1
|
Egea LG, Jiménez-Ramos R. Selective herbivory on necrotic tissue can promote tolerance to abiotic disturbances in the seagrass Cymodocea nodosa. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107064. [PMID: 40064066 DOI: 10.1016/j.marenvres.2025.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Herbivores play an important role in shaping seagrass community structure, but local stressors can change the ecological significance of herbivory by altering seagrass physiology in ways that affect herbivore preferences. However, few studies have assessed the cumulative influence of diverse local stressors on seagrass ecosystem function in relation to herbivory pressure. Here, we performed a four-month in situ experiment and laboratory feeding trials to examine the effects of two abiotic stressors (light reduction and nutrient enrichment) and simulated herbivory on the physiology of Cymodocea nodosa meadows and associated plant-mesograzer interactions, with the goal of understanding seagrass resilience to multiple disturbances. We found that light reduction primarily affected leaf morphology, resulting in lower shoot surface area, plant biomass and leaf growth rate. Simulated herbivory stimulated the production of phenolic compounds with a potential antimicrobial effect. Nutrient enrichment significantly reduced the C:N ratio and increased seagrass necrosis tissues and growth of opportunistic algae. Further, while higher macroalgal biomass was negatively correlated with C. nodosa performance, epiphyte biomass was positively correlated. Furthermore, our findings evidenced that C. nodosa leaves not only had high nutritional quality under nutrient enrichment, but also the presence of necrotic areas could be a significant driver modulating isopod consumption. We discuss the potential ecological impact of the natural mesograzer preference for necrotic tissue, which may promote the recovery of seagrass communities under local stressors.
Collapse
Affiliation(s)
- Luis G Egea
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| | - Rocío Jiménez-Ramos
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real, Cádiz, Spain
| |
Collapse
|
2
|
Jiménez-Ramos R, Egea LG, Pérez-Estrada CJ, Balart EF, Vergara JJ, Brun FG. Patch age alters seagrass response mechanisms to herbivory damage. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106443. [PMID: 38507985 DOI: 10.1016/j.marenvres.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Natural disturbances can produce a mosaic of seagrass patches of different ages, which may affect the response to herbivory. These pressures can have consequences for plant performance. To assess how seagrass patch age affects the response to herbivory, we simulated the effect of herbivory by clipping leaves of Halodule wrightii in patches of 2, 4 and 6 years. All clipped plants showed ability to compensate herbivory by increasing leaf growth rate (on average 4.5-fold). The oldest patches showed resistance response by increasing phenolic compounds (1.2-fold). Contrastingly, the concentration of phenolics decreased in the youngest patches (0.26-fold), although they had a similar leaf carbon content to controls. These results suggest that younger plants facing herbivory pressure reallocate their phenolic compounds towards primary metabolism. Results confirm the H. wrightii tolerance to herbivory damage and provides evidence of age-dependent compensatory responses, which may have consequences for seagrass colonization and growth in perturbed habitats.
Collapse
Affiliation(s)
- Rocío Jiménez-Ramos
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain.
| | - Luis G Egea
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| | - Claudia J Pérez-Estrada
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain; Centro de Investigaciones Biológicas Del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Eduardo F Balart
- Centro de Investigaciones Biológicas Del Noroeste, S.C., Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico
| | - Juan J Vergara
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| | - Fernando G Brun
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research INMAR, University of Cadiz, International Campus of Excellence of the Sea (CEIMAR), 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Jiang Z, He J, Fang Y, Lin J, Liu S, Wu Y, Huang X. Effects of herbivore on seagrass, epiphyte and sediment carbon sequestration in tropical seagrass bed. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106122. [PMID: 37549560 DOI: 10.1016/j.marenvres.2023.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m-2) and mid density (842 ind m-2) were almost two times of those at extremely high density (1684 ind m-2), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.
Collapse
Affiliation(s)
- Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Jialu He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Guangdong Center for Marine Development Research, Guangzhou, 510220, China
| | - Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jizhen Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China.
| |
Collapse
|
4
|
Navarro-Mayoral S, Tuya F, Prado P, Marco-Méndez C, Fernandez-Gonzalez V, Fernández-Torquemada Y, Espino F, Antonio de la Ossa J, Vilella DM, Machado M, Martínez-Crego B. Drivers of variation in seagrass-associated amphipods across biogeographical areas. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105918. [PMID: 36791539 DOI: 10.1016/j.marenvres.2023.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Amphipods are one of the dominant epifaunal groups in seagrass meadows. However, our understanding of the biogeographical patterns in the distribution of these small crustaceans is limited. In this study, we investigated such patterns and the potential drivers in twelve Cymodocea nodosa meadows within four distinctive biogeographical areas across 2000 Km and 13° of latitude in two ocean basins (Mediterranean Sea and Atlantic Ocean). We found that species abundances in the assemblage of seagrass-associated amphipods differed among areas following a pattern largely explained by seagrass leaf area and epiphyte biomass, while the variation pattern in species presence/absence was determined by seagrass density and epiphyte biomass. Seagrass leaf area was also the most important determinant of greater amphipod total density and species richness, while amphipod density also increased with algal cover. Overall, our results evidenced that biogeographical patterns of variation in amphipod assemblages are mainly influenced by components of the habitat structure, which covary with environmental conditions, finding that structurally more complex meadows harboring higher abundance and richness of amphipods associated.
Collapse
Affiliation(s)
- Sandra Navarro-Mayoral
- Grupo en Biodiversidad y Conservación, IU-Ecoaqua, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación, IU-Ecoaqua, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Patricia Prado
- IRTA-Institute of Research and Technology in Food and Agriculture, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Candela Marco-Méndez
- Center for Advanced Studies of Blanes (CEAB, CSIC), Carrer Accés Cala Sant Francesc, 14, 17300, Blanes, Girona, Spain
| | - Victoria Fernandez-Gonzalez
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - Yolanda Fernández-Torquemada
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - Fernando Espino
- Grupo en Biodiversidad y Conservación, IU-Ecoaqua, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jose Antonio de la Ossa
- Department of Marine Science and Applied Biology, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
| | - David Mateu Vilella
- IRTA-Institute of Research and Technology in Food and Agriculture, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de la Ràpita, Spain
| | - Margarida Machado
- Centre of Marine Sciences of University of Algarve (CCMAR-UAlg), Campus de Gambelas, Ed. 7, 8005-139, Faro, Portugal
| | - Begoña Martínez-Crego
- Centre of Marine Sciences of University of Algarve (CCMAR-UAlg), Campus de Gambelas, Ed. 7, 8005-139, Faro, Portugal
| |
Collapse
|
5
|
Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R. A trait-based framework for seagrass ecology: Trends and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1088643. [PMID: 37021321 PMCID: PMC10067889 DOI: 10.3389/fpls.2023.1088643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
Collapse
Affiliation(s)
- Agustín Moreira-Saporiti
- Faculty for Biology and Chemistry, University of Bremen, Bremen, Germany
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Mirta Teichberg
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Mats Björk
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Nuria Marbà
- Global Change Research Group, Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles Illes Balears, Spain
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Lukas Meysick
- Åbo Akademi University, Environmental and Marine Biology, Åbo, Finland
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, Division of Marine Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - João Silva
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana I. Sousa
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Rui Santos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
6
|
Cheng A, Lim WY, Lim PE, Yang Amri A, Poong SW, Song SL, Ilham Z. Marine Autotroph-Herbivore Synergies: Unravelling the Roles of Macroalgae in Marine Ecosystem Dynamics. BIOLOGY 2022; 11:biology11081209. [PMID: 36009834 PMCID: PMC9405220 DOI: 10.3390/biology11081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Invasive species are a leading hazard to marine ecosystems worldwide, coupled with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are generally regarded as biological agents that restrict invasive species, and their efficiency depends on their dietary habits, especially the autotrophs they eat. Many researchers have found contradicting findings on the effects of nutritional attributes and novelty of autotrophs on herbivore eating behaviour. In light of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we provide a comprehensive review to fill knowledge gaps about synergies based on macroalgae, an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also analyse macroalgal defence measures against herbivores, underlining unique features and potential roles in maintaining marine ecosystems. The nutritional qualities, shape, and novelty of autotrophs can alter herbivore feeding behaviour. Future research should explore aspects that can alter marine autotroph-herbivore interactions to resolve inconsistent results of specific features and the uniqueness of the organisms involved. Abstract Species invasion is a leading threat to marine ecosystems worldwide, being deemed as one of the ultimate jeopardies for biodiversity along with climate change. Tackling the emerging biodiversity threat to maintain the ecological balance of the largest biome in the world has now become a pivotal part of the Sustainable Development Goals (SDGs). Marine herbivores are often considered as biological agents that control the spread of invasive species, and their effectiveness depends largely on factors that influence their feeding preferences, including the specific attributes of their food–the autotrophs. While the marine autotroph-herbivore interactions have been substantially discussed globally, many studies have reported contradictory findings on the effects of nutritional attributes and novelty of autotrophs on herbivore feeding behaviour. In view of the scattered literature on the mechanistic basis of autotroph-herbivore interactions, we generate a comprehensive review to furnish insights into critical knowledge gaps about the synergies based largely on the characteristics of macroalgae; an important group of photosynthetic organisms in the marine biome that interact strongly with generalist herbivores. We also discuss the key defence strategies of these macroalgae against the herbivores, highlighting their unique attributes and plausible roles in keeping the marine ecosystems intact. Overall, the feeding behaviour of herbivores can be affected by the nutritional attributes, morphology, and novelty of the autotrophs. We recommend that future research should carefully consider different factors that can potentially affect the dynamics of the marine autotroph-herbivore interactions to resolve the inconsistent results of specific attributes and novelty of the organisms involved.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai Yin Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Phaik-Eem Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Affendi Yang Amri
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sze-Looi Song
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| | - Zul Ilham
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (S.-L.S.); (Z.I.); Tel.: +60-37967-4014 (Z.I.)
| |
Collapse
|
7
|
Emmclan LSH, Zakaria MH, Ramaiya SD, Natrah I, Bujang JS. Morphological and biochemical responses of tropical seagrasses (Family: Hydrocharitaceae) under colonization of the macroalgae Ulva reticulata Forsskål. PeerJ 2022; 10:e12821. [PMID: 35111414 PMCID: PMC8781322 DOI: 10.7717/peerj.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Coastal land development has deteriorated the habitat and water quality for seagrass growth and causes the proliferation of opportunist macroalgae that can potentially affect them physically and biochemically. The present study investigates the morphological and biochemical responses of seagrass from the Hydrocharitaceae family under the macroalgal bloom of Ulva reticulata, induced by land reclamation activities for constructing artificial islands. METHODS Five seagrass species, Enhalus acoroides, Thalassia hemprichii, Halophila ovalis, Halophila major, and Halophila spinulosa were collected at an Ulva reticulata-colonized site (MA) shoal and a non-Ulva reticulata-colonized site (MC) shoal at Sungai Pulai estuary, Johor, Malaysia. Morphometry of shoots comprising leaf length (LL), leaf width (LW), leaf sheath length (LSL), leaflet length (LTL), leaflet width (LTW), petiole length (PL), space between intra-marginal veins (IV) of leaf, cross vein angle (CVA) of leaf, number of the cross vein (NOC), number of the leaf (NOL) and number of the leaflet (NOLT) were measured on fresh seagrass specimens. Moreover, in-situ water quality and water nutrient content were also recorded. Seagrass extracts in methanol were assessed for total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid radical cation scavenging activity (ABTS), and ferric reducing antioxidant power (FRAP). RESULTS Seagrasses in the U. reticulata-colonized site (MA) had significantly higher (t-test, p < 0.05) leaf dimensions compared to those at the non-U. reticulata colonized site (MC). Simple broad-leaved seagrass of H. major and H. ovalis were highly sensitive to the colonization of U. reticulata, which resulted in higher morphometric variation (t-test, p < 0.05) including LL, PL, LW, and IV. Concerning the biochemical properties, all the seagrasses at MA recorded significantly higher (t-test, p < 0.05) TPC, TFC, and ABTS and lower DPPH and FRAP activities compared to those at MC. Hydrocharitaceae seagrass experience positive changes in leaf morphology features and metabolite contents when shaded by U. reticulata. Researching the synergistic effect of anthropogenic nutrient loads on the interaction between seagrasses and macroalgae can provide valuable information to decrease the negative effect of macroalgae blooms on seagrasses in the tropical meadow.
Collapse
Affiliation(s)
- Lau Sheng Hann Emmclan
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muta Harah Zakaria
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Shiamala Devi Ramaiya
- Department of Crop Science, Faculty of Agriculture Science and Forestry, Universiti Putra Malaysia, Bintulu, Sarawak, Malaysia
| | - Ikhsan Natrah
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Japar Sidik Bujang
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
8
|
Hernán G, Castejón I, Terrados J, Tomas F. Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system. Oecologia 2019; 189:719-732. [PMID: 30806786 DOI: 10.1007/s00442-019-04364-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022]
Abstract
Numerous hypotheses have been posited to explain the observed variation in plant defense strategies against herbivory. Under resource-rich environments, plants are predicted to increase their tolerance (limiting resource model; LRM) and, while the resource availability hypothesis (RAH) predicts a decrease in constitutive resistance in plant species growing in resource-rich environments, at the intraspecific level, plants are predicted to follow an opposite pattern (intraspecific RAH). Furthermore, the effect of multiple factors in modulating plant defense strategies has been scarcely explored and is more difficult to predict. Our aim was to understand how plant defense traits respond to herbivory, resource availability and their interactions, and to assess the effects on plant palatability. To this end, we performed an in situ factorial experiment at two sites simulating three herbivory levels and two nutrient availability conditions with the seagrass Posidonia oceanica. Additionally, we performed a series of feeding experiments with its two main herbivores. While plants decreased their constitutive resistance under nutrient fertilization (contrary to intraspecific RAH but in accordance to the RAH), and did not increase allocation to tolerance (likely due to resource limitation, LRM), simulated herbivory induced resistance traits. However, we found no interactive effects of nutrient fertilization and herbivory simulation on plant defense. Both herbivores responded similarly to changes in plant palatability, strongly preferring nutrient-enriched plants and non-clipped plants. This work highlights the need to better understand the drivers of plant defense intraspecific variability in response to resources, particularly in habitat-forming species where changes in plant traits and abundance will cascade onto associated species.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain.
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Inés Castejón
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Jorge Terrados
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
| | - Fiona Tomas
- Department of Marine Ecology, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Balearic Islands, Spain
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
9
|
Hughes BB, Lummis SC, Anderson SC, Kroeker KJ. Unexpected resilience of a seagrass system exposed to global stressors. GLOBAL CHANGE BIOLOGY 2018; 24:224-234. [PMID: 28752587 DOI: 10.1111/gcb.13854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
Despite a growing interest in identifying tipping points in response to environmental change, our understanding of the ecological mechanisms underlying nonlinear ecosystem dynamics is limited. Ecosystems governed by strong species interactions can provide important insight into how nonlinear relationships between organisms and their environment propagate through ecosystems, and the potential for environmentally mediated species interactions to drive or protect against sudden ecosystem shifts. Here, we experimentally determine the functional relationships (i.e., the shapes of the relationships between predictor and response variables) of a seagrass assemblage with well-defined species interactions to ocean acidification (enrichment of CO2 ) in isolation and in combination with nutrient loading. We demonstrate that the effect of ocean acidification on grazer biomass (Phyllaplysia taylori and Idotea resecata) was quadratic, with the peak of grazer biomass at mid-pH levels. Algal grazing was negatively affected by nutrients, potentially due to low grazer affinity for macroalgae (Ulva intestinalis), as recruitment of both macroalgae and diatoms were favored in elevated nutrient conditions. This led to an exponential increase in macroalgal and epiphyte biomass with ocean acidification, regardless of nutrient concentration. When left unchecked, algae can cause declines in seagrass productivity and persistence through shading and competition. Despite quadratic and exponential functional relationships to stressors that could cause a nonlinear decrease in seagrass biomass, productivity of our model seagrass-the eelgrass (Zostera marina)- remained highly resilient to increasing acidification. These results suggest that important species interactions governing ecosystem dynamics may shift with environmental change, and ecosystem state may be decoupled from ecological responses at lower levels of organization.
Collapse
Affiliation(s)
- Brent B Hughes
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Sarah C Lummis
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Sean C Anderson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
10
|
Sun J, Wang L, Ma L, Min F, Huang T, Zhang Y, Wu Z, He F. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:28046-28054. [PMID: 28993970 DOI: 10.1007/s11356-017-0153-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.
Collapse
Affiliation(s)
- Jian Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fenli Min
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Reynolds LK, Chan KM, Huynh E, Williams SL, Stachowicz JJ. Plant genotype identity and diversity interact with mesograzer species diversity to influence detrital consumption in eelgrass meadows. OIKOS 2017. [DOI: 10.1111/oik.04471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laura K. Reynolds
- Dept of Evolution and Ecology; Univ. of California Davis.; Davis CA USA
- Soil and Water Sciences Dept, Univ. of Florida, 2181 McCarty Hall A; Gainesville FL 32611-0290 USA
| | - Kendra M. Chan
- Dept of Evolution and Ecology; Univ. of California Davis.; Davis CA USA
| | - Elena Huynh
- Dept of Evolution and Ecology; Univ. of California Davis.; Davis CA USA
| | - Susan L. Williams
- Dept of Evolution and Ecology; Univ. of California Davis.; Davis CA USA
- Bodega Marine Laboratory, Univ. of California Davis; Davis CA. USA
| | | |
Collapse
|