food and Human Nutritional Science, Faculty of Agriculture and Food Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Yang
- Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, Hubei, China.
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
8
|
Xu C, Zhang Q, Huang G, Huang J, Zhang H. The impact of PM2.5 on kidney. J Appl Toxicol 2023; 43:107-121. [PMID: 35671242 DOI: 10.1002/jat.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
PM2.5 poses a severe risk to kidneys, inducing kidney function decline, increasing the risk of suffering from chronic kidney diseases and promoting the occurrence and development of various renal tumors. The mechanism of PM2.5-induced renal injury may involve oxidative stress, inflammatory response, and cytotoxicity. This paper elaborated PM2.5-induced kidney damage and the corresponding possible mechanism so as to raise awareness of air pollution and reduce the damage to human body.
Collapse
Affiliation(s)
- Chunming Xu
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China
| | - Qian Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Guochen Huang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Jia Huang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Hongxia Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
9
|
Aoun M, Chelala D. Where do you live and what do you do? Two questions that might impact your kidney health. FRONTIERS IN NEPHROLOGY 2022; 2:1011964. [PMID: 37675017 PMCID: PMC10479685 DOI: 10.3389/fneph.2022.1011964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/13/2022] [Indexed: 09/08/2023]
Abstract
In many cases the social determinants of health need to be assessed through their interaction with environmental factors. This review looks at the impact of physical location and occupation of individuals on their kidney health. It examines the effect of living at high altitude on kidney function and the relationship between extreme cold or hot temperatures and the incidence of kidney injury. It reviews as well the many occupations that have been linked to kidney disease in high-income and low-and-middle-income countries. As a conclusion, this overview proposes preventive recommendations that could be individualized based on weather, altitude, socio-economic level of the country and occupation of the individual.
Collapse
Affiliation(s)
- Mabel Aoun
- Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | | |
Collapse
|
10
|
Navruz-Varli S, Bilici S, Ari A, Ertürk-Ari P, Ilhan MN, O Gaga E. Organic pollutant exposure and health effects of cooking emissions on kitchen staff in food services. INDOOR AIR 2022; 32:e13093. [PMID: 36040287 DOI: 10.1111/ina.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to determine the exposure and health risk to cooking fumes of a total of 88 volunteer kitchen staff aged between 18 and 65 years working in five different kitchens in Ankara. Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs), and volatile organic compound (VOCs) concentrations were evaluated in the indoor air of 5 kitchens. Serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels were analyzed to determine the oxidative damage as a result of the exposure to cooking fumes among the cooks and waiters. Significant positive relationships were found between serum MDA levels of the hot kitchen workers and indoor chrysene (Chr), indeno(1,2,3-c,d)pyrene (Ind), and total VOC levels. Although the carcinogenic risks estimated for the exposed population were between the acceptable/tolerable levels, the hazard quotient (HQ) estimated for the exposure to indoor benzene exceeded the safe level. The results of the study revealed that exposure to organic pollutants in indoor air may be a risk factor for the development of oxidative stress, especially in hot kitchen workers. The importance of efficient ventilation in the kitchen has been pointed out to reduce health risks caused by cooking fumes.
Collapse
Affiliation(s)
| | - Saniye Bilici
- Department of Nutrition and Dietetics, Gazi University, Ankara, Turkiye
| | - Akif Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | - Pelin Ertürk-Ari
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkiye
| | | | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskisehir, Turkiye
| |
Collapse
|
11
|
A Pilot Study to Quantify Volatile Organic Compounds and Their Sources Inside and Outside Homes in Urban India in Summer and Winter during Normal Daily Activities. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Indian cities have some of the poorest air quality globally but volatile organic compounds (VOCs)—many of which adversely affect health—and their indoor sources remain understudied in India. In this pilot study we quantified hundreds of VOCs inside and outside 26 homes in Ahmedabad and Gandhinagar, Gujarat, in May 2019 and in January 2020. We sampled in the morning and afternoon/evening to capture temporal variability. Total indoor VOCs were measured at higher concentrations in winter (327.0 ± 224.2 µgm−3) than summer (150.1 ± 121.0 µgm−3) and exceeded those measured outdoors. Using variable reduction techniques, we identified potential sources of compounds (cooking, plastics [with an emphasis on plasticizers], consumer products, siloxanes [as used in the production of consumer products], vehicles). Contributions differed by season and between homes. In May, when temperatures were high, plastics contributed substantially to indoor pollution (mean of 42% contribution to total VOCs) as compared to in January (mean of 4%). Indoor cooking and consumer products contributed on average 29% and 10% to all VOCs indoors in January and 16% and 4% in May. Siloxane sources contributed <4% to any home during either season. Cooking contributed substantially to outdoor VOCs (on average 18% in January and 11% in May) and vehicle-related sources accounted for up to 84% of VOCs in some samples. Overall, results indicate a strong seasonal dependence of indoor VOC concentrations and sources, underscoring the need to better understand factors driving health-harming pollutants inside homes to facilitate exposure reductions.
Collapse
|
12
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hoseini M, Fararouei M, Bahrany S, Roosta S. Health risk assessment of polycyclic aromatic hydrocarbons in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. Sci Rep 2022; 12:8254. [PMID: 35585178 PMCID: PMC9117185 DOI: 10.1038/s41598-022-12040-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent toxic substances that have ubiquitous presence in water, air, soil, and sediment environments, posing serious environmental risks. The present study aimed to investigate the concentrations of urinary PAHs and their health effects in individuals living near restaurants via a health risk assessment analysis. This cross-sectional study was performed on 57 people living near restaurants and 30 individuals as the control group. Five urinary metabolites of PAHs were monitored. In order to evaluate the effects of the urinary metabolites of PAHs on Malondialdehyde (MDA) concentration, Total Anti-oxidation Capacity (TAC) in urine samples, and C-Reactive Protein (CRP) in serum samples, regression model was used by considering the effects of the possible confounding factors. Non-carcinogenic health risk was calculated, as well. The median concentration of urinary PAHs was 1196.70 and 627.54 ng/g creatinine in the people living near restaurants and the control group, respectively. Among the metabolites, the lowest and highest mean concentrations were related to 9-OHPhe and 1-OHP, respectively in the two study groups. Moreover, PAHs were significantly associated with MDA level and TAC (p < 0.05). Hazard Quotient (HQ) and Hazard Index (HI) were less than 1. Long-term studies are required to determine the actual health effects by identifying the sources of PAHs emission and to find ways to decrease the production of these compounds.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Roosta
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Nsonwu-Anyanwu AC, Ndudi Idenyi A, Offor SJ, Chinenyenwa Thomas C, Okpotu F, Edet CE, Opara Usoro CA. Association of exposure to polycyclic aromatic hydrocarbons with inflammation, oxidative DNA damage and renal-pulmonary dysfunctions in barbecue makers in Southern Nigeria. Rep Biochem Mol Biol 2022; 11:74-82. [PMID: 35765524 PMCID: PMC9208567 DOI: 10.52547/rbmb.11.1.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/26/2021] [Indexed: 04/16/2023]
Abstract
Background Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hydroxy-2-deoxyguanosine (8-OHdG)); tumor necrosis factor-alpha (TNF-α)); 1-hydroxy pyrene (1-HOP)), serum and urine creatinine, uric acid (UA), estimated glomerular filtration rate (eGFR) and peak expiratory flow rate (PEFR) were assessed in barbecue makers. Methods One hundred barbecue makers and 50 controls were enrolled into the study. Serum and urine creatinine, UA, TAC, MDA, GSH, NO and TPP were estimated by colorimetry, 8-OHdG and TNF-α by ELISA, PEFR using peak flow meter, 1-HOP by HPLC, eGFR and OSI by calculation. Results Barbecue makers had lower TAC, PEFR, and higher TNF-α and OS compared to controls (p<0.05). Higher TNF-α, lipid peroxidation, and lower antioxidants were observed in barbecue makers who had worked for >5years compared to <5years (p <0.05). Increasing number of working hours was associated with higher NO, lipid peroxidation, OS and lower antioxidants in barbecue makers (p <0.05). Positive associations were observed between 1-HOP and TPP (r=0.570, p=0.000), OSI (r=0.299, p=0.035) and negative association between TAC and TNF-α (r=-0.209, p=0.037), MDA (r=-0.265, p=0.008) in barbecue makers. Conclusion Increased lipid peroxidation, OS, inflammation and depressed antioxidants and lung function observed in barbecue makers suggest increased risk of chronic lung conditions which may be associated with exposure to PAH in barbecue fumes.
