1
|
Sotgia S. Quantification of trimethylamine-N-oxide (TMAO) and its main related trimethylammonium-containing compounds in human plasma by LC-MS/MS. Clin Chim Acta 2025; 573:120294. [PMID: 40222542 DOI: 10.1016/j.cca.2025.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Trimethylammonium-containing compounds, including choline (CHOL), carnitine (CAR), trimethylglycine (TMG), ergothioneine (ERT), Nε,Nε,Nε-trimethyllysine (TML), γ-butyrobetaine (gBB), and dimethylglycine (DMG) contribute to trimethylamine N-oxide (TMAO) production, a metabolite linked to cardiovascular, renal, and metabolic diseases. An LC-MS/MS method has been established for their simultaneous measurement in human plasma, as an accurate quantification of TMAO and its precursors is crucial for understanding its clinical relevance. METHODS Blood samples from ten healthy male volunteers were processed using acetonitrile protein precipitation. Analysis was performed using a HILIC column and an isocratic methanol-formic acid mobile phase, achieving a total run time of less than 6 min. Linearity was adequate for all analytes (R2 > 0.995), with mean intra- and inter-assay variation coefficients of 2.88 % and 4.23 %, respectively. Recoveries ranged from 95 % to 101 %, limits of detection from 0.009 to 0.068 µmol/L, and limits of quantification from 0.031 to 0.187 µmol/L. Plasma mean concentrations were 3.18 ± 0.73 µmol/L for TMAO, 3.99 ± 0.65 µmol/L for DMG, 9.84 ± 2.08 µmol/L for CHOL, 24.22 ± 6.19 µmol/L for TMG, 0.54 ± 0.22 µmol/L for gBB, 57.29 ± 8.89 µmol/L for CAR, 1.10 ± 0.42 µmol/L for ERT, and 0.40 ± 0.11 µmol/L for TML. Significant inter-individual variability (mean RSD% of 26 %) was observed. CONCLUSION The developed LC-MS/MS method enables rapid, sensitive, and selective quantification of TMAO and its precursors in human plasma. The analytical performance supports its application in clinical and metabolomic studies, contributing to a better understanding the role of TMAO in disease states.
Collapse
Affiliation(s)
- Salvatore Sotgia
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Viale San Pietro 43/B -I-07100, Sassari, Italy.
| |
Collapse
|
2
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Khan QA, Asad M, Ali AH, Farrukh AM, Naseem U, Semakieh B, Levin Carrion Y, Afzal M. Gut microbiota metabolites and risk of major adverse cardiovascular events and death: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37825. [PMID: 39259062 PMCID: PMC11142832 DOI: 10.1097/md.0000000000037825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Gut microbial metabolites such as trimethylamine N-oxide (TMAO) and its precursors, namely betaine, L-carnitine, and choline, have been implicated as risk factors for cardiovascular events and mortality development. Therefore, we aim to perform a systematic review and meta-analysis to assess the validity of these associations. METHODS MEDLINE and Scopus were queried from their inception to August 2023 to identify studies that quantified estimates of the associations of TMAO with the development of major adverse cardiovascular events (MACE) or death. A random-effects meta-analysis was conducted to pool unadjusted or multivariable-adjusted hazard ratios (HR) and their 95% confidence intervals. The primary endpoint was the risk of MACE and all-cause death. RESULTS 30 prospective observational studies (n = 48 968) were included in the analysis. Elevated TMAO levels were associated with a significantly greater risk of MACE and all-cause death compared to low TMAO levels (HR: 1.41, 95% CI 1.2-1.54, P < .00001, I2 = 43%) and (HR: 1.55, 95% CI 1.37-1.75, P < .00001, I2 = 46%), respectively. Furthermore, high levels of either L-carnitine or choline were found to significantly increase the risk of MACE. However, no significant difference was seen in MACE in either high or low levels of betaine. CONCLUSION Elevated concentrations of TMAO were associated with increased risks of MACE and all-cause mortality. High levels of L-carnitine/choline were also significantly associated with an increased risk of MACE. However, no significant difference was found between high or low levels of betaine for the outcome of MACE.
Collapse
Affiliation(s)
| | | | | | | | - Usama Naseem
- Combined Military Hospital, CMH, Peshawar, Pakistan
| | - Bader Semakieh
- Arkansas College of Osteopathic Medicine, Fort Smith, AR
| | | | - Muhammad Afzal
- St. George’s University School of Medicine, True Blue, Grenada
| |
Collapse
|
4
|
Sun S, Peng K, Yang B, Yang M, Jia X, Wang N, Zhang Q, Kong D, Du Y. The therapeutic effect of wine-processed Corni Fructus on chronic renal failure in rats through the interference with the LPS/IL-1-mediated inhibition of RXR function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117511. [PMID: 38036016 DOI: 10.1016/j.jep.2023.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corni Fructus, derived from the fruit of Cornus officinalis Sieb. et Zucc, is a widely utilized traditional Chinese medicine (TCM) with established efficacy in the treatment of diverse chronic kidney diseases. Crude Corni Fructus (CCF) and wine-processed Corni Fructus (WCF) are the main processed forms of Corni Fructus. Generally, TCM is often used after processing (paozhi). Despite the extensive use of processed TCM, the underlying mechanisms of processing for most TCMs have been unclear so far. AIM OF THE STUDY In this study, an integrated strategy combined renal metabolomics with proteomics was established and investigated the potential processing mechanisms of CCF or WCF on chronic renal failure (CRF) models. MATERIALS AND METHODS Firstly, the differences in biochemical parameters and pathological histology were compared to evaluate the effects of CCF and WCF on CRF model rats. Then, the tissue differential metabolites and proteins between CCF and WCF on CRF model rats were screened based on metabolomics and proteomics technology. Concurrently, a combined approach of metabolomics and proteomics was employed to investigate the underlying mechanisms associated with these marker metabolic products and proteins. RESULTS Compared to the MG group, there were 27 distinct metabolites and 143 different proteins observed in the CCF-treatment group, while the WCF-treatment group exhibited 24 distinct metabolites and 379 different proteins. Further, the integration interactions analysis of the protein and lipid metabolite revealed that both WCF and CCF improved tryptophan degradation and LPS/IL-1-mediated inhibition of RXR function. WCF inhibited RXR function more than CCF via the modulation of LPS/IL-1 in the CRF model. Experimental results were validated by qRT-PCR and western blotting. Notably, the gene expression amount and protein levels of FMO3 and CYP2E1 among 8 genes influenced by WCF were higher compared to CCF. CONCLUSION The results of this study provide a theoretical basis for further study of Corni Fructus with different processing techniques in CRF. The findings also offer guidance for investigating the mechanism of action of herbal medicines in diseases employing diverse processing techniques.
Collapse
Affiliation(s)
- Shilin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China; Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Hebei, 071000, PR China
| | - Kenan Peng
- Hebei General Hospital, Shijiazhuang, Hebei, 050051, PR China
| | - Bingkun Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Xinming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Nan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Qian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China
| | - Dezhi Kong
- Institute of Chinese Integrative Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China.
