1
|
Madzokere ET, Freppel W, Pyke AT, Lynch SE, Mee PT, Doggett SL, Haniotis J, Weir R, Caly L, Druce J, Robson JM, van den Hurk AF, Edwards R, Herrero LJ. Ross River virus genomes from Australia and the Pacific display coincidental and antagonistic codon usage patterns with common vertebrate hosts and a principal vector. Virology 2025; 608:110530. [PMID: 40306107 DOI: 10.1016/j.virol.2025.110530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Around 4500 Ross River virus (RRV) human cases are reported in Australia annually. To date, there is no registered nor licenced vaccine to protect against RRV disease. Identifying and substituting preferred with less-preferred codons and dinucleotides is a recognised strategy to attenuate viruses and may prove useful to vaccine development efforts for RRV and other related viruses. Here, we used bioinformatic approaches aimed at assessing evidence of codon usage and dinucleotide bias in 55 RRV whole genomes sampled from humans (Homo sapiens), macropods (Notomacropus agilis), and the Aedes vigilax mosquito. Our results indicate that RRV undergoes positive and negative codon usage bias with natural selection as the major force driving RRV codon usage patterns. RRV displays a bias towards codons with an A or C at the 3rd position while H. sapiens displays a G or C and N. agilis and Ae. vigilax both show bias towards codons with an A or U at the same 3rd position. RRVs codon usage patterns are coincidental to those displayed by common vertebrate hosts and antagonistic to patterns of Ae. vigilax. The coincidental bias identified suggests vertebrate host gene expression greatly influences RRV evolution. In addition, we show that the UG dinucleotides in RRV are overrepresented at all three codon sites, while CA dinucleotides are only overrepresented at codon sites 1-2 and 2-3. These over and under-representations can be exploited to develop attenuated RRV RNA vaccines. The approach utilised here could also be used to develop vaccines for other alphaviruses of global importance.
Collapse
Affiliation(s)
- Eugene T Madzokere
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Wesley Freppel
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| | - Alyssa T Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Stacey E Lynch
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, Australia.
| | - Stephen L Doggett
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - John Haniotis
- Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin, Northern Territory, Australia.
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Jennifer M Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Brisbane, Queensland, Australia.
| | - Robert Edwards
- College of Science and Engineering, Bedford Park, Adelaide, South Australia, Australia.
| | - Lara J Herrero
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.
| |
Collapse
|
2
|
Tan X, Zhou W, Jing S, Shen W, Lu B. Decoding codon usage in human papillomavirus type 59. Virus Genes 2025; 61:313-323. [PMID: 40038214 PMCID: PMC12052745 DOI: 10.1007/s11262-025-02148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Human Papillomavirus Type 59 (HPV-59) is a high-risk subtype linked to cervical and other cancers. However, its codon usage patterns remain underexplored despite their importance in understanding viral behavior and vaccine optimization. This study reveals a mild codon usage bias in HPV-59, with a notable preference for A/T-ending codons and 29 favored codons, primarily ending in A or T. Additionally, CpG dinucleotides were significantly underrepresented, potentially aiding immune evasion. Analyses using the Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicate that both mutational pressure and natural selection shape codon usage, with natural selection playing a dominant role. The virus's codon usage moderately aligns with human translational machinery, as shown by the Isoacceptor tRNA pool, Codon Adaptation Index, and Relative Codon Deoptimization Index, reflecting an evolutionary balance between protein synthesis efficiency and host compatibility. These findings provide valuable insights into HPV-59 biology, offering guidance for developing optimized vaccines.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Wenyi Zhou
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Shunyou Jing
- Department of Clinical Laboratory, Sichuan Provincial Women's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, 1882 South Central Road, Jiaxing, 314000, China.
| |
Collapse
|
3
|
Rahman SU, Hu Y, Rehman HU, Alrashed MM, Attia KA, Ullah U, Liang H. Analysis of synonymous codon usage bias of Lassa virus. Virus Res 2025; 353:199528. [PMID: 39832535 PMCID: PMC11815952 DOI: 10.1016/j.virusres.2025.199528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Lassa virus genome consists of two single-stranded, negative-sense RNA segments that lie in the genus Arenavirus. The disease associated with the Lassa virus is distributed all over the world, with approximately 3,000,000-5,000,000 infections diagnosed annually in West Africa. It shows high health risks to the human being. Previous research used the evolutionary time scale and adaptive evolution to describe the Lassa virus population pattern. However, it is still unclear how the Lassa virus takes advantage of synonymous codons. In this study, we analyzed the codon usage bias in 162 Lassa virus strains by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results disclosed that LASV strains are rich in A/T. The average ENC value indicated a low codon usage bias in LASVs. The ENC-plot, neutrality plot and parity rule 2 plot demonstrated that, besides mutational pressure, other factors like natural selection also contributed to codon usage bias. This study is significant because it described the pattern of codon usage in the genomes of the Lassa viruses and provided the information needed for a fundamental evolutionary study of them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China; Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Yikui Hu
- Department of Neurology, Wuhan Wuchang Hospital, Wuhan, PR China
| | - Hassan Ur Rehman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - May M Alrashed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
| | - Ubaid Ullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa, 27200, Pakistan
| | - Huiying Liang
- Medical Big Data Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
4
|
Kumar U, Singhal S, Khan AA, Alanazi AM, Gurjar P, Khandia R. Insights into genetic architecture and disease associations of genes associated with different human blood group systems using codon usage bias. J Biomol Struct Dyn 2025:1-21. [PMID: 39988946 DOI: 10.1080/07391102.2025.2466710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 02/25/2025]
Abstract
The differential use of synonymous codons of an amino acid is an imperative evolutionary phenomenon, termed codon usage bias, that functions across various levels of organisms. It is accustomed to providing an understanding of a gene's differential architecture driven by functional regulation of gene expression. Numerous synonymous mutations are linked to various diseases, demonstrating that silent mutations can be deleterious. We employed bioinformatics methods to examine codon usage trends in 263 coding sequences of 44 blood group systems. The blood group systems were categorized into two groups based on association with a sort of neurodegenerative disorder. We performed a CUB study to investigate how multiple components, such as selection, mutation and biased nucleotide composition are accountable for the evolution of the transcripts of the blood group antigens. The compositional analysis implicated blood group genes were GC-rich. RSCU analysis showed G/C-ending codon choice among synonymous codons. Also, a distinct codon choice was found in both blood groups for serine and proline. Moreover, the leucine-coding CTG codon was found the most overrepresented in all the genes, indicating selectional pressure substantially impacts overall codon usage. This was also supported by biplot analysis. Additionally, CpC and GpG overrepresentation is in concordance with the results concerning neurodegenerative disorders where CpC has been attributed to non-CpG methylation and linked to several neurodegenerative ailments. Both the Z-test analysis and rare codon choice showed a substantial difference in codon usage by the genes of both groups.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
5
|
Branda F, Yon DK, Albanese M, Binetti E, Giovanetti M, Ciccozzi A, Ciccozzi M, Scarpa F, Ceccarelli G. Equine Influenza: Epidemiology, Pathogenesis, and Strategies for Prevention and Control. Viruses 2025; 17:302. [PMID: 40143233 PMCID: PMC11946173 DOI: 10.3390/v17030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Equine influenza (EI) is a highly contagious respiratory disease caused by the equine influenza virus (EIV), posing a significant threat to equine populations worldwide. EIV exhibits considerable antigenic variability due to its segmented genome, complicating long-term disease control efforts. Although infections are rarely fatal, EIV's high transmissibility results in widespread outbreaks, leading to substantial morbidity and considerable economic impacts on veterinary care, quarantine, and equestrian activities. The H3N8 subtype has undergone significant antigenic evolution, resulting in the emergence of distinct lineages, including Eurasian and American, with the Florida sublineage being particularly prevalent. Continuous genetic surveillance and regular updates to vaccine formulations are necessary to address antigenic drift and maintain vaccination efficacy. Additionally, rare cross-species transmissions have raised concerns regarding the zoonotic potential of EIV. This review provides a comprehensive overview of the epidemiology, pathogenesis, and prevention of EI, emphasizing vaccination strategies and addressing the socio-economic consequences of the disease in regions where the equine industry is vital.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea;
- Department of Regulatory Science, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Pediatrics, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mattia Albanese
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Erica Binetti
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Hospital of Tropical Diseases, Mahidol University, Bangkok 10400, Thailand
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Climate Amplified Diseases and Epidemics (CLIMADE), Belo Horizonte 30190-002, MG, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (F.S.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (F.S.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, 00161 Rome, Italy; (M.A.); (E.B.)