Collapse
Affiliation(s)
| | - Augusta Ndudi Idenyi
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | - Sunday Jeremiah Offor
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | | | - Friday Okpotu
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | - Clement Emmanuel Edet
- Department of Medical Laboratory Science, University of Calabar, PMB 1115, Calabar, Nigeria.
| | | |
Collapse
|
14
|
Alayyannur PA, Ramdhan DH. Relationship of heat stress with acute kidney disease and chronic kidney disease: A literature review. J Public Health Res 2022. [DOI: 10.1177/22799036221104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Heat stress is a physical hazard and a potential health risk which can result in various conditions ranging from discomfort, headaches, psychological disorders, heat stroke and even death in extreme cases. Factors which cause heat stress include high ambient temperature, limited air movement, strenuous physical work and direct exposure to the heat of the engine/ sun. Continuous heat stress, exacerbated by dehydration, can lead to kidney disease. This study is a literature review conducted to explore factors that influence heat stress and the relationship of heat stress with acute kidney disease and chronic kidney disease. Methods: Literature search was conducted in September 2021. Research sources were taken from several databases, namely Science Direct, ProQuest, PubMed, and Google Scholar. From the databases, 23,316 articles were from Science Direct, 140,319 articles were from ProQuest, 670 articles were from PubMed, and 288,000 articles were from Google Scholars. Out of the total database only 24 articles met the inclusion criteria. The variables in this study were heat stress, acute kidney disease, and chronic kidney disease. Results: This literature review shows that several factors which can affect heat stress are heat exposure, workload, rehydration, and rest period arrangements. Heat stress experienced by workers can cause decreased kidney function and chronic kidney disease. Heat stress conditions that are continuously experienced by workers can cause chronic kidney disease. Conclusion: Heat stress can be experienced by workers due to heat exposure, heavy workload, poor rehydration, and poor rest period arrangements. Heat stress can cause acute kidney disease and chronic kidney disease.
Collapse
Affiliation(s)
- Putri Ayuni Alayyannur
- Student of Doctoral Program, Faculty of Public Health, Universitas Indonesia, Depok, West Java, Indonesia
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Doni Hikmat Ramdhan
- Department of Occupational Health and Safety, Faculty of Public Health, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
15
|
Rahman HH, Niemann D, Munson-McGee SH. Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24024-24034. [PMID: 34822075 DOI: 10.1007/s11356-021-17479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed from the incomplete combustion of carbon-containing products. Exposure can occur through ingestion or inhalation and has been linked to depression, stroke, liver disease, asthma, diabetes, heart failure, and cancer. Few studies have investigated the association between exposure to PAHs and chronic kidney disease (CKD) in humans. This study aims to investigate the association between seven urinary PAH concentrations (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, and 2 & 3-hydroxyphenanthrene) and CKD in the US adult population. A cross-sectional analysis using the 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset was conducted. CKD was defined with estimated glomerular filtration rate (eGFR) and albumin to creatinine ratio (ACR). Participants with an eGFR < 60 ml/min/1.73m2 or ACR > 30 mg/gm were considered to have CKD. A specialized complex survey design analysis package using R version 4.0.3 was used in the data analysis. Multivariate logistic regression was used to study the correlation between seven forms of urinary PAH concentrations and CKD associated with abnormal eGFR or ACR. The models were adjusted for lifestyle and demographic factors. The study included a total of 4117 adults aged ≥ 20 years, with 49.6% males and 50.4% females. Urinary 2-hydroxynaphthalene (OR: 1.600, 95% CI: 1.141, 2.243) was significantly associated with an increased odds of CKD; the other six forms of urinary PAHs were not associated with CKD. Non-Hispanic Black (OR: 1.569, 95% CI: 1.168, 2.108), age of 60 years and older (OR: 2.546, 95% CI: 1.865, 3.476), and BMIs of underweight (OR: 2.386, 95% CI: 1.259, 4.524) and obese (OR: 1.407, 95% CI: 1.113, 1.778) all had significantly increased odds for CKD. Our study concluded that urinary 2-hydroxynaphthalene, a form of PAH, is significantly associated with CKD.
Collapse
Affiliation(s)
| | - Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
16
|
Shamsedini N, Dehghani M, Samaei M, Azhdarpoor A, Hosseini M, Fararoei M, Bahrany S. Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in individuals living near restaurants: a cross-sectional study in Shiraz, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:285. [PMID: 35298709 DOI: 10.1007/s10661-022-09868-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons are environmental pollutants caused by the incomplete combustion of organic matter. The aim of this study was to investigate the concentration of urinary PAHs and their health effects in individuals living near restaurants. This cross-sectional study was done on 57 individuals who were living near 36 restaurants, and 30 individuals as the control group. Five urinary metabolites of PAHs (1-OH pyrene, 1-OH naphthalene, 2-OH naphthalene, 2-OH fluorine, and 9-OH phenanthrenen) were monitored. The total anti-oxidation capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), and creatinine were also measured. The mean concentration of the sum of urinary PAHs (ΣOH-PAHs) was 1973.7, and 1687.61 ng/g creatinine in people living near restaurants and control group, respectively. Among the metabolites, the highest mean concentration was related to 1-OH Pyrene in the two study groups. In the individuals living near restaurants, the concentration of PAH metabolites was directly related to MDA and TAC (p < 0.05 for both). The present study findings revealed no significant correlation between PAH metabolites and CRP in the two study groups (P > 0.05). People living near restaurants are more exposed to components in cooking fumes, which may adversely affect their health. Further researches are required to elucidate the effect of PAHs exposure on these individuals' health status.