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
5
|
Zhang J, Zhu P, Li S, Gao Y, Xing Y. From heart failure and kidney dysfunction to cardiorenal syndrome: TMAO may be a bridge. Front Pharmacol 2023; 14:1291922. [PMID: 38074146 PMCID: PMC10703173 DOI: 10.3389/fphar.2023.1291922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 10/23/2024] Open
Abstract
The study of trimethylamine oxide (TMAO), a metabolite of gut microbiota, and heart failure and chronic kidney disease has made preliminary achievements and been summarized by many researchers, but its research in the field of cardiorenal syndrome is just beginning. TMAO is derived from the trimethylamine (TMA) that is produced by the gut microbiota after consumption of carnitine and choline and is then transformed by flavin-containing monooxygenase (FMO) in the liver. Numerous research results have shown that TMAO not only participates in the pathophysiological progression of heart and renal diseases but also significantly affects outcomes in chronic heart failure (CHF) and chronic kidney disease (CKD), besides influencing the general health of populations. Elevated circulating TMAO levels are associated with adverse cardiovascular events such as HF, myocardial infarction, and stroke, patients with CKD have a poor prognosis as well. However, no study has confirmed an association between TMAO and cardiorenal syndrome (CRS). As a syndrome in which heart and kidney diseases intersect, CRS is often overlooked by clinicians. Here, we summarize the research on TMAO in HF and kidney disease and review the existing biomarkers of CRS. At the same time, we introduced the relationship between exercise and gut microbiota, and appropriately explored the possible mechanisms by which exercise affects gut microbiota. Finally, we discuss whether TMAO can serve as a biomarker of CRS, with the aim of providing new strategies for the detection, prognostic, and treatment evaluation of CRS.
Collapse
Affiliation(s)
- Jialun Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Siyu Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Xing
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Evans M, Dai L, Avesani CM, Kublickiene K, Stenvinkel P. The dietary source of trimethylamine N-oxide and clinical outcomes: an unexpected liaison. Clin Kidney J 2023; 16:1804-1812. [PMID: 37915930 PMCID: PMC10616480 DOI: 10.1093/ckj/sfad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 11/03/2023] Open
Abstract
The profile of gut microbiota can vary according to host genetic and dietary characteristics, and be influenced by disease state and environmental stressors. The uremic dysbiosis results in a loss of biodiversity and overgrowth of microorganisms that may cause elevation of metabolic solutes such as trimethylamine N-oxide (TMAO), inducing pathogenic effects on its host. In patients with chronic kidney disease (CKD), TMAO levels are elevated because of a decreased clearance and an increased production from the uremic gut dysbiosis with a disrupted intestinal barrier and elevated enzymatic hepatic activity. Dietary precursors of TMAO are abundant in animal-derived foods such as red meat, egg yolk and other full-fat dietary products. TMAO is also found naturally in fish and certain types of seafood, with the TMAO content highly variable according to the depth of the sea where the fish is caught, as well as processing and storage. Although evidence points towards TMAO as being an important link to vascular damage and adverse cardiovascular outcomes, the evidence in CKD patients has not been consistent. In this review we discuss the potential dietary sources of TMAO and its actions on the intestinal microbiome as an explanation for the divergent results. We further highlight the potential of a healthy diet as one feasible therapeutic opportunity to prevent gut dysbiosis and reduce uremic toxin levels in patients with CKD.
Collapse
Affiliation(s)
- Marie Evans
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Carla Maria Avesani
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Renal Unit, Department of Clinical Sciences and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The role and underlying mechanisms mediated by dietary salt in modulating the gut microbiota and contributing to heart failure (HF) are not clear. This review summarizes the mechanisms of dietary salt and the gut-heart axis in HF. RECENT FINDINGS The gut microbiota has been implicated in several cardiovascular diseases (CVDs) including HF. Dietary factors including high consumption of salt play a role in influencing the gut microbiota, resulting in dysbiosis. An imbalance of microbial species due to a reduction in microbial diversity with accompanying immune cell activation has been implicated in the pathogenesis of HF via several mechanisms. The gut microbiota and gut-associated metabolites contribute to HF by reducing gut microbiota biodiversity and activating several signaling pathways. High dietary salt modulates the gut microbiota composition and exacerbate or induce HF by increasing the expression of the epithelial sodium/hydrogen exchanger isoform 3 in the gut, cardiac expression of beta myosin heavy chain, activation of the myocyte enhancer factor/nuclear factor of activated T cell, and salt-inducible kinase 1. These mechanisms explain the resulting structural and functional derangements in patients with HF.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Room 536 Robinson Research Building, Nashville, TN, 37232-6602, USA.
| |
Collapse
|
8
|
Ongun MC, Orgul G, Celik C, Bariskaner H. Contractile effect of trimethylamine and trimethylamine-n-oxide on isolated human umbilical arteries. J Obstet Gynaecol Res 2023. [PMID: 37045561 DOI: 10.1111/jog.15656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND The aim of this study is to investigate the effect of trimethylamine (TMA) and trimethylamine-n-oxide (TMAO) on the contractility of human umbilical artery and the possible mechanisms involved. METHODS Vasoactive responses to TMA and TMAO on human umbilical artery rings were measured in isolated organ baths. Cumulative dose-response curves for TMA and TMAO were obtained before and after incubation with atropine, yohimbine, prazosin, indomethacin, verapamil, and Ca+2 -free Krebs-Henselite solution. RESULTS Administration of cumulative TMA and TMAO resulted in dose-dependent contraction at concentrations ranging from 10 to 100 mM on human umbilical artery rings. TMA-induced contractions were more potent than TMAO-induced contractions (TMA: -logEC50 = 1.00 ± 0.02, TMAO: -logEC50 = 0.57 ± 0.02). Contraction responses to TMA were significantly lower in the presence of verapamil and in the absence of external Ca+2 (p < 0.001, p < 0.05, respectively). CONCLUSION Our results showed that TMA and TMAO caused vasoconstriction in isolated human umbilical artery rings. Our findings also indicated that TMA but not TMAO-induced vasoconstriction was partially dependent on extracellular Ca2+ and calcium influx through L-type Ca2+ channels. Our results suggest that TMA and TMAO may have the potential to contribute to cardiovascular diseases through their direct effect on vascular contractility in human arteries.
Collapse
Affiliation(s)
- Mert C Ongun
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Gokcen Orgul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Cetin Celik
- Department of Obstetrics and Gynecology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Hulagu Bariskaner
- Department of Medical Pharmacology, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
9
|
Gut Microbiota-Derived TMAO: A Causal Factor Promoting Atherosclerotic Cardiovascular Disease? Int J Mol Sci 2023; 24:ijms24031940. [PMID: 36768264 PMCID: PMC9916030 DOI: 10.3390/ijms24031940] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is the main diet-induced metabolite produced by the gut microbiota, and it is mainly eliminated through renal excretion. TMAO has been correlated with an increased risk of atherosclerotic cardiovascular disease (ASCVD) and related complications, such as cardiovascular mortality or major adverse cardiovascular events (MACE). Meta-analyses have postulated that high circulating TMAO levels are associated with an increased risk of cardiovascular events and all-cause mortality, but the link between TMAO and CVD remains not fully consistent. The results of prospective studies vary depending on the target population and the outcome studied, and the adjustment for renal function tends to decrease or reverse the significant association between TMAO and the outcome studied, strongly suggesting that the association is substantially mediated by renal function. Importantly, one Mendelian randomization study did not find a significant association between genetically predicted higher TMAO levels and cardiometabolic disease, but another found a positive causal relationship between TMAO levels and systolic blood pressure, which-at least in part-could explain the link with renal function. The mechanisms by which TMAO can increase this risk are not clearly elucidated, but current evidence indicates that TMAO induces cholesterol metabolism alterations, inflammation, endothelial dysfunction, and platelet activation. Overall, there is no fully conclusive evidence that TMAO is a causal factor of ASCVD, and, especially, whether TMAO induces or just is a marker of hypertension and renal dysfunction requires further study.