- Azienda Ospedaliero Universitaria Umberto I, 00185 Rome, Italy
- Migrant and Global Health Research Organization—Mi-Hero, 00185 Rome, Italy
| |
Collapse
|
6
|
Tan X, Bao S, Lu X, Lu B, Shen W, Jiang C. Comprehensive Analysis of Codon Usage Bias in Human Papillomavirus Type 51. Pol J Microbiol 2024; 73:455-465. [PMID: 39465910 PMCID: PMC11639286 DOI: 10.33073/pjm-2024-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/03/2024] [Indexed: 10/29/2024] Open
Abstract
Human papillomavirus type 51 (HPV-51) is associated with various cancers, including cervical cancer. Examining the codon usage bias of the organism can offer valuable insights into its evolutionary patterns and its relationship with the host. This study comprehensively analyzed codon usage bias in HPV-51 by examining 64 complete genome sequences sourced from the NCBI GenBank database. Our analysis revealed no noteworthy preference for codon usage in HPV-51 overall. However, there was a noticeable bias towards A/T-ending codons, accompanied by GC3s below 32%. Dinucleotide frequency analysis revealed reduced frequencies for ApA, CpG, and TpC dinucleotides, while CpA and TpG dinucleotides were more frequent than others. Relative Synonymous Codon Usage analysis revealed 30 favored codons, primarily concluding with A/T nucleotides. Further analysis using Parity Rule 2, Effective Number of Codons plot, and neutrality plot indicated a balance between mutational pressure and natural selection, with natural selection being the primary force shaping codon usage bias. The Isoacceptor tRNA Pool analysis indicates that HPV-51 has a higher translation efficiency within the human cellular translational system. Moreover, the Codon Adaptation Index and Relative Codon Deoptimization Index analyses suggested a moderate adaptation of HPV-51 to human codon preferences. Our discoveries offer valuable perspectives on how HPV-51 evolves and uses genetic codes, contributing to a deeper comprehension of its endurance and disease-causing potential.
Collapse
Affiliation(s)
- Xiaochun Tan
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Siwen Bao
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaolei Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Binbin Lu
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weifeng Shen
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chaoyue Jiang
- Department of Laboratory Medicine, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
7
|
Castellano LA, McNamara RJ, Pallarés HM, Gamarnik AV, Alvarez DE, Bazzini AA. Dengue virus preferentially uses human and mosquito non-optimal codons. Mol Syst Biol 2024; 20:1085-1108. [PMID: 39039212 PMCID: PMC11450187 DOI: 10.1038/s44320-024-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Codon optimality refers to the effect that codon composition has on messenger RNA (mRNA) stability and translation level and implies that synonymous codons are not silent from a regulatory point of view. Here, we investigated the adaptation of virus genomes to the host optimality code using mosquito-borne dengue virus (DENV) as a model. We demonstrated that codon optimality exists in mosquito cells and showed that DENV preferentially uses nonoptimal (destabilizing) codons and avoids codons that are defined as optimal (stabilizing) in either human or mosquito cells. Human genes enriched in the codons preferentially and frequently used by DENV are upregulated during infection, and so is the tRNA decoding the nonoptimal and DENV preferentially used codon for arginine. We found that adaptation during single-host passaging in human or mosquito cells results in the selection of synonymous mutations towards DENV's preferred nonoptimal codons that increase virus fitness. Finally, our analyses revealed that hundreds of viruses preferentially use nonoptimal codons, with those infecting a single host displaying an even stronger bias, suggesting that host-pathogen interaction shapes virus-synonymous codon choice.
Collapse
Affiliation(s)
- Luciana A Castellano
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Ryan J McNamara
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Horacio M Pallarés
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, San Martín B1650, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
8
|
Khandia R, Garg R, Pandey MK, Khan AA, Dhanda SK, Malik A, Gurjar P. Determination of codon pattern and evolutionary forces acting on genes linked to inflammatory bowel disease. Int J Biol Macromol 2024; 278:134480. [PMID: 39116987 DOI: 10.1016/j.ijbiomac.2024.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract. The present study attempted to understand the codon usage preferences in genes associated with IBD progression. Compositional analysis, codon usage bias (CUB), Relative synonymous codon usage (RSCU), RNA structure, and expression analysis were performed to obtain a comprehensive picture of codon usage in IBD genes. Compositional analysis of 62 IBD-associated genes revealed that G and T are the most and least abundant nucleotides, respectively. ApG, CpA, and TpG dinucleotides were overrepresented or randomly used, while ApC, CpG, GpT, and TpA dinucleotides were either underrepresented or randomly used in genes related to IBD. The codons influencing the codon usage the most in IBD genes were CGC and AGG. A comparison of codon usage between IBD, and pancreatitis (non-IBD inflammatory disease) indicated that only codon CTG codon usage was significantly different between IBD and pancreatitis. At the same time, there were codons ATA, ACA, CGT, CAA, GTA, CCT, ATT, GCT, CGG, TTG, and CAG for whom codon usage was significantly different for IBD and housekeeping gene sets. The results suggest similar codon usage in at least two inflammatory disorders, IBD and pancreatitis. The analysis helps understand the codon biology, factors affecting gene expression of IBD-associated genes, and the evolution of these genes. The study helps reveal the molecular patterns associated with IBD.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, MP, India.
| | - Rajkumar Garg
- Department of Biosciences, Barkatullah University, Bhopal 462026, MP, India
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal 462020, MP, India.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
9
|
Li L, Li X, Liu Y, Li J, Zhen X, Huang Y, Ye J, Fan L. Comparative analysis of the complete mitogenomes of Camellia sinensis var. sinensis and C. sinensis var. assamica provide insights into evolution and phylogeny relationship. FRONTIERS IN PLANT SCIENCE 2024; 15:1396389. [PMID: 39239196 PMCID: PMC11374768 DOI: 10.3389/fpls.2024.1396389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Introduction Among cultivated tea plants (Camellia sinensis), only four mitogenomes for C. sinensis var. assamica (CSA) have been reported so far but none for C. sinensis var. sinensis (CSS). Here, two mitogenomes of CSS (CSSDHP and CSSRG) have been sequenced and assembled. Methods Using a combination of Illumina and Nanopore data for the first time. Comparison between CSS and CSA mitogenomes revealed a huge heterogeneity. Results The number of the repetitive sequences was proportional to the mitogenome size and the repetitive sequences dominated the intracellular gene transfer segments (accounting for 88.7%- 92.8% of the total length). Predictive RNA editing analysis revealed that there might be significant editing in NADH dehydrogenase subunit transcripts. Codon preference analysis showed a tendency to favor A/T bases and T was used more frequently at the third base of the codon. ENc plots analysis showed that the natural selection play an important role in shaping the codon usage bias, and Ka/Ks ratios analysis indicated Nad1 and Sdh3 genes may have undergone positive selection. Further, phylogenetic analysis shows that six C. sinensis clustered together, with the CSA and CSS forming two distinct branches, suggesting two different evolutionary pathway. Discussion Altogether, this investigation provided an insight into evolution and phylogeny relationship of C. sinensis mitogenome, thereby enhancing comprehension of the evolutionary patterns within C. sinensis species.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xiangru Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yun Liu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Junda Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyun Zhen
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yu Huang
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Jianghua Ye
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| |
Collapse
|
10
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
11
|
Li Y, Arcos S, Sabsay KR, te Velthuis AJW, Lauring AS. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. J Virol 2023; 97:e0132923. [PMID: 37882522 PMCID: PMC10688322 DOI: 10.1128/jvi.01329-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The influenza virus polymerase is important for adaptation to new hosts and, as a determinant of mutation rate, for the process of adaptation itself. We performed a deep mutational scan of the polymerase basic 1 (PB1) protein to gain insights into the structural and functional constraints on the influenza RNA-dependent RNA polymerase. We find that PB1 is highly constrained at specific sites that are only moderately predicted by the global structure or larger domain. We identified a number of beneficial mutations, many of which have been shown to be functionally important or observed in influenza virus' natural evolution. Overall, our atlas of PB1 mutations and their fitness impacts serves as an important resource for future studies of influenza replication and evolution.
Collapse
Affiliation(s)
- Yuan Li
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Arcos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly R. Sabsay
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, USA
| | | | - Adam S. Lauring
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Wang W, Zhou L, Ge X, Han J, Guo X, Zhang Y, Yang H. Analysis of codon usage patterns of porcine enteric alphacoronavirus and its host adaptability. Virology 2023; 587:109879. [PMID: 37677987 DOI: 10.1016/j.virol.2023.109879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Porcine enteric alphacoronavirus (PEAV) is a newly emerging swine enteropathogen that poses a threat to the swine industry. To understand the PEAV genome evolution, we performed a comprehensive analysis of the codon usage patterns in fifty-nine PEAV strains currently available. Phylogenetic analysis showed that PEAV can be divided into six lineages. Effective number of codons analysis demonstrated that the PEAV genome exhibits a low codon usage bias (CUB). Nucleotide composition analysis indicated that the PEAV genome has the most abundant nucleotide U content, with GC content (39.37% ± 0.08%) much lower than AU content (60.63% ± 0.08%). Neutrality and effective number of codons plot analyses suggested that natural selection rather than mutation pressure dominates the CUB of PEAV. Host adaptation analysis revealed that PEAV fits the codon usage pattern of non-human primates, humans and mice better than that of pigs. Our data enriches information on PEAV evolution, host adaptability, and cross-species transmission.