Collapse
Affiliation(s)
- Narges Shamsedini
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Fars Water and Wastewater Company, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammadreza Samaei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aboolfazl Azhdarpoor
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hosseini
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararoei
- Research Center for Health Sciences, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Bahrany
- Department of Environmental Health Engineering, Student Research Committee, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Xu W, Wang S, Jiang L, Sun X, Wang N, Liu X, Yao X, Qiu T, Zhang C, Li J, Deng H, Yang G. The influence of PM 2.5 exposure on kidney diseases. Hum Exp Toxicol 2022; 41:9603271211069982. [PMID: 35174736 DOI: 10.1177/09603271211069982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The harm of air pollution to public health has become a research hotspot, especially atmospheric fine-particulate matter (PM2.5). In recent years, epidemiological investigations have confirmed that PM2.5 is closely related to chronic kidney disease and membranous nephropathy Basic research has demonstrated that PM2.5 has an impact on the normal function of the kidneys through accumulation in the kidney, endothelial dysfunction, abnormal renin-angiotensin system, and immune complex deposition. Moreover, the mechanism of PM2.5 damage to the kidney involves inflammation, oxidative stress, apoptosis, DNA damage, and autophagy. In this review, we summarized the latest developments in the effects of PM2.5 on kidney disease in human and animal studies, so as to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Wenqi Xu
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Shaopeng Wang
- Department of Cardiology, 74710First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Tianming Qiu
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, 36674Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Pathology, 36674Dalian Medical University, Dalian, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| | - Guang Yang
- Department of Food Nutrition and Safety, 36674Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Miao H, Wu XQ, Wang YN, Chen DQ, Chen L, Vaziri ND, Zhuang S, Guo Y, Su W, Ma SX, Zhang HQ, Shang YQ, Yu XY, Zhao YL, Mao JR, Gao M, Zhang JH, Zhao J, Zhang Y, Zhang L, Zhao YY, Cao G. 1-Hydroxypyrene mediates renal fibrosis through aryl hydrocarbon receptor signalling pathway. Br J Pharmacol 2022; 179:103-124. [PMID: 34625952 DOI: 10.1111/bph.15705] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE In chronic kidney disease (CKD), patients inevitably reach end-stage renal disease and require renal transplant. Evidence suggests that CKD is associated with metabolite disorders. However, the molecular pathways targeted by metabolites remain enigmatic. Here, we describe roles of 1-hydroxypyrene in mediating renal fibrosis. EXPERIMENTAL APPROACH We analysed 5406 urine and serum samples from patients with Stage 1-5 CKD using metabolomics, and 1-hydroxypyrene was identified and validated using longitudinal and drug intervention cohorts as well as 5/6 nephrectomised and adenine-induced rats. KEY RESULTS We identified correlations between the urine and serum levels of 1-hydroxypyrene and the estimated GFR in patients with CKD onset and progression. Moreover, increased 1-hydroxypyrene levels in serum and kidney tissues correlated with decreased renal function in two rat models. Up-regulated mRNA expression of aryl hydrocarbon receptor and its target genes, including CYP1A1, CYP1A2 and CYP1B1, were observed in patients and rats with progressive CKD. Further we showed up-regulated mRNA expression of aryl hydrocarbon receptor and its three target genes, plus up-regulated nuclear aryl hydrocarbon receptor protein levels in mice and HK-2 cells treated with 1-hydroxypyrene, which caused accumulation of extracellular matrix components. Treatment with aryl hydrocarbon receptor short hairpin RNA or flavonoids inhibited mRNA expression of aryl hydrocarbon receptor and its target genes in 1-hydroxypyrene-induced HK-2 cells and mice. CONCLUSION AND IMPLICATIONS Metabolite 1-hydroxypyrene was demonstrated to mediate renal fibrosis through activation of the aryl hydrocarbon receptor signalling pathway. Targeting aryl hydrocarbon receptor may be an alternative therapeutic strategy for CKD progression.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Xia-Qing Wu
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Yan-Ni Wang
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California, USA
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, Baoji, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Yan-Long Zhao
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Jia-Rong Mao
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Ming Gao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Jin-Hua Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Jin Zhao
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Yuan Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, Xi'an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Shubham S, Kumar M, Sarma DK, Kumawat M, Verma V, Samartha RM, Tiwari RR. Role of air pollution in chronic kidney disease: an update on evidence, mechanisms and mitigation strategies. Int Arch Occup Environ Health 2021; 95:897-908. [PMID: 34716808 DOI: 10.1007/s00420-021-01808-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 01/19/2023]
Abstract
Air pollution results from a variable and complex mixture of harmful gases and suspended particles and is the most worrisome of all environmental hazards. It is implicated in several non -communicable diseases and is recognized to be a public health problem. Though the initial exposure to air pollution is through the respiratory system, kidneys are thought to be exposed to higher concentrations owing to their filtration function. Chronic kidney disease is the insidious end result of several disease processes which cumulatively form a large healthcare burden, particularly in low- and middle-income countries. There is a growing body of evidence that air pollution may be a contributing factor that leads to CKD by not only its direct effects, but can also compound the effect of other factors/diseases causing kidney injury. PM2.5 exposure particularly has been implicated, although there is some evidence regarding other air pollutants as well. These pollutants are thought to act on kidneys through several interlinked systemic pathways and mechanisms which individually and collectively damage the nephrons. Long-term exposures seem to gradually diminish renal function and lead to end-stage renal disease. A thorough understanding of the mechanism of kidney injury is the key for formulating and implementing effective strategies for reducing this burden. Maintaining the air quality, promoting education, improving health quality and promotion of targeted nephroprotective measures through effective policy and research support are required in addressing this global public health problem.
Collapse
Affiliation(s)
- Swasti Shubham
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal, India.