Collapse
|
10
|
Liu D, Gu S, Zhou Z, Ma Z, Zuo H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study. J Intern Med 2023; 293:110-120. [PMID: 36200542 DOI: 10.1111/joim.13572] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut-derived atherogenic metabolite. However, the role of TMAO and its precursors in the development of stroke remains unclear. We aimed to examine the associations between metabolites in TMAO biosynthesis and stroke risk. METHODS A nested case-control study was performed in a community-based cohort (2013-2018, n = 16,113). We included 412 identified stroke cases and 412 controls matched by age and sex. Plasma carnitine, choline, betaine, trimethyl lysine (TML), and TMAO were measured by ultrahigh performance liquid chromatography-tandem mass spectrometry. Conditional logistic regression analyses were used to calculate odds ratios (ORs) and their 95% confidence intervals (CIs) between these biomarkers and stroke risk. RESULTS After adjustment for body mass index, smoking, hypertension, educational attainment, and estimated glomerular filtration rate, the corresponding OR for the highest versus lowest quartile was 1.74 (95% CI: 1.16-2.61, P trend = 0.006) for total stroke and 1.81 (95% CI: 1.14-2.86, P trend = 0.020) for ischemic stroke in an essentially linear dose-response fashion. A significant association between TMAO and nonischemic stroke was shown as a J-shape with OR for the highest versus second quartile of 5.75 (95% CI: 1.73-19.1). No meaningful significant risk association was found among plasma carnitine, choline, betaine, and TML with stroke risk. CONCLUSIONS Increased TMAO was associated with higher stroke risk in the community-based population, whereas the TMAO precursors carnitine, choline, betaine, and TML were not associated. Further studies are warranted to confirm these findings and to further elucidate the role of TMAO in the development of stroke.
Collapse
Affiliation(s)
- Dong Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shujun Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Zhengyuan Zhou
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Ze Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Coding Variants of the FMO3 Gene Are Associated with the Risk of Chronic Kidney Disease: A Case-Control Study. Rep Biochem Mol Biol 2022; 11:430-439. [PMID: 36718298 PMCID: PMC9883036 DOI: 10.52547/rbmb.11.3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Background Chronic kidney disease (CKD) is a global health concern involving roughly one-tenth of developed countries' populations. The flavin-containing dimethylaniline monooxygenase 3 (FMO3) gene encodes an enzyme that catalyzes trimethylamine N-oxide (TMAO), a toxin in CKD sufferers. This preliminary study aims to evaluate the association between coding region variations of FMO3, rs2266782G/A (E158K), rs2266780A/G (E308G), and rs1736557G/A (V257M), and the susceptibility to CKD. Methods A total of 356 participants were enrolled, including 157 patients diagnosed with CKD and 199 age-matched healthy individuals. Genotyping of FMO3 gene variations was performed via PCR-RFLP and ARMS-PCR methods. Results Our findings revealed a significant association between rs2266780A/G and rs1736557G/A and CKD under different genetic models. Compared to the GGG haplotype of rs2266782/rs1736557/rs2266780, the GAG, GAA, AAG, and AAA haplotype combinations conferred an increased risk of CKD in our population. Interaction analysis revealed that some genotype combinations, including GA/AA/AA, AA/AA/AA, GA/AA/GA, and GG/AG/AA, dramatically increased CKD risk in the Iranian population. No correlation was found between FMO3 polymorphisms and CKD stages. Discussion These observations highlight the potential impact of coding variants of the FMO3 gene on the onset of CKD. Further investigations into expanded populations and diverse races are needed to confirm our findings.
Collapse
|
12
|
Liu D, Ji Y, Cheng Q, Zhu Y, Zhang H, Guo Y, Cao X, Wang H. Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food Funct 2022; 13:10461-10475. [PMID: 36134474 DOI: 10.1039/d2fo02102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scope: Atherosclerosis (AS) is the leading cause of ischemic disease. However, the anti-AS effects of astaxanthin and its potential mechanisms remain unclear. This study is aimed to investigate the function of astaxanthin-rich extract (ASTE) on AS and gut microbiota as well as the difference from atorvastatin (ATO) in apolipoprotein E-deficient (ApoE-/-) mice. Methods and results: Wild type (WT) and ApoE-/- mice were divided into seven groups: the low-fat diet (LFD) and high-fat diet (HFD) groups (in both types) as well as three ApoE-/- groups based on HFD added with two doses of ASTE and one dose of ATO, respectively. After 30 weeks of intervention, results showed that ASTE significantly inhibited body weight increase, lipids accumulation in serum/liver, and AS-lesions in the aorta. Furthermore, fundus fluorescein angiography and retinal CD31 immunohistochemical staining showed that ASTE could alleviate the occurrence of AS-retinopathy. H&E staining showed that ASTE could protect the colon's mucosal epithelium from damage. The gas chromatographic and gene expression analyses showed that ASTE promoted the excretion of fecal acidic and neutral sterols from cholesterol by increasing LXRα, CYP7A1, and ABCG5/8 and decreasing FXR, NPC1L1, ACAT2, and MTTP expressions. Remarkably, the ASTE administration maintained the gut barrier by enhancing gene expression of JAM-A, Occludin, and mucin2 in the colon and reshaped gut microbiota with the feature of blooming Akkermansia. Conclusion: Our results suggested that ASTE could prevent AS in both macrovascular and/or microvascular as well as used as novel prebiotics by supporting the bile acid excretion and growth of Akkermansia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yamin Zhu
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Haibo Zhang
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Xiupeng Cao
- The First People's Hospital of Neijiang, Neijiang 641099, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
13
|
Zixin Y, Lulu C, Xiangchang Z, Qing F, Binjie Z, Chunyang L, Tai R, Dongsheng O. TMAO as a potential biomarker and therapeutic target for chronic kidney disease: A review. Front Pharmacol 2022; 13:929262. [PMID: 36034781 PMCID: PMC9411716 DOI: 10.3389/fphar.2022.929262] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota and its metabolites have become a hotspot of recent research. Trimethylamine N-oxide (TMAO) metabolized by the gut microbiota is closely related to many diseases such as cardiovascular disease, chronic kidney disease, type 2 diabetes, etc. Chronic kidney disease (CKD) is an important contributor to morbidity and mortality from non-communicable diseases. Recently, increasing focus has been put on the role of TMAO in the development and progress of chronic kidney disease. The level of TMAO in patients with chronic kidney disease is significantly increased, and a high level of TMAO deteriorates chronic kidney disease. This article describes the relationship between TMAO and chronic kidney disease and the research progress of drugs targeted TMAO, providing a reference for the development of anti-chronic kidney disease drugs targeted TMAO.
Collapse
Affiliation(s)
- Ye Zixin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chen Lulu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Zeng Xiangchang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Qing
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| | - Zheng Binjie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Luo Chunyang
- Department of Clinical Pharmacy, Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Rao Tai
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ouyang Dongsheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
14
|
Li D, Lu Y, Yuan S, Cai X, He Y, Chen J, Wu Q, He D, Fang A, Bo Y, Song P, Bogaert D, Tsilidis K, Larsson SC, Yu H, Zhu H, Theodoratou E, Zhu Y, Li X. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am J Clin Nutr 2022; 116:230-243. [PMID: 35348578 PMCID: PMC9257469 DOI: 10.1093/ajcn/nqac074] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced from dietary nutrients. Many studies have discovered that circulating TMAO concentrations are linked to a wide range of health outcomes. OBJECTIVES This study aimed to summarize health outcomes related to circulating TMAO concentrations. METHODS We searched the Embase, Medline, Web of Science, and Scopus databases from inception to 15 February, 2022 to identify and update meta-analyses examining the associations between TMAO and multiple health outcomes. For each health outcome, we estimated the summary effect size, 95% prediction CI, between-study heterogeneity, evidence of small-study effects, and evidence of excess-significance bias. These metrics were used to evaluate the evidence credibility of the identified associations. RESULTS This umbrella review identified 24 meta-analyses that investigated the association between circulating TMAO concentrations and health outcomes including all-cause mortality, cardiovascular diseases (CVDs), diabetes mellitus (DM), cancer, and renal function. We updated these meta-analyses by including a total of 82 individual studies on 18 unique health outcomes. Among them, 14 associations were nominally significant. After evidence credibility assessment, we found 6 (33%) associations (i.e., all-cause mortality, CVD mortality, major adverse cardiovascular events, hypertension, DM, and glomerular filtration rate) to present highly suggestive evidence. CONCLUSIONS TMAO might be a novel biomarker related to human health conditions including all-cause mortality, hypertension, CVD, DM, cancer, and kidney function. Further studies are needed to investigate whether circulating TMAO concentrations could be an intervention target for chronic disease.This review was registered at www.crd.york.ac.uk/prospero/ as CRD42021284730.
Collapse
Affiliation(s)
- Doudou Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Lu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Yuan He
- National Research Institute for Health and Family Planning, Beijing, China
| | - Jie Chen
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Di He
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Aiping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yacong Bo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Peige Song
- School of Public Health and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Debby Bogaert
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Huanling Yu
- Department of Nutrition and Food Hygiene, Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Centre, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Fretts AM, Hazen SL, Jensen P, Budoff M, Sitlani CM, Wang M, de Oliveira Otto MC, DiDonato JA, Lee Y, Psaty BM, Siscovick DS, Sotoodehnia N, Tang WHW, Lai H, Lemaitre RN, Mozaffarian D. Association of Trimethylamine N-Oxide and Metabolites With Mortality in Older Adults. JAMA Netw Open 2022; 5:e2213242. [PMID: 35594043 PMCID: PMC9123496 DOI: 10.1001/jamanetworkopen.2022.13242] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Little is known about the association of trimethylamine N-oxide (TMAO), a novel plasma metabolite derived from L-carnitine and phosphatidylcholine, and related metabolites (ie, choline, betaine, carnitine, and butyrobetaine) with risk of death among older adults in the general population. OBJECTIVE To investigate the associations of serial measures of plasma TMAO and related metabolites with risk of total and cause-specific death (ie, deaths from cardiovascular diseases [CVDs] and non-CVDs) among older adults in the US. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study involved 5333 participants from the Cardiovascular Health Study-a community-based longitudinal cohort of adults aged 65 years or older-who were followed up from June 1, 1989, to December 31, 2015. Participants were from 4 communities in the US (Forsyth County, North Carolina; Sacramento County, California; Washington County, Maryland; and Allegheny County, Pennsylvania). Data were analyzed from March 17 to June 23, 2021. EXPOSURES Plasma TMAO, choline, betaine, carnitine, and butyrobetaine levels were measured using stored samples from baseline (June 1, 1989, to May 31, 1990, or November 1, 1992, to June 31, 1993) and follow-up examination (June 1, 1996, to May 31, 1997). Measurements were performed through stable-isotope dilution liquid chromatography with tandem mass spectrometry using high-performance liquid chromatography with online electrospray ionization tandem mass spectrometry. MAIN OUTCOMES AND MEASURES Deaths (total and cause specific) were adjudicated by a centralized Cardiovascular Health Study events committee based on information from medical records, laboratory and diagnostic reports, death certificates, and/or interviews with next of kin. The associations of each metabolite with mortality were assessed using Cox proportional hazards regression models. RESULTS Among 5333 participants in the analytic sample, the mean (SD) age was 73 (6) years; 2149 participants (40.3%) were male, 3184 (59.7%) were female, 848 (15.9%) were African American, 4450 (83.4%) were White, and 35 (0.01%) were of other races (12 were American Indian or Alaska Native, 4 were Asian or Pacific Islander, and 19 were of other races or ethnicities). During a median follow-up of 13.2 years (range, 0-26.9 years), 4791 deaths occurred. After adjustment for potential confounders, the hazard ratios for death from any cause (ie, total mortality) comparing extreme quintiles (fifth vs first) of plasma concentrations were 1.30 (95% CI, 1.17-1.44) for TMAO, 1.19 (95% CI, 1.08-1.32) for choline, 1.26 (95% CI, 1.15-1.40) for carnitine, and 1.26 (95% CI, 1.13-1.40) for butyrobetaine. Plasma betaine was not associated with risk of death. The extent of risk estimates was similar for CVD and non-CVD mortality. CONCLUSIONS AND RELEVANCE In this cohort study, plasma concentrations of TMAO and related metabolites were positively associated with risk of death. These findings suggest that circulating TMAO is an important novel risk factor associated with death among older adults.
Collapse
Affiliation(s)
- Amanda M. Fretts
- Department of Epidemiology, University of Washington School of Public Health, Seattle
- Cardiovascular Health Research Unit, University of Washington, Seattle
| | - Stanley L. Hazen
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Paul Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Matthew Budoff
- Lundquist Institute, Department of Medicine, Harbor UCLA Medical Center, Torrance, California
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Meng Wang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| | - Marcia C. de Oliveira Otto
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Joseph A. DiDonato
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, Korea
| | - Bruce M. Psaty
- Department of Epidemiology, University of Washington School of Public Health, Seattle
- Cardiovascular Health Research Unit, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
- Department of Health Services, University of Washington, Seattle
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - W. H. Wilson Tang
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Heidi Lai
- Department of Primary Care and Public Health, Imperial College London, London, United Kingdom
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts
| |
Collapse
|
16
|
Massey W, Osborn LJ, Banerjee R, Horak A, Fung KK, Orabi D, Chan ER, Sangwan N, Wang Z, Brown JM. Flavin-Containing Monooxygenase 3 (FMO3) Is Critical for Dioxin-Induced Reorganization of the Gut Microbiome and Host Insulin Sensitivity. Metabolites 2022; 12:364. [PMID: 35448550 PMCID: PMC9029240 DOI: 10.3390/metabo12040364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood. Here, we show that TCDD exposure in mice profoundly stimulates the hepatic expression of flavin-containing monooxygenase 3 (Fmo3), which is a hepatic xenobiotic metabolizing enzyme that is also responsible for the production of the gut microbiome-associated metabolite trimethylamine N-oxide (TMAO). Interestingly, an enzymatic product of FMO3 (TMAO) has been associated with the same cardiometabolic diseases that these environmental pollutants promote. Therefore, here, we examined TCDD-induced alterations in the gut microbiome, host liver transcriptome, and glucose tolerance in Fmo3+/+ and Fmo3-/- mice. Our results show that Fmo3 is a critical component of the transcriptional response to TCDD, impacting the gut microbiome, host liver transcriptome, and systemic glucose tolerance. Collectively, this work uncovers a previously underappreciated role for Fmo3 in integrating diet-pollutant-microbe-host interactions.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rakhee Banerjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anthony Horak
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kevin K. Fung
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
| | - Danny Orabi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - E. Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Naseer Sangwan
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Microbial Sequencing & Analytics Core Facility, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA; (W.M.); (L.J.O.); (R.B.); (A.H.); (K.K.F.); (D.O.); (Z.W.)
- Center for Microbiome & Human Health, Cleveland Clinic, Lerner Research Institute, Cleveland, OH 44195, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Zhou Z, Jin H, Ju H, Sun M, Chen H, Li L. Circulating Trimethylamine-N-Oxide and Risk of All-Cause and Cardiovascular Mortality in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:828343. [PMID: 35433743 PMCID: PMC9012260 DOI: 10.3389/fmed.2022.828343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022] Open
Abstract
Background Trimethylamine-N-oxide (TMAO) is expected to be a prognostic biomarker among patients suffering from chronic kidney disease (CKD). However, investigations on the association between TMAO and CKD prognosis are conflicting. In the present article, we aimed to assess the relationship of circulating TMAO with the risk of all-cause and cardiovascular mortality among CKD patients by a meta-analysis. Methods Data were collected from PubMed, EMBASE, and Web of Science for systematically searching related literature (last update: February 2022). The multivariable-adjusted hazard risks (HR) and their 95% confidence intervals (CI) were pooled using random effects models. Results Eleven prospective cohort studies covering 7,899 CKD patients were enrolled in this meta-analysis. When comparing individuals in the top and bottom baseline TMAO levels thirds, the multivariate adjusted pooled HR was 1.29 (95% CI 1.11–1.51, P = 0.001) for all-cause mortality, and 1.45 (95% CI 1.01–2.09, P = 0.043) for cardiovascular death. For continuous variables, per 1 unit increase of circulating TMAO levels was associated with a 3% higher all-cause mortality (HR 1.03, 95% CI 1.00–1.06, P = 0.032), but not significantly associated with cardiovascular death (HR 1.08, 95% CI 0.92–1.27, P = 0.346). Stratified analyses revealed that the positive relationship between TMAO and all-cause mortality remained significant after adjusting for diabetes, blood pressure, blood lipid, renal function, or inflammatory parameters. Conclusion Higher circulating TMAO was associated with an increased mortality risk among patients with CKD, and this relationship may be dependent on TMAO dose and independent of renal function, inflammation, diabetes, hypertension, and dyslipidemia. Systematic Review Registration [https://www.INPLASY.COM], identifier [INPLASY2021100049].
Collapse
Affiliation(s)
- Zhongwei Zhou
- Department of Clinical Laboratory, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Hao Jin
- Department of Blood Transfusion, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Huixiang Ju
- Department of Clinical Laboratory, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Mingzhong Sun
- Department of Clinical Laboratory, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Hongmei Chen
- Department of Clinical Laboratory, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, China
| | - Li Li
- Department of Clinical Laboratory, Binhai County People’s Hospital, Yancheng, China
- *Correspondence: Li Li,
| |
Collapse
|
18
|
Xie Y, Hu X, Li S, Qiu Y, Cao R, Xu C, Lu C, Wang Z, Yang J. Pharmacological targeting macrophage phenotype via gut-kidney axis ameliorates renal fibrosis in mice. Pharmacol Res 2022; 178:106161. [DOI: 10.1016/j.phrs.2022.106161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
|
19
|
Sharma V, Sharma V, Shahjouei S, Li J, Chaudhary D, Khan A, Wolk DM, Zand R, Abedi V. At the Intersection of Gut Microbiome and Stroke: A Systematic Review of the Literature. Front Neurol 2021; 12:729399. [PMID: 34630304 PMCID: PMC8498333 DOI: 10.3389/fneur.2021.729399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Ischemic and hemorrhagic stroke are associated with a high rate of long-term disability and death. Recent investigations focus efforts to better understand how alterations in gut microbiota composition influence clinical outcomes. A key metabolite, trimethylamine N-oxide (TMAO), is linked to multiple inflammatory, vascular, and oxidative pathways. The current biochemical underpinnings of microbial effects on stroke remain largely understudied. The goal of our study is to explore the current literature to explain the interactions between the human gut microbiome and stroke progression, recovery, and outcome. We also provide a descriptive review of TMAO. Methods: A systematic literature search of published articles between January 1, 1990, and March 22, 2020, was performed on the PubMed database to identify studies addressing the role of the microbiome and TMAO in the pathogenesis and recovery of acute stroke. Our initial investigation focused on human subject studies and was further expanded to include animal studies. Relevant articles were included, regardless of study design. The analysis included reviewers classifying and presenting selected articles by study design and sample size in a chart format. Results: A total of 222 titles and abstracts were screened. A review of the 68 original human subject articles resulted in the inclusion of 24 studies in this review. To provide further insight into TMAO as a key player, an additional 40 articles were also reviewed and included. Our findings highlighted that alterations in richness and abundance of gut microbes and increased plasma TMAO play an important role in vascular events and outcomes. Our analysis revealed that restoration of a healthy gut, through targeted TMAO-reducing therapies, could provide alternative secondary prevention for at-risk patients. Discussion: Biochemical interactions between the gut microbiome and inflammation, resulting in metabolic derangements, can affect stroke progression and outcomes. Clinical evidence supports the importance of TMAO in modulating underlying stroke risk factors. Lack of standardization and distinct differences in sample sizes among studies are major limitations.
Collapse
Affiliation(s)
- Vishakha Sharma
- Kansas City University College of Osteopathic Medicine, Kansas City, MO, United States
| | - Vaibhav Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Shima Shahjouei
- Geisinger Health System, Geisinger Neuroscience Institute, Danville, PA, United States
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States
| | - Durgesh Chaudhary
- Geisinger Health System, Geisinger Neuroscience Institute, Danville, PA, United States
| | - Ayesha Khan
- Geisinger Health System, Geisinger Neuroscience Institute, Danville, PA, United States.,Geisinger Health System, Geisinger Northeast Internal Medicine Residency, Wilkes Barre, PA, United States
| | - Donna M Wolk
- Department of Laboratory Medicine, Geisinger Health System, Diagnostic Medicine Institute, Danville, PA, United States
| | - Ramin Zand
- Geisinger Health System, Geisinger Neuroscience Institute, Danville, PA, United States
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States.,Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
20
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
21
|
Jansen VL, Gerdes VE, Middeldorp S, van Mens TE. Gut microbiota and their metabolites in cardiovascular disease. Best Pract Res Clin Endocrinol Metab 2021; 35:101492. [PMID: 33642219 DOI: 10.1016/j.beem.2021.101492] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The gut microbiome affects the development and progress of various types of disease such as obesity, diabetes, atherosclerosis and arterial thrombosis. Gut microbiome derived metabolites have been established to be predictive of arterial thrombosis in epidemiological studies. In these studies atherosclerosis and prothrombotic effect cannot be distinguished but preclinical studies show gut derived metabolites can induce platelet hyperreactivity and increase thrombotic potential. Gut commensals can also influence platelets through serotonin synthesis and may enhance Von Willebrand factor production. The effects on secondary haemostasis are less studied. In antiphospholipid syndrome, a thrombotic auto-immune disorder, autoreactive T cells and antibodies cross-react with auto-antigen mimicking peptides from gut commensals which appears to contribute to the pathophysiology. This review focusses on the prothrombotic effect of the gut microbiome and aims to provide insight into its influence on thromboembolic disease and the haemostatic system.
Collapse
Affiliation(s)
- Valérie Lbi Jansen
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands.
| | - Victor Ea Gerdes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| | - Saskia Middeldorp
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands; Department of Internal Medicine & Radboud Institute of Health Sciences (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Thijs E van Mens
- Amsterdam UMC, University of Amsterdam, Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Meibergdreef 9, Amsterdam, Netherlands.
| |
Collapse
|
22
|
Gao X, Sun G, Randell E, Tian Y, Zhou H. Systematic investigation of the relationships of trimethylamine N-oxide and L-carnitine with obesity in both humans and rodents. Food Funct 2021; 11:7707-7716. [PMID: 32915186 DOI: 10.1039/d0fo01743d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies suggested the potential associations of trimethylamine N-oxide (TMAO) and its metabolic precursor l-carnitine with obesity. However, existing evidence is limited and inconsistent. In the present study, we perform a cross-sectional analysis of the associations of serum levels of TMAO and l-carnitine with obesity measures, including BMI, body fat distribution and body composition in 1081 participants from the general Newfoundland population. The dietary effects of TMAO and l-carnitine in preventing high fat diet-induced obesity in both male and female mice were also evaluated. We found significant associations between higher serum l-carnitine levels and obesity (higher BMI, body fat mass and VT%) in women, but not in men after controlling multiple confounding factors. Serum TMAO levels were positively associated with age, but not obesity in both men and women. Dietary TMAO had no influence on fat accumulation in high fat diet-fed mice. However, l-carnitine supplementation prevented high fat diet-fed induced obesity in both male and female mice by up-regulating lipolysis and down-regulating lipogenesis in white adipose tissues. The present study provides further evidence for the relationships between TMAO, l-carnitine and obesity.
Collapse
Affiliation(s)
- Xiang Gao
- College of Life Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, Shandong, China.
| | - Guang Sun
- Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's A1B3V6, NL, Canada.
| | - Edward Randell
- Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's A1B3V6, NL, Canada.
| | - Yuan Tian
- Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's A1B3V6, NL, Canada.
| | - Haicheng Zhou
- Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St John's A1B3V6, NL, Canada.
| |
Collapse
|
23
|
Thomas MS, Fernandez ML. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr Atheroscler Rep 2021; 23:12. [PMID: 33594574 DOI: 10.1007/s11883-021-00910-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The association between plasma Trimethylamine N-Oxide (TMAO), diet and risk for cardiovascular disease (CVD) is still not fully understood. While epidemiologic research shows a causal relationship between plasma TMAO concentrations and CVD risk, the role of dietary precursors in determining plasma concentrations of TMAO and biomarkers for CVD is inconclusive. RECENT FINDINGS Studies in diverse populations show that plasma TMAO concentrations are positively associated with inflammation, endothelial dysfunction, type-2 diabetes, central adiposity and hypertension. Most recent studies utilizing challenges of dietary choline have not shown increases in plasma chronic TMAO concentrations while studies with carnitine have shown increases in plasma TMAO but in some cases, no alterations in plasma lipids or biomarkers of oxidative stress were observed. TMAO is an important plasma metabolite that through several mechanisms can increase the risk of CVD. The correlations between dietary choline and carnitine on chronic plasma TMAO levels and risk for CVD requires further investigation.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
24
|
Guasti L, Galliazzo S, Molaro M, Visconti E, Pennella B, Gaudio GV, Lupi A, Grandi AM, Squizzato A. TMAO as a biomarker of cardiovascular events: a systematic review and meta-analysis. Intern Emerg Med 2021; 16:201-207. [PMID: 32779113 DOI: 10.1007/s11739-020-02470-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Unmasking the residual cardiovascular risk is a major research challenge in the attempt to reduce cardiovascular disease (CVD) morbidity and mortality. Mounting evidence suggests that a high circulating level of trimethylamine N-oxide is a new potential CVD risk factor. We performed a systematic review of the published studies to clarify the association between circulating high levels of TMAO and cardiovascular events. METHODS Studies evaluating the association between TMAO and CVD events were searched by electronic databases up to December 2018. Pooled results were expressed as risk ratio (RR) with 95% pertinent confidence interval (CI). RESULTS Three studies for a total of 923 patients at high/very high CVD risk were included in our analysis. Overall, a high TMAO level was associated with both major adverse cardiovascular events (RR = 2.05; 95% CI 1.61-2.61) and all-cause mortality (RR = 3.42; 95% CI 2.27-5.15). CONCLUSIONS Our findings support a role of high TMAO levels in predicting CVD events. High levels of TMAO may be a new CVD risk factor, potentially useful to better plan personalized CVD prevention strategies.
Collapse
Affiliation(s)
- Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy
| | - Silvia Galliazzo
- Internal Medicine Unit, Ospedale S.Valentino, Montebelluna, Treviso, Italy
| | | | - Eleonora Visconti
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy
| | - Benedetta Pennella
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy
| | | | - Alessandro Lupi
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy
| | - Anna Maria Grandi
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy
| | - Alessandro Squizzato
- Department of Medicine and Surgery, University of Insubria, Varese, Como, Italy.
- U.O.C Medicina Generale, ASST Lariana-Ospedale S.Anna,, Via Ravona, 20, 22042, San Fermo della Battaglia, Como, Italy.
| |
Collapse
|
25
|
Zhu KX, Song PY, He-Li, Li MP, Du YX, Ma QL, Peng LM, Chen XP. Association of FMO3 rs1736557 polymorphism with clopidogrel response in Chinese patients with coronary artery disease. Eur J Clin Pharmacol 2020; 77:359-368. [PMID: 33089397 DOI: 10.1007/s00228-020-03024-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Dual antiplatelet therapy with aspirin and clopidogrel is commonly used for coronary artery disease (CAD) patients undergoing percutaneous coronary intervention to prevent stent thrombosis and ischemic events. However, some patients show high on-treatment platelet reactivity (HTPR) during clopidogrel therapy. Genetic factors such as loss-of-function variants of CYP2C19 are validated to increase the risk of HTPR. Flavin-containing monooxygenase 3 (FMO3) is reported to be associated with potency of platelet responsiveness and thrombosis. This study aimed to explore the association between FMO3 rs1736557 polymorphism and clopidogrel response. METHODS Five hundred twenty-two Chinese CAD patients treated with dual antiplatelet therapy were recruited from Xiangya Hospital. After oral administration of 300 mg loading dose (LD) clopidogrel for 12-24 h or 75 mg daily maintenance dose (MD) clopidogrel for at least 5 days, the platelet reaction index (PRI) was determined by vasodilator-stimulated phosphoprotein-phosphorylation assay. FMO3 rs1736557, CYP2C19*2, and CYP2C19*3 polymorphisms were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS Mean PRI value was significantly higher in CYP2C19 poor metabolizers (PMs) and intermediate metabolizers (IMs) than the extensive metabolizers (EMs) (p < 0.001). In addition, FMO3 rs1736557 AA homozygotes showed significantly lower PRI as compared with carriers of the major rs1736557 G allele in the entire cohort and in the MD cohort (p = 0.011, p = 0.008, respectively). The risk of HTPR was decreased significantly in carriers of the rs1736557 A allele (AA vs GG: OR = 0.316, 95% CI: 0.137-0.726, p = 0.005; AA vs GA: OR = 0.249, 95% CI: 0.104-0.597, p = 0.001; AA vs GG+GA: OR = 0.294, 95% CI: 0.129-0.669, p = 0.002), and the association was observed mainly in patients carrying the CYP2C19 LOF allele and in those administered with MD. CONCLUSION The FMO3 rs1736557 AA genotype was related to an increased the antiplatelet potency of clopidogrel in Chinese CAD patients. Additional studies are required to verify this finding.
Collapse
Affiliation(s)
- Kong-Xiang Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Pei-Yuan Song
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - He-Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China
| | - Qi-Lin Ma
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Li-Ming Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China. .,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
26
|
Farhangi MA. Gut microbiota-dependent trimethylamine N-oxide and all-cause mortality: Findings from an updated systematic review and meta-analysis. Nutrition 2020; 78:110856. [PMID: 32592979 DOI: 10.1016/j.nut.2020.110856] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has been regarded as one of the potent risk factors for cardiovascular events and diabetes. In the current meta-analysis we quantitatively summarized and updated the results of studies regarding the association between TMAO and mortality. A systematic search was performed from PubMed, ProQuest, Scopus, and Embase. All of the studies that evaluated the association between TMAO and mortality were included in the systematic review and meta-analysis. Subgroup analysis and meta-regression were performed to identify the source of heterogeneity. There were 31 230 participants included and the results showed that being in the highest category of TMAO increased the hazard ratio (HR) of mortality by 47%. Moreover, there was a non-linear association between increased TMAO concentrations and HR of mortality. In the current dose-response meta-analysis, we revealed a positive association between TMAO and mortality risk among an adult population.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Research Center for Evidence Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Petrykey K, Andelfinger GU, Laverdière C, Sinnett D, Krajinovic M. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol 2020; 16:865-883. [DOI: 10.1080/17425255.2020.1807937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kateryna Petrykey
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
| | - Gregor U. Andelfinger
- Department of Pediatrics, Université De Montréal (Quebec), Canada
- Fetomaternal and Neonatal Pathologies, Sainte-JustineUniversity Health Center (SJUHC), Montreal, Quebec, Canada
| | - Caroline Laverdière
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Daniel Sinnett
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| | - Maja Krajinovic
- Immune Diseases and Cancer, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Université De Montréal (Quebec), Montreal, Canada
- Department of Pediatrics, Université De Montréal (Quebec), Canada
| |
Collapse
|
28
|
Chen S, Jiang PP, Yu D, Liao GC, Wu SL, Fang AP, Chen PY, Wang XY, Luo Y, Long JA, Zhong RH, Liu ZY, Li CL, Zhang DM, Zhu HL. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: a double-blinded randomized controlled trial. Eur J Nutr 2020; 60:747-758. [PMID: 32440731 DOI: 10.1007/s00394-020-02278-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/11/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE To explore whether probiotic supplementation could attenuate serum trimethylamine-N-oxide (TMAO) level and impact the intestinal microbiome composition. DESIGN Forty healthy males (20-25 years old) were randomized into the probiotic group (1.32 × 1011 CFU live bacteria including strains of Lactobacillus acidophilus, Lactobacillus rhamnosus GG, Bifidobacterium animalis, and Bifidobacterium longum daily) or the control group for 4 weeks. All participants underwent a phosphatidylcholine challenge test (PCCT) before and after the intervention. Serum TMAO and its precursors (TMA, choline and betaine) were measured by UPLC-MS/MS. The faecal microbiome was analyzed by 16S rRNA sequencing. RESULTS Serum TMAO and its precursors were markedly increased after the PCCT. No statistical differences were observed in the probiotic and the control group in area under the curve (AUC) (14.79 ± 0.97 μmol/L 8 h vs. 19.17 ± 2.55 μmol/L 8 h, P = 0.106) and the pre- to post-intervention AUC alterations (∆AUC) (- 6.33 ± 2.00 μmol/L 8 h vs. - 0.73 ± 3.04 μmol/L 8 h, P = 0.131) of TMAO; however, higher proportion of participants in probiotic group showed their TMAO decrease after the intervention (78.9% vs. 45.0%, P = 0.029). The abundance of Faecalibacterium prausnitzii (P = 0.043) and Prevotella (P = 0.001) in the probiotic group was significantly increased after the intervention but without obvious differences in α- and β-diversity. CONCLUSIONS The current probiotic supplementation resulted in detectable change of intestinal microbiome composition but failed to attenuate the serum TMAO elevation after PCCT. CLINICALTRIALS. GOV IDENTIFIER NCT03292978. CLINICALTRIALS.GOV WEBSITE: https://clinicaltrials.gov/ct2/show/NCT03292978 .
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Ping-Ping Jiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Danxia Yu
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA
| | - Gong-Cheng Liao
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Shang-Ling Wu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Pei-Yan Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Xiao-Yan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Yun Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Jing-An Long
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Rong-Huan Zhong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Chun-Lei Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Dao-Ming Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China.,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, 74 Zhongshan II Road, Guangzhou, 510080, People's Republic of China. .,Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
30
|
Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, Varga J, DiDonato JA, Tang WHW, Hazen SL. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol 2020; 40:1239-1255. [PMID: 32212854 PMCID: PMC7203662 DOI: 10.1161/atvbaha.120.314139] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gut microbial metabolism of dietary choline, a nutrient abundant in a Western diet, produces trimethylamine (TMA) and the atherothrombosis- and fibrosis-promoting metabolite TMA-N-oxide (TMAO). Recent clinical and animal studies reveal that elevated TMAO levels are associated with heightened risks for both cardiovascular disease and incident chronic kidney disease development. Despite this, studies focusing on therapeutically targeting gut microbiota-dependent TMAO production and its impact on preserving renal function are limited. Approach and Results: Herein we examined the impact of pharmacological inhibition of choline diet-induced gut microbiota-dependent production of TMA, and consequently TMAO, on renal tubulointerstitial fibrosis and functional impairment in a model of chronic kidney disease. Initial studies with a gut microbial choline TMA-lyase mechanism-based inhibitor, iodomethylcholine, confirmed both marked suppression of TMA generation, and consequently TMAO levels, and selective targeting of the gut microbial compartment (ie, both accumulation of the drug in intestinal microbes and limited systemic exposure in the host). Dietary supplementation of either choline or TMAO significantly augmented multiple indices of renal functional impairment and fibrosis associated with chronic subcutaneous infusion of isoproterenol. However, the presence of the gut microbiota-targeting inhibitor iodomethylcholine blocked choline diet-induced elevation in TMAO, and both significantly improved decline in renal function, and significantly attenuated multiple indices of tubulointerstitial fibrosis. Iodomethylcholine treatment also reversed many choline diet-induced changes in cecal microbial community composition associated with TMAO and renal functional impairment. CONCLUSIONS Selective targeting of gut microbiota-dependent TMAO generation may prevent adverse renal structural and functional alterations in subjects at risk for chronic kidney disease.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Jennifer A Buffa
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Adam B Roberts
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Naseer Sangwan
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Sarah M Skye
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Lin Li
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Karen J Ho
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL (K.J.H)
| | - John Varga
- Division of Rheumatology, Northwestern University, Chicago, IL (J.V.)
| | - Joseph A DiDonato
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
31
|
Abstract
Advances in our understanding of how the gut microbiota contributes to human health and diseases have expanded our insight into how microbial composition and function affect the human host. Heart failure is associated with splanchnic circulation congestion, leading to bowel wall oedema and impaired intestinal barrier function. This situation is thought to heighten the overall inflammatory state via increased bacterial translocation and the presence of bacterial products in the systemic blood circulation. Several metabolites produced by gut microorganisms from dietary metabolism have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. These findings suggest that the gut microbiome functions like an endocrine organ by generating bioactive metabolites that can directly or indirectly affect host physiology. In this Review, we discuss several newly discovered gut microbial metabolic pathways, including the production of trimethylamine and trimethylamine N-oxide, short-chain fatty acids, and secondary bile acids, that seem to participate in the development and progression of cardiovascular diseases, including heart failure. We also discuss the gut microbiome as a novel therapeutic target for the treatment of cardiovascular disease, and potential strategies for targeting intestinal microbial processes.
Collapse
Affiliation(s)
- W H Wilson Tang
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.
| | - Daniel Y Li
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| | - Stanley L Hazen
- Center for Microbiome & Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department for Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Snelson M, Biruete A, McFarlane C, Campbell K. A Renal Clinician's Guide to the Gut Microbiota. J Ren Nutr 2020; 30:384-395. [PMID: 31928802 DOI: 10.1053/j.jrn.2019.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/16/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023] Open
Abstract
It is increasingly recognized that the gut microbiota plays a role in the progression of chronic diseases and that diet may confer health benefits by altering the gut microbiota composition. This is of particular relevance for chronic kidney disease (CKD), as the gut is a source of uremic retention solutes, which accumulate as a result of impaired kidney function and can exert nephrotoxic and other harmful effects. Kidney dysfunction is also associated with changes in the composition of the gut microbiota and the gastrointestinal tract. Diet modulates the gut microbiota, and there is much interest in the use of prebiotics, probiotics, and synbiotics as dietary therapies in CKD, as well as dietary patterns that beneficially alter the microbiota. This review provides an overview of the gut microbiota and its measurement, its relevance in the context of CKD, and the current state of knowledge regarding dietary manipulation of the microbiota.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| | - Annabel Biruete
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Catherine McFarlane
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia; Renal Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Katrina Campbell
- Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia; Allied Health Services, Metro North Hospital and Health Service, Herston, Queensland, Australia
| |
Collapse
|
33
|
Prokopienko AJ, West RE, Schrum DP, Stubbs JR, Leblond FA, Pichette V, Nolin TD. Metabolic Activation of Flavin Monooxygenase-mediated Trimethylamine-N-Oxide Formation in Experimental Kidney Disease. Sci Rep 2019; 9:15901. [PMID: 31685846 PMCID: PMC6828678 DOI: 10.1038/s41598-019-52032-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in chronic kidney disease (CKD) patients despite treatment of traditional risk factors, suggesting that non-traditional CVD risk factors are involved. Trimethylamine-N-oxide (TMAO) correlates with atherosclerosis burden in CKD patients and may be a non-traditional CVD risk factor. Serum TMAO concentrations are significantly increased in CKD patients, which may be due in part to increased hepatic flavin monooxygenase (FMO)-mediated TMAO formation. The objective of this work was to elucidate the mechanism of increased FMO activity in CKD. In this study, FMO enzyme activity experiments were conducted in vitro with liver microsomes isolated from experimental CKD and control rats. Trimethylamine was used as a probe substrate to assess FMO activity. The FMO activator octylamine and human uremic serum were evaluated. FMO gene and protein expression were also determined. FMO-mediated TMAO formation was increased in CKD versus control. Although gene and protein expression of FMO were not changed, metabolic activation elicited by octylamine and human uremic serum increased FMO-mediated TMAO formation. The findings suggest that metabolic activation of FMO-mediated TMAO formation is a novel mechanism that contributes to increased TMAO formation in CKD and represents a therapeutic target to reduce TMAO exposure and CVD.
Collapse
Affiliation(s)
- Alexander J Prokopienko
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Raymond E West
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel P Schrum
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason R Stubbs
- The Kidney Institute, and Department of Internal Medicine, Division of Nephrology & Hypertension, University of Kansas Medical Center, Kansas City, KS, United States
| | | | - Vincent Pichette
- Service de Néphrologie et Centre de Recherche, Hôpital Maisonneuve-Rosemont, Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada
| | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmaceutical Sciences or Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
34
|
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica 2019; 50:19-33. [DOI: 10.1080/00498254.2019.1643515] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian R. Phillips
- Research Department of Structural and Molecular Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth A. Shephard
- Research Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
35
|
Ufnal M, Nowiński A. Is increased plasma TMAO a compensatory response to hydrostatic and osmotic stress in cardiovascular diseases? Med Hypotheses 2019; 130:109271. [PMID: 31383335 DOI: 10.1016/j.mehy.2019.109271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
Recent clinical studies show a positive correlation between elevated plasma TMAO and increased cardiovascular risk. However, the mechanism of the increase and biological effects of TMAO in the circulatory system are obscure. Plasma TMAO level depends mostly on the following three factors. First, the liver produces TMAO from TMA, a gut bacteria metabolite of dietary choline and carnitine. Second, plasma TMAO increases after ingestion of dietary TMAO from fish and seafood. Finally, plasma TMAO depends on TMAO and TMA excretion by the kidneys. Ample evidence highlights protective functions of TMAO, including the stabilization of proteins and cells exposed to hydrostatic and osmotic stresses, for example in fish exposed to hydrostatic stress (deep water) and osmotic stress (salty water). Osmotic stress and hydrostatic stresses are augmented in cardiovascular diseases such as hypertension. In hypertensive subjects a diastole-systole change in hydrostatic pressure in the heart may exceed 220 mmHg with a frequency of 60-220/min. This produces environment in which hydrostatic pressure changes over 100,000 times per 24 h. Furthermore, cardiovascular diseases are associated with disturbances in water-electrolyte balance which produce changes in plasma osmolarity. Perhaps, the increase in plasma TMAO in cardiovascular diseases is analogous to increased level of plasma natriuretic peptide B, which is both a cardiovascular risk marker and a compensatory response producing beneficial effects for pressure/volume overloaded heart. In this regard, there is some evidence that a moderate increase in plasma TMAO due to TMAO supplementation may be beneficial in animal model of hypertension-related heart failure. Finally, increased plasma TMAO is present in humans consuming seafood-rich diet which is thought to be health-beneficial. We hypothesize that increased plasma TMAO serves as a compensatory response mechanism which protects cells from hydrostatic and osmotic stresses.
Collapse
Affiliation(s)
- M Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - A Nowiński
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in Chronic Kidney Disease. Semin Nephrol 2019; 38:193-205. [PMID: 29602401 DOI: 10.1016/j.semnephrol.2018.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiome recently has emerged as a novel risk factor that impacts health and disease. Our gut microbiota can function as an endocrine organ through its unique ability to metabolize various dietary precursors, and can fuel the systemic inflammation observed in chronic disease. This is especially important in the setting of chronic kidney disease, in which microbial metabolism can contribute directly to accumulation of circulating toxins that then can alter and shift the balance of microbiota composition and downstream functions. To study this process, advances in -omics technologies are providing opportunities to understand not only the taxonomy, but also the functional diversity of our microbiome. We also reliably can quantify en masse a wide range of uremic byproducts of microbial metabolism. Herein, we examine the bidirectional relationship between the gut microbiome and the failing kidneys. We describe potential approaches targeting gut microbiota for cardiovascular risk reduction in chronic kidney disease using an illustrative example of a novel gut-generated metabolite, trimethylamine N-oxide.
Collapse
|
37
|
Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int J Mol Sci 2018; 19:ijms19103228. [PMID: 30347638 PMCID: PMC6214130 DOI: 10.3390/ijms19103228] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.
Collapse
Affiliation(s)
- Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Lídia Cedó
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Marta Farràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 08003 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
38
|
Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, Windecker S, Rodondi N, Nanchen D, Muller O, Miranda MX, Matter CM, Wu Y, Li L, Wang Z, Alamri HS, Gogonea V, Chung YM, Tang WHW, Hazen SL, Lüscher TF. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 2018; 38:814-824. [PMID: 28077467 DOI: 10.1093/eurheartj/ehw582] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Aims Systemic levels of trimethylamine N-oxide (TMAO), a pro-atherogenic and pro-thrombotic metabolite produced from gut microbiota metabolism of dietary trimethylamine (TMA)-containing nutrients such as choline or carnitine, predict incident cardiovascular event risks in stable primary and secondary prevention subjects. However, the prognostic value of TMAO in the setting of acute coronary syndromes (ACS) remains unknown. Methods and results We investigated the relationship of TMAO levels with incident cardiovascular risks among sequential patients presenting with ACS in two independent cohorts. In the Cleveland Cohort, comprised of sequential subjects (n = 530) presenting to the Emergency Department (ED) with chest pain of suspected cardiac origin, an elevated plasma TMAO level at presentation was independently associated with risk of major adverse cardiac events (MACE, including myocardial infarction, stroke, need for revascularization, or death) over the ensuing 30-day (4th quartile (Q4) adjusted odds ratio (OR) 6.30, 95% confidence interval (CI), 1.89-21.0, P < 0.01) and 6-month (Q4 adjusted OR 5.65, 95%CI, 1.91-16.7; P < 0.01) intervals. TMAO levels were also a significant predictor of the long term (7-year) mortality (Q4 adjusted HR 1.81, 95%CI, 1.04-3.15; P < 0.05). Interestingly, TMAO level at initial presentation predicted risk of incident MACE over the near-term (30 days and 6 months) even among subjects who were initially negative for troponin T (< 0.1 ng/mL) (30 days, Q4 adjusted OR 5.83, 95%CI, 1.79-19.03; P < 0.01). The prognostic value of TMAO was also assessed in an independent multicentre Swiss Cohort of ACS patients (n = 1683) who underwent coronary angiography. Trimethylamine N-oxide again predicted enhanced MACE risk (1-year) (adjusted Q4 hazard ratios: 1.57, 95% CI, 1.03-2.41; P <0.05). Conclusion Plasma TMAO levels among patients presenting with chest pain predict both near- and long-term risks of incident cardiovascular events, and may thus provide clinical utility in risk stratification among subjects presenting with suspected ACS.
Collapse
Affiliation(s)
- Xinmin S Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Slayman Obeid
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Baris Gencer
- Department of Cardiology, Cardiovascular Center, University Hospital Geneva, Switzerland
| | - François Mach
- Department of Cardiology, Cardiovascular Center, University Hospital Geneva, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Cardiovascular Center, University Hospital Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Cardiovascular Center, University Hospital Bern, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Switzerland
| | - David Nanchen
- Department of Ambulatory Care and Community Medicine, Lausanne University, Lausanne, Switzerland
| | - Olivier Muller
- Department of Cardiology, Cardiovