1
|
Satpathy S, Banerjee A, Banerjee I, Poddar R. Improved Ex-Vivo Bond Quality Monitoring of Plasmonic Metal Oxide Biomaterials Mediated Laser Tissue Soldering Process Using Fast Noninvasive Optical Tomographic Imaging. Lasers Surg Med 2025. [PMID: 40344262 DOI: 10.1002/lsm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/19/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND AND OBJECTIVES Laser tissue soldering (LTS) offers an innovative, suture-free approach to wound closure. However, challenges such as limited tensile strength and prolonged soldering time need solutions. This work combines BSA with PEG to enhance mechanical properties and introduces silver and titanium dioxide nanoparticles to accelerate soldering via localized surface plasmon resonance (LSPR). Real-time SS-OCT monitoring ensures precise evaluation of the soldering process, advancing LTS applications for diverse tissue. STUDY DESIGN/MATERIALS AND METHODS Four solder compositions (C1-C4) are prepared using combinations of BSA, PEG, silver nanoparticles (AgNP) and titanium dioxide nanoparticles (TiNP). Ex-vivo samples of chicken breast, chicken skin, and goat skin were incised in 1 cm incision with 0.45 mm width and soldered using a 980 nm, 5 W laser. Tensile strength was measured using a tensiometer, while cytotoxicity was assessed using HEK293 cells. SS-OCT captured real-time scattering coefficient changes during soldering, providing insight into coagulation dynamics. RESULTS Combining bovine serum albumin (BSA) with PEG and nanoparticles (silver and titanium dioxide), tensile strength in ex-vivo tissue samples increased significantly-by 27% in chicken breast (0.4980 to 0.6366 N/cm²), 28% in chicken skin (0.6080 to 0.7840 N/cm²), and 23% in goat skin (0.6220 to 0.7666 N/cm²). Nanoparticle incorporation reduced soldering time by 33%, achieving complete fusion within 3 min using a laser of optical power of 5 W, central wavelength 980 nm and duty cycle of 50%. Real-time monitoring with Swept-Source Optical Coherence Tomography (SS-OCT) quantified the scattering coefficient changes during soldering, validating efficient bonding. Results demonstrate PEG's contribution to tensile strength, nanoparticles' role in reducing soldering time, and SS-OCT's utility for precision monitoring, supporting LTS as a promising wound closure method. CONCLUSION The study validates PEG's biomechanical reinforcement and nanoparticles' role in efficient LTS. The integration of SS-OCT enables precise, real-time assessment, confirming the clinical potential of this enhanced LTS method for rapid and robust tissue closure.
Collapse
Affiliation(s)
- Sweta Satpathy
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Abhishek Banerjee
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ishita Banerjee
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Raju Poddar
- Biophotonics Lab, Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
2
|
Kopp KT, Beer MD, Voorspoels J, Lysebetten DV, den Mooter GV. The value of spray drying as stabilization process for proteins. Int J Pharm 2025; 674:125422. [PMID: 40057212 DOI: 10.1016/j.ijpharm.2025.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
Protein stability in solution state is often poor due to the intrinsic instability of proteins. A solution is to solidify them by using techniques like freeze or spray drying (SD). To shield therapeutic proteins from stress (e.g., heat or shear stress) related to the solidification process, suitable buffers and excipients are added during formulation development. In this work, buffers and excipients were identified for the stabilization of three protein model compounds (BSA, IgG and lysozyme) in solution state using a design of experiments (DoE) approach based on screening results from differential scanning fluorimetry (DSF) combined with static light scattering (SLS). The aim was to investigate whether it is possible to predict protein stability in solid state using data from protein stabilization in solution state according to DSF/SLS. Therefore, three concepts per protein were analyzed after SD, two of which were expected to stabilize the protein, and one less stabilizing and compared these results to screening results obtained in solution state. Analytical techniques prior to and post SD were reversed-phase and size-exclusion chromatography (RPC and SEC, respectively), dynamic light scattering (DLS), UV and circular dichroism (CD). Furthermore, yield and residual moisture were analyzed. BSA and lysozyme showed high stability during SD and therefore only minor changes were observed. IgG was more affected by solidification which partly resulted in a loss of more than 15 % of the initial protein concentration in comparison to before SD. In future studies, the use of analytical techniques that do not require reconstitution would give additional value.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Maarten De Beer
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | | | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Cao M, Wang R, Xu X, Hou X, Wang W, Zhang X, Ma C, Zhang Y, Shi D, Yang J, Ma H. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis. J Colloid Interface Sci 2025; 683:457-467. [PMID: 39693883 DOI: 10.1016/j.jcis.2024.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Efficient intracellular delivery of native proteins remains a big challenge, which greatly hinders the development of protein therapy. Here, we report a generalizable peptide vector that can encapsulate and deliver various proteins to achieve efficient intracellular biocatalysis. The peptide was rationally designed to be cationic amphiphilic peptide that consist of four functional fragments, that is, a hydrophobic domain to promote molecular assembly, an enzyme-cleavable fragment to introduce stimuli-responsibility, several cationic arginine (Arg) residues to enhance cell interaction and transmembrane efficiency, and the cystine (Cys) residues with redox sensitivity to adjust the stability of the peptide/protein complexes as needed. The peptide can co-assemble with proteins to form stable complexes in aqueous solution under mild condition. The complexes enter cell mainly through caveolae- and lipid raft-mediated endocytosis, giving a delivery efficiency of up to ∼97.2 %. They can then achieve efficient lysosomal escape and disassociation to release native proteins inside cells in response to intracellular stimuli. More strikingly, the delivered protein's bioactivity can be well maintained and the two model proteins of β-galactosidase (β-Gal) and horseradish peroxidase (HRP) both showed excellent intracellular biocatalytic activity. The study develops a versatile and adjustable peptide carrier platform for protein delivery and highlights impactful structure-function relationships, providing a new chemical guide for the design and optimization of functional protein nanocarriers.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China.
| | - Rui Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinyue Hou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
| | - Chen Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Yuxuan Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Daikui Shi
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Jianing Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
4
|
Korolenko OV, Mikhaylova VV, Borzova VA. UV-irradiated BSA: The details of aggregation kinetics and structural rearrangements. Int J Biol Macromol 2025; 297:139695. [PMID: 39805432 DOI: 10.1016/j.ijbiomac.2025.139695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
UV-irradiation is a stress factor for proteins, leading to disruption of their native structure. Test systems based on UV-irradiated proteins are relevant for researchers, as they allow working directly with damaged protein molecules, which can be important when studying the properties and mechanisms of action of various antiaggregation agents. The study of UV-irradiated proteins can also have applied significance, including medical. Here we studied the effect of UV-irradiation on the structural stability of bovine serum albumin (BSA) using differential scanning calorimetry, CD spectroscopy, intrinsic and ANS fluorescence of the protein. The test system based on UV-BSA thermal aggregation at 50 °C was characterized using dynamic light scattering: the order of aggregation with respect to the protein was determined equal to 2, and the protein aggregation stage was rate-limiting. UV-irradiation leads to irreversible destruction of the BSA tertiary structure and to additional rearrangements of its secondary structure, which are partially reversible and affect the aggregation kinetics of UV-BSA. In this case, the protein does not form a "molten globule" and with an increase in the irradiation dose passes into a state of stable small aggregates with a partially preserved secondary structure.
Collapse
Affiliation(s)
- Olesya V Korolenko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; HSE University, Faculty of Computer Science, Pokrovsky Bulvar 11, Moscow 109028, Russia
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Vera A Borzova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
5
|
Aloui E, Beurton J, Medemblik C, Hugoni L, Clarot I, Boudier A, Arntz Y, De Giorgi M, Combet J, Fleith G, Mathieu E, Kharouf N, Kocgozlu L, Heinrich B, Favier D, Brender M, Boulmedais F, Schaaf P, Frisch B, Lavalle P. Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies. Adv Healthc Mater 2025; 14:e2403385. [PMID: 39846332 PMCID: PMC11912121 DOI: 10.1002/adhm.202403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Current biodegradable materials are facing many challenges when used for the design of implantable devices because of shortcomings such as toxicity of crosslinking agents and degradation derivatives, limited cell adhesion, and limited immunological compatibility. Here, a class of materials built entirely of stable protein is designed using a simple protocol based on salt-assisted compaction of albumin, breaking with current crosslinking strategies. Salt-assisted compaction is based on the assembly of albumin in the presence of high concentrations of specific salts such as sodium bromide. This process leads, surprisingly, to water-insoluble handable materials with high preservation of their native protein structures and Young's modulus close to that of cartilage (0.86 MPa). Furthermore, these materials are non-cytotoxic, non-inflammatory, and in vivo implantations (using models of mice and rabbits) demonstrate a very slow degradation rate of the material with excellent biocompatibility and absence of systemic inflammation and implant failure. Therefore, these materials constitute promising candidates for the design of biodegradable scaffolds and drug delivery systems as an alternative to conventional synthetic degradable polyester materials.
Collapse
Affiliation(s)
- Eya Aloui
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Jordan Beurton
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
| | - Claire Medemblik
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Ludivine Hugoni
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Igor Clarot
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
| | - Ariane Boudier
- Université de LorraineCITHEFORNancyF‐54000France
- Université de Lorraine, CNRSLRGPNancyF‐54000France
- Institut Universitaire de France (IUF)ParisFrance
| | - Youri Arntz
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Marcella De Giorgi
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Jérôme Combet
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Guillaume Fleith
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Eric Mathieu
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Naji Kharouf
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Leyla Kocgozlu
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Benoît Heinrich
- Université de Strasbourg, CNRSInstitut de Physique et Chimie des Matériaux de Strasbourg UMR 7504StrasbourgF‐67034France
| | - Damien Favier
- Université de Strasbourg, CNRSInstitut de Physique et Chimie des Matériaux de Strasbourg UMR 7504StrasbourgF‐67034France
| | - Michael Brender
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Pierre Schaaf
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
- Université de Strasbourg, CNRSInstitut Charles Sadron UPR22StrasbourgF‐67034France
| | - Benoît Frisch
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003Université Strasbourg, Biomaterials and BioengineeringCentre de Recherche en Biomédecine de StrasbourgStrasbourgF‐67000France
| |
Collapse
|
6
|
Ye J, Bounds A, Crumpton M, Long M, McDonough H, Srikhirisawan I, Gao S. Potential Mechanisms of Lactate Dehydrogenase and Bovine Serum Albumin Proteins as Antioxidants: A Mixed Experimental-Computational Study. Biochem Res Int 2025; 2025:9638644. [PMID: 39963554 PMCID: PMC11832265 DOI: 10.1155/bri/9638644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Proteins have shown varying degrees of antioxidant activity. This study examined the potential mechanisms of interactions between proteins and radicals using chemical kinetics and computational methods. The study quantified the antioxidant activity of lactate dehydrogenase (LDH) and bovine serum albumin (BSA) through Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. BSA was about seven times and LDH 12 times more potent as antioxidants for 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS•-) than they were for peroxyl radicals. According to the evaluation of Trolox equivalents (TE) of 20 proteinogenic amino acids, tryptophan (with a TE value of 101 μmol TE/μmol) exhibited the highest antioxidant activity for ABTS•-, followed by tyrosine (38.7 μmol TE/μmol) and cysteine (30.5 μmol TE/μmol), lysine (0.193 μmol TE/μmol), arginine (0.0325 μmol TE/μmol), valine (0.0280 μmol TE/μmol), histidine (0.00689 μmol TE/μmol), and leucine (0.00560 μmol TE/μmol). The EC50 showed a similar order with a swap between valine and histidine. The antioxidant activity of the amino acids and proteins was temperature dependent. The rate laws, activation energy, and pre-exponential factor A of these reactions provided information on the reaction mechanisms, i.e., a biomolecular elementary step for the reaction of ABTS•- with amino acids tryptophan, tyrosine, cysteine, or protein LDH, and a more complicated mechanism for BSA. The presence of -NH- or hydroxyl groups on aromatic rings enhanced the antioxidant ability of tryptophan and tyrosine. LDH's antioxidant activity did not affect its enzymatic activity, indicating that the radical reaction likely happened on the protein's surface without significantly altering its conformation. The molecular modeling and visualization showed potential reaction sites on the proteins' accessible tryptophan and tyrosine residues. However, the mere surface exposure of tryptophan and tyrosine does not guarantee their antioxidant activities.
Collapse
Affiliation(s)
- Jing Ye
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Amy Bounds
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Madeline Crumpton
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Mallory Long
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Haley McDonough
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Isabella Srikhirisawan
- Department of Chemistry and Biochemistry, Salem College, Winston-Salem, North Carolina, USA
| | - Shanzhen Gao
- Department of Computer Information Systems, Virginia State University, Petersburg, Virginia, USA
| |
Collapse
|
7
|
Atsar FS, Bourger HD, Baker CA. Online integration of capillary electrophoresis and dual detector Taylor dispersion analysis via a 3D printed instrument. Analyst 2025; 150:620-629. [PMID: 39831313 PMCID: PMC11744447 DOI: 10.1039/d4an01208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Hydrodynamic radius (RH) is a descriptive metric of protein structure with the potential to impact drug development, disease diagnosis, and other important research areas of molecular biology. Common instrumental methods for molecular size characterization are disadvantageous due to high sample consumption, measurements made in non-physiological conditions, and/or inaccurate size determinations. Capillary Taylor dispersion analysis (TDA) is a molecular sizing method that utilizes nL sample volumes and achieves absolute size determination without calibration or comparison to standards. One key drawback of TDA is that it reports the concentration-weighted average RH, which may be limiting in the analysis of complex sample mixtures. Here, we describe the development of a 3D printed instrument to integrate capillary electrophoresis (CE) separations online with TDA size characterization. Dual laser-induced fluorescence detectors were developed to enable two-channel detection using a single PMT and fluorescence filter set, achieving detection limits for AlexaFluor 532 of 0.6 ± 0.4 nM and 1.1 ± 0.2 nM for detectors 1 and 2, respectively. Joule heating during CE separations was observed to introduce bias in subsequent TDA measurements. The effects of Joule heating were mitigated by integrating a water circulating sheath flow on the portion of the capillary used for CE. The utility of CE-TDA in bioanalysis was demonstrated by standard-free peak identification in the ficin digestion of IgG1. CE-TDA was further applied to characterizing denaturation dynamics of the Group II heat resistant protein apolipoprotein A-1 (ApoA), in which RH was observed to increase from 2.3 ± 0.2 nm at 20 °C to 5.2 ± 0.5 nm while heated at at 90 °C, then returned to a quasi-native state with RH = 2.9 ± 0.5 nm after cooling to 20 °C. CE-TDA is a powerful analysis mode with potential to impact various domains of bioanalysis. The instrument developed in this work offers a low barrier to entry for researchers interested in adopting CE-TDA.
Collapse
Affiliation(s)
- Felix S Atsar
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003-001, USA.
| | - Hillary D Bourger
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, 88003-001, USA
| | - Christopher A Baker
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003-001, USA.
| |
Collapse
|
8
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Ceyhan KE, Lin A, Bhaumik D, Foulger AC, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Ulrich SM, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. Cell Chem Biol 2025; 32:174-191.e8. [PMID: 39626664 PMCID: PMC11741930 DOI: 10.1016/j.chembiol.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). We identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility. βHB primarily provides ATP substrate during periods of reduced glucose availability, and regulates other cellular processes through protein interactions. We demonstrate βHB-induced protein insolubility is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. This mechanism is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We generate libraries of the βHB-induced protein insolublome using mass spectrometry proteomics, and identify common protein domains and upstream regulators. We show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain. These data indicate a metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- Sidharth S Madhavan
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Stephanie Roa Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | - Sawyer Peralta
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | | | - Kaya E Ceyhan
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anwen Lin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Dipa Bhaumik
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Anna C Foulger
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thanh Blade
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Wyatt Gray
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Manish Chamoli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Brenda Eap
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Oishika Panda
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Diego Diaz
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Thelma Y Garcia
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA
| | | | - Scott M Ulrich
- Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - John C Newman
- Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Division of Geriatrics, University of California, San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
9
|
Zhao J, Zaheer M, You J, Owyong TC, Giel MC, Praveen P, Li W, Hou J, Hogan CF, Zhao E, Ding S, Hong Y. Functionalized α-Cyanostilbene Derivatives for Detection of Hypoxia or Proteostasis Imbalance in Live Cells. Chemistry 2024; 30:e202402630. [PMID: 39229809 DOI: 10.1002/chem.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
α-Cyanostilbene represents one of the easily functionalized aggregation-induced emission (AIE) scaffolds. It has been widely adopted for the construction of fluorescent materials for broad applications. Here, we further expanded the utilization of α-cyanostilbene derivatives for the detection of hypoxia or proteostasis imbalance in live cells. Four different amine containing donors were introduced to construct α-cyanostilbene derivatives (R-ASC) with donor-acceptor scaffolds. Equipped with the cysteine (Cys) reactive group, maleimide (MI), R-ASC-MI shows fluorescence turn-on property upon binding with unfolded proteins in vitro and in live cells under proteostatic stress. By virtue of R-ASC-MI, the level of unfolded protein loads in cells can be quantified by flow cytometry, or visualized under microscope. Furthermore, we also characterized the performance of R-ASC-NO2, synthetic precursors of R-ASC-MI, in cellular hypoxia. R-ASC-NO2 revealed upregulated activities of nitroreductase, as well as increased hydrophobicity in live cells, under either chemical (NaN3) induced or atmospheric (1 % O2) hypoxia. Together, the advantages of easy modification and high signal-to-noise ratio of new α-cyanostilbene derivatives reported in this work highlight the great potential of α-cyanostilbene in constructing functional biosensors and many other domains.
Collapse
Affiliation(s)
- Jiamin Zhao
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maryam Zaheer
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jiawei You
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marie-Claire Giel
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Praveen Praveen
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Conor F Hogan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Siyang Ding
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Peters M, Zhao T, George S, Truong VG, Nic Chormaic S, Ying C, Nome RA, Gordon R. Energy landscape of conformational changes for a single unmodified protein. NPJ BIOSENSING 2024; 1:14. [PMID: 39524907 PMCID: PMC11541220 DOI: 10.1038/s44328-024-00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Resolving the free energy landscapes that govern protein biophysics has been obscured by ensemble averaging. While the folding dynamics of single proteins have been observed using fluorescent labels and/or tethers, a simpler and more direct measurement of the conformational changes would not require modifications to the protein. We use nanoaperture optical tweezers to resolve the energy landscape of a single unmodified protein, Bovine Serum Albumin (BSA), and quantify changes in the three-state conformation dynamics with temperature. A Markov model with Kramers' theory transition rates is used to model the dynamics, showing good agreement with the observed state transitions. This first look at the intrinsic energy landscape of proteins provides a transformative tool for protein biophysics and may be applied broadly, including mapping out the energy landscape of particularly challenging intrinsically disordered proteins.
Collapse
Affiliation(s)
- Matthew Peters
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Tianyu Zhao
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Sherin George
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Viet Giang Truong
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS England
| | - René A. Nome
- Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| |
Collapse
|
11
|
Lee KJ, Jordan JS, Williams ER. Is Native Mass Spectrometry in Ammonium Acetate Really Native? Protein Stability Differences in Biochemically Relevant Salt Solutions. Anal Chem 2024; 96:17586-17593. [PMID: 39453378 DOI: 10.1021/acs.analchem.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Ammonium acetate is widely used in native mass spectrometry to provide adequate ionic strength without adducting to protein ions, but different ions can preferentially stabilize or destabilize the native form of proteins in solution. The stability of bovine serum albumin (BSA) was investigated in 50 mM solutions of a variety of salts using electrospray emitters with submicron tips to desalt protein ions. The charge-state distribution of BSA is narrow (+14 to +18) in ammonium acetate (AmmAc), whereas it is much broader (+13 to +42) in solutions containing sodium acetate (NaAc), ammonium chloride (AmmCl), potassium chloride (KCl), and sodium chloride (NaCl). The average charge state and percent of unfolded protein increase in these respective solutions, indicating greater extents of protein destabilization and conformational changes. In contrast, no high charge states of either bovine carbonic anhydrase II or IgG1 were formed in AmmAc or NaCl despite their similar melting temperatures to BSA, indicating that the presence of unfolded BSA in some of these solutions is not an artifact of the electrospray ionization process. The charge states formed from the nonvolatile salt solutions do not change significantly for up to 7 min of electrospray, but higher charging occurs after 10 min, consistent with solution acidification. Formation of unfolded BSA in NaAc but not in AmmAc indicates that the cation identity, not acidification, is responsible for structural differences in these two solutions. Temperature-dependent measurements show both increased charging and aggregation at lower temperatures in NaCl:Tris than in AmmAc, consistent with lower protein stability in the former solution. These results are consistent with the order of these ions in the Hofmeister series and indicate that data on protein stability in AmmAc may not be representative of solutions containing nonvolatile salts that are directly relevant to biology.
Collapse
Affiliation(s)
- Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
12
|
Berlina AN, Komova NS, Serebrennikova KV, Zherdev AV, Dzantiev BB. Comparison of Conjugates Obtained Using DMSO and DMF as Solvents in the Production of Polyclonal Antibodies and ELISA Development: A Case Study on Bisphenol A. Antibodies (Basel) 2024; 13:89. [PMID: 39584989 PMCID: PMC11586966 DOI: 10.3390/antib13040089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
When developing immunochemical test systems, it is necessary to obtain specific antibodies. Their quality depends, among other things, on the immunogen used. When preparing hapten-protein conjugates to obtain antibodies for low-molecular-weight compounds, the key factors are the structure of the hapten itself, the presence of a spacer, the size of the carrier protein and the degree of its modification by hapten molecules. This work shows that one additional factor-the conditions for obtaining the hapten-protein conjugate-is overlooked. In this work, we have synthesized conjugates of bisphenol A derivative 4,4-bis(hydroxyphenyl)valeric acid (BVA), the protein carrier soybean trypsin inhibitor (STI), and bovine serum albumin (BSA) in reaction media combining water with two organic solvents: dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Namely, BSADMF-BVA, STIDMF-BVA, BSADMSO-BVA and STIDMSO-BVA conjugates were obtained. Rabbit polyclonal antibodies against the BSADMF-BVA conjugate demonstrated basically different interactions in the developed ELISA systems using either STIDMF-BVA or STIDMSO-BVA conjugates. The use of the STIDMF-BVA conjugate demonstrated the absence of competition in combination with antisera obtained from BSADMF-BVA in an ELISA. A competitive interaction was observed only with the use of the STIDMSO-BVA conjugate. Under the selected conditions, the detection limit of bisphenol A was 8.3 ng/mL, and the working range of determined concentrations was 18.5-290.3 ng/mL. The obtained data demonstrate the possibility of achieving sensitive immunoassays by simply varying the reaction media for the hapten-protein conjugation, which could provide an additional tool in the development of immunoassays for other low-molecular-weight compounds.
Collapse
Affiliation(s)
- Anna N. Berlina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (N.S.K.); (K.V.S.); (A.V.Z.); (B.B.D.)
| | | | | | | | | |
Collapse
|
13
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
14
|
Chauhan C, Singh P, Muthu SA, Parvez S, Selvapandiyan A, Ahmad B. Plumbagin accelerates serum albumin's amyloid aggregation kinetics and generates fibril polymorphism by inducing non-native β-sheet structures. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141028. [PMID: 38849109 DOI: 10.1016/j.bbapap.2024.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
The ligand-induced conformational switch of proteins has great significance in understanding the biophysics and biochemistry of their self-assembly. In this work, we have investigated the ability of plumbagin (PL), a hydroxynaphthoquinone compound found in the root of the medicinal plant Plumbago zeylanica, to modulate aggregation precursor state, aggregation kinetics and generate distinct fibril of human serum albumin (HSA). PL was found to moderately bind (binding constant Ka ∼ 10-4 M-1)) to domain-II of HSA in the stoichiometric ratio of 1:1. We found that PL-HSA complex aggregation was accelerated as compared to that of HSA aggregation and it may be through an independent pathway. We also detected that fibril produced in the presence of PL is wider in diameter, contains a higher amount of β-sheet (∼18%) and disordered (∼46%) structures, and is less stable. We concluded that the acceleration of aggregation reaction and generation of fibril polymorphism was mainly because of the higher extent of unfolding and high content of non-native β-sheet structure in the aggregation precursor state of PL-HSA complex. This study offers opportunities to explore the ability of ligand binding to modulate aggregation reactions and generate polymorphic protein fibrils.
Collapse
Affiliation(s)
- Chanchal Chauhan
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Poonam Singh
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India
| | - Shivani A Muthu
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India; Department of Molecular Medicine, Jamia Hamdard, New Delhi 10062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India
| | | | - Basir Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
15
|
Brean A, Overton TW, Bracewell DG, Franzreb M, Thomas ORT. Integrated system for temperature-controlled fast protein liquid chromatography. IV. Continuous 'one-column' 'low-salt' hydrophobic interaction chromatography. J Chromatogr A 2024; 1731:465212. [PMID: 39068770 DOI: 10.1016/j.chroma.2024.465212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Systematic development of a temperature-controlled isocratic process for one-column low-salt hydrophobic interaction chromatography (HIC) of proteins employing a travelling cooling zone reactor (TCZR) system, is described. Batch binding and confocal scanning microscopy were employed to define process conditions for temperature-reversible binding of bovine serum albumin (BSA) which were validated in pulse-response temperature switching HIC experiments, before transferring to TCZR-HIC. A thin-walled stainless-steel column mounted with a movable assembly of copper blocks and Peltier elements (travelling cooling zone, TCZ) was used for TCZR-HIC. In pulse-response TCZR-HIC, 12 TCZ movements along the column desorbed 86.3% of the applied BSA monomers in 95.3% purity depleted >6-fold in 2-4 mers and nearly 260-fold in higher molecular weight (HMW) species. For continuous TCZR-HIC, the TCZ was moved 49-58 times during uninterrupted loading of BSA feeds at 0.25, 0.5 or 1 mg·mL-1. Each TCZ movement generated a sharp symmetrical elution peak. In the best case, (condition 1: 0.25 mg·mL-1 BSA; >17 mg BSA applied per mL of bed) the height of TCZ elution peaks approached pseudo-steady midway through the loading phase with no rise in baseline UV280 signal between peaks. Peak composition remained constant averaging 94.4% monomer, 5.6% 2-4 mers and <0.05% HMW. Monomers were recovered in quantitative yield depleted >3.1 fold in 2-4 mers and 92-fold in HMW species cf. the feed (63.6% monomers, 21.8% 2-4 mers, 14.6% HMW). However, increasing the BSA concentration to 1 mg·mL-1 (condition 2) or employing a fouled HIC column with 0.5 mg·mL-1 BSA (condition 3) compromised monomer purification performance.
Collapse
Affiliation(s)
- Alexander Brean
- School of Chemical Engineering, College of Engineering and Physica1, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, UK
| | - Tim W Overton
- School of Chemical Engineering, College of Engineering and Physica1, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, UK; Institute for Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Owen R T Thomas
- School of Chemical Engineering, College of Engineering and Physica1, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, UK.
| |
Collapse
|
16
|
Ramachandran RP, Nadimi M, Cenkowski S, Paliwal J. Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. FOOD ENGINEERING REVIEWS 2024; 16:540-566. [PMID: 39759549 PMCID: PMC11698300 DOI: 10.1007/s12393-024-09381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 01/07/2025]
Abstract
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods. Our thorough research extensively covers ten notable drying methods: heat pump drying, freeze-drying, spray drying, vacuum drying, fluidized bed drying, superheated steam drying, infrared drying, microwave drying, osmotic drying, vacuum drying, and supercritical fluid drying. Each method is tailored to address the requirements of specific functional foods and biopharmaceuticals and provides a comprehensive account of each technique's inherent advantages and potential limitations. Further, the review ventures into the exploration of combined hybrid drying techniques and smart drying technologies with industry 4.0 tools such as automation, AI, machine learning, IoT, and cyber-physical systems. These innovative methods are designed to enhance product performance and elevate the quality of the final product in the drying of functional foods and biopharmaceuticals. Through a thorough survey of the drying landscape, this review illuminates the intricacies of these operations and underscores their pivotal role in functional foods and biopharmaceutical production.
Collapse
Affiliation(s)
- Rani Puthukulangara Ramachandran
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Boulevard Casavant Ouest Saint-Hyacinthe, Québec J2S 8E3 Canada
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Stefan Cenkowski
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
17
|
Koroleva V, Lavlinskaya M, Holyavka M, Penkov N, Zuev Y, Artyukhov V. Thermal Inactivation, Denaturation and Aggregation Processes of Papain-Like Proteases. Chem Biodivers 2024; 21:e202401038. [PMID: 38849308 DOI: 10.1002/cbdv.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
The investigation into the behavior of ficin, bromelain, papain under thermal conditions holds both theoretical and practical significance. The production processes of medicines and cosmetics often involve exposure to high temperatures, particularly during the final product sterilization phase. Hence, it's crucial to identify the "critical" temperatures for each component within the mixture for effective technological regulation. In light of this, the objective of this study was to examine the thermal inactivation, aggregation, and denaturation processes of three papain-like proteases: ficin, bromelain, papain. To achieve this goal, the following experiments were conducted: (1) determination of the quantity of inactivated proteases using enzyme kinetics with BAPNA as a substrate; (2) differential scanning calorimetry (DSC); (3) assessment of protein aggregation using dynamic light scattering (DLS) and spectrophotometric analysis at 280 nm. Our findings suggest that the inactivation of ficin and papain exhibits single decay step which characterized by a rapid decline, then preservation of the same residual activity by enzyme stabilization. Only bromelain shows two steps with different kinetics. The molecular sizes of the active and inactive forms are similar across ficin, bromelain, and papain. Furthermore, the denaturation of these forms occurs at approximately the same rate and is accompanied by protein aggregation.
Collapse
Affiliation(s)
- Victoria Koroleva
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
- Department of Biology, Voronezh State Medical University named after N.N. Burdenko, Studencheskaya St. 10, Voronezh, Russia
| | - Maria Lavlinskaya
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| | - Marina Holyavka
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| | - Nikita Penkov
- Laboratories of methods of optical-spectral analysis, Institute of Cell Biophysics of the Russian Academy of Sciences, Institutskaya St. 3, Pushchino, Russia
| | - Yuriy Zuev
- Laboratory of Biophysical Chemistry of Nanosystems, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia, Lobachevskogo St. 2/31, Kazan, Russia
| | - Valeriy Artyukhov
- Department of Biophysics and Biotechnology, Voronezh State University, Universitetskaya Sq. 1, Voronezh, Russia
| |
Collapse
|
18
|
Min JH, Sarlus H, Harris RA. Glycyl-l-histidyl-l-lysine prevents copper- and zinc-induced protein aggregation and central nervous system cell death in vitro. Metallomics 2024; 16:mfae019. [PMID: 38599632 PMCID: PMC11135135 DOI: 10.1093/mtomcs/mfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Common features of neurodegenerative diseases are oxidative and inflammatory imbalances as well as the misfolding of proteins. An excess of free metal ions can be pathological and contribute to cell death, but only copper and zinc strongly promote protein aggregation. Herein we demonstrate that the endogenous copper-binding tripeptide glycyl-l-histidyl-l-lysine (GHK) has the ability to bind to and reduce copper redox activity and to prevent copper- and zinc-induced cell death in vitro. In addition, GHK prevents copper- and zinc-induced bovine serum albumin aggregation and reverses aggregation through resolubilizing the protein. We further demonstrate the enhanced toxicity of copper during inflammation and the ability of GHK to attenuate this toxicity. Finally, we investigated the effects of copper on enhancing paraquat toxicity and report a protective effect of GHK. We therefore conclude that GHK has potential as a cytoprotective compound with regard to copper and zinc toxicity, with positive effects on protein solubility and aggregation that warrant further investigation in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Heela Sarlus
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| |
Collapse
|
19
|
Dominguez-Alfaro A, Casado N, Fernandez M, Garcia-Esnaola A, Calvo J, Mantione D, Calvo MR, Cortajarena AL. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307536. [PMID: 38126666 DOI: 10.1002/smll.202307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maxence Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Andrea Garcia-Esnaola
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Javier Calvo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maria Reyes Calvo
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, 03690, Spain
- Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Alicante, 03690, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
20
|
Jordan JS, Lee KJ, Williams ER. Overcoming aggregation with laser heated nanoelectrospray mass spectrometry: thermal stability and pathways for loss of bicarbonate from carbonic anhydrase II. Analyst 2024; 149:2281-2290. [PMID: 38497240 DOI: 10.1039/d4an00229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Variable temperature electrospray mass spectrometry is useful for multiplexed measurements of the thermal stabilities of biomolecules, but the ionization process can be disrupted by aggregation-prone proteins/complexes that have irreversible unfolding transitions. Resistively heating solutions containing a mixture of bovine carbonic anhydrase II (BCAII), a CO2 fixing enzyme involved in many biochemical pathways, and cytochrome c leads to complete loss of carbonic anhydrase signal and a significant reduction in cytochrome c signal above ∼72 °C due to aggregation. In contrast, when the tips of borosilicate glass nanoelectrospray emitters are heated with a laser, complete thermal denaturation curves for both proteins are obtained in <1 minute. The simultaneous measurements of the melting temperature of BCAII and BCAII bound to bicarbonate reveal that the bicarbonate stabilizes the folded form of this protein by ∼6.4 °C. Moreover, the temperature dependences of different bicarbonate loss pathways are obtained. Although protein analytes are directly heated by the laser for only 140 ms, heat conduction further up the emitter leads to a total analyte heating time of ∼41 s. Pulsed laser heating experiments could reduce this time to ∼0.5 s for protein aggregation that occurs on a faster time scale. Laser heating provides a powerful method for studying the detailed mechanisms of cofactor/ligand loss with increasing temperature and promises a new tool for studying the effect of ligands, drugs, growth conditions, buffer additives, or other treatments on the stabilities of aggregation-prone biomolecules.
Collapse
Affiliation(s)
- Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Katherine J Lee
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California, 94720-1460, USA.
| |
Collapse
|
21
|
Naser MA, Sayed AM, Abdelmoez W, El-Wakad MT, Abdo MS. Biodegradable suture development-based albumin composites for tissue engineering applications. Sci Rep 2024; 14:7912. [PMID: 38575715 PMCID: PMC10995150 DOI: 10.1038/s41598-024-58194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Recent advancements in the field of biomedical engineering have underscored the pivotal role of biodegradable materials in addressing the challenges associated with tissue regeneration therapies. The spectrum of biodegradable materials presently encompasses ceramics, polymers, metals, and composites, each offering distinct advantages for the replacement or repair of compromised human tissues. Despite their utility, these biomaterials are not devoid of limitations, with issues such as suboptimal tissue integration, potential cytotoxicity, and mechanical mismatch (stress shielding) emerging as significant concerns. To mitigate these drawbacks, our research collective has embarked on the development of protein-based composite materials, showcasing enhanced biodegradability and biocompatibility. This study is dedicated to the elaboration and characterization of an innovative suture fabricated from human serum albumin through an extrusion methodology. Employing a suite of analytical techniques-namely tensile testing, scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA)-we endeavored to elucidate the physicochemical attributes of the engineered suture. Additionally, the investigation extends to assessing the influence of integrating biodegradable organic modifiers on the suture's mechanical performance. Preliminary tensile testing has delineated the mechanical profile of the Filament Suture (FS), delineating tensile strengths spanning 1.3 to 9.616 MPa and elongation at break percentages ranging from 11.5 to 146.64%. These findings illuminate the mechanical versatility of the suture, hinting at its applicability across a broad spectrum of medical interventions. Subsequent analyses via SEM and TGA are anticipated to further delineate the suture's morphological features and thermal resilience, thereby enriching our comprehension of its overall performance characteristics. Moreover, the investigation delves into the ramifications of incorporating biodegradable organic constituents on the suture's mechanical integrity. Collectively, the study not only sheds light on the mechanical and thermal dynamics of a novel suture material derived from human serum albumin but also explores the prospective enhancements afforded by the amalgamation of biodegradable organic compounds, thereby broadening the horizon for future biomedical applications.
Collapse
Affiliation(s)
- Mohamed A Naser
- Faculty of Engineering, Biomedical Engineering Department, Minia University, Minia, Egypt.
- Faculty of Engineering, Biomedical Engineering Department, Helwan University, Helwan, Egypt.
| | - Ahmed M Sayed
- Faculty of Engineering, Biomedical Engineering Department, Helwan University, Helwan, Egypt.
- EECS Department, MSOE University, Milwaukee, United States.
| | - Wael Abdelmoez
- Faculty of Engineering, Chemical Engineering Department, Minia University, Minia, Egypt
| | - Mohamed Tarek El-Wakad
- Faculty of Engineering and Technology, Future University Egypt, Fifth Settlement, Cairo, Egypt
| | - Mohamed S Abdo
- Faculty of Engineering, Biomedical Engineering Department, Minia University, Minia, Egypt
| |
Collapse
|
22
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Alesio J, Bothun GD. Differential scanning fluorimetry to assess PFAS binding to bovine serum albumin protein. Sci Rep 2024; 14:6501. [PMID: 38499613 PMCID: PMC10948889 DOI: 10.1038/s41598-024-57140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
The rapid screening of protein binding affinity for poly- and perfluoroalkyl substances (PFAS) benefits risk assessment and fate and transport modelling. PFAS are known to bioaccumulate in livestock through contaminated food and water. One excretion pathway is through milk, which may be facilitated by binding to milk proteins such as bovine serum albumin (BSA). We report a label-free differential scanning fluorimetry approach to determine PFAS-BSA binding over a broad temperature range. This method utilizes the tryptophan residue within the protein binding pocket as an intrinsic fluorophore, eliminating the need for fluorophore labels that may influence binding. BSA association constants were determined by (a) an equilibrium-based model at the melting temperature of BSA and (b) the Hill adsorption model to account for temperature dependent binding and binding cooperativity. Differences in binding between PFAS and fatty acid analogs revealed that a combination of size and hydrophobicity drives PFAS binding.
Collapse
Affiliation(s)
- Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
24
|
Carvalho SF, Pereiro AB, Araújo JMM. Simultaneous Purification of Human Interferon Alpha-2b and Serum Albumin Using Bioprivileged Fluorinated Ionic Liquid-Based Aqueous Biphasic Systems. Int J Mol Sci 2024; 25:2751. [PMID: 38473998 PMCID: PMC10931833 DOI: 10.3390/ijms25052751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Interferon alpha-2b (IFN-α2b) is an essential cytokine widely used in the treatment of chronic hepatitis C and hairy cell leukemia, and serum albumin is the most abundant plasma protein with numerous physiological functions. Effective single-step aqueous biphasic system (ABS) extraction for the simultaneous purification of IFN-α2b and BSA (serum albumin protein) was developed in this work. Effects of the ionic liquid (IL)-based ABS functionalization, fluorinated ILs (FILs; [C2C1Im][C4F9SO3] and [N1112(OH)][C4F9SO3]) vs. mere fluoro-containing IL ([C4C1Im][CF3SO3]), in combination with sucrose or [N1112(OH)][H2PO4] (well-known globular protein stabilizers), or high-charge-density salt K3PO4 were investigated. The effects of phase pH, phase water content (%wt), phase composition (%wt), and phase volume ratio were investigated. The phase pH was found to have a significant effect on IFN-α2b and BSA partition. Experimental results show that simultaneous single-step purification was achieved with a high yield (extraction efficiency up to 100%) for both proteins and a purification factor of IFN-α2b high in the enriched IFN-α2b phase (up to 23.22) and low in the BSA-enriched phase (down to 0.00). SDS-PAGE analysis confirmed the purity of both recovered proteins. The stability and structure of IFN-α2b and BSA were preserved or even improved (FIL-rich phase) during the purification step, as evaluated by CD spectroscopy and DSC. Binding studies of IFN-α2b and BSA with the ABS phase-forming components were assessed by MST, showing the strong interaction between FILs aggregates and both proteins. In view of their biocompatibility, customizable properties, and selectivity, FIL-based ABSs are suggested as an improved purification step that could facilitate the development of biologics.
Collapse
Affiliation(s)
| | | | - João M. M. Araújo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.F.C.); (A.B.P.)
| |
Collapse
|
25
|
Rozhkov S, Goryunov A, Rozhkova N. Molecular Serum Albumin Unmask Nanobio Properties of Molecular Graphenes in Shungite Carbon Nanoparticles. Int J Mol Sci 2024; 25:2465. [PMID: 38473711 DOI: 10.3390/ijms25052465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids. Being acceptors of electrons and ligands, ShC NPs are capable of exhibiting both their own biological activity and significantly affecting conformational and phase transformations in protein systems.
Collapse
Affiliation(s)
- Sergey Rozhkov
- Institute of Biology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| | - Andrey Goryunov
- Institute of Biology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| | - Natalia Rozhkova
- Institute of Geology, Karelian Research Centre RAS, 185910 Petrozavodsk, Russia
| |
Collapse
|
26
|
Precupas A, Popa VT. Impact of Sinapic Acid on Bovine Serum Albumin Thermal Stability. Int J Mol Sci 2024; 25:936. [PMID: 38256010 PMCID: PMC10815719 DOI: 10.3390/ijms25020936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The thermal stability of bovine serum albumin (BSA) in Tris buffer, as well as the effect of sinapic acid (SA) on protein conformation were investigated via calorimetric (differential scanning microcalorimetry-μDSC), spectroscopic (dynamic light scattering-DLS; circular dichroism-CD), and molecular docking approaches. μDSC data revealed both the denaturation (endotherm) and aggregation (exotherm) of the protein, demonstrating the dual effect of SA on protein thermal stability. With an increase in ligand concentration, (i) protein denaturation shifts to a higher temperature (indicating native form stabilization), while (ii) the aggregation process shifts to a lower temperature (indicating enhanced reactivity of the denatured form). The stabilization effect of SA on the native structure of the protein was supported by CD results. High temperature (338 K) incubation induced protein unfolding and aggregation, and increasing the concentration of SA altered the size distribution of the protein population, as DLS measurements demonstrated. Complementary information offered by molecular docking allowed for the assessment of the ligand binding within the Sudlow's site I of the protein. The deeper insight into the SA-BSA interaction offered by the present study may serve in the clarification of ligand pharmacokinetics and pharmacodynamics, thus opening paths for future research and therapeutic applications.
Collapse
Affiliation(s)
| | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;
| |
Collapse
|
27
|
Khan S, Naeem A. Bovine serum albumin prevents human hemoglobin aggregation and retains its chaperone-like activity. J Biomol Struct Dyn 2024; 42:346-361. [PMID: 36974939 DOI: 10.1080/07391102.2023.2192802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
This study investigates the ability of bovine serum albumin (BSA) to act as an extracellular chaperone (EC) on human hemoglobin (Hb) at a pH of 7.4. The best temperature for studying this behavior was determined by analyzing Hb's aggregation kinetics at multiple temperatures. 55 °C was chosen as the optimal temperature for forming Hb amyloids. BSA was then tested at various concentrations (20-100 μM) to assess its chaperone-like activity on Hb at 55 °C. At a concentration of 100 μM, BSA exhibits chaperone-like activity with a client protein:BSA ratio of 1:10. The high ratio implies that the chaperone activity of BSA is favored by the effects of macromolecular crowding. The results showed that BSA has the potential to inhibit Hb's dissociation into alpha and beta subunits and protein aggregation by inhibiting secondary nucleation. BSA also causes the depolymerization of fibrils over time. The results were validated using molecular docking and all-atom molecular dynamics simulations. MD analysis such as RMSD, RMSF, Rg, SASA, Hydrogen bond, PCA, Free energy landscape (FEL) revealed that the stability of hemoglobin is greater when it is bound to BSA compared to unbound state. The study suggests that BSA can potentially bind to Hb dimers and reduce excitonic interactions, which reduces Hb aggregation. These results are consistent with the aggregation kinetics experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
28
|
Gupta R, Wang Y, Darwish GH, Poisson J, Szwarczewski A, Kim S, Traaseth C, Hudson ZM, Algar WR. Semiconducting Polymer Dots Directly Stabilized with Serum Albumin: Preparation, Characterization, and Cellular Immunolabeling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55456-55465. [PMID: 37983537 DOI: 10.1021/acsami.3c13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Semiconducting polymer dots (Pdots) are brightly fluorescent nanoparticles of growing interest for bioanalysis and imaging. A recurring challenge with these materials is obtaining robust physical and colloidal stability and low nonspecific binding. Here, we prepared and characterized Pdots with bovine serum albumin (BSA) as the stabilizing agent (BSA-Pdots) instead of a more conventionally used amphiphilic polymer, both without and with cross-linking of the protein using glutaraldehyde (BSA(GA)-Pdots) or disuccinimidyl glutarate. Characterization included fluorescence properties; colloidal stability as a function of pH, ionic strength, and solvent perturbation; shape retention and hardness; and nonspecific binding with common assay substrates, fixed cells, and live cells. These properties were contrasted with the same properties for amphiphilic polymer-stabilized Pdots and silica-coated Pdots. On balance, the BSA-stabilized Pdots were similar or more favorable in their properties, with BSA(GA)-Pdots being especially advantageous. Bioconjugation of the BSA-stabilized Pdots was possible using amine-reactive active-ester chemistry, including biotinylation and bioorthogonal functionalization for immunoconjugation via tetrazine-strained-alkene click chemistry. These approaches were used for selective fluorescent labeling of cells based on ligand-receptor and antibody-antigen binding, respectively. Overall, direct BSA stabilization is a very promising strategy for preparing Pdots with improved physical and colloidal stability, reduced nonspecific interactions, and utility for in vitro diagnostics and other bioanalyses and imaging.
Collapse
Affiliation(s)
- Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yihao Wang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jade Poisson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Agnes Szwarczewski
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Subin Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christine Traaseth
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
29
|
Panda C, Sharma LG, Pandey LM. Experimental procedures to investigate fibrillation of proteins. MethodsX 2023; 11:102445. [PMID: 37928109 PMCID: PMC10622682 DOI: 10.1016/j.mex.2023.102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
The unwanted phenomenon of protein fibrillation is observed in vivo and during therapeutic protein development in the industry. Protein aggregation is associated with various degenerative disorders and might induce immune-related challenges post-administration of biopharmaceutics. A pipeline for early detection, identification, and removal of pre-formed fibrils is needed to improve the quality, efficacy, and effectiveness of the formulation. Protein fibril formation is accompanied by unfolding, secondary structural changes and the formation of larger aggregates. However, most detection processes come with extensive sample preparation steps and inefficient repeatability, incurring a financial burden on research. The current article summarizes and critically discusses six simple yet powerful methods to detect aggregation phenomena in the line of detecting fibrillar aggregates in heat-induced bovine serum albumin protein. Comparing the native and heat-induced protein samples would provide insights about aggregates. Easy, inexpensive and optimized protocols for detecting the fibrillation of proteins are explained. The procedures mentioned here detected the appearance of β-sheet-rich fibrils in the heat-induced protein sample. The aggregation is characterized by enhanced thioflavin-T fluorescence, alteration in the intrinsic fluorescence, decrease in helicity and subsequent increase in β-sheet and appearance of particles with larger hydrodynamic diameters. •This article summarizes various analytical techniques to easily characterize the fibrillation of proteins.•Various techniques to detect the formation of β-sheet rich structures, changes in the secondary structures and size of aggregates have been discussed.•The stated methodologies are validated on a model protein, albumin.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Laipubam Gayatri Sharma
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
30
|
Lee DY, Yun SH, Lee SY, Lee J, Jr Mariano E, Joo ST, Choi I, Choi JS, Kim GD, Lee J, Choi SH, Hur SJ. Analysis of commercial fetal bovine serum (FBS) and its substitutes in the development of cultured meat. Food Res Int 2023; 174:113617. [PMID: 37986472 DOI: 10.1016/j.foodres.2023.113617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Fetal bovine serum (FBS) is an extremely important culture growth supplement, accounting for approximately 60 % of cell-culture-media costs; therefore, lowering FBS-acquisition costs for the industrialization of cultured meat is imperative. This study attempted to produce an FBS substitute using discarded livestock by-products, with particular focus on formulating a product with a composition similar to that of FBS to improve effectiveness. However, to date, no study has precisely analyzed the commercial components of FBS, and this study is the first to compare the chemical composition of FBS and commercially available horse serum purchased from the United States or Europe with that of FBS substitutes developed by our team. This study analyzed the chemical composition of the FBS products purchased by our team over the past 3 years via blood, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and independent composition analyses. While the composition and quality of commercial FBS products are known to vary, the FBS composition of our purchased products was relatively uniform regardless of company, brand, or country of origin. In contrast, FBS substitutes obtained from three major livestock species (cattle, pig, and chicken) clearly exhibited differences in composition, a phenomenon that was also observed upon comparing with FBS as well as among different species. Therefore, to replace commercial FBS entirely, the production of a proportionately effective substitute product comprising an equal or similar composition is required, and the results of this study can be a steppingstone to achieving this. In addition, FBS substitutes manufactured using inexpensive slaughter by-products as raw materials are expected to ultimately reduce the unit cost of cultured meat production.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Jr Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seon-Tea Joo
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Seong-Ho Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
31
|
Mendes MIP, Coelho CDF, Schaberle FA, Moreno MJ, Calvete MJF, Arnaut LG. Nanodroplet vaporization with pulsed-laser excitation repeatedly amplifies photoacoustic signals at low vaporization thresholds. RSC Adv 2023; 13:35040-35049. [PMID: 38046627 PMCID: PMC10690495 DOI: 10.1039/d3ra05639b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023] Open
Abstract
Nanodroplets' explosive vaporization triggered by absorption of laser pulses produces very large volume changes. These volume changes are two orders of magnitude higher than those of thermoelastic expansion generated by equivalent laser pulses, and should generate correspondingly higher photoacoustic waves (PAW). The generation of intense PAWs is desirable in photoacoustic tomography (PAT) to increase sensitivity. The biocompatibility and simplicity of nanodroplets obtained by sonication of perfluoropentane (PFP) in an aqueous solution of bovine serum albumin (BSA) containing a dye make them particularly appealing for use as contrast agents in clinical applications of PAT. Their usefulness depends on stability and reproducible vaporization of nanodroplets (liquid PFP inside) to microbubbles (gaseous PFP inside), and reversible condensation to nanodroplets. This work incorporates porphyrins with fluorinated chains and BSA labelled with fluorescent probes in PFP nanodroplets to investigate the structure and properties of such nanodroplets. Droplets prepared with average diameters in the 400-1000 nm range vaporize when exposed to nanosecond laser pulses with fluences above 3 mJ cm-2 and resist coalescence. The fluorinated chains are likely responsible for the low vaporization threshold, ∼2.5 mJ cm-2, which was obtained from the laser fluence dependence of the photoacoustic wave amplitudes. Only ca. 10% of the droplets incorporate fluorinated porphyrins. Nevertheless, PAWs generated with nanodroplets are ten times higher than those generated by aqueous BSA solutions containing an equivalent amount of porphyrin. Remarkably, successive laser pulses result in similar amplification, indicating that the microbubbles revert back to nanodroplets at a rate faster than the laser repetition rate (10 Hz). PFP nanodroplets are promising contrast agents for PAT and their performance increases with properly designed dyes.
Collapse
Affiliation(s)
- Maria Inês P Mendes
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
- LaserLeap Technologies Rua Coronel Júlio Veiga Simão, Edifício B, CTCV, S/N 3025-307 Coimbra Portugal
| | - Carlos D F Coelho
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Fábio A Schaberle
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Maria João Moreno
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Mário J F Calvete
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| | - Luis G Arnaut
- CQC-IMS, Chemistry Department, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
32
|
Kim H, Kim EJ, Ngo HV, Nguyen HD, Park C, Choi KH, Park JB, Lee BJ. Cellular Efficacy of Fattigated Nanoparticles and Real-Time ROS Occurrence Using Microfluidic Hepatocarcinoma Chip System: Effect of Anticancer Drug Solubility and Shear Stress. Pharmaceuticals (Basel) 2023; 16:1330. [PMID: 37765137 PMCID: PMC10536289 DOI: 10.3390/ph16091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to evaluate the effectiveness of organ-on-chip system investigating simultaneous cellular efficacy and real-time reactive oxygen species (ROS) occurrence of anticancer drug-loaded nanoparticles (NPs) using hepatocarcinoma cells (HepG2) chip system under static and hepatomimicking shear stress conditions (5 dyne/cm2). Then, the role of hepatomimetic shear stress exposed to HepG2 and drug solubility were compared. The highly soluble doxorubicin (DOX) and poorly soluble paclitaxel (PTX) were chosen. Fattigated NPs (AONs) were formed via self-assembly of amphiphilic albumin (HSA)-oleic acid conjugate (AOC). Then, drug-loaded AONs (DOX-AON or PTX-AON) were exposed to a serum-free HepG2 medium at 37 °C and 5% carbon dioxide for 24 h using a real-time ROS sensor chip-based microfluidic system. The cellular efficacy and simultaneous ROS occurrence of free drugs and drug-loaded AONs were compared. The cellular efficacy of drug-loaded AONs varied in a dose-dependent manner and were consistently correlated with real-time of ROS occurrence. Drug-loaded AONs increased the intracellular fluorescence intensity and decreased the cellular efficacy compared to free drugs under dynamic conditions. The half-maximal inhibitory concentration (IC50) values of free DOX (13.4 μg/mL) and PTX (54.44 μg/mL) under static conditions decreased to 11.79 and 38.43 μg/mL, respectively, under dynamic conditions. Furthermore, DOX- and PTX-AONs showed highly decreased IC50 values of 5.613 and 21.86 μg/mL, respectively, as compared to free drugs under dynamic conditions. It was evident that cellular efficacy and real-time ROS occurrence were well-correlated and highly dependent on the drug-loaded nanostructure, drug solubility and physiological shear stress.
Collapse
Affiliation(s)
- Hoyoung Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Eun-Ji Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Hai V. Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Hy D. Nguyen
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Kyung Hyun Choi
- Advanced Micro-Mechatronics Lab, Mechatronics Engineering, Jeju National University, Jeju 63243, Republic of Korea;
- BioSpero, Jeju 63309, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (H.K.); (E.-J.K.); (H.V.N.); (H.D.N.)
| |
Collapse
|
33
|
Seemann S, Dubs M, Koczan D, Salapare HS, Ponche A, Pieuchot L, Petithory T, Wartenberg A, Staehlke S, Schnabelrauch M, Anselme K, Nebe JB. Response of Osteoblasts on Amine-Based Nanocoatings Correlates with the Amino Group Density. Molecules 2023; 28:6505. [PMID: 37764281 PMCID: PMC10534789 DOI: 10.3390/molecules28186505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).
Collapse
Affiliation(s)
- Susanne Seemann
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | - Manuela Dubs
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Hernando S. Salapare
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Tatiana Petithory
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - Annika Wartenberg
- Department of Biomaterials, INNOVENT e.V., 07745 Jena, Germany; (M.D.); (A.W.); (M.S.)
| | - Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
| | | | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS, Université de Haute-Alsace, UMR 7361, 68100 Mulhouse, France (A.P.); (L.P.); (T.P.); (K.A.)
| | - J. Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany (J.B.N.)
- Department Life, Light & Matter, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
34
|
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Field-Flow Fractionation in Molecular Biology and Biotechnology. Molecules 2023; 28:6201. [PMID: 37687030 PMCID: PMC10488451 DOI: 10.3390/molecules28176201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Anna Placci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
35
|
Madhavan SS, Roa Diaz S, Peralta S, Nomura M, King CD, Lin A, Bhaumik D, Shah S, Blade T, Gray W, Chamoli M, Eap B, Panda O, Diaz D, Garcia TY, Stubbs BJ, Lithgow GJ, Schilling B, Verdin E, Chaudhuri AR, Newman JC. β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547547. [PMID: 37461525 PMCID: PMC10349929 DOI: 10.1101/2023.07.03.547547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Loss of proteostasis is a hallmark of aging and Alzheimer disease (AD). Here, we identify β-hydroxybutyrate (βHB), a ketone body, as a regulator of protein solubility in the aging brain. βHB is a small molecule metabolite which primarily provides an oxidative substrate for ATP during hypoglycemic conditions, and also regulates other cellular processes through covalent and noncovalent protein interactions. We demonstrate βHB-induced protein insolubility across in vitro, ex vivo, and in vivo mouse systems. This activity is shared by select structurally similar metabolites, is not dependent on covalent protein modification, pH, or solute load, and is observable in mouse brain in vivo after delivery of a ketone ester. Furthermore, this phenotype is selective for pathological proteins such as amyloid-β, and exogenous βHB ameliorates pathology in nematode models of amyloid-β aggregation toxicity. We have generated a comprehensive atlas of the βHB-induced protein insolublome ex vivo and in vivo using mass spectrometry proteomics, and have identified common protein domains within βHB target sequences. Finally, we show enrichment of neurodegeneration-related proteins among βHB targets and the clearance of these targets from mouse brain, likely via βHB-induced autophagy. Overall, these data indicate a new metabolically regulated mechanism of proteostasis relevant to aging and AD.
Collapse
Affiliation(s)
- S S Madhavan
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Roa Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - S Peralta
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Nomura
- Buck Institute for Research on Aging, Novato, CA, USA
| | - C D King
- Buck Institute for Research on Aging, Novato, CA, USA
| | - A Lin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Bhaumik
- Buck Institute for Research on Aging, Novato, CA, USA
| | - S Shah
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Blade
- Buck Institute for Research on Aging, Novato, CA, USA
| | - W Gray
- Buck Institute for Research on Aging, Novato, CA, USA
| | - M Chamoli
- Buck Institute for Research on Aging, Novato, CA, USA
| | - B Eap
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - O Panda
- Buck Institute for Research on Aging, Novato, CA, USA
| | - D Diaz
- Buck Institute for Research on Aging, Novato, CA, USA
| | - T Y Garcia
- Buck Institute for Research on Aging, Novato, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| | - B J Stubbs
- Buck Institute for Research on Aging, Novato, CA, USA
| | - G J Lithgow
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - E Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A R Chaudhuri
- Buck Institute for Research on Aging, Novato, CA, USA
| | - J C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Geriatrics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Burgos MI, Dassie SA, Fidelio GD. The effect of denaturants on protein thermal stability analyzed through a theoretical model considering multiple binding sites. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140920. [PMID: 37207817 DOI: 10.1016/j.bbapap.2023.140920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
A novel mathematical development applied to protein ligand binding thermodynamics is proposed, which allows the simulation, and therefore the analysis of the effects of multiple and independent binding sites to the Native and/or Unfolded protein conformations, with different binding constant values. Protein stability is affected when it binds to a small number of high affinity ligands or to a high number of low affinity ligands. Differential scanning calorimetry (DSC) measures released or absorbed energy of thermally induced structural transitions of biomolecules. This paper presents the general theoretical development for the analysis of thermograms of proteins obtained for n-ligands bound to the native protein and m-ligands bound to their unfolded form. In particular, the effect of ligands with low affinity and with a high number of binding sites (n and/or m > 50) is analyzed. If the interaction with the native form of the protein is the one that predominates, they are considered stabilizers and if the binding with the unfolded species predominates, it is expected a destabilizing effect. The formalism presented here can be adapted to fitting routines in order to simultaneously obtain the unfolding energy and ligand binding energy of the protein. The effect of guanidinium chloride on bovine serum albumin thermal stability, was successfully analyzed with the model considering low number of middle affinity binding sites to the native state and a high number of weak binding sites to the unfolded state.
Collapse
Affiliation(s)
- M Ines Burgos
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Sergio A Dassie
- Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| |
Collapse
|
37
|
Li S, Murakami D, Nagatoishi S, Liu Y, Tsumoto K, Katayama Y, Mori T. One-pot preparation of mannan-coated antigen nanoparticles using human serum albumin as a matrix for tolerance induction. J Colloid Interface Sci 2023; 649:955-965. [PMID: 37392685 DOI: 10.1016/j.jcis.2023.06.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
Nanoparticles (NPs) for allergen immunotherapy have garnered attention for their high efficiency and safety compared with naked antigen proteins. In this work, we present mannan-coated protein NPs, incorporating antigen proteins for antigen-specific tolerance induction. The heat-induced formation of protein NPs is a one-pot preparation method and can be applied to various proteins. Here, the NPs were formed spontaneously via heat denaturation of three component proteins: an antigen protein, human serum albumin (HSA) as a matrix protein, and mannoprotein (MAN) as a targeting ligand for dendritic cells (DCs). HSA is non-immunogenic, therefore suitable as a matrix protein, while MAN coats the surface of the NP. We applied this method to various antigen proteins and found that the self-disperse after heat denaturation was a requirement for incorporation into the NPs. We also established that the NPs could target DCs, and the incorporation of rapamycin into the NPs enhanced the induction of a tolerogenic phenotype of DC. The MAN coating provided steric hindrance and heat denaturation destroyed recognition structures, successfully preventing anti-antigen antibody binding, indicating the NPs may avoid anaphylaxis induction. The MAN-coated NPs proposed here, prepared by a simple method, have the potential for effective and safe allergies treatment for various antigens.
Collapse
Affiliation(s)
- Shunyi Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daisuke Murakami
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yiwei Liu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 819-0395, Japan; International Research Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan; Centre for Advanced Medicine Innovation, Kyushu University, Fukuoka 812-8582, Japan; Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan, ROC.
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan; Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan; Center for Future Chemistry, Kyushu University, 819-0395, Japan.
| |
Collapse
|
38
|
Jin C, Patel A, Peters J, Hodawadekar S, Kalyanaraman R. Quantum Cascade Laser Based Infrared Spectroscopy: A New Paradigm for Protein Secondary Structure Measurement. Pharm Res 2023; 40:1507-1517. [PMID: 36329374 DOI: 10.1007/s11095-022-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Mid-infrared spectroscopy is one of the major analytical techniques employed for measurements of protein structure in solution. Traditional Fourier Transform-Infrared (FT-IR) measurement is limited by its blackbody light source that is inherently spatially incoherent and has low optical power output. This limitation is pronounced when working with proteins in aqueous solutions. Strong absorbance of water in protein amide I region 1600-1700 cm-1 restricts light path length to <10 μm and imposes significant experimental challenges in sample and flow cell handling. Emerging laser spectroscopic techniques use high-power coherent laser as light source that overcomes the limitation in FT-IR measurement. In this study, we employed an innovative infrared spectrometer that uses quantum cascade laser (QCL) as light source. Continuous infrared radiation from this laser source can be swiftly swept within the amide I region (1600-1700 cm-1) and amide II region (1500-1600 cm-1), which makes this technique ideal for protein secondary structure study. Protein solutions as low as 0.5 mg/mL were measured rapidly without any sample preparation. Infrared spectra of model proteins were thus collected, and a chemometric model based on partial least squares regression was developed to quantify α-helix and β-strand motifs in protein secondary structure. The model was applied to measurement of the native secondary structure of commercial therapeutic proteins and bovine serum albumin (BSA) and in thermal degradation studies.
Collapse
Affiliation(s)
- Chunguang Jin
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA.
| | - Amrish Patel
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | - Jeremy Peters
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA
| | | | - Ravi Kalyanaraman
- Global Quality Analytical Science & Technology, Bristol Myers Squibb, New Brunswick, New Jersey, 08901, USA.
| |
Collapse
|
39
|
Friedrichs J, Helbig R, Hilsenbeck J, Pandey PR, Sommer JU, Renner LD, Pompe T, Werner C. Entropic repulsion of cholesterol-containing layers counteracts bioadhesion. Nature 2023; 618:733-739. [PMID: 37344647 DOI: 10.1038/s41586-023-06033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2023] [Indexed: 06/23/2023]
Abstract
Control of adhesion is a striking feature of living matter that is of particular interest regarding technological translation1-3. We discovered that entropic repulsion caused by interfacial orientational fluctuations of cholesterol layers restricts protein adsorption and bacterial adhesion. Moreover, we found that intrinsically adhesive wax ester layers become similarly antibioadhesive when containing small quantities (under 10 wt%) of cholesterol. Wetting, adsorption and adhesion experiments, as well as atomistic simulations, showed that repulsive characteristics depend on the specific molecular structure of cholesterol that encodes a finely balanced fluctuating reorientation at the interface of unconstrained supramolecular assemblies: layers of cholesterol analogues differing only in minute molecular variations showed markedly different interfacial mobility and no antiadhesive effects. Also, orientationally fixed cholesterol layers did not resist bioadhesion. Our insights provide a conceptually new physicochemical perspective on biointerfaces and may guide future material design in regulation of adhesion.
Collapse
Affiliation(s)
- Jens Friedrichs
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Ralf Helbig
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Julia Hilsenbeck
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Prithvi Raj Pandey
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Jens-Uwe Sommer
- Institute of Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lars David Renner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Tilo Pompe
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Carsten Werner
- Institute of Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
- Cluster of Excellence Physics of Life and Center of Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
40
|
Parau M, Pullen J, Bracewell DG. Depth filter material process interaction in the harvest of mammalian cells. Biotechnol Prog 2023; 39:e3329. [PMID: 36775837 PMCID: PMC10909467 DOI: 10.1002/btpr.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
Upstream advances have led to increased mAb titers above 5 g/L in 14-day fed-batch cultures. This is accompanied by higher cell densities and process-related impurities such as DNA and Host Cell Protein (HCP), which have caused challenges for downstream operations. Depth filtration remains a popular choice for harvesting CHO cell culture, and there is interest in utilizing these to remove process-related impurities at the harvest stage. Operation of the harvest stage has also been shown to affect the performance of the Protein A chromatography step. In addition, manufacturers are looking to move away from natural materials such as cellulose and Diatomaceous Earth (DE) for better filter consistency and security of supply. Therefore, there is an increased need for further understanding and knowledge of depth filtration. This study investigates the effect of depth filter material and loading on the Protein A resin lifetime with an industrially relevant high cell density feed material (40 million cells/ml). It focuses on the retention of process-related impurities such as DNA and HCP through breakthrough studies and a novel confocal microscopy method for imaging foulant in-situ. An increase in loading of the primary-synthetic filter by a third, led to earlier DNA breakthrough in the secondary filter, with DNA concentration at a throughput of 50 L/m2 being more than double. Confocal imaging of the depth filters showed that the foulant was pushed forward into the filter structure with higher loading. The additional two layers in the primary-synthetic filter led to better pressure profiles in both primary and secondary filters but did not help to retain HCP or DNA. Reduced filtrate clarity, as measured by OD600, was 1.6 fold lower in the final filtrate where a synthetic filter train was used. This was also associated with precipitation in the Protein A column feed. Confocal imaging of resin after 100 cycles showed that DNA build-up around the outside of the bead was associated with synthetic filter trains, leading to potential mass transfer problems.
Collapse
Affiliation(s)
- Maria Parau
- Department of Biochemical EngineeringUniversity College LondonLondonUK
| | - James Pullen
- Research and DevelopmentFUJIFILM Diosynth Biotechnologies (FDB)BillinghamUK
| | | |
Collapse
|
41
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
42
|
Murty R, Bera MK, Walton IM, Whetzel C, Prausnitz MR, Walton KS. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J Am Chem Soc 2023; 145:7323-7330. [PMID: 36961883 PMCID: PMC10080685 DOI: 10.1021/jacs.2c13525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ian M Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina Whetzel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Abstract
Amyloid fibrils may serve as building blocks for the preparation of novel hydrogel materials from abundant, low-cost, and biocompatible polypeptides. This work presents the formation of physically cross-linked, self-healing hydrogels based on bovine serum albumin at room temperature through a straightforward disulfide reduction step induced by tris (2-carboxyethyl) phosphine hydrochloride. The structure and surface charge of the amyloid-like fibrils is determined by the pH of the solution during self-assembly, giving rise to hydrogels with distinct physicochemical properties. The hydrogel surface can be readily functionalized with the extracellular matrix protein fibronectin and supports cell adhesion, spreading, and long-term culture. This study offers a simple, versatile, and inexpensive method to prepare amyloid-based albumin hydrogels with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Carolina Diaz
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)Facultad de Ciencias ExactasUNLP – CONICETCC16 Suc 4 (1900)La PlataBuenos Aires1900Argentina
| | - Dimitris Missirlis
- Department of Cellular BiophysicsMax‐Planck‐Institute for Medical ResearchJahnstr. 2969120HeidelbergGermany
| |
Collapse
|
44
|
Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin. Polymers (Basel) 2023; 15:polym15040837. [PMID: 36850120 PMCID: PMC9967970 DOI: 10.3390/polym15040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
This study explores the potential of using nanocellulose extracted from oil palm empty fruit bunch (OPEFB) as a biomaterial ink for 3D printing. The research focuses on using nanocellulose hydrogels for the controlled uptake and release of proteins, with the specific protein solution being Bovine Serum Albumin (BSA). To provide a suitable material for the bioprinting process, the study examines the characteristics and properties of the printed hydrogels through various analyses, such as morphology, functional group, crystallinity, and compression test. Several parameters, such as initial concentration, temperature, and the presence of calcium chloride as an additional crosslinker, affect the protein uptake and release capabilities of the hydrogel. The study is important for biomedicine as it explores the behavior of protein uptake and release using nanocellulose and 3D printing and can serve as a preliminary study for using hydrogels in biological materials or living cells.
Collapse
|
45
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Kumar Verma V, Srivastava P, Sabbarwal S, Singh M, Koch B, Kumar M. White Light Emitting Gadolinium Oxide Nanoclusters for
In‐vitro
Bio‐imaging. ChemistrySelect 2022. [DOI: 10.1002/slct.202202335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vivek Kumar Verma
- Nano2Micro Material Design Lab IIT (BHU) Varanasi UP India
- School of Biomedical Engineering IIT (BHU) Varanasi 221005, UP India
| | - Prachi Srivastava
- Nano2Micro Material Design Lab IIT (BHU) Varanasi UP India
- School of Biomedical Engineering IIT (BHU) Varanasi 221005, UP India
| | - Shivesh Sabbarwal
- Nano2Micro Material Design Lab IIT (BHU) Varanasi UP India
- Department of Chemical Engineering & Technology IIT (BHU) Varanasi, 221005, UP India
| | - Mamata Singh
- Department of Zoology Banaras Hindu University Varanasi UP - 221005 India
| | - Biplob Koch
- Department of Zoology Banaras Hindu University Varanasi UP - 221005 India
| | - Manoj Kumar
- Nano2Micro Material Design Lab IIT (BHU) Varanasi UP India
- Department of Chemical Engineering & Technology IIT (BHU) Varanasi, 221005, UP India
| |
Collapse
|
47
|
Chua A, Tran TT, Pu S, Park JW, Hadinoto K. Lyophilization of Curcumin-Albumin Nanoplex with Sucrose as Cryoprotectant: Aqueous Reconstitution, Dissolution, Kinetic Solubility, and Physicochemical Stability. Int J Mol Sci 2022; 23:11731. [PMID: 36233033 PMCID: PMC9569908 DOI: 10.3390/ijms231911731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022] Open
Abstract
An amorphous curcumin (CUR) and bovine serum albumin (BSA) nanoparticle complex (nanoplex) was previously developed as a promising anticancer nanotherapy. The CUR-BSA nanoplex had been characterized in its aqueous suspension form. The present work developed a dry-powder form of the CUR-BSA nanoplex by lyophilization using sucrose as a cryoprotectant. The cryoprotective activity of sucrose was examined at sucrose mass fractions of 33.33, 50.00, and 66.66% by evaluating the lyophilized nanoplex's (1) aqueous reconstitution and (2) CUR dissolution and kinetic solubility. The physicochemical stabilizing effects of sucrose upon the nanoplex's 30-day exposures to 40 °C and 75% relative humidity were examined from (i) aqueous reconstitution, (ii) CUR dissolution, (iii) CUR and BSA payloads, (iv) amorphous form stability, and (v) BSA's structural integrity. The good cryoprotective activity of sucrose was evidenced by the preserved BSA's integrity and good aqueous reconstitution, resulting in a fast CUR dissolution rate and a high kinetic solubility (≈5-9× thermodynamic solubility), similar to the nanoplex suspension. While the aqueous reconstitution, CUR dissolution, and amorphous form were minimally affected by the elevated heat and humidity exposures, the treated nanoplex exhibited a lower BSA payload (≈7-26% loss) and increased protein aggregation postexposure. The adverse effects on the BSA payload and aggregation were minimized at higher sucrose mass fractions.
Collapse
Affiliation(s)
- Angeline Chua
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - The-Thien Tran
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Siyu Pu
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Jin-Won Park
- School of Chemical and Biomolecular Engineering, Seoul University of Science and Technology, Seoul 01811, Korea
| | - Kunn Hadinoto
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| |
Collapse
|
48
|
A mid-infrared lab-on-a-chip for dynamic reaction monitoring. Nat Commun 2022; 13:4753. [PMID: 35963870 PMCID: PMC9376098 DOI: 10.1038/s41467-022-32417-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Mid-infrared spectroscopy is a sensitive and selective technique for probing molecules in the gas or liquid phase. Investigating chemical reactions in bio-medical applications such as drug production is recently gaining particular interest. However, monitoring dynamic processes in liquids is commonly limited to bulky systems and thus requires time-consuming offline analytics. In this work, we show a next-generation, fully-integrated and robust chip-scale sensor for online measurements of molecule dynamics in a liquid solution. Our fingertip-sized device utilizes quantum cascade technology, combining the emitter, sensing section and detector on a single chip. This enables real-time measurements probing only microliter amounts of analyte in an in situ configuration. We demonstrate time-resolved device operation by analyzing temperature-induced conformational changes of the model protein bovine serum albumin in heavy water. Quantitative measurements reveal excellent performance characteristics in terms of sensor linearity, wide coverage of concentrations, extending from 0.075 mg ml-1 to 92 mg ml-1 and a 55-times higher absorbance than state-of-the-art bulky and offline reference systems.
Collapse
|
49
|
Berger JE, Teixeira SCM, Reed K, Razinkov VI, Sloey CJ, Qi W, Roberts CJ. High-Pressure, Low-Temperature Induced Unfolding and Aggregation of Monoclonal Antibodies: Role of the Fc and Fab Fragments. J Phys Chem B 2022; 126:4431-4441. [PMID: 35675067 DOI: 10.1021/acs.jpcb.1c10528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of high pressure and low temperature on the stability of two different monoclonal antibodies (MAbs) were examined in this work. Fluorescence and small-angle neutron scattering were used to monitor the in situ effects of pressure to infer shifts in tertiary structure and characterize aggregation prone intermediates. Partial unfolding was observed for both MAbs, to different extents, under a range of pressure/temperature conditions. Fourier transform infrared spectroscopy was also used to monitor ex situ changes in secondary structure. Preservation of native secondary structure after incubation at elevated pressures and subzero ° C temperatures was independent of the extent of tertiary unfolding and reversibility. Several combinations of pressure and temperature were also used to discern the respective contributions of the isolated Ab fragments (Fab and Fc) to unfolding and aggregation. The fragments for each antibody showed significantly different partial unfolding profiles and reversibility. There was not a simple correlation between stability of the full MAb and either the Fc or Fab fragment stabilities across all cases, demonstrating a complex relationship to full MAb unfolding and aggregation behavior. That notwithstanding, the combined use of spectroscopic and scattering techniques provides insights into MAb conformational stability and hysteresis in high-pressure, low-temperature environments.
Collapse
Affiliation(s)
- Jordan E Berger
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Susana C M Teixeira
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kaelan Reed
- PharmBIO Products, W. L. Gore & Associates, Elkton, Maryland 21921, United States
| | - Vladimir I Razinkov
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Sloey
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Wei Qi
- Drug Product Technologies, Amgen, Thousand Oaks, California 91320, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
50
|
Tomioka Y, Nakagawa M, Sakuma C, Nagatoishi S, Tsumoto K, Arakawa T, Akuta T. Ladder observation of bovine serum albumin by high resolution agarose native gel electrophoresis. Int J Biol Macromol 2022; 215:512-520. [PMID: 35752339 DOI: 10.1016/j.ijbiomac.2022.06.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
A commercially available bovine serum albumin (BSA) was examined by agarose native gel electrophoresis using two different agarose sources, UltraPure and MetaPhor agarose. While UltraPure agarose up to 5 % showed no clear separation of BSA oligomers, MetaPhor agarose clearly demonstrated oligomer bands above 4 %, indicating that the latter agarose has greater molecular sieving effects and is hence characterized to have high resolution for size differences, as probed by a greater slope of Ferguson plot. Physical properties are different between two agaroses. In general, UltraPure agarose has physical strength, while MetaPhor agarose is considerably fragile, but MetaPhor agarose solution is less viscous so that even 10 % gel can be made. Cause of oligomers was shown to be not associated with inter-chain disulfide bonds, but is due to association of native or native-like molecules.
Collapse
Affiliation(s)
- Yui Tomioka
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Masataka Nakagawa
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Chiaki Sakuma
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| |
Collapse
|