1
|
Kim JY, Jeong YJ, Sung BH, Seo MJ, Yeom SJ. Sustainable Bioconversion of Methanol: A Renewable Employing Novel Alcohol Oxidase and Pyruvate Aldolase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9165-9173. [PMID: 40173089 PMCID: PMC12007092 DOI: 10.1021/acs.jafc.4c12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Methanol is an ideal one-carbon (C1) feedstock for bioconversion into multicarbon value-added compounds. Biocatalytic approaches to methanol conversion provide sustainable and environmentally friendly alternatives to conventional methods. This process is facilitated by methanol-oxidizing enzymes, including alcohol oxidase (AOx). Here, we report an AOx from Pestalotiopsis fici (PfAOx) with the highest methanol oxidation activity and efficient heterologous expression compared to other AOxs. To investigate the bioconversion of a multicarbon compound (C4 chemical, 2-keto-4-hydroxybutyrate, 2-KHB) from cost-effective methanol, we developed a one-pot enzyme system including PfAOx and pyruvate aldolase from Deinococcus radiodurans (DrADL) with catalase from Bos taurus (BtCAT, commercially available enzyme) to remove toxic H2O2. The optimal reaction conditions for 2-KHB production using PfAOx, DrADL, and BtCAT were determined as pH 8.0, 35 °C, 0.9 mg mL-1 PfAOx, 0.3 mg mL-1 DrADL, 1.5 mg mL-1 BtCAT, 150 mM methanol, 100 mM pyruvate, and 5 mM Mg2+ with shaking at 200 rpm. Under these reaction conditions, 88.8 mM (10.4 g L-1) of 2-KHB was produced for 75 min, representing a 74.0-fold higher yield compared to previously reported 2-KHB production systems from methanol and pyruvate. This study demonstrates a promising multi-enzyme cascade approach for the bioconversion of methanol into valuable compounds.
Collapse
Affiliation(s)
- Ju-Young Kim
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yeon-Ju Jeong
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bong Hyun Sung
- Synthetic
Biology Research Center, Korea Research
Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Ju Seo
- Institute
of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic
of Korea
| | - Soo-Jin Yeom
- School
of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute
of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic
of Korea
- School
of Biological Sciences and Technology, Chonnam
National University, Gwangju 61186, Republic
of Korea
- Institute
of Systems Biology & Life Science Informatics, Chonnam National University, Gwangju 61186, Republic
of Korea
| |
Collapse
|
2
|
Parodi A, Córdoba A, Asteasuain M, Magario I. Protective role of hematin in alcohol oxidase-mediated glycerol oxidation: A kinetic modeling approach. J Biosci Bioeng 2025; 139:263-270. [PMID: 39890496 DOI: 10.1016/j.jbiosc.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 02/03/2025]
Abstract
Mathematical modeling of complex multi-catalytic reaction pathways is a powerful tool not only for determining optimal operational conditions but also for gaining insights into the kinetic behavior of efficient yet product-sensitive enzymes. This approach was applied to the biooxidation of glycerol using oxidases, aided by hematin, a natural mimic of heme peroxidases and catalases, which acts as a scavenger for enzymatically produced H2O2. The bi-catalytic reaction system was coupled with the formation of a colored imine product from phenol and 4-aminoantipyrine, enabling spectrophotometric monitoring of reaction kinetics. Alcohol oxidase (AOX) from Komagataella pastoris (formerly Pichia pastoris) was submitted to this strategy to overcome some kinetic drawbacks previously observed with galactose oxidase (GAO) from Dactylium dendroides. Although both enzymes exhibited comparable oxidation yields, computer-aided kinetic analyses revealed significant differences in efficiency and sensitivity to H2O2. AOX demonstrated two orders of magnitude greater efficiency and a similarly higher affinity for glycerol. However, AOX showed a stronger tendency to bind H2O2 compared to hematin or GAO, as suggested by the ratio of the inhibition constant (kinh) to the activation constant (k1) for hematin. The kinetic model was also used to simulate optimal conditions for enhancing the stability of AOX and hematin. Reducing glycerol concentration or increasing hematin concentration improved AOX stability, while the addition of phenol helped preserve hematin. The predicted stabilities turn the AOX/hematin/phenol system promising for biosensing or analytical applications.
Collapse
Affiliation(s)
- Adrián Parodi
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), UNC-CONICET, Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 1611, X5016GCA, Ciudad Universitaria, Córdoba, Argentina
| | - Agostina Córdoba
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), UNC-CONICET, Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 1611, X5016GCA, Ciudad Universitaria, Córdoba, Argentina.
| | - Mariano Asteasuain
- Dpto. de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, 8000 Bahía Blanca, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Argentina
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), UNC-CONICET, Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 1611, X5016GCA, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
3
|
Graça AP, Nikitushkin V, Ellerhorst M, Vilhena C, Klassert TE, Starick A, Siemers M, Al-Jammal WK, Vilotijevic I, Slevogt H, Papenfort K, Lackner G. MftG is crucial for ethanol metabolism of mycobacteria by linking mycofactocin oxidation to respiration. eLife 2025; 13:RP97559. [PMID: 39878311 PMCID: PMC11778925 DOI: 10.7554/elife.97559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
| | - Vadim Nikitushkin
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
| | - Mark Ellerhorst
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
| | - Cláudia Vilhena
- Leibniz Institute for Natural Product Research and Infection Biology– Hans Knöll Institute, Department of Infection BiologyJenaGermany
| | - Tilman E Klassert
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI BraunschweigBraunschweigGermany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATHHannoverGermany
| | - Andreas Starick
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Malte Siemers
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Walid K Al-Jammal
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular ChemistryJenaGermany
| | - Ivan Vilotijevic
- Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular ChemistryJenaGermany
| | - Hortense Slevogt
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI BraunschweigBraunschweigGermany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATHHannoverGermany
| | - Kai Papenfort
- Friedrich Schiller University Jena, Institute of MicrobiologyJenaGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| | - Gerald Lackner
- Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Junior Research Group Synthetic MicrobiologyJenaGermany
- University of Bayreuth, Chair of Biochemistry of MicroorganismsKulmbachGermany
- Microverse Cluster, Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
4
|
Stefanek S, Typek R, Dybowski M, Wianowska D, Jaszek M, Janusz G. Novel Basidiomycetous Alcohol Oxidase from Cerrena unicolor-Characterisation, Kinetics, and Proteolytic Modifications. Int J Mol Sci 2024; 25:11890. [PMID: 39595961 PMCID: PMC11593814 DOI: 10.3390/ijms252211890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Intracellular alcohol oxidase (AOX) was isolated from the basidiomycetous white rot fungus Cerrena unicolor FCL139. The enzyme was semi-purified (13-fold) using two-step chromatography with 30% activity recovery. The identity of the protein was confirmed by LC-MS/MS analysis, and its MW (72 kDa) and pI (6.18) were also determined. The kinetics parameters of the AOX reaction towards various substrates were analysed, which proved that, in addition to methanol (4.36 ± 0.27% of the oxidised substrate), AOX most potently oxidises aromatic alcohols, such as 4-hydroxybenzyl alcohol (14.0 ± 0.8%), benzyl alcohol (4.2 ± 0.3%), anisyl alcohol (7.6 ± 0.4%), and veratryl alcohol (5.0 ± 0.3%). Moreover, the influence of selected commercially available proteases on the biocatalytic properties of AOX from C. unicolor was studied. It was proved that the digested enzyme lost its catalytic potential properties except when incubated with pepsin, which significantly boosted its activity up to 123%.
Collapse
Affiliation(s)
- Sylwia Stefanek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Michał Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| |
Collapse
|
5
|
Li Q, Wang H, Zhang W, Wang W, Ren X, Wu M, Shi G. Structure-Guided Evolution Modulate Alcohol Oxidase to Improve Ethanol Oxidation Performance. Appl Biochem Biotechnol 2024; 196:1948-1965. [PMID: 37453026 DOI: 10.1007/s12010-023-04626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiou Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Wenxiao Zhang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenxuan Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyu Ren
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengyao Wu
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Kang NK, Chau THT, Lee EY. Engineered methane biocatalysis: strategies to assimilate methane for chemical production. Curr Opin Biotechnol 2024; 85:103031. [PMID: 38101295 DOI: 10.1016/j.copbio.2023.103031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Methane (CH4), one of the greenhouse gases, is considered a promising feedstock for the biological production of fuels and chemicals. Although recent studies have demonstrated the capability of methanotrophs to convert CH4 into various bioproducts by metabolic engineering, the productivity has not reached commercial levels. As such, there is a growing interest in synthetic methanotrophic systems as an alternative. This review summarizes the strategies for enhancing native CH4 assimilation and discusses the challenges for the construction of synthetic methanotrophy into nonmethanotrophic industrial strains. Additionally, we suggest a mixed heterotrophic approach that integrates CH4 assimilation with glucose and xylose metabolism to improve productivity. The synthetic methanotrophic system presented in this review could pave the way for sustainable and efficient biomanufacturing using CH4.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104 Yongin-si, Gyeonggi-do, South Korea
| | - Tin Hoang Trung Chau
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104 Yongin-si, Gyeonggi-do, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 17104 Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
7
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
8
|
Khan MW, Murali A. Normal mode analysis and comparative study of intrinsic dynamics of alcohol oxidase enzymes from GMC protein family. J Biomol Struct Dyn 2023; 42:10075-10090. [PMID: 37676256 DOI: 10.1080/07391102.2023.2255275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Glucose-Methanol-Choline (GMC) family enzymes are very important in catalyzing the oxidation of a wide range of structurally diverse substrates. Enzymes that constitute the GMC family, share a common tertiary fold but < 25% sequence identity. Cofactor FAD, FAD binding signature motif, and similar structural scaffold of the active site are common features of oxidoreductase enzymes of the GMC family. Protein functionality mainly depends on protein three-dimensional structures and dynamics. In this study, we used the normal mode analysis method to search the intrinsic dynamics of GMC family enzymes. We have explored the dynamical behavior of enzymes with unique substrate catabolism and active site characteristics from different classes of the GMC family. Analysis of individual enzymes and comparative ensemble analysis of enzymes from different classes has shown conserved dynamic motion at FAD binding sites. The present study revealed that GMC enzymes share a strong dynamic similarity (Bhattacharyya coefficient >90% and root mean squared inner product >52%) despite low sequence identity across the GMC family enzymes. The study predicts that local deformation energy between atoms of the enzyme may be responsible for the catalysis of different substrates. This study may help that intrinsic dynamics can be used to make meaningful classifications of proteins or enzymes from different organisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Wahab Khan
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| | - Ayaluru Murali
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Razmshoar P, Besbes F, Madaci A, Mlika R, Bahrami SH, Rabiee M, Martin M, Errachid A, Jaffrezic-Renault N. A conductometric enzymatic methanol sensor based on polystyrene - PAMAM dendritic polymer electrospun nanofibers. Talanta 2023; 260:124630. [PMID: 37178675 DOI: 10.1016/j.talanta.2023.124630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Methanol (MeOH) is a solvent and cleaning agent used in industry, but it is poisonous when ingested. The recommended release threshold for MeOH vapor is 200 ppm. We present a novel sensitive micro-conductometric MeOH biosensor created by grafting alcohol oxidase (AOX) onto electrospun polystyrene-poly(amidoamine) dendritic polymer blend nanofibers (PS-PAMAM-ESNFs) on interdigitated electrodes (IDEs). The analytical performance of the MeOH microsensor was evaluated using gaseous MeOH, ethanol, and acetone samples collected from the headspace above aqueous solution with known concentration. The sensor's response time (tRes) fluctuates from 13 s to 35 s from lower to higher concentrations. The conductometric sensor has a sensitivity of 150.53 μS.cm-1 (v/v) for MeOH and a detection limit of 100 ppm in the gas phase. The MeOH sensor is 7.3 times less sensitive to ethanol and 136.8 times less sensitive to acetone. The sensor was verified for detecting MeOH in commercial rubbing alcohol samples.
Collapse
Affiliation(s)
- Pouyan Razmshoar
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Fatma Besbes
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France; University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, 5019, Monastir, Tunisia
| | - Anis Madaci
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Rym Mlika
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Science of Monastir, 5019, Monastir, Tunisia
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Rabiee
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Marie Martin
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Abdelhamid Errachid
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR 5280, CNRS, F-69100, Villeurbanne, France.
| |
Collapse
|
11
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|
12
|
Wang Y, Li J, Zhao F, Zhang Y, Yang X, Lin Y, Han S. Methanol oxidase from Hansenula polymorpha shows activity in peroxisome-deficient Pichia pastoris. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Stewart KN, Domaille DW. A one-pot biocatalytic and organocatalytic cascade delivers high titers of 2-ethyl-2-hexenal from n-butanol. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00568e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Combining an organocatalyst with isolated alcohol oxidase or a whole-cell biocatalyst delivers 2-ethyl-2-hexenal in a one-pot, two-step biocatalytic/organocatalytic cascade.
Collapse
Affiliation(s)
- Kelsey N. Stewart
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Dylan W. Domaille
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
14
|
Sirota FL, Maurer-Stroh S, Li Z, Eisenhaber F, Eisenhaber B. Functional Classification of Super-Large Families of Enzymes Based on Substrate Binding Pocket Residues for Biocatalysis and Enzyme Engineering Applications. Front Bioeng Biotechnol 2021; 9:701120. [PMID: 34409021 PMCID: PMC8366029 DOI: 10.3389/fbioe.2021.701120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Large enzyme families such as the groups of zinc-dependent alcohol dehydrogenases (ADHs), long chain alcohol oxidases (AOxs) or amine dehydrogenases (AmDHs) with, sometimes, more than one million sequences in the non-redundant protein database and hundreds of experimentally characterized enzymes are excellent cases for protein engineering efforts aimed at refining and modifying substrate specificity. Yet, the backside of this wealth of information is that it becomes technically difficult to rationally select optimal sequence targets as well as sequence positions for mutagenesis studies. In all three cases, we approach the problem by starting with a group of experimentally well studied family members (including those with available 3D structures) and creating a structure-guided multiple sequence alignment and a modified phylogenetic tree (aka binding site tree) based just on a selection of potential substrate binding residue positions derived from experimental information (not from the full-length sequence alignment). Hereupon, the remaining, mostly uncharacterized enzyme sequences can be mapped; as a trend, sequence grouping in the tree branches follows substrate specificity. We show that this information can be used in the target selection for protein engineering work to narrow down to single suitable sequences and just a few relevant candidate positions for directed evolution towards activity for desired organic compound substrates. We also demonstrate how to find the closest thermophile example in the dataset if the engineering is aimed at achieving most robust enzymes.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science Technology and Research (ASTAR), Singapore, Singapore.,Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
15
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
16
|
Švecová L, Østergaard LH, Skálová T, Schnorr KM, Koval’ T, Kolenko P, Stránský J, Sedlák D, Dušková J, Trundová M, Hašek J, Dohnálek J. Crystallographic fragment screening-based study of a novel FAD-dependent oxidoreductase from Chaetomium thermophilum. Acta Crystallogr D Struct Biol 2021; 77:755-775. [PMID: 34076590 PMCID: PMC8171062 DOI: 10.1107/s2059798321003533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.
Collapse
Affiliation(s)
- Leona Švecová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | | | - Tereza Skálová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | | | - Tomáš Koval’
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Prague 1, Czech Republic
| | - Jan Stránský
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - David Sedlák
- CZ-OPENSCREEN: National Infrastructure for Chemical Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jarmila Dušková
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Mária Trundová
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jindřich Hašek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Jan Dohnálek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
17
|
Pérez-Torres CA, Ibarra-Laclette E, Hernández-Domínguez EE, Rodríguez-Haas B, Pérez-Lira AJ, Villafán E, Alonso-Sánchez A, García-Ávila CDJ, Ramírez-Pool JA, Sánchez-Rangel D. Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. PeerJ 2021; 9:e11215. [PMID: 33954045 PMCID: PMC8052963 DOI: 10.7717/peerj.11215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/15/2021] [Indexed: 01/13/2023] Open
Abstract
Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.
Collapse
Affiliation(s)
- Claudia-Anahí Pérez-Torres
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | | | | | - Alan-Josué Pérez-Lira
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | | | - Clemente de Jesús García-Ávila
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México
| | - José-Abrahán Ramírez-Pool
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Tecámac, Estado de México, México.,Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana Sánchez-Rangel
- Catedrático CONACyT en la Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Veracruz, México
| |
Collapse
|
18
|
Alcohol Oxidase from the Methylotrophic Yeast Ogataea polymorpha: Isolation, Purification, and Bioanalytical Application. Methods Mol Biol 2021; 2280:231-248. [PMID: 33751439 DOI: 10.1007/978-1-0716-1286-6_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol oxidase (EC 1.1.3.13; AOX) is a flavoprotein that catalyzes the oxidation of primary short-chain alcohols to corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. It is a key enzyme of methanol metabolism in methylotrophic yeasts, catalyzing the first step of methanol oxidation to formaldehyde.Here we describe the isolation and purification of AOX from the thermotolerant methylotrophic yeast Ogataea (Hansenula) polymorpha, and using this enzyme in enzymatic assay of ethanol, simultaneous analysis of methanol and formaldehyde, and in construction of amperometric biosensors selective to primary alcohols and formaldehyde.
Collapse
|
19
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|
21
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
22
|
Doubayashi D, Oki M, Mikami B, Uchida H. The microenvironment surrounding FAD mediates its conversion to 8-formyl-FAD in Aspergillus oryzae RIB40 formate oxidase. J Biochem 2019; 166:67-75. [PMID: 30715389 DOI: 10.1093/jb/mvz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/29/2019] [Indexed: 11/15/2022] Open
Abstract
Aspergillus oryzae RIB40 formate oxidase has Arg87 and Arg554 near the formyl group and O(4) atom of 8-formyl-flavin adenine dinucleotide (FAD), respectively, with Asp396 neighbouring Arg554. Herein, we probed the roles of these three residues in modification of FAD to 8-formyl-FAD. Replacement of Arg87 or Arg554 with Lys or Ala decreased and abolished the modification, respectively. Replacement of Asp396 with Ala or Asn lowered the modification rate. The observation of unusual effects of maintaining pH 7.0 on the modification in R87K, R554K and D396 variants indicates initial and subsequent processes with different pH dependencies. Comparison of the initial process at pH 4.5 and 7.0 suggests that the microenvironment around Arg87 and the protonation state of Asp396 affect the initial process in the native enzyme. Comparison of the crystal structures of native and R554 variants showed that the replacements had minimal effect on catalytic site structure. The positively charged Arg87 might contribute to the formation of an anionic quinone-methide tautomer intermediate, while the positively charged Arg554, in collaboration with the negatively charged Asp396, might stabilize this intermediate and form a hydrogen bonding network with the N(5)/O(4) region, thereby facilitating efficient FAD modification.
Collapse
Affiliation(s)
- Daiju Doubayashi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| | - Bunzo Mikami
- Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Ujishi, Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukuishi, Japan
| |
Collapse
|
23
|
Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:118. [PMID: 31168323 PMCID: PMC6509819 DOI: 10.1186/s13068-019-1457-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glucose-methanol-choline (GMC) superfamily is a large and functionally diverse family of oxidoreductases that share a common structural fold. Fungal members of this superfamily that are characterised and relevant for lignocellulose degradation include aryl-alcohol oxidoreductase, alcohol oxidase, cellobiose dehydrogenase, glucose oxidase, glucose dehydrogenase, pyranose dehydrogenase, and pyranose oxidase, which together form family AA3 of the auxiliary activities in the CAZy database of carbohydrate-active enzymes. Overall, little is known about the extant sequence space of these GMC oxidoreductases and their phylogenetic relations. Although some individual forms are well characterised, it is still unclear how they compare in respect of the complete enzyme class and, therefore, also how generalizable are their characteristics. RESULTS To improve the understanding of the GMC superfamily as a whole, we used sequence similarity networks to cluster large numbers of fungal GMC sequences and annotate them according to functionality. Subsequently, different members of the GMC superfamily were analysed in detail with regard to their sequences and phylogeny. This allowed us to define the currently characterised sequence space and show that complete clades of some enzymes have not been studied in any detail to date. Finally, we interpret our results from an evolutionary perspective, where we could show, for example, that pyranose dehydrogenase evolved from aryl-alcohol oxidoreductase after a change in substrate specificity and that the cytochrome domain of cellobiose dehydrogenase was regularly lost during evolution. CONCLUSIONS This study offers new insights into the sequence variation and phylogenetic relationships of fungal GMC/AA3 sequences. Certain clades of these GMC enzymes identified in our phylogenetic analyses are completely uncharacterised to date, and might include enzyme activities of varying specificities and/or activities that are hitherto unstudied.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gabriel Foley
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
24
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
25
|
Nguyen QT, Romero E, Dijkman WP, de Vasconcellos SP, Binda C, Mattevi A, Fraaije MW. Structure-Based Engineering of Phanerochaete chrysosporium Alcohol Oxidase for Enhanced Oxidative Power toward Glycerol. Biochemistry 2018; 57:6209-6218. [PMID: 30272958 PMCID: PMC6210165 DOI: 10.1021/acs.biochem.8b00918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycerol
is a major byproduct of biodiesel production, and enzymes
that oxidize this compound have been long sought after. The recently
described alcohol oxidase from the white-rot basidiomycete Phanerochaete chrysosporium (PcAOX) was reported to feature
very mild activity on glycerol. Here, we describe the comprehensive
structural and biochemical characterization of this enzyme. PcAOX
was expressed in Escherichia coli in high yields
and displayed high thermostability. Steady-state kinetics revealed
that PcAOX is highly active toward methanol, ethanol, and 1-propanol
(kcat = 18, 19, and 11 s–1, respectively), but showed very limited activity toward glycerol
(kobs = 0.2 s–1 at 2
M substrate). The crystal structure of the homo-octameric PcAOX was
determined at a resolution of 2.6 Å. The catalytic center is
a remarkable solvent-inaccessible cavity located at the re side of the flavin cofactor. Its small size explains the observed
preference for methanol and ethanol as best substrates. These findings
led us to design several cavity-enlarging mutants with significantly
improved activity toward glycerol. Among them, the F101S variant had
a high kcat value of 3 s–1, retaining a high degree of thermostability. The crystal structure
of F101S PcAOX was solved, confirming the site of mutation and the
larger substrate-binding pocket. Our data demonstrate that PcAOX is
a very promising enzyme for glycerol biotransformation.
Collapse
Affiliation(s)
- Quoc-Thai Nguyen
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Scuola Universitaria Superiore IUSS Pavia , Piazza della Vittoria 15 , 27100 Pavia , Italy.,Faculty of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , 41 Dinh Tien Hoang Street, Ben Nghe Ward, District 1 , Ho Chi Minh City , Vietnam
| | - Elvira Romero
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Willem P Dijkman
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Suzan Pantaroto de Vasconcellos
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.,Department of Biological Science , Federal University of São Paulo (UNIFESP) , Diadema , SP 09913-030 , Brazil
| | - Claudia Binda
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology , University of Pavia , Via Ferrata 1 , 27100 Pavia , Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
26
|
Khan MW, Murali A. Modeling of alcohol oxidase enzyme of Candida boidinii and in silico analysis of competitive binding of proton ionophores and FAD with enzyme. MOLECULAR BIOSYSTEMS 2018; 13:1754-1769. [PMID: 28692078 DOI: 10.1039/c7mb00287d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alcohol oxidase (AOX) is an important flavin adenine dinucleotide (FAD) dependent oxidoreductase, which is responsible for converting methanol into formaldehyde and hydrogen peroxide for the growth of methylotrophic yeast Candida boidinii. Although AOX plays a crucial role in methanol catabolism, the experimental structure of AOX from Candida boidinii has not been elucidated. This study reports the first complete in silico model of AOX from C. boidinii. This paper also reports the AOX structure modeled using the threading approach, followed by structure analysis and molecular dynamics simulation. The modeled structure was compared with the aryl alcohol oxidase structure (a glucose-methanol-choline family member, pdbID: 3fim). A docking study was performed to analyze the interaction between AOX and its cofactor FAD. The AOX modeled structure also exhibited high similarity with respect to the FAD binding sites, which are the substrate binding sites as seen with 3fim. It was observed that the adenosine part of FAD was deeply buried inside AOX while the isoalloxazine ring stuck to the surface. This paper reports the interaction of selective proton ionophores (CCCP and DNP) with AOX and also reports their binding sites. These proton ionophores showed competitive binding with FAD. The occupancy of the FAD binding sites by the proton ionophore may lead to blocking of the entry of FAD and thereby disruption of AOX import into peroxisomes.
Collapse
Affiliation(s)
- Mohammad Wahab Khan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry-605014, India.
| | | |
Collapse
|
27
|
Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 2018; 102:2477-2492. [PMID: 29411063 PMCID: PMC5847212 DOI: 10.1007/s00253-018-8784-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 11/29/2022]
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Christophe V F P Laurent
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Georg Schütz
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria.
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria.
| |
Collapse
|
28
|
Pratsinis A, Kelesidis GA, Zuercher S, Krumeich F, Bolisetty S, Mezzenga R, Leroux JC, Sotiriou GA. Enzyme-Mimetic Antioxidant Luminescent Nanoparticles for Highly Sensitive Hydrogen Peroxide Biosensing. ACS NANO 2017; 11:12210-12218. [PMID: 29182310 DOI: 10.1021/acsnano.7b05518] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrogen peroxide (H2O2) is an abundant molecule associated with biological functions and reacts with natural enzymes, such as catalase. Even though direct H2O2 measurement can be used to diagnose pathological conditions, such as infection and inflammation, H2O2 quantification further enables the detection of disease biomarkers in enzyme-linked assays (e.g., ELISA) in which enzymatic reactions may generate or consume H2O2. Such a quantification is often measured optically with organic dyes in biological media that suffer, however, from poor stability. Currently, the optical H2O2 biosensing without organic-dyes in biological media and at low, submicromolar, concentrations has yet to be achieved. Herein, we rationally design biomimetic artificial enzymes based on antioxidant CeO2 nanoparticles that become luminescent upon their Eu3+ doping. We vary systematically their diameter from 4 to 16 nm and study their catalase-mimetic antioxidant activity, manifested as catalytic H2O2 decomposition in aqueous solutions, revealing a strong nanoparticle surface area dependency. The interaction with H2O2 influences distinctly the particle luminescence rendering them highly sensitive H2O2 biosensors down to 0.15 μM (5.2 ppb) in solutions for biological assays. Our results link two, so far, unrelated research domains, the CeO2 nanoparticle antioxidant activity and luminescence by rare-earth doping. When these enzyme-mimetic nanoparticles are coupled with alcohol oxidase, biosensing can be extended to ethanol exemplifying how their detection potential can be broadened to additional biologically relevant metabolites. The enzyme-mimetic nanomaterial developed here could serve as a starting point of sophisticated in vitro assays toward the highly sensitive detection of disease biomarkers.
Collapse
Affiliation(s)
- Anna Pratsinis
- Drug Formulation and Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Georgios A Kelesidis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich , 8092 Zurich, Switzerland
| | - Stefanie Zuercher
- Drug Formulation and Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Frank Krumeich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich , 8092 Zurich, Switzerland
| | - Sreenath Bolisetty
- Food and Soft Materials, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich , 8092 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Drug Formulation and Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Georgios A Sotiriou
- Drug Formulation and Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , 17177 Stockholm, Sweden
| |
Collapse
|
29
|
Liposome-supported enzymatic peritoneal dialysis. Biomaterials 2017; 145:128-137. [DOI: 10.1016/j.biomaterials.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
|
30
|
|
31
|
Robbins JM, Souffrant MG, Hamelberg D, Gadda G, Bommarius AS. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties. Biochemistry 2017. [PMID: 28640638 DOI: 10.1021/acs.biochem.7b00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavins, including flavin adenine dinucleotide (FAD), are fundamental catalytic cofactors that are responsible for the redox functionality of a diverse set of proteins. Alternatively, modified flavin analogues are rarely found in nature as their incorporation typically results in inactivation of flavoproteins, thus leading to the disruption of important cellular pathways. Here, we report that the fungal flavoenzyme formate oxidase (FOX) catalyzes the slow conversion of noncovalently bound FAD to 8-formyl FAD and that this conversion results in a nearly 10-fold increase in formate oxidase activity. Although the presence of an enzyme-bound 8-formyl FMN has been reported previously as a result of site-directed mutagenesis studies of lactate oxidase, FOX is the first reported case of 8-formyl FAD in a wild-type enzyme. Therefore, the formation of the 8-formyl FAD cofactor in formate oxidase was investigated using steady-state kinetics, site-directed mutagenesis, ultraviolet-visible, circular dichroism, and fluorescence spectroscopy, liquid chromatography with mass spectrometry, and computational analysis. Surprisingly, the results from these studies indicate not only that 8-formyl FAD forms spontaneously and results in the active form of FOX but also that its autocatalytic formation is dependent on a nearby arginine residue, R87. Thus, this work describes a new enzyme cofactor and provides insight into the little-understood mechanism of enzyme-mediated 8α-flavin modifications.
Collapse
Affiliation(s)
- John M Robbins
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States.,Engineered Biosystems Building (EBB), Georgia Institute of Technology , Atlanta, Georgia 30332-2000, United States
| | - Michael G Souffrant
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Molecular Basis of Disease Program, Georgia State University , Atlanta, Georgia 30303, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Molecular Basis of Disease Program, Georgia State University , Atlanta, Georgia 30303, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Center for Biotechnology and Drug Design, Georgia State University , Atlanta, Georgia 30302-3965, United States.,Department of Biology, Georgia State University , Atlanta, Georgia 30302-3965, United States
| | - Andreas S Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0100, United States.,Engineered Biosystems Building (EBB), Georgia Institute of Technology , Atlanta, Georgia 30332-2000, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology , Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
32
|
Moser JW, Prielhofer R, Gerner SM, Graf AB, Wilson IBH, Mattanovich D, Dragosits M. Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris. Microb Cell Fact 2017; 16:49. [PMID: 28302114 PMCID: PMC5356285 DOI: 10.1186/s12934-017-0661-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pichia pastoris is a widely used eukaryotic expression host for recombinant protein production. Adaptive laboratory evolution (ALE) has been applied in a wide range of studies in order to improve strains for biotechnological purposes. In this context, the impact of long-term carbon source adaptation in P. pastoris has not been addressed so far. Thus, we performed a pilot experiment in order to analyze the applicability and potential benefits of ALE towards improved growth and recombinant protein production in P. pastoris. RESULTS Adaptation towards growth on methanol was performed in replicate cultures in rich and minimal growth medium for 250 generations. Increased growth rates on these growth media were observed at the population and single clone level. Evolved populations showed various degrees of growth advantages and trade-offs in non-evolutionary growth conditions. Genome resequencing revealed a wide variety of potential genetic targets associated with improved growth performance on methanol-based growth media. Alcohol oxidase represented a mutational hotspot since four out of seven evolved P. pastoris clones harbored mutations in this gene, resulting in decreased Aox activity, despite increased growth rates. Selected clones displayed strain-dependent variations for AOX-promoter based recombinant protein expression yield. One particularly interesting clone showed increased product titers ranging from a 2.5-fold increase in shake flask batch culture to a 1.8-fold increase during fed batch cultivation. CONCLUSIONS Our data indicate a complex correlation of carbon source, growth context and recombinant protein production. While similar experiments have already shown their potential in other biotechnological areas where microbes were evolutionary engineered for improved stress resistance and growth, the current dataset encourages the analysis of the potential of ALE for improved protein production in P. pastoris on a broader scale.
Collapse
Affiliation(s)
- Josef W Moser
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria
| | - Roland Prielhofer
- Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Samuel M Gerner
- University of Applied Sciences FH-Campus Wien, Bioengineering, Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,University of Applied Sciences FH-Campus Wien, Bioengineering, Vienna, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), 1190, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
33
|
Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. Enzyme Microb Technol 2017; 99:57-66. [PMID: 28193332 DOI: 10.1016/j.enzmictec.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Pyranose Dehydrogenase 1 from the basidiomycete Agaricus meleagris (AmPDH1) is an oxidoreductase capable of oxidizing a broad variety of sugars. Due to this and its ability of dioxidation of substrates and no side production of hydrogen peroxide, it is studied for use in enzymatic bio-fuel cells. In-vitro deglycosylated AmPDH1 as well as knock-out mutants of the N-glycosylation sites N75 and N175, near the active site entrance, were previously shown to improve achievable current densities of graphite electrodes modified with AmPDH1 and an osmium redox polymer acting as a redox mediator, up to 10-fold. For a better understanding of the role of N-glycosylation of AmPDH1, a systematic set of N-glycosylation site mutants was investigated in this work, regarding expression efficiency, enzyme activity and stability. Furthermore, the site specific extend of N-glycosylation was compared between native and recombinant wild type AmPDH1. Knocking out the site N252 prevented the attachment of significantly extended N-glycan structures as detected on polyacrylamide gel electrophoresis, but did not significantly alter enzyme performance on modified electrodes. This suggests that not the molecule size but other factors like accessibility of the active site improved performance of deglycosylated AmPDH1/osmium redox polymer modified electrodes. A fourth N-glycosylation site of AmPDH1 could be confirmed by mass spectrometry at N319, which appeared to be conserved in related fungal pyranose dehydrogenases but not in other members of the glucose-methanol-choline oxidoreductase structural family. This site was shown to be the only one that is essential for functional recombinant expression of the enzyme.
Collapse
|
34
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|
35
|
Genome scale identification, structural analysis, and classification of periplasmic binding proteins from Mycobacterium tuberculosis. Curr Genet 2016; 63:553-576. [DOI: 10.1007/s00294-016-0664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023]
|
36
|
Vonck J, Parcej DN, Mills DJ. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS One 2016; 11:e0159476. [PMID: 27458710 PMCID: PMC4961394 DOI: 10.1371/journal.pone.0159476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- * E-mail:
| | - David N. Parcej
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|