Collapse
Affiliation(s)
- Wenlong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
13
|
Noor F, Ashfaq UA, Bakar A, Qasim M, Masoud MS, Alshammari A, Alharbi M, Riaz MS. Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Front Immunol 2023; 14:1131647. [PMID: 37492567 PMCID: PMC10364125 DOI: 10.3389/fimmu.2023.1131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
Chen L, Jiang W, Wu W, Zhang S, Cai J, Lv T, Xiang B, Lin Q, Liao M, Ding C, Ren T. Insights into the Epidemiology, Phylodynamics, and Evolutionary Changes of Lineage GI-7 Infectious Bronchitis Virus. Transbound Emerg Dis 2023; 2023:9520616. [PMID: 40303710 PMCID: PMC12016960 DOI: 10.1155/2023/9520616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 05/11/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis virus (IBV) is distributed worldwide and causes significant losses in the poultry industry. In recent decades, lineages GI-19 and GI-7 have become the most prevalent IBV strains in China. However, the molecular evolution and phylodynamics of the lineage GI-7 IBV strains remain largely unknown. In this study, we identified 19 IBV strains from clinical samples from January 2021 to June 2022 in China, including 12 strains of GI-19, 3 strains of GI-7, and 1 strain each of GI-1, GI-9, GI-13, and GI-28. These results indicated that lineages GI-19 and GI-7 IBVs are still the most prevalent IBVs in China. Here, we investigated the evolution and transmission dynamics of lineage GI-7 IBVs. Our results revealed that the Taiwan province might be the origin of lineage GI-7 IBVs and that South China plays an important role in the spread of IBV. Furthermore, we found low codon usage bias of the S1 gene in lineage GI-7 IBVs. This allowed IBV to replicate in the host during evolution as a result of reduced competition, mainly driven by natural selection and mutational pressure, where the role of natural selection is more prominent. Collectively, our results reveal the genetic diversity and evolutionary dynamics of lineage GI-7 IBVs, which could assist in the prevention and control of viral infection.
Collapse
Affiliation(s)
- Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weiwei Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Siyuan Zhang
- Guangzhou South China Biological Medicine Co., Ltd., Guangzhou 510642, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ting Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ming Liao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
15
|
Discovery and comparative genomic analysis of a novel equine anellovirus, representing the first complete Mutorquevirus genome. Sci Rep 2023; 13:3703. [PMID: 36878942 PMCID: PMC9988894 DOI: 10.1038/s41598-023-30875-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The complete genome of a novel torque teno virus species (Torque teno equus virus 2 (TTEqV2) isolate Alberta/2018) was obtained by high-throughput sequencing (HTS) of nucleic acid extracted from the lung and liver tissue of a Quarter Horse gelding that died of nonsuppurative encephalitis in Alberta, Canada. The 2805 nucleotide circular genome is the first complete genome from the Mutorquevirus genus and has been approved as a new species by the International Committee on Taxonomy of Viruses. The genome contains several characteristic features of torque teno virus (TTV) genomes, including an ORF1 encoding a putative 631 aa capsid protein with an arginine-rich N-terminus, several rolling circle replication associated amino acid motifs, and a downstream polyadenylation signal. A smaller overlapping ORF2 encodes a protein with an amino acid motif (WX7HX3CXCX5H) which, in general, is highly conserved in TTVs and anelloviruses. The UTR contains two GC-rich tracts, two highly conserved 15 nucleotide sequences, and what appears to be an atypical TATA-box sequence also observed in two other TTV genera. Codon usage analysis of TTEqV2 and 11 other selected anelloviruses from five host species revealed a bias toward adenine ending (A3) codons in the anelloviruses, while in contrast, A3 codons were observed at a low frequency in horse and the four other associated host species examined. Phylogenetic analysis of TTV ORF1 sequences available to date shows TTEqV2 clusters with the only other currently reported member of the Mutorquevirus genus, Torque teno equus virus 1 (TTEqV1, KR902501). Genome-wide pairwise alignment of TTEqV2 and TTEqV1 shows the absence of several highly conserved TTV features within the UTR of TTEqV1, suggesting it is incomplete and TTEqV2 is the first complete genome within the genus Mutorquevirus.
Collapse
|
16
|
Rahman SU, Rehman HU, Rahman IU, Khan MA, Rahim F, Ali H, Chen D, Ma W. Evolution of codon usage in Taenia saginata genomes and its impact on the host. Front Vet Sci 2023; 9:1021440. [PMID: 36713873 PMCID: PMC9875090 DOI: 10.3389/fvets.2022.1021440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The beef tapeworm, also known as Taenia saginata, is a zoonotic tapeworm from the genus Taenia in the order Cyclophyllidea. Taenia saginata is a food-borne zoonotic parasite with a worldwide distribution. It poses serious health risks to the host and has a considerable negative socioeconomic impact. Previous studies have explained the population structure of T. saginata within the evolutionary time scale and adaptive evolution. However, it is still unknown how synonymous codons are used by T. saginata. In this study, we used 90 T. saginata strains, applying the codon usage bias (CUB). Both base content and relative synonymous codon usage (RSCU) analysis revealed that AT-ended codons were more frequently used in the genome of T. saginata. Further low CUB was observed from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection was involved in the structuring of CUB in T. saginata. Further analysis showed that T. saginata has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Generally, both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in T. saginata. This study is important because it characterized the codon usage pattern in the T. saginata genomes and provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Muazzam Ali Khan
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Fazli Rahim
- Department of Botany, Bacha Khan University, Charsadda, KP, Pakistan
| | - Hamid Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China,*Correspondence: Wentao Ma ✉
| |
Collapse
|
17
|
Rahman SU, Rehman HU, Rahman IU, Rauf A, Alshammari A, Alharbi M, Haq NU, Suleria HAR, Raza SHA. Analysis of codon usage bias of lumpy skin disease virus causing livestock infection. Front Vet Sci 2022; 9:1071097. [PMID: 36544551 PMCID: PMC9762553 DOI: 10.3389/fvets.2022.1071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
Lumpy skin disease virus (LSDV) causes lumpy skin disease (LSD) in livestock, which is a double-stranded DNA virus that belongs to the genus Capripoxvirus of the family Poxviridae. LSDV is an important poxvirus that has spread out far and wide to become distributed worldwide. It poses serious health risks to the host and causes considerable negative socioeconomic impact on farmers financially and on cattle by causing ruminant-related diseases. Previous studies explained the population structure of the LSDV within the evolutionary time scale and adaptive evolution. However, it is still unknown and remains enigmatic as to how synonymous codons are used by the LSDV. Here, we used 53 LSDV strains and applied the codon usage bias (CUB) analysis to them. Both the base content and the relative synonymous codon usage (RSCU) analysis revealed that the AT-ended codons were more frequently used in the genome of LSDV. Further low codon usage bias was calculated from the effective number of codons (ENC) value. The neutrality plot analysis suggested that the dominant factor of natural selection played a role in the structuring of CUB in LSDV. Additionally, the results from a comparative analysis suggested that the LSDV has adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts (Bos taurus and Homo sapiens). Both natural selection and mutational pressure have an impact on the codon usage patterns of the protein-coding genes in LSDV. This study is important because it has characterized the codon usage pattern in the LSDV genomes and has provided the necessary data for a basic evolutionary study on them.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hassan Ur Rehman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Inayat Ur Rahman
- Department of Botany, Khushal Khan Khattak University, Karak, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Noor ul Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Hafiz Ansar Rasul Suleria
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Melbourne, VIC, Australia
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Identification and analysis of putative tRNA genes in baculovirus genomes. Virus Res 2022; 322:198949. [PMID: 36181979 DOI: 10.1016/j.virusres.2022.198949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Transfer RNAs (tRNAs) genes are both coded for and arranged along some viral genomes representing the entire virosphere and seem to play different biological functions during infection, other than transferring the correct amino acid to a growing peptide chain. Baculovirus genome description and annotation has focused mostly on protein-coding genes, microRNA, and homologous regions. Here we carried out a large-scale in silico search for putative tRNA genes in baculovirus genomes. Ninety-six of 257 baculovirus genomes analyzed was found to contain at least one putative tRNA gene. We found great diversity in primary and secondary structure, in location within the genome, in intron presence and size, and in anti-codon identity. In some cases, genes of tRNA-containing genomes were found to have a bias for the codons specified by the tRNAs present in such genomes. Moreover, analysis revealed that most of the putative tRNA genes possessed conserved motifs for tRNA type 2 promoters, including the A-box and B-box motifs with few mismatches from the eukaryotic canonical motifs. From publicly available small RNA deep sequencing datasets of baculovirus-infected insect cells, we found evidence that a putative Autographa californica multiple nucleopolyhedrovirus Gln-tRNA gene was transcribed and modified with the addition of the non-templated 3'-CCA tail found at the end of all tRNAs. Further research is needed to determine the expression and functionality of these viral tRNAs.
Collapse
|
19
|
Jiang L, Zhang Q, Xiao S, Si F. Deep decoding of codon usage strategies and host adaption preferences of soybean mosaic virus. Int J Biol Macromol 2022; 222:803-817. [PMID: 36167098 DOI: 10.1016/j.ijbiomac.2022.09.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022]
Abstract
Soybean mosaic virus (SMV) has threatened the global yield of Leguminosae crops, but the mechanism of its infection, spread, and evolution remains unknown. A systemic analysis of 107 SMV strains was performed to explore the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SMV, which provides insight into its molecular evolution and elucidates its unknown host adaptation pattern. The overall nucleotide composition and correlation analysis revealed that the preferred synonymous codons mostly end with A/U. Clustering by RSCU value of each strain and phylogenetic tree analysis showed that the SMV isolates studied were divided into four clades, with a low overall extent of codon usage bias (CUB) in SMV. According to the ENC, PR2, neutrality plot, and correspondence analysis, natural selection of geographical diversity may play a critical role in the CUB. Higher adaptability was shown in Glycine with SMV and more pressure was received by clade III. These findings could not only provide valuable information about the overall codon usage pattern of the SMV genome, but could also aid in the clarification of the involved mechanisms that dominate the codon usage patterns and genetic evolution of the SMV genome.
Collapse
Affiliation(s)
- Li Jiang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shimin Xiao
- Shanwei Marine Industry Institute, Shanwei Institute of Technology, Shanwei 516600, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
20
|
Wang Q, Lyu X, Cheng J, Fu Y, Lin Y, Abdoulaye AH, Jiang D, Xie J. Codon Usage Provides Insights into the Adaptive Evolution of Mycoviruses in Their Associated Fungi Host. Int J Mol Sci 2022; 23:7441. [PMID: 35806445 PMCID: PMC9267111 DOI: 10.3390/ijms23137441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Codon usage bias (CUB) could reflect co-evolutionary changes between viruses and hosts in contrast to plant and animal viruses, and the systematic analysis of codon usage among the mycoviruses that infect plant pathogenic fungi is limited. We performed an extensive analysis of codon usage patterns among 98 characterized RNA mycoviruses from eight phytopathogenic fungi. The GC and GC3s contents of mycoviruses have a wide variation from 29.35% to 64.62% and 24.32% to 97.13%, respectively. Mycoviral CUB is weak, and natural selection plays a major role in the formation of mycoviral codon usage pattern. In this study, we demonstrated that the codon usage of mycoviruses is similar to that of some host genes, especially those involved in RNA biosynthetic process and transcription, suggesting that CUB is a potential evolutionary mechanism that mycoviruses adapt to in their hosts.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Assane Hamidou Abdoulaye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (X.L.); (J.C.); (A.H.A.); (D.J.)
- The Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
21
|
Abstract
INTRODUCTION Influenza virus is a major cause of seasonal epidemics and intermittent pandemics. Despite the current molecular biology and vaccine development, influenza virus infection is a significant burden. Vaccines are considered an essential countermeasure for effective control and prevention of influenza virus infection. Even though current influenza virus vaccines provide efficient protection against seasonal influenza outbreaks, the efficacy of these vaccines is not suitable due to antigenic changes of the viruses. AREAS COVERED This review focuses on different live-attenuated platforms for influenza virus vaccine development and proposes essential considerations for a rational universal influenza virus vaccine design. EXPERT OPINION Despite the recent efforts for universal influenza virus vaccines, there is a lack of broadly reactive antibodies' induction that can confer broad and long-lasting protection. Various strategies using live-attenuated influenza virus vaccines (LAIVs) are investigated to induce broadly reactive, durable, and cross-protective immune responses. LAIVs based on NS segment truncation prevent influenza virus infection and have shown to be effective vaccine candidates among other vaccine platforms. Although many approaches have been used for LAIVs generation, there is still a need to focus on the LAIVs development platforms to generate a universal influenza virus vaccine candidate.
Collapse
Affiliation(s)
- Subhan Ullah
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
22
|
He Z, Ding S, Guo J, Qin L, Xu X. Synonymous Codon Usage Analysis of Three Narcissus Potyviruses. Viruses 2022; 14:v14050846. [PMID: 35632588 PMCID: PMC9143068 DOI: 10.3390/v14050846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Narcissus degeneration virus (NDV), narcissus late season yellows virus (NLSYV) and narcissus yellow stripe virus (NYSV), which belong to the genus Potyvirus of the family Potyviridae, cause significant losses in the ornamental value and quality of narcissus. Several previous studies have explored the genetic diversity and evolution rate of narcissus viruses, but the analysis of the synonymous codons of the narcissus viruses is still unclear. Herein, the coat protein (CP) of three viruses is used to analyze the viruses’ phylogeny and codon usage pattern. Phylogenetic analysis showed that NYSV, NDV and NLSYV isolates were divided into five, three and five clusters, respectively, and these clusters seemed to reflect the geographic distribution. The effective number of codon (ENC) values indicated a weak codon usage bias in the CP coding region of the three narcissus viruses. ENC-plot and neutrality analysis showed that the codon usage bias of the three narcissus viruses is all mainly influenced by natural selection compared with the mutation pressure. The three narcissus viruses shared the same best optimal codon (CCA) and the synonymous codon prefers to use codons ending with A/U, compared to C/G. Our study shows the codon analysis of different viruses on the same host for the first time, which indicates the importance of the evolutionary-based design to control these viruses.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: or
| | - Shiwen Ding
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| | - Jiyuan Guo
- Department of Resources and Environment, Moutai Institute, Zunyi 564507, China;
| | - Lang Qin
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| | - Xiaowei Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (S.D.); (L.Q.); (X.X.)
| |
Collapse
|
23
|
Gaunt ER, Digard P. Compositional biases in RNA viruses: Causes, consequences and applications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1679. [PMID: 34155814 PMCID: PMC8420353 DOI: 10.1002/wrna.1679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2023]
Abstract
If each of the four nucleotides were represented equally in the genomes of viruses and the hosts they infect, each base would occur at a frequency of 25%. However, this is not observed in nature. Similarly, the order of nucleotides is not random (e.g., in the human genome, guanine follows cytosine at a frequency of ~0.0125, or a quarter the number of times predicted by random representation). Codon usage and codon order are also nonrandom. Furthermore, nucleotide and codon biases vary between species. Such biases have various drivers, including cellular proteins that recognize specific patterns in nucleic acids, that once triggered, induce mutations or invoke intrinsic or innate immune responses. In this review we examine the types of compositional biases identified in viral genomes and current understanding of the evolutionary mechanisms underpinning these trends. Finally, we consider the potential for large scale synonymous recoding strategies to engineer RNA virus vaccines, including those with pandemic potential, such as influenza A virus and Severe Acute Respiratory Syndrome Coronavirus Virus 2. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
- Eleanor R. Gaunt
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| | - Paul Digard
- Department of Infection and ImmunityThe Roslin Institute, The University of EdinburghEdinburghUK
| |
Collapse
|
24
|
Rahman SU, Abdullah M, Khan AW, Haq MIU, Haq NU, Aziz A, Tao S. A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 2022; 308:198646. [PMID: 34822954 DOI: 10.1016/j.virusres.2021.198646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/25/2022]
Abstract
Alongshan virus (ALSV) is an emerging tick-borne pathogen that infects humans, causing febrile disease. ALSV uses Ixodes Persulcatus ticks to infect humans with a wide range of signs, from asymptomatic to encephalitis-like syndrome. There is an increasing public health concern about the ALSV infection. To get insight into the impacts of viral relations with their hosts on viral ability, survival, and evasion from hosts immune systems remain unknown. The codon usage is a driving force in viral genome evolution; therefore, we enrolled 41 ALSV strains in codon usage analysis to elucidate the molecular evolutionary dynamics of ALSV. The results indicate that the overall codon usage among ALSV isolates is relatively similar and slightly biased. Base compositions for the cds were in order of G >A >C >U and in the third position of codons G3 >A3 >C3 >T3. The RSCU values revealed that the more frequently used codons were mostly GC ended. Different codon preferences in ALSV genes in relation to codon usage of H. sapiens and Ixodes Persulcatus genes were found. Neutrality plot was determined to reveal the superiority of natural selection over directional mutation pressure in causing CUB based on GC12 versus GC3 contents. The results of these studies suggest that the emergence of ALSV in China, Russia and Finland may also be reflected in ALSV codon usage. Altogether, the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of ALSV.
Collapse
Affiliation(s)
- Siddiq Ur Rahman
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan; College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| | - Muhammad Abdullah
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Wajid Khan
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Muhammad Inam Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Noor Ul Haq
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Abdul Aziz
- Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
25
|
Abstract
Horses are the third major mammalian species, along with humans and swine, long known to be subject to acute upper respiratory disease from influenza A virus infection. The viruses responsible are subtype H7N7, which is believed extinct, and H3N8, which circulates worldwide. The equine influenza lineages are clearly divergent from avian influenza lineages of the same subtypes. Their genetic evolution and potential for interspecies transmission, as well as clinical features and epidemiology, are discussed. Equine influenza is spread internationally and vaccination is central to control efforts. The current mechanism of international surveillance and virus strain recommendations for vaccines is described.
Collapse
Affiliation(s)
- Thomas M Chambers
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
26
|
Begum NS, Chakraborty S. Influencing elements of codon usage bias in Birnaviridae and its evolutionary analysis. Virus Res 2022; 310:198672. [PMID: 34986367 DOI: 10.1016/j.virusres.2021.198672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Birnaviridae is a family of double stranded (ds) RNA virus with non-enveloped virions and 2-segmented genomes. These viruses are known to cause diseases in many hosts. Virus of this family has affected the fish and poultry economy in a wide sector. Unevenness in the use of synonymous codons for a particular amino acid in the coding strand of DNA is known as codon usage bias (CUB). Codons that code the same amino acid are used with variable frequency in a variety of life forms. To understand the pattern of CUB in Birnaviridae, we carried out bioinformatics study to understand the properties of coding sequences of proteins. ENC value of Birnaviridae suggested low CUB. Nucleotide analysis revealed high GC content. Parameters such as RSCU values, nucleotide skewness, translational selection, parity plot and neutrality plot were studied to investigate the pattern of codon use and it was clear that both mutational pressure and natural selection contributed to the designing of CUB in Birnaviridae family. The neutrality plot revealed natural selection to dominate the structuring of CUB and hence remained the major CUB determinant in Birnaviridae. Outcome of our study exemplified the pattern of codon use in the Birnaviridae genomes and contributed the basic primary data for fundamental evolutionary research on them.
Collapse
Affiliation(s)
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
27
|
Nair RR, Mohan M, Rudramurthy GR, Vivekanandam R, Satheshkumar PS. Strategies and Patterns of Codon Bias in Molluscum Contagiosum Virus. Pathogens 2021; 10:1649. [PMID: 34959603 PMCID: PMC8703355 DOI: 10.3390/pathogens10121649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Trends associated with codon usage in molluscum contagiosum virus (MCV) and factors governing the evolution of codon usage have not been investigated so far. In this study, attempts were made to decipher the codon usage trends and discover the major evolutionary forces that influence the patterns of codon usage in MCV with special reference to sub-types 1 and 2, MCV-1 and MCV-2, respectively. Three hypotheses were tested: (1) codon usage patterns of MCV-1 and MCV-2 are identical; (2) SCUB (synonymous codon usage bias) patterns of MCV-1 and MCV-2 slightly deviate from that of human host to avoid affecting the fitness of host; and (3) translational selection predominantly shapes the SCUB of MCV-1 and MCV-2. Various codon usage indices viz. relative codon usage value, effective number of codons and codon adaptation index were calculated to infer the nature of codon usage. Correspondence analysis and correlation analysis were performed to assess the relative contribution of silent base contents and significance of codon usage indices in defining bias in codon usage. Among the tested hypotheses, only the second and third hypotheses were accepted.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Centre for Evolutionary Ecology, Aushmath Biosciences, Vadavalli Post, Coimbatore 641041, India
| | - Manikandan Mohan
- College of Pharmacy, University of Georgia, Athens, GA 30605, USA;
| | | | - Reethu Vivekanandam
- Department of Biotechnology, Bharathiyar University, Coimbatore 641046, India;
| | | |
Collapse
|
28
|
Amat JAR, Patton V, Chauché C, Goldfarb D, Crispell J, Gu Q, Coburn AM, Gonzalez G, Mair D, Tong L, Martinez-Sobrido L, Marshall JF, Marchesi F, Murcia PR. Long-term adaptation following influenza A virus host shifts results in increased within-host viral fitness due to higher replication rates, broader dissemination within the respiratory epithelium and reduced tissue damage. PLoS Pathog 2021; 17:e1010174. [PMID: 34919598 PMCID: PMC8735595 DOI: 10.1371/journal.ppat.1010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness. As viruses are obligate intracellular pathogens, their ability to replicate and spread within their hosts is key for survival, even if it leads to severe disease or death of the host. Understanding the consequences of long-term virus adaptation after viral emergence is key for pandemic preparedness. H3N8 equine influenza virus (EIV) originated in birds and has circulated in horses since 1963, thus providing unique opportunities to study virus adaptation. We compared the replication kinetics of two EIVs of the same lineage but with different evolutionary histories: the earliest virus (EIV/63, isolated in 1963), and EIV/2003, which was isolated after 40 years of continuous circulation in horses. Experimental infections of cell lines (MDCK and E.Derm cells) and equine respiratory explants show that EIV evolved towards enhanced replication and cell-to-cell spread; but reduced tissue damage, confirming that viral fitness is adaptive and does not necessarily result in higher virulence.
Collapse
Affiliation(s)
- Julien A. R. Amat
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Veronica Patton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Crispell
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alice M. Coburn
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gaelle Gonzalez
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - John F. Marshall
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Si F, Jiang L, Yu R, Wei W, Li Z. Study on the Characteristic Codon Usage Pattern in Porcine Epidemic Diarrhea Virus Genomes and Its Host Adaptation Phenotype. Front Microbiol 2021; 12:738082. [PMID: 34733253 PMCID: PMC8558211 DOI: 10.3389/fmicb.2021.738082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), which classified in the genus Alphacoronavirus, family Coronaviridae, is one of the most important pathogens that cause heavy economic losses in pig industry. Although intensive mutation and recombination analysis of PEDV strains were provided, systematic genome analysis were needed to elucidate the evolution mechanism and codon usage adaptation profiles of the pathogen. Here, a comprehensive investigation was carried out to reveal the systematic evolutionary processes of synonymous codon usage and host-adapted evolution phenotype of PEDV genome. We found a low codon usage bias (CUB) in PEDV genome and that nucleotide compositions, natural selection, mutation pressure and geographical diversity shapes the codon usage patterns of PEDV, with natural selection dominated the overall codon usage bias in PEDV than the others. By using the relative codon deoptimization index (RCDI) and similarity index (SiD) analysis, we observed that genotype II PEDV strains showed the highest level of adaptation phenotype to Sus scrofa than another divergent clade. To the best of our knowledge, this is the first comprehensive report elaborating the codon usage and host adaptation of PEDV. The findings offer an insight into our understanding of factors involved in PEDV evolution, adaptation and fitness toward their hosts.
Collapse
Affiliation(s)
- Fusheng Si
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ruisong Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhen Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
30
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Mishra A, Sood R, Srivastava P, Tripathi M, Zhang KYJ, Bhatia S. Evolutionary Signatures Governing the Codon Usage Bias in Coronaviruses and Their Implications for Viruses Infecting Various Bat Species. Viruses 2021; 13:1847. [PMID: 34578428 PMCID: PMC8473330 DOI: 10.3390/v13091847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Many viruses that cause serious diseases in humans and animals, including the betacoronaviruses (beta-CoVs), such as SARS-CoV, MERS-CoV, and the recently identified SARS-CoV-2, have natural reservoirs in bats. Because these viruses rely entirely on the host cellular machinery for survival, their evolution is likely to be guided by the link between the codon usage of the virus and that of its host. As a result, specific cellular microenvironments of the diverse hosts and/or host tissues imprint peculiar molecular signatures in virus genomes. Our study is aimed at deciphering some of these signatures. Using a variety of genetic methods we demonstrated that trends in codon usage across chiroptera-hosted CoVs are collaboratively driven by geographically different host-species and temporal-spatial distribution. We not only found that chiroptera-hosted CoVs are the ancestors of SARS-CoV-2, but we also revealed that SARS-CoV-2 has the codon usage characteristics similar to those seen in CoVs infecting the Rhinolophus sp. Surprisingly, the envelope gene of beta-CoVs infecting Rhinolophus sp., including SARS-CoV-2, had extremely high CpG levels, which appears to be an evolutionarily conserved trait. The dissection of the furin cleavage site of various CoVs infecting hosts revealed host-specific preferences for arginine codons; however, arginine is encoded by a wider variety of synonymous codons in the murine CoV (MHV-A59) furin cleavage site. Our findings also highlight the latent diversity of CoVs in mammals that has yet to be fully explored.
Collapse
Affiliation(s)
- Naveen Kumar
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; (R.K.); (K.Y.J.Z.)
| | - Chandana Tennakoon
- Bioinformatics, Sequencing & Proteomics Group, The Pirbright Institute, Woking GU24 0NF, UK;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Moscow Region, 142290 Pushchino, Russia
| | - Anamika Mishra
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Richa Sood
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Pratiksha Srivastava
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Meghna Tripathi
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; (R.K.); (K.Y.J.Z.)
| | - Sandeep Bhatia
- Zoonotic Diseases Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462022, India; (A.M.); (R.S.); (P.S.); (M.T.); (S.B.)
| |
Collapse
|
31
|
Identification and molecular characterization of H9N2 viruses carrying multiple mammalian adaptation markers in resident birds in central-western wetlands in India. INFECTION GENETICS AND EVOLUTION 2021; 94:105005. [PMID: 34293481 DOI: 10.1016/j.meegid.2021.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
We report here a targeted risk-based study to investigate the presence of influenza A viruses at the migratory-wild-domestic bird interface across the major wetlands of central India's Maharashtra state during the winter migration season. The H9N2 viruses have been isolated and confirmed in 3.86% (33/854) of the fecal samples of resident birds. To investigate the genetic pools of H9N2 circulating in resident birds, we sequenced two isolates of H9N2 from distant wetlands. Sequence and phylogenetic analyses have shown that these viruses are triple reassortants, with HA, NA, NP, and M genes belonging to G1 sub-lineage (A/quail/Hong Kong/G1/1997), PB2, PB1, and NS genes originating from the prototype Eurasian lineage (A/mallard/France/090360/2009) and PA gene deriving from Y439/Korean-like (A/duck/Hong Kong/Y439/97) sub-lineage. It was confirmed not only that four of their gene segments had a high genetic association with the zoonotic H9N2 virus, A/Human/India/TCM2581/2019, but also that they had many molecular markers associated with mammalian adaptation and enhanced virulence in mammals including the unique multiple basic amino acids, KSKR↓GLF at the HA cleavage site, and analog N-and O-glycosylation patterns on HA with that of the zoonotic H9N2 virus. Furthermore, future experiments would be to characterize these isolates biologically to address the public health concern. Importantly, due to the identification of these viruses at a strategic geographical location in India (a major stop-over point in the Central Asian flyway), these novel viruses also pose a possible threat to be exported to other regions via migratory/resident birds. Consequently, systematic investigation and active monitoring are a prerequisite for identifying and preventing the spread of viruses of zoonotic potential by enforcing strict biosecurity measures.
Collapse
|
32
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
33
|
Kumar U, Khandia R, Singhal S, Puranik N, Tripathi M, Pateriya AK, Khan R, Emran TB, Dhama K, Munjal A, Alqahtani T, Alqahtani AM. Insight into Codon Utilization Pattern of Tumor Suppressor Gene EPB41L3 from Different Mammalian Species Indicates Dominant Role of Selection Force. Cancers (Basel) 2021; 13:2739. [PMID: 34205890 PMCID: PMC8198080 DOI: 10.3390/cancers13112739] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged. The full-length sequences of the EPB41L3 gene for the human, brown rat, domesticated cattle, and Sumatran orangutan available at the NCBI were retrieved and utilized to analyze CUB patterns across the selected mammalian species. Compositional properties, dinucleotide abundance, and parity analysis showed the dominance of A and G whilst RSCU analysis indicated the dominance of G/C-ending codons. The neutrality plot plotted between GC12 and GC3 to determine the variation between the mutation pressure and natural selection indicated the dominance of selection pressure (R = 0.926; p < 0.00001) over the three codon positions across the gene. The result is in concordance with the codon adaptation index analysis and the ENc-GC3 plot analysis, as well as the translational selection index (P2). Overall selection pressure is the dominant pressure acting during the evolution of the EPB41L3 gene.
Collapse
Affiliation(s)
- Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Meghna Tripathi
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India
| | - Atul Kumar Pateriya
- ICAR-National Institute of High Security Animal Diseases, Bhopal 462043, India
| | - Raju Khan
- Microfluidics & MEMS Center, (MRS & CFC), CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
34
|
Evolutionary Patterns of Codon Usage in Major Lineages of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses 2021; 13:v13061044. [PMID: 34072978 PMCID: PMC8228872 DOI: 10.3390/v13061044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is economically important and characterized by its extensive variation. The codon usage patterns and their influence on viral evolution and host adaptation among different PRRSV strains remain largely unknown. Here, the codon usage of ORF5 genes from lineages 1, 3, 5, and 8, and MLV strains of type 2 PRRSV in China was analyzed. A compositional property analysis of ORF5 genes revealed that nucleotide C is most frequently used at the third position of codons, accompanied by rich GC3s. The effective number of codon (ENC) and codon pair bias (CPB) values indicate that all ORF5 genes have low codon bias and the differences in CPB scores among four lineages are almost not significant. When compared with host codon usage patterns, lineage 1 strains show higher CAI and SiD values, with a high similarity to pig, which might relate to its predominant epidemic propensity in the field. The CAI, RCDI, and SiD values of ORF5 genes from different passages of MLV JXA1R indicate no relation between attenuation and CPB or codon adaptation decrease during serial passage on non-host cells. These findings provide a novel way of understanding the PRRSV's evolution, related to viral survival, host adaptation, and virulence.
Collapse
|
35
|
Mordstein C, Cano L, Morales AC, Young B, Ho AT, Rice AM, Liss M, Hurst LD, Kudla G. Transcription, mRNA export and immune evasion shape the codon usage of viruses. Genome Biol Evol 2021; 13:6275682. [PMID: 33988683 PMCID: PMC8410142 DOI: 10.1093/gbe/evab106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The nucleotide composition, dinucleotide composition, and codon usage of many viruses differs from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analysed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host - instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.
Collapse
Affiliation(s)
- Christine Mordstein
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Laura Cano
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Atahualpa Castillo Morales
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Bethan Young
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Alexander T Ho
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Rice
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Michael Liss
- Thermo Fisher Scientific, GENEART GmbH, Regensburg, Germany
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Brief Bioinform 2021; 22:6231751. [PMID: 33866372 DOI: 10.1093/bib/bbab145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered regions/proteins (IDRs) are abundant across all the domains of life, where they perform important regulatory roles and supplement the biological functions of structured proteins/regions (SRs). Despite the multifunctionality features of IDRs, several interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used and reliable intrinsic disorder prediction algorithms (IUPred2A and ESpritz) to a dataset of 6108 reference viral proteomes to unravel the multifaceted evolutionary forces that shape the codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive evidence that the natural selection predominantly governs the evolution of codon usage in regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage in regions encoding IDRs is less optimized for the protein synthesis machinery (transfer RNAs pool) of their host than for those encoding SRs, but also that the selective constraints imposed by codon bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses are likely to tolerate more translational errors than SRs. All these findings hold true, irrespective of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple taxonomically divergent hosts.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Moscow region, Pushchino 142290, Russia
| | - Sonia Longhi
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostic & Vaccine Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
37
|
Malik YS, Ansari MI, Kattoor JJ, Kaushik R, Sircar S, Subbaiyan A, Tiwari R, Dhama K, Ghosh S, Tomar S, Zhang KYJ. Evolutionary and codon usage preference insights into spike glycoprotein of SARS-CoV-2. Brief Bioinform 2021; 22:1006-1022. [PMID: 33377145 PMCID: PMC7953982 DOI: 10.1093/bib/bbaa383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.
Collapse
Affiliation(s)
| | | | | | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Japan
| | | | | | - Ruchi Tiwari
- Department of Vet erinary Microbiology, DUVASU, Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Souvik Ghosh
- Health Center for Zoonoses and Tropical Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Japan
| |
Collapse
|
38
|
Franzo G, Tucciarone CM, Legnardi M, Cecchinato M. Effect of genome composition and codon bias on infectious bronchitis virus evolution and adaptation to target tissues. BMC Genomics 2021; 22:244. [PMID: 33827429 PMCID: PMC8025453 DOI: 10.1186/s12864-021-07559-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background Infectious bronchitis virus (IBV) is one of the most relevant viruses affecting the poultry industry, and several studies have investigated the factors involved in its biological cycle and evolution. However, very few of those studies focused on the effect of genome composition and the codon bias of different IBV proteins, despite the remarkable increase in available complete genomes. In the present study, all IBV complete genomes were downloaded (n = 383), and several statistics representative of genome composition and codon bias were calculated for each protein-coding sequence, including but not limited to, the nucleotide odds ratio, relative synonymous codon usage and effective number of codons. Additionally, viral codon usage was compared to host codon usage based on a collection of highly expressed genes in IBV target and nontarget tissues. Results The results obtained demonstrated a significant difference among structural, non-structural and accessory proteins, especially regarding dinucleotide composition, which appears under strong selective forces. In particular, some dinucleotide pairs, such as CpG, a probable target of the host innate immune response, are underrepresented in genes coding for pp1a, pp1ab, S and N. Although genome composition and dinucleotide bias appear to affect codon usage, additional selective forces may act directly on codon bias. Variability in relative synonymous codon usage and effective number of codons was found for different proteins, with structural proteins and polyproteins being more adapted to the codon bias of host target tissues. In contrast, accessory proteins had a more biased codon usage (i.e., lower number of preferred codons), which might contribute to the regulation of their expression level and timing throughout the cell cycle. Conclusions The present study confirms the existence of selective forces acting directly on the genome and not only indirectly through phenotype selection. This evidence might help understanding IBV biology and in developing attenuated strains without affecting the protein phenotype and therefore immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07559-5.
Collapse
Affiliation(s)
- Giovanni Franzo
- Microbiology and Infectious Diseases, Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16 - 35020 Legnaro, Padua, Italy.
| | - Claudia Maria Tucciarone
- Microbiology and Infectious Diseases, Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16 - 35020 Legnaro, Padua, Italy
| | - Matteo Legnardi
- Microbiology and Infectious Diseases, Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16 - 35020 Legnaro, Padua, Italy
| | - Mattia Cecchinato
- Microbiology and Infectious Diseases, Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16 - 35020 Legnaro, Padua, Italy
| |
Collapse
|
39
|
Saha J, Bhattacharjee S, Pal Sarkar M, Saha BK, Basak HK, Adhikary S, Roy V, Mandal P, Chatterjee A, Pal A. A comparative genomics-based study of positive strand RNA viruses emphasizing on SARS-CoV-2 utilizing dinucleotide signature, codon usage and codon context analyses. GENE REPORTS 2021; 23:101055. [PMID: 33615042 PMCID: PMC7887452 DOI: 10.1016/j.genrep.2021.101055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The novel corona virus disease or COVID-19 caused by a positive strand RNA virus (PRV) called SARS-CoV-2 is plaguing the entire planet as we conduct this study. In this study a multifaceted analysis was carried out employing dinucleotide signature, codon usage and codon context to compare and unravel the genomic as well as genic characteristics of the SARS-CoV-2 isolates and how they compare to other PRVs which represents some of the most pathogenic human viruses. The main emphasis of this study was to comprehend the codon biology of the SARS-CoV-2 in the backdrop of the other PRVs like Poliovirus, Japanese encephalitis virus, Hepatitis C virus, Norovirus, Rubella virus, Semliki Forest virus, Zika virus, Dengue virus, Human rhinoviruses and the Betacoronaviruses since codon usage pattern along with the nucleotide composition prevalent within the viral genome helps to understand the biology and evolution of viruses. Our results suggest discrete genomic dinucleotide signature within the PRVs. Some of the genes from the different SARS-CoV-2 isolates were also found to demonstrate heterogeneity in terms of their dinucleotide signature. The SARS-CoV-2 isolates also demonstrated a codon context trend characteristically dissimilar to the other PRVs. The findings of this study are expected to contribute to the developing global knowledge base in countering COVID-19.
Collapse
Key Words
- CAI, Codon Adaptation Index
- CNS, Central Nervous System
- COVID-19
- CRS, Congenital Rubella Syndrome
- CUB, Codon Usage Bias
- Codon context
- Codon usage bias
- Coronaviruses
- Fop, Frequency of optimal codons
- GC1, Guanine and Cytosine content on the first position of the codon
- GC2, Guanine and Cytosine content on the second position of the codon
- GC3, Guanine and Cytosine content on the third position of the codon
- HCV, Hepatitis C Virus
- MERS, Middle East Respiratory Syndrome
- MFE, Minimum Free Energy
- Nc, Effective Number of Codons
- PCA, Principal Component Analysis
- PRV, Positive strand RNA Virus
- Positive strand RNA virus
- RCDI, Relative Codon De-Optimization Index
- RSCU, Relative Synonymous Codon Usage
- SARS, Severe Acute Respiratory Syndrome
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SCUO, Synonymous Codon Usage Order
- SiD, Similarity Index
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Sukanya Bhattacharjee
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Hriday Kumar Basak
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Samarpita Adhikary
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
40
|
Deb B, Uddin A, Chakraborty S. Genome-wide analysis of codon usage pattern in herpesviruses and its relation to evolution. Virus Res 2020; 292:198248. [PMID: 33253719 DOI: 10.1016/j.virusres.2020.198248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The preferential use of a specific codon, out of a group of synonymous codons encoding the same amino acid, in a gene transcript results from the bias in codon choice. Various evolutionary forces namely mutation pressure and natural selection influence the pattern of codon usage i.e. distinct for each gene/genome. We investigated the pattern of codon usage of eight human herpesvirus genomes and compared them with two other herpesvirus genomes namely murine herpesvirus 68 and bovine herpesvirus type 1.1 to elucidate its compositional features, pattern of codon usage across the genomes and report the differences of codon usage pattern of human herpesviruses from that of other two other viruses. We also identified the similarity of the codon usage of human herpesviruses with its host (human). The genes were found to be CG rich in HHV2, HHV3, HHV4, HHV6, HHV7 and BH genomes while TA rich in HHV1, HHV5, HHV8 and MH genomes. The codon usage bias (CUB) of genes was low. A highly significant correlation was found among compositional contents depicting the role of mutational pressure along with natural selection in framing CUB. Several more frequently used codons as well as less frequently used codons were identified to be similar between each human virus and its host (human), while murine herpesvirus 68 and bovine herpesvirus type 1.1 genomes did not possess similar adaptation strategy as human herpesviruses to human (host), thus we could conclude that viral CUB might have been shaped as per their host's nature for better surveillance. Neutrality plot revealed mutational pressure mostly influenced the CUB of HHV1, HHV8 and MH viruses, while natural selection had a major impact in the CUB of HHV2, HHV3, HHV4, HHV5, HHV6, HHV7 and BH genomes.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
41
|
Luo W, Roy A, Guo F, Irwin DM, Shen X, Pan J, Shen Y. Host Adaptation and Evolutionary Analysis of Zaire ebolavirus: Insights From Codon Usage Based Investigations. Front Microbiol 2020; 11:570131. [PMID: 33224111 PMCID: PMC7674656 DOI: 10.3389/fmicb.2020.570131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) has caused several outbreaks as the consequence of spillover events from zoonotic sources and has resulted in huge death tolls. In spite of considerable progress, a thorough know-how regarding EBOV adaptation in various host species and detailed information about the potential reservoirs of EBOV still remains obscure. The present study was executed to examine the patterns of codon usage and its associated influence in the adaptation of EBOV to potential hosts that dwell in Africa, the origin of the viral outbreaks. Correspondence analysis (CA) revealed that the codon usage signature in EBOV is a complex interplay of factors including compositional bias and natural selection, with the latter having a more pronounced impact. Low codon usage bias in EBOV indicates a flexibility of the viruses in adapting to diverse range of hosts with different codon usage architectures. EBOV adaptation in potential hosts, as estimated by codon adaptation index (CAI) and relative codon deoptimization index (RCDI), revealed that the viruses were relatively better adapted to African primates than other mammals examined, which might account for the high fatality rate of primates owing to EBOV infection. Bats have been speculated as natural reservoirs of EBOV. In the present analysis it was interesting to note that EBOV displayed lower degrees of adaptation, as estimated by CAI and RCDI, with bats in comparison to the primate hosts. Lower degrees of adaptation might contribute to long-term co-existence and circulation of the viral pathogens in bat populations. Codon usage patterns of EBOV isolates associated with different outbreaks varied significantly, with discrete patterns between the West and Central African isolates. Additional evolutionary analyses indicated that the West African Epidemic began with an initial spillover infection and there was more than one population of EBOV circulating in the natural reservoir in the Democratic Republic of the Congo. The present study yields valuable information regarding the possible circulation of EBOV in various African mammals.
Collapse
Affiliation(s)
- Wen Luo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Fucheng Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junbin Pan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
42
|
Sun J, Zhao W, Wang R, Zhang W, Li G, Lu M, Shao Y, Yang Y, Wang N, Gao Q, Su S. Analysis of the Codon Usage Pattern of HA and NA Genes of H7N9 Influenza A Virus. Int J Mol Sci 2020; 21:ijms21197129. [PMID: 32992529 PMCID: PMC7583936 DOI: 10.3390/ijms21197129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Novel H7N9 influenza virus transmitted from birds to human and, since March 2013, it has caused five epidemic waves in China. Although the evolution of H7N9 viruses has been investigated, the evolutionary changes associated with codon usage are still unclear. Herein, the codon usage pattern of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), was studied to understand the evolutionary changes in relation to host, epidemic wave, and pathogenicity. Both genes displayed a low codon usage bias, with HA higher than NA. The codon usage was driven by mutation pressure and natural selection, although the main contributing factor was natural selection. Additionally, the codon adaptation index (CAI) and deoptimization (RCDI) illustrated the strong adaptability of H7N9 to Gallus gallus. Similarity index (SiD) analysis showed that Homo sapiens posed a stronger selection pressure than Gallus gallus. Thus, we assume that this may be related to the gradual adaptability of the virus to human. In addition, the host strong selection pressure was validated based on CpG dinucleotide content. In conclusion, this study analyzed the usage of codons of two genes of H7N9 and expanded our understanding of H7N9 host specificity. This aids into the development of control measures against H7N9 influenza virus.
Collapse
|
43
|
Wu H, Bao Z, Mou C, Chen Z, Zhao J. Comprehensive Analysis of Codon Usage on Porcine Astrovirus. Viruses 2020; 12:v12090991. [PMID: 32899965 PMCID: PMC7552017 DOI: 10.3390/v12090991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
Porcine astrovirus (PAstV), associated with mild diarrhea and neurological disease, is transmitted in pig farms worldwide. The purpose of this study is to elucidate the main factors affecting codon usage to PAstVs. Phylogenetic analysis showed that the subtype PAstV-5 sat at the bottom of phylogenetic tree, followed by PAstV-3, PAstV-1, PAstV-2, and PAstV-4, indicating that the five existing subtypes (PAstV1-PAstV5) may be formed by multiple differentiations of PAstV ancestors. A codon usage bias was found in the PAstVs-2,3,4,5 from the analyses of effective number of codons (ENC) and relative synonymous codon usage (RSCU). Nucleotides A/U are more frequently used than nucleotides C/G in the genome CDSs of the PAstVs-3,4,5. Codon usage patterns of PAstV-5 are dominated by mutation pressure and natural selection, while natural selection is the main evolutionary force that affects the codon usage pattern of PAstVs-2,3,4. The analyses of codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) showed the codon usage similarities between the PAstV and animals might contribute to the broad host range and the cross-species transmission of astrovirus. Our results provide insight into understanding the PAstV evolution and codon usage patterns.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhengyu Bao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.Z.)
| | - Jingwen Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.Z.)
| |
Collapse
|
44
|
Dutta R, Buragohain L, Borah P. Analysis of codon usage of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and its adaptability in dog. Virus Res 2020; 288:198113. [PMID: 32771430 PMCID: PMC7410794 DOI: 10.1016/j.virusres.2020.198113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
Codon analysis reveal natural selection and other undefined factors dominates the overall codon usage bias in SARS-CoV-2 rather than mutational pressure. The host adaptation potential of SARS-CoV-2 is more in human as compared to dog.
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is recognized as one of the life-threatening viruses causing the most destructive pandemic in this century. The genesis of this virus is still unknown. To elucidate its molecular evolution and regulation of gene expression, the knowledge of codon usage is a pre-requisite. In this study, an attempt was made to document the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SARS-CoV-2 in human and dog. The SARS-CoV-2 genome showed relative abundance of A and U nucleotides and relative synonymous codon usage analysis revealed that the preferred synonymous codons mostly end with A/U. The analysis of ENc-GC3s, Neutrality and Parity rule 2 plots indicated that natural selection and other undefined factors dominate the overall codon usage bias in SARS-CoV-2 whereas the impact of mutation pressure is comparatively minor. The codon adaptation index and relative codon deoptimization index of SARS-CoV-2 deciphered that human is more favoured host for adaptation compared to dog. These results enhance our understanding of the factors involved in evolution of the novel human SARS-CoV-2 and its adaptability in dog.
Collapse
Affiliation(s)
- Rupam Dutta
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 22, Assam, India.
| | - Lukumoni Buragohain
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 22, Assam, India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati 22, Assam, India
| |
Collapse
|
45
|
Gómez MM, de Mello Volotão E, Assandri IR, Peyrou M, Cristina J. Analysis of codon usage bias in potato virus Y non-recombinant strains. Virus Res 2020; 286:198077. [PMID: 32619560 DOI: 10.1016/j.virusres.2020.198077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022]
Abstract
Potato virus Y (PVY) is a member of the genus Potyvirus, family Potyviridae, is considered one of the most devastating pest affecting economically important crops, such as potato, tobacco, tomato and pepper, representing a serious threat due to high incidence and worldwide distribution. Its economic significance as well as it biological and molecular complexities have aroused great attention, thus several studies have explore it genetic characteristics. However, little is known about PVY codon usage. To shed light on the relation of codon usage among viruses and their hosts is extremely important to understand virus survival, fitness and evolution. In this study, we performed a comprehensive analysis of codon usage and composition of PVY non-recombinant strains (PVYN-NA, PVYEu-N, PVYO, PVYO5, PVYC) based on 130 complete open reading frame sequences extracted from public databases. Furthermore, similarities between the synonymous codon usage of PVY and its main hosts were investigated. The results obtained in the current study suggest that the overall codon usage among PVY genotypes is similar and slightly biased. PVY codon usage is strongly influenced by mutational bias, but also by G + C compositional constraint and dinucleotide composition. Furthermore, similarities among codon usage preferences between PVY strains and analyzed hosts were observed.
Collapse
Affiliation(s)
- Mariela Martínez Gómez
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay.
| | - Eduardo de Mello Volotão
- Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Isabel Rodríguez Assandri
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Mercedes Peyrou
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, 11600, Montevideo, Uruguay
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay
| |
Collapse
|
46
|
Tian HF, Hu QM, Xiao HB, Zeng LB, Meng Y, Li Z. Genetic and codon usage bias analyses of major capsid protein gene in Ranavirus. INFECTION GENETICS AND EVOLUTION 2020; 84:104379. [PMID: 32497680 DOI: 10.1016/j.meegid.2020.104379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022]
Abstract
The Ranavirus (one genus of Iridovidae family) is an emerging pathogen that infects fish, amphibian, and reptiles, and causes great economical loss and ecological threat to farmed and wild animals globally. The major capsid protein (MCP) has been used as genetic typing marker and as target to design vaccines. Herein, the codon usage pattern of 73 MCP genes of Ranavirus and Lymphocystivirus are studied by calculating effective number of codons (ENC), relative synonymous codon usage (RSCU), codon adaptation index (CAI), and relative codon deoptimization index (RCDI), and similarity index (SiD). The Ranavirus are confirmed to be classified into five groups by using phylogenetic analysis, and varied nucleotide compositions and hierarchical cluster analysis based on RSCU. The results revealed different codon usage patterns among Lymphocystivirus and five groups of Ranavirus. Ranavirus had six over-represented codons ended with G/C nucleotide, while Lymphocystivirus had six over-represented codons ended with A/T nucleotide. A comparative analysis of parameters that define virus and host relatedness in terms of codon usage were analyzed indicated that Amphibian-like ranaviruses (ALRVs) seem to possess lower ENC values and higher CAIs in contrast to other ranaviruses isolated from fishes, and two groups (FV3-like and CMTV-like group) of them had received higher selection pressure from their hosts as having higher relative codon deoptimization index (RCDI) and similarity index (SiD). The correspondence analysis (COA) and Spearman's rank correlation analyses revealed that nucleotide compositions, relative dinucleotide frequency, mutation pressure, and natural translational selection shape the codon usage pattern in MCP genes and the ENC-GC3S and neutrality plots indicated that the natural selection is the predominant factor. These results contribute to understanding the evolution of Ranavirus and their adaptions to their hosts.
Collapse
Affiliation(s)
- Hai-Feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qiao-Mu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Han-Bing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ling-Bing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
47
|
Yao X, Fan Q, Yao B, Lu P, Rahman SU, Chen D, Tao S. Codon Usage Bias Analysis of Bluetongue Virus Causing Livestock Infection. Front Microbiol 2020; 11:655. [PMID: 32508755 PMCID: PMC7248248 DOI: 10.3389/fmicb.2020.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is a double-stranded RNA virus with multiple segments and belongs to the genus Orbivirus within the family Reoviridae. BTV is spread to livestock through its dominant vector, biting midges of genus Culicoides. Although great progress has been made in genomic analyses, it is not fully understood how BTVs adapt to their hosts and evade the host's immune systems. In this study, we retrieved BTV genome sequences from the National Center for Biotechnology Information (NCBI) database and performed a comprehensive research to explore the codon usage patterns in 50 BTV strains. We used bioinformatic approaches to calculate the relative synonymous codon usage (RSCU), codon adaptation index (CAI), effective number of codons (ENC), and other indices. The results indicated that most of the overpreferred codons had A-endings, which revealed that mutational pressure was the major force shaping codon usage patterns in BTV. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Based on the RSCU values, we performed a comparative analysis between BTVs and their hosts, suggesting that BTVs were inclined to evolve their codon usage patterns that were comparable to those of their hosts. Such findings will be conducive to understanding the elements that contribute to viral evolution and adaptation to hosts.
Collapse
Affiliation(s)
- Xiaoting Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qinlei Fan
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Bo Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ping Lu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Siddiq Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Pakistan
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Deb B, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors in different genomes of hepadnaviruses. Arch Virol 2020; 165:557-570. [PMID: 32036428 PMCID: PMC7086886 DOI: 10.1007/s00705-020-04533-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Codon usage bias (CUB) arises from the preference for a codon over codons for the same amino acid. The major factors contributing to CUB are evolutionary forces, compositional properties, gene expression, and protein properties. The present analysis was performed to investigate the compositional properties and the extent of CUB across the genomes of members of the family Hepadnaviridae, as previously no work using bioinformatic tools has been reported. The viral genes were found to be AT rich with low CUB. Analysis of relative synonymous codon usage (RSCU) was used to identify overrepresented and underrepresented codons for each amino acid. Correlation analysis of overall nucleotide composition and its composition at the third codon position suggested that mutation pressure might influence the CUB. A highly significant correlation was observed between GC12 and GC3 (r = 0.910, p < 0.01), indicating that directional mutation affected all three codon positions across the genome. Translational selection (P2) and mutational responsive index (MRI) values of genes suggested that mutation plays a more important role than translational selection in members of the family Hepadnaviridae.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India.
| |
Collapse
|
49
|
Luo W, Tian L, Gan Y, Chen E, Shen X, Pan J, Irwin DM, Chen RA, Shen Y. The fit of codon usage of human-isolated avian influenza A viruses to human. INFECTION GENETICS AND EVOLUTION 2020; 81:104181. [PMID: 31918040 DOI: 10.1016/j.meegid.2020.104181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/14/2019] [Accepted: 01/05/2020] [Indexed: 01/06/2023]
Abstract
Avian influenza A viruses (AIVs) classify into 18 hemagglutinin (HA) and 11 neuraminidase (NA) subtypes. Even though H1N1 and H3N2 subtypes usually circulate among humans leading to infection, occasionally, H5, H6, H7, H9, and H10 that circulate in poultry also infect humans, and especially H5N1 and H7N9. Efficient virus replication is a critical factor that influences infection. Codon usage of a virus must coevolve with its host for efficient viral replication, therefore, we conduct a comprehensive analysis of codon usage bias in human-isolated AIVs to test their adaptation to host expression system. The relative synonymous codon usage (RSCU) pattern, and the codon adaptation index (CAI) are calculated for this purpose. We find that all human-isolated AIVs tend to eliminate GC and CpG compositions, which may prevent activation of the host innate immune system. Although codon usage differs between AIV subtypes, our data support the conclusion that natural selection has played a major role and mutation pressure a minor role in shaping codon usage bias in all AIVs. Our efforts discover that codon usage of genes encoding surface proteins of H5N1, and the polymerase genes of H7N9 has better fit to the human expression system. This may associate with their better replication and infection in human.
Collapse
Affiliation(s)
- Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Tian
- Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Yingde Gan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Enlong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S 1A8, Canada
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| |
Collapse
|
50
|
Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J Virol Methods 2020; 277:113806. [PMID: 31911390 PMCID: PMC7119019 DOI: 10.1016/j.jviromet.2019.113806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
The nucleotide variations among the N genes of 13 different coronaviruses (CoVs) were interpreted. Overall, 18 amino acids observed with varying preferred codons. The effective number of codon values ranged from 40.43 to 53.85, revealing a slight codon bias. A highly significant correlation between GC3s and ENc values was observed in porcine epidemic diarrhea CoV, followed by Middle East respiratory syndrome CoV.
The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus’s genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus’s host adaptation, evolution and is thus of value to vaccine design strategies.
Collapse
Affiliation(s)
- Abdullah Sheikh
- The Camel Research Center, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdullah I Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|