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal, India
| | - Vinod Verma
- Sanjay Gandhi Post Graduate Institute, Lucknow, India
| | - R M Samartha
- Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - R R Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
20
|
Ruan F, Wu L, Yin H, Fang L, Tang C, Huang S, Fang L, Zuo Z, He C, Huang J. Long-term exposure to environmental level of phenanthrene causes adaptive immune response and fibrosis in mouse kidneys. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117028. [PMID: 33892371 DOI: 10.1016/j.envpol.2021.117028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
As ubiquitous, persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) have adverse impacts on human health. Phenanthrene (Phe) is one of the most abundant PAHs in the environment. However, the long-term effects of exposure to environmental level of Phe on the kidneys and the potential mechanisms are unclear. T helper (Th) cells, a subtype of CD4+ T cells that play a central role in the renal immune microenvironment. In this study, male mice were chronically exposed to 5, 50, and 500 ng/kg bw Phe every other day for total 210 days. Those results indicated that environmental Phe exposure caused kidney hypertrophy, injury and fibrosis in the mice. Chronic, long-term environmental level of Phe exposure did not significantly alter the innate immune response but induced adaptive immune response changes (Th1/Th2 related cytokines release), causing a type 1 immune response in the 5 ng/kg bw Phe group and a type 2 immune response in the high dose groups (50 and 500 ng/kg bw). This study provides novel insights into the roles of adaptive immune response in long-term PAH exposure-induced chronic kidney injury and fibrosis, which is beneficial for further understanding the potential health hazards of PAHs and providing new avenues for immune intervention strategies to alleviate PAHs toxicity.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, China
| | - Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Siyang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, The 5th Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
21
|
Wu X, Li J, Wang S, Jiang L, Sun X, Liu X, Yao X, Zhang C, Wang N, Yang G. 2-Undecanone Protects against Fine Particle-Induced Kidney Inflammation via Inducing Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5206-5215. [PMID: 33877841 DOI: 10.1021/acs.jafc.1c01305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to particulate matter has been associated with diseases of the respiratory and cardiovascular systems. Owing to the dense vasculature of the kidney, it has also been identified as a PM2.5 target organ. A potential contributor to PM2.5-mediated damage may be the promotion of inflammation. The essential oil 2-undecanone (2-methyl nonyl ketone) is an H. cordata isolate, and it has been shown to possess diverse pharmacologic effects, including anti-inflammatory properties. In this study we explored the ability of 2-undecanone to protect against PM2.5-induced kidney inflammation and the exact mechanisms in this process. We found that PM2.5 elevated the levels of certain inflammatory cytokines in BALB/c mice and in HEK 293 cells. Supplementation with 2-undecanone attenuated this PM2.5-induced inflammatory injury. Interestingly, in HEK 293 cells, the PM2.5-associated inflammation was aggravated by the mitophagy inhibitor Medivi-1, while it was attenuated by rapamycin, indicating that the mechanism of 2-undecanone-mediated inhibition of inflammation may relate to mitophagy. Meanwhile, 2-undecanone induces mitophagy in HEK 293 cells by suppressing Akt1-mTOR signaling. These results indicate that PM2.5 can induce kidney inflammation, and mitophagy induced by 2-undecanone may play a protective role against this renal inflammation.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases, Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
22
|
Habib RR, El-Haddad NW, Halwani DA, Elzein K, Hojeij S. Heat Stress-Related Symptoms among Bakery Workers in Lebanon: A National Cross-Sectional Study. INQUIRY: The Journal of Health Care Organization, Provision, and Financing 2021; 58:46958021990517. [PMID: 33583242 PMCID: PMC7890710 DOI: 10.1177/0046958021990517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat exposure is linked to a range of heat-related illnesses and injuries. This study assessed the association between workers’ perceptions of the work environment and reports of heat stress-related health symptoms in bakery workers in Lebanon. A national cross-sectional survey of workers was carried out in 504 bakeries in Lebanon. One worker in each bakery was interviewed using questions relating to the workplace environment and heat stress-related health symptoms. Heat and humidity measurements were recorded in bakeries. Descriptive analyses were performed, and logistic regression assessed relationships between the workplace environment, worker perceptions, and reports of heat stress-related health symptoms. In total, 47.2% of workers experienced heat stress-related symptoms, 83% perceived workplace temperatures as hot, and 48% perceived these temperatures as affecting their health. Humidex readings showed that 49% of bakeries had conditions unsafe for routine work tasks. Working under pressure (AOR = 1.65; 95% CI = 1.12-2.43), job dissatisfaction (AOR = 1.76; 95% CI = 1.12-2.79), and perceptions that high temperatures negatively affected health (AOR = 2.73; 95% CI = 1.87-3.99) were all significantly correlated to reports of heat stress-related symptoms. Females were more likely to experience heat stress-related symptoms (AOR = 1.96; 95% CI = 1.13-3.39). Workers who reported low levels of water consumption at work were also more likely to experience heat stress-related health symptoms. We conclude that heat exposure potentially impacts workers’ health in Lebanese bakeries. Improvements in workplace conditions, adequate infrastructure, and workers’ training are key interventions for maintaining workers’ health.
Collapse
Affiliation(s)
- Rima R Habib
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Nataly W El-Haddad
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Dana A Halwani
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Kareem Elzein
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Safa Hojeij
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Zhang Y, Liu D, Liu Z. Fine Particulate Matter (PM 2.5) and Chronic Kidney Disease. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:183-215. [PMID: 34529145 DOI: 10.1007/398_2020_62] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The impact of ambient particulate matter (PM) on public health has become a great global concern, which is especially prominent in developing countries. For health purposes, PM is typically defined by size, with the smaller particles having more health impacts. Particles with a diameter <2.5 μm are called PM2.5. Initial research studies have focused on the impact of PM2.5 on respiratory and cardiovascular diseases; nevertheless, an increasing number of data suggested that PM2.5 may affect every organ system in the human body, and the kidney is of no exception. The kidney is vulnerable to particulate matter because most environmental toxins are concentrated by the kidney during filtration. According to the high morbidity and mortality related to chronic kidney disease, it is necessary to determine the effect of PM2.5 on kidney disease and its mechanism that needs to be identified. To understand the current status of PM2.5 in the atmosphere and their potential harmful kidney effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 1998. In this review, we focus on the worldwide epidemiological evidence linking PM2.5 with chronic kidney disease and the effect of PM2.5 on the chronic kidney disease (CKD) progression. At the same time, we also discuss the possible mechanisms of PM2.5 exposure leading to kidney damage, in order to emphasize the contribution of PM2.5 to kidney damage. A global database on PM2.5 and kidney disease should be developed to provide new ideas for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P. R. China.
- Research Center for Kidney Disease, Zhengzhou, Henan Province, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P. R. China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, P. R. China.
| |
Collapse
|
24
|
Grill Workers Exposure to Polycyclic Aromatic Hydrocarbons: Levels and Excretion Profiles of the Urinary Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010230. [PMID: 33396787 PMCID: PMC7796024 DOI: 10.3390/ijerph18010230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022]
Abstract
Grilling activities release large amounts of hazardous pollutants, but information on restaurant grill workers’ exposure to polycyclic aromatic hydrocarbons (PAHs) is almost inexistent. This study assessed the impact of grilling emissions on total workers’ exposure to PAHs by evaluating the concentrations of six urinary biomarkers of exposure (OHPAHs): naphthalene, acenaphthene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene. Individual levels and excretion profiles of urinary OHPAHs were determined during working and nonworking periods. Urinary OHPAHs were quantified by high-performance liquid-chromatography with fluorescence detection. Levels of total OHPAHs (∑OHPAHs) were significantly increased (about nine times; p ≤ 0.001) during working comparatively with nonworking days. Urinary 1-hydroxynaphthalene + 1-hydroxyacenapthene and 2-hydroxyfluorene presented the highest increments (ca. 23- and 6-fold increase, respectively), followed by 1-hydroxyphenanthrene (ca. 2.3 times) and 1-hydroxypyrene (ca. 1.8 times). Additionally, 1-hydroxypyrene levels were higher than the benchmark, 0.5 µmol/mol creatinine, in 5% of exposed workers. Moreover, 3-hydroxybenzo(a)pyrene, biomarker of exposure to carcinogenic PAHs, was detected in 13% of exposed workers. Individual excretion profiles showed a cumulative increase in ∑OHPAHs during consecutive working days. A principal component analysis model partially discriminated workers’ exposure during working and nonworking periods showing the impact of grilling activities. Urinary OHPAHs were increased in grill workers during working days.
Collapse
|
25
|
Abstract
Introduction: Air pollution is linked to mortality and morbidity. Since humans spend nearly all their time indoors, improving indoor air quality (IAQ) is a compelling approach to mitigate air pollutant exposure. To assess interventions, relying on clinical outcomes may require prolonged follow-up, which hinders feasibility. Thus, identifying biomarkers that respond to changes in IAQ may be useful to assess the effectiveness of interventions. Methods: We conducted a narrative review by searching several databases to identify studies published over the last decade that measured the response of blood, urine, and/or salivary biomarkers to variations (natural and intervention-induced) of changes in indoor air pollutant exposure. Results: Numerous studies reported on associations between IAQ exposures and biomarkers with heterogeneity across study designs and methods. This review summarizes the responses of 113 biomarkers described in 30 articles. The biomarkers which most frequently responded to variations in indoor air pollutant exposures were high sensitivity C-reactive protein (hsCRP), von Willebrand Factor (vWF), 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 1-hydroxypyrene (1-OHP). Conclusions: This review will guide the selection of biomarkers for translational studies evaluating the impact of indoor air pollutants on human health.
Collapse
|
26
|
Wang L, Zhang L, Ristovski Z, Zheng X, Wang H, Li L, Gao J, Salimi F, Gao Y, Jing S, Wang L, Chen J, Stevanovic S. Assessing the Effect of Reactive Oxygen Species and Volatile Organic Compound Profiles Coming from Certain Types of Chinese Cooking on the Toxicity of Human Bronchial Epithelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8868-8877. [PMID: 32515977 DOI: 10.1021/acs.est.9b07553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The International Agency of Research on Cancer identifies high-temperature frying, which features prominently in Chinese cooking, as producing group 2A carcinogens. This study simultaneously characterized particulate and gaseous-phase cooking emissions, monitored their reactive oxygen species (ROS) concentrations, and evaluated their impact on genetic damage and expression in exposed human bronchial epithelial cells. Five types of edible oil, three kinds of seasonings, and two dishes were assessed. Among tested edible oils, heating of soybean oil released the largest particle number concentration (2.09 × 1013 particles/(g cooking material and oil)·h) and volatile organic compounds (VOCs) emissions (12103.42 μg/(g cooking material and oil)·h). Heating of lard produced the greatest particle mass concentration (0.75 mg/(g cooking material and oil)·h). The main finding was that sunflower and rapeseed oils produced the highest ROS concentrations (80.48 and 71.75 nmol/(g cooking material and oil)·h, respectively). ROS formation most likely occurred during the autoxidation of both polyunsaturated and monounsaturated fatty acids. Among all the tested parameters, only ROS concentrations exhibited consistency with cell viability and showed significant correlations with the expression levels of CYP1A1, HIF-1a, and especially with IL-8 (the marker for oxidative stress within the cell). These findings indicate that ROS concentration is potentially a suitable metric for direct assessment of exposure levels and potential toxicity.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming, Shanghai 200062, China
| | - Linyuan Zhang
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zoran Ristovski
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology (QUT), School of Earth and Atmospheric Sciences, Brisbane 4001, Australia
| | - Xinran Zheng
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology (QUT), School of Earth and Atmospheric Sciences, Brisbane 4001, Australia
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jun Gao
- School of Mechanical Engineering, Tongji University, Shanghai, 201804, China
| | - Farhad Salimi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming, Shanghai 200062, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Eco-Chongming, Shanghai 200062, China
| | - Svetlana Stevanovic
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology (QUT), School of Earth and Atmospheric Sciences, Brisbane 4001, Australia
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
27
|
Ierardi AM, Pavilonis B. Heat stress risk among New York City public school kitchen workers: a quantitative exposure assessment. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:353-363. [PMID: 32552608 DOI: 10.1080/15459624.2020.1776300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the known human health risks associated with excessive heat exposure, particularly in occupational settings, data describing potential heat exposures in school kitchens is scarce, and no published studies to date have performed a quantitative heat exposure assessment for workers employed in this setting. The purpose of this study was to quantify the extent of heat stress in New York City public school kitchens and to assess potential risk of heat-related illness and/or acute injury. Full-shift indoor Wet Bulb Globe Temperature (WBGT) indices, as well as indoor CO2 and CO concentrations were measured for ten school kitchens. A quantitative exposure assessment for three metabolic work-rate scenarios (light, moderate, heavy) was performed in accordance with the Occupational Safety and Health Administration's (OSHA) Heat Hazard Assessment methodology. The overall mean indoor WBGT index for all ten sites was approximately 25.0 °C (77.0 °F; Standard Deviation [SD] = 2.0 °C). Regarding the estimated Action Limit, 10% of school kitchens sampled exceeded this recommended limit for the light work-rate scenario; 60% of schools exceeded this limit for the moderate work-rate scenario; and 80% of schools exceeded this limit for the heavy work-rate scenario. For the Threshold Limit Value (TLV), none of the kitchens exceeded this limit for the light or moderate work-rate scenarios; 30% of kitchens were in excess of this limit for the heavy work-rate scenario. Mean full-shift CO2 and CO air concentrations ranged from 435-911 ppm (mean = 648; SD = 158) and 0.0-3.2 ppm (mean = 0.9; SD = 0.9), respectively. The data collected in the current study suggest that kitchen staff employed in New York City public schools may be exposed to excessive indoor heat levels. Adequate work-rest schedules should be implemented for kitchen workers, in addition to other feasible engineering and administrative controls to mitigate potential risk of heat-related illness and/or acute injury.
Collapse
Affiliation(s)
- A Michael Ierardi
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
| | - Brian Pavilonis
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
| |
Collapse
|
28
|
Al-Bouwarthan M, Quinn MM, Kriebel D, Wegman DH. Risk of Kidney Injury among Construction Workers Exposed to Heat Stress: A Longitudinal Study from Saudi Arabia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113775. [PMID: 32466510 PMCID: PMC7312975 DOI: 10.3390/ijerph17113775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Saudi Arabia (SA) is one of the hottest countries in the world. This study was conducted to assess the impact of summer heat stress in Southeastern SA on short-term kidney injury (KI) among building construction workers and to identify relevant risk factors. Measurements of urinary albumin-creatinine ratio (ACR), height, weight, hydration, symptoms, daily work and behavioral factors were collected in June and September of 2016 from a cohort of construction workers (n = 65) in Al-Ahsa Province, SA. KI was defined as ACR ≥ 30 mg/g. Multivariate linear regression analysis was used to assess factors related to cross-summer changes in ACR. A significant increase in ACR occurred among most workers over the study period; incidence of KI was 18%. Risk factors associated with an increased ACR included dehydration, short sleep, and obesity. The findings suggest that exposure to summer heat may lead to the development of KI among construction workers in this region. Adequate hydration and promotion of healthy habits among workers may help reduce the risk of KI. A reduction in work hours may be the most effective intervention because this action can reduce heat exposure and improve sleep quality.
Collapse
Affiliation(s)
- Mohammed Al-Bouwarthan
- Department of Public Health, College of Health Sciences, University of Massachusetts Lowell, 61 Wilder Street, Lowell, MA 01854, USA; (M.M.Q.); (D.K.); (D.H.W.)
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Margaret M. Quinn
- Department of Public Health, College of Health Sciences, University of Massachusetts Lowell, 61 Wilder Street, Lowell, MA 01854, USA; (M.M.Q.); (D.K.); (D.H.W.)
| | - David Kriebel
- Department of Public Health, College of Health Sciences, University of Massachusetts Lowell, 61 Wilder Street, Lowell, MA 01854, USA; (M.M.Q.); (D.K.); (D.H.W.)
| | - David H. Wegman
- Department of Public Health, College of Health Sciences, University of Massachusetts Lowell, 61 Wilder Street, Lowell, MA 01854, USA; (M.M.Q.); (D.K.); (D.H.W.)
- La Isla Network, P.O. Box 816, Ada, MI 49301, USA
| |
Collapse
|
29
|
de Freitas RSG, da Cunha DT, Stedefeldt E. Work Conditions, Social Incorporations, and Foodborne Diseases Risk: Reflections About the (Non)Compliance of Food Safety Practices. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2020; 40:926-938. [PMID: 32017186 DOI: 10.1111/risa.13453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
The number of foodborne diseases has increased in all continents, and efforts must be made to control this urgent and expressive public health problem. This article aims to present and discuss situations related to the compliance and noncompliance of food safety practices (FSPs) in light of Bourdieu's social theory. This qualitative study was conducted in commercial restaurants in two cities in São Paulo, Brazil. Participant observation was used in the restaurants, and notes referring to the kitchen workers and their bosses' work processes were registered in field journals. Thematic type content analysis was used to determine the meaning cores of field journals. It was found that aspects inherent to convenience and haste at work, deficient infrastructure, lack of employees, negative boss examples, exposure to noise, and body pain experienced by workers can contribute to noncompliance of FSPs and consolidate in the habitus and practical sense some dispositions that can increase the risk of foodborne diseases. This study highlights the necessity of creating environments that address food safety, which means being able to perform a service properly.
Collapse
Affiliation(s)
- Rayane Stephanie Gomes de Freitas
- Postgraduate Program in Food, Nutrition and Health, Institute of Health and Society, Universidade Federal de São Paulo, UNIFESP, Santos, Brazil
| | - Diogo Thimoteo da Cunha
- Interdisciplinary Laboratory in Food and Nutrition, Faculty of Applied Sciences, Universidade Estadual de Campinas, UNICAMP, Limeira, Brazil
| | - Elke Stedefeldt
- Department of Preventive Medicine, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
30
|
Pérez-Maldonado IN, Ochoa-Martínez ÁC, López-Ramírez ML, Varela-Silva JA. Urinary levels of 1-hydroxypyrene and health risk assessment in children living in Mexican communities with a high risk of contamination by polycyclic aromatic hydrocarbons (PAHs). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:348-357. [PMID: 30468079 DOI: 10.1080/09603123.2018.1549727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Health complications have been associated with polycyclic aromatic hydrocarbons (PAHs) exposure, a widespread environmental pollutants family. Therefore, the objective of this investigation was to develop a probabilistic health risk evaluation (using Monte-Carlo simulation) in an infantile population living in areas with a high risk of pollution by PAHs (indoor wood combustion, brick kiln industry, municipal landfill, and low and high vehicular traffic) in Mexico. Urine samples were obtained from Mexican children (n = 135) and urinary 1-OHP concentrations (used as a PAHs biomarker) were quantified. Highest urinary 1-OHP concentrations were detected in children living in areas that use wood combustion as the principal indoor fuel (3.50 ± 0.95 µg/L). Nevertheless, estimated hazard quotients (HQ) lower than 1 were found in all assessed sites after Monte-Carlo analysis. Although HQ <1.0 (a toxic effect is not expected), more data are necessary to determine the real impact of PAHs exposure on children health status.
Collapse
Affiliation(s)
- Iván N Pérez-Maldonado
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- c Unidad Académica Multidisciplinaria Zona Media , Universidad Autónoma de San Luis Potosí , Rioverde, San Luis Potosí , México
| | - Ángeles C Ochoa-Martínez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Myrna L López-Ramírez
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - José A Varela-Silva
- a Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT) , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- b Facultad de Medicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
- d Facultad de Enfermería , Universidad Autónoma de Zacatecas , Zacatecas , México
| |
Collapse
|
31
|
Risk assessment of personal exposure to polycyclic aromatic hydrocarbons and aldehydes in three commercial cooking workplaces. Sci Rep 2019; 9:1661. [PMID: 30733493 PMCID: PMC6367358 DOI: 10.1038/s41598-018-38082-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/25/2018] [Indexed: 01/03/2023] Open
Abstract
Cooking-related emissions are associated with environmental pollution and adverse health effects. Of the various chemical species emitted during cooking, polycyclic aromatic hydrocarbons (PAHs) and aldehydes are two chemical species with carcinogenic or tumor promoting characteristics. Although PAH exposure has been studied in commercial kitchen workers, few studies have investigated simultaneous exposure to PAHs and aldehydes in these workers. The aims of this study were to compare personal concentrations of PAH and aldehyde in three commercial cooking workplaces and to estimate their corresponding cancer risks. The three cooking workplaces included western fast food restaurant kitchens, Chinese cafeteria kitchens, and street food carts. Comparisons showed that workers in western fast food restaurant kitchens and Chinese cafeteria kitchens tended to have lower personal concentrations of these pollutants compared to workers in street food carts. The geometric mean (95% CI) cancer risks in the three workplaces were, from lowest to highest, 1.36 (1.12-1.67) × 10-5 for western fast food restaurant kitchens, 1.52 (1.01-2.28) × 10-5 for Chinese cafeteria kitchens, and 3.14 (2.45-4.01) × 10-5 for street food carts. The percentage contributions of aldehyde species to cancer risk were very high (74.9-99.7%). Street food cart workers had high personal exposure to aldehyde probably due to lack of effective exhaust systems. Thus, their cancer risk was significantly higher than those of workers in western fast food restaurant kitchens (p < 0.001) and Chinese cafeteria kitchens (p = 0.013).
Collapse
|
32
|
Roper C, Delgado LS, Barrett D, Massey Simonich SL, Tanguay RL. PM 2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:434-442. [PMID: 30507171 PMCID: PMC6652177 DOI: 10.1021/acs.est.8b04308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toxicology research into the global public health burden of fine particulate matter (PM2.5) exposures frequently requires extraction of PM2.5 from filters. A standardized method for these extractions does not exist, leading to inaccurate interlaboratory comparisons. It is largely unknown how different filter extraction methods might impact the composition and bioactivity of the resulting samples. We characterized the variation in these metrics by using equal portions of a single PM2.5 filter, with each portion undergoing a different extraction method. Significant differences were observed between extraction methods for concentrations of elements and polycyclic aromatic hydrocarbons (PAHs) for the PM2.5 tested following its preparation for biological response studies. Importantly, the chemical profiles differed from those observed when we used standard protocols for chemical characterization of the ambient sample, demonstrating that extraction can alter both chemical component amounts and species profiles of the extracts. The impact of these chemical differences on sensitive end points of zebrafish development was investigated. Significant differences in the percent incidence and timing of mortality were associated with the PM2.5 extraction method. This research highlights the importance of and rationale for considering the extraction method when interlaboratory comparisons of PM2.5 toxicology research are made.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lisandra Santiago Delgado
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Damien Barrett
- Department of Microbiology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
33
|
Flouris AD, Dinas PC, Ioannou LG, Nybo L, Havenith G, Kenny GP, Kjellstrom T. Workers' health and productivity under occupational heat strain: a systematic review and meta-analysis. Lancet Planet Health 2018; 2:e521-e531. [PMID: 30526938 DOI: 10.1016/s2542-5196(18)30237-7] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Occupational heat strain (ie, the effect of environmental heat stress on the body) directly threatens workers' ability to live healthy and productive lives. We estimated the effects of occupational heat strain on workers' health and productivity outcomes. METHODS Following PRISMA guidelines for this systematic review and meta-analysis, we searched PubMed and Embase from database inception to Feb 5, 2018, for relevant studies in any labour environment and at any level of occupational heat strain. No restrictions on language, workers' health status, or study design were applied. Occupational heat strain was defined using international health and safety guidelines and standards. We excluded studies that calculated effects using simulations or statistical models instead of actual measurements, and any grey literature. Risk of bias, data extraction, and sensitivity analysis were performed by two independent investigators. Six random-effects meta-analyses estimated the prevalence of occupational heat strain, kidney disease or acute kidney injury, productivity loss, core temperature, change in urine specific gravity, and odds of occupational heat strain occurring during or at the end of a work shift in heat stress conditions. The review protocol is available on PROSPERO, registration number CRD42017083271. FINDINGS Of 958 reports identified through our systematic search, 111 studies done in 30 countries, including 447 million workers from more than 40 different occupations, were eligible for analysis. Our meta-analyses showed that individuals working a single work shift under heat stress (defined as wet-bulb globe temperature beyond 22·0 or 24·8°C depending on work intensity) were 4·01 times (95% CI 2·45-6·58; nine studies with 11 582 workers) more likely to experience occupational heat strain than an individual working in thermoneutral conditions, while their core temperature was increased by 0·7°C (0·4-1·0; 17 studies with 1090 workers) and their urine specific gravity was increased by 14·5% (0·0031, 0·0014-0·0048; 14 studies with 691 workers). During or at the end of a work shift under heat stress, 35% (31-39; 33 studies with 13 088 workers) of workers experienced occupational heat strain, while 30% (21-39; 11 studies with 8076 workers) reported productivity losses. Finally, 15% (11-19; ten studies with 21 721 workers) of individuals who typically or frequently worked under heat stress (minimum of 6 h per day, 5 days per week, for 2 months of the year) experienced kidney disease or acute kidney injury. Overall, this analysis include a variety of populations, exposures, and occupations to comply with a wider adoption of evidence synthesis, but resulted in large heterogeneity in our meta-analyses. Grading of Recommendations, Assessment, Development and Evaluation analysis revealed moderate confidence for most results and very low confidence in two cases (average core temperature and change in urine specific gravity) due to studies being funded by industry. INTERPRETATION Occupational heat strain has important health and productivity outcomes and should be recognised as a public health problem. Concerted international action is needed to mitigate its effects in light of climate change and the anticipated rise in heat stress. FUNDING EU Horizon 2020 research and innovation programme.
Collapse
Affiliation(s)
- Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Human and Environmental Physiological Research Unit, Faculty of Health Sciences, University of Ottawa, Ottowa, ON, Canada.
| | - Petros C Dinas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark; Centre for Technology Research and Innovation, Lemesos, Cyprus
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | - Glen P Kenny
- Human and Environmental Physiological Research Unit, Faculty of Health Sciences, University of Ottawa, Ottowa, ON, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Tord Kjellstrom
- Centre for Technology Research and Innovation, Lemesos, Cyprus
| |
Collapse
|
34
|
Singh A, Kamal R, Tiwari R, Gaur VK, Bihari V, Satyanarayana G, Patel DK, Azeez PA, Srivastava V, Ansari A, Kesavachandran CN. Association between PAHs biomarkers and kidney injury biomarkers among kitchen workers with microalbuminuria: A cross-sectional pilot study. Clin Chim Acta 2018; 487:349-356. [DOI: 10.1016/j.cca.2018.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/08/2023]
|
35
|
Wong TH, Lee CL, Su HH, Lee CL, Wu CC, Wang CC, Sheu CC, Lai RS, Leung SY, Lin CC, Wei YF, Wang CJ, Lin YC, Chen HL, Huang MS, Yen JH, Huang SK, Suen JL. A prominent air pollutant, Indeno[1,2,3-cd]pyrene, enhances allergic lung inflammation via aryl hydrocarbon receptor. Sci Rep 2018; 8:5198. [PMID: 29581487 PMCID: PMC5979946 DOI: 10.1038/s41598-018-23542-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is associated with asthma, but its regulatory mechanisms remain incompletely defined. We report herein that elevated levels of urinary 1-hydroxypyrene, a biomarker of PAH exposure, were found in asthmatic subjects (n = 39) as compared to those in healthy subjects (n = 43) living in an industrial city of Taiwan, where indeno[1,2,3-cd]pyrene (IP) was found to be a prominent PAH associated with ambient PM2.5. In a mouse model, intranasal exposure of mice with varying doses of IP significantly enhanced antigen-induced allergic inflammation, including increased airway eosinophilia, Th2 cytokines, including IL-4 and IL-5, as well as antigen-specific IgE level, which was absent in dendritic cell (DC)-specific aryl hydrocarbon receptor (AhR)-null mice. Mechanistically, IP treatment significantly altered DC's function, including increased level of pro-inflammatory IL-6 and decreased generation of anti-inflammatory IL-10. The IP's effect was lost in DCs from mice carrying an AhR-mutant allele. Taken together, these results suggest that chronic exposure to environmental PAHs may pose a significant risk for asthma, in which IP, a prominent ambient PAH in Taiwan, was shown to enhance the severity of allergic lung inflammation in mice through, at least in part, its ability in modulating DC's function in an AhR-dependent manner.
Collapse
Affiliation(s)
- Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruay-Sheng Lai
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chi-Cheng Lin
- Chest Division, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Ping-Tung, Taiwan
| | - Yu-Feng Wei
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chun Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Shyan Huang
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
36
|
Nerbass FB, Pecoits-Filho R, Clark WF, Sontrop JM, McIntyre CW, Moist L. Occupational Heat Stress and Kidney Health: From Farms to Factories. Kidney Int Rep 2017; 2:998-1008. [PMID: 29270511 PMCID: PMC5733743 DOI: 10.1016/j.ekir.2017.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Millions of workers around the world are exposed to high temperatures, intense physical activity, and lax labor practices that do not allow for sufficient rehydration breaks. The extent and consequences of heat exposure in different occupational settings, countries, and cultural contexts is not well studied. We conducted an in-depth review to examine the known effects of occupational heat stress on the kidney. We also examined methods of heat-stress assessment, strategies for prevention and mitigation, and the economic consequences of occupational heat stress. Our descriptive review summarizes emerging evidence that extreme occupational heat stress combined with chronic dehydration may contribute to the development of CKD and ultimately kidney failure. Rising global temperatures, coupled with decreasing access to clean drinking water, may exacerbate the effects of heat exposure in both outdoor and indoor workers who are exposed to chronic heat stress and recurrent dehydration. These changes create an urgent need for health researchers and industry to identify work practices that contribute to heat-stress nephropathy, and to test targeted, robust prevention and mitigation strategies. Preventing occupational heat stress presents a great challenge for a concerted multidisciplinary effort from employers, health authorities, engineers, researchers, and governments.
Collapse
Affiliation(s)
- Fabiana B Nerbass
- Nephrology Division, Pro-rim Foundation, Joinville, Santa Catarina, Brazil.,School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontificia Universidade Catolica do Parana, Curitiba, Parana, Brazil.,Renal and Metabolic Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - William F Clark
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Jessica M Sontrop
- Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Christopher W McIntyre
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada
| | - Louise Moist
- Division of Nephrology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of and Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| |
Collapse
|
37
|
Ochoa-Martínez ÁC, Ruíz-Vera T, Pruneda-Álvarez LG, González-Palomo AK, Almendarez-Reyna CI, Pérez-Vázquez FJ, Pérez-Maldonado IN. Serum adipocyte-fatty acid binding protein (FABP4) levels in women from Mexico exposed to polycyclic aromatic hydrocarbons (PAHs). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1862-1870. [PMID: 27796996 DOI: 10.1007/s11356-016-7971-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Recent studies indicate that exposure to polycyclic aromatic hydrocarbons (PAHs) is a very important risk factor for the development of cardiovascular diseases (CVDs). Correspondingly, adipocyte-fatty acid binding protein (FABP4, also known as aP2 and AFABP) has been proposed as a new, meaningful and useful biomarker to predict metabolic and cardiovascular diseases. Therefore, the aim of this study was to evaluate serum FABP4 levels in Mexican women exposed to PAHs. Urinary 1-hydroxypyrene ((1-OHP), exposure biomarker for PAHs) levels were quantified using a high-performance liquid chromatography (HPLC) technique, and serum FABP4 concentrations were analyzed using a commercially available ELISA kit. The mean urinary 1-OHP level found in women participating in this study was 1.30 ± 1.10 μmol/mol creatinine (2.45 ± 2.10 μg/g creatinine). Regarding serum FABP4 concentrations, the levels ranged from 3.80 to 62.5 ng/mL in the assessed population. Moreover, a significant association (p < 0.001) was found between urinary 1-OHP levels and serum FABP4 concentrations in women after adjusting for potential confounding variables. The presented data in this study can be considered only as a starting point for further studies. Then, in order to elucidate whether FABP4 represents a risk factor for CVD disease in humans exposed to air contaminants (such as PAHs), large epidemiological studies are necessary.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tania Ruíz-Vera
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Lucia G Pruneda-Álvarez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ana K González-Palomo
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Claudia I Almendarez-Reyna
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Francisco J Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
- Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Rio-verde, San Luis Potosí, Mexico.
- , Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
38
|
Petras D, Nothias LF, Quinn RA, Alexandrov T, Bandeira N, Bouslimani A, Castro-Falcón G, Chen L, Dang T, Floros DJ, Hook V, Garg N, Hoffner N, Jiang Y, Kapono CA, Koester I, Knight R, Leber CA, Ling TJ, Luzzatto-Knaan T, McCall LI, McGrath AP, Meehan MJ, Merritt JK, Mills RH, Morton J, Podvin S, Protsyuk I, Purdy T, Satterfield K, Searles S, Shah S, Shires S, Steffen D, White M, Todoric J, Tuttle R, Wojnicz A, Sapp V, Vargas F, Yang J, Zhang C, Dorrestein PC. Mass Spectrometry-Based Visualization of Molecules Associated with Human Habitats. Anal Chem 2016; 88:10775-10784. [PMID: 27732780 PMCID: PMC6326777 DOI: 10.1021/acs.analchem.6b03456] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cars we drive, the homes we live in, the restaurants we visit, and the laboratories and offices we work in are all a part of the modern human habitat. Remarkably, little is known about the diversity of chemicals present in these environments and to what degree molecules from our bodies influence the built environment that surrounds us and vice versa. We therefore set out to visualize the chemical diversity of five built human habitats together with their occupants, to provide a snapshot of the various molecules to which humans are exposed on a daily basis. The molecular inventory was obtained through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of samples from each human habitat and from the people that occupy those habitats. Mapping MS-derived data onto 3D models of the environments showed that frequently touched surfaces, such as handles (e.g., door, bicycle), resemble the molecular fingerprint of the human skin more closely than other surfaces that are less frequently in direct contact with humans (e.g., wall, bicycle frame). Approximately 50% of the MS/MS spectra detected were shared between people and the environment. Personal care products, plasticizers, cleaning supplies, food, food additives, and even medications that were found to be a part of the human habitat. The annotations indicate that significant transfer of chemicals takes place between us and our built environment. The workflows applied here will lay the foundation for future studies of molecular distributions in medical, forensic, architectural, space exploration, and environmental applications.
Collapse
Affiliation(s)
- Daniel Petras
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Louis-Félix Nothias
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert A. Quinn
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Theodore Alexandrov
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Structural and Computational Biology, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
- SCiLS GmbH, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Nuno Bandeira
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Department of Computer Science, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amina Bouslimani
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Liangyu Chen
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tam Dang
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- TU Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Dimitrios J Floros
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vivian Hook
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Neha Garg
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nicole Hoffner
- UCSD Neurosciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yike Jiang
- UCSD Biological Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clifford A. Kapono
- UCSD Chemistry and Biochemistry, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Irina Koester
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rob Knight
- UCSD Department of Computer Science, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Department of Pediatrics, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD center for Microbiome Innovation, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Christopher A Leber
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tie-Jun Ling
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Rd. Hefei 230036, P. R. China
| | - Tal Luzzatto-Knaan
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Laura-Isobel McCall
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aaron P. McGrath
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael J. Meehan
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jonathan K. Merritt
- UCSD Neurosciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert H. Mills
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jamie Morton
- UCSD Department of Computer Science, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sonia Podvin
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ivan Protsyuk
- Structural and Computational Biology, EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Trevor Purdy
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kendall Satterfield
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Department of Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Stephen Searles
- UCSD Department of Pathology, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sahil Shah
- UCSD Neurosciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sarah Shires
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dana Steffen
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Margot White
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jelena Todoric
- UCSD Department of Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert Tuttle
- Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Aneta Wojnicz
- Facultad de Medicina de la Universidad Autónoma de Madrid. Calle del Arzobispo Morcillo 4. 28029 Madrid, Spain
| | - Valerie Sapp
- UCSD Biomedical Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Fernando Vargas
- UCSD Biological Sciences Graduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jin Yang
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chao Zhang
- UCSD Bioengineering Undergraduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Mathematics Undergraduate Program, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pieter C. Dorrestein
- UCSD Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD center for Microbiome Innovation, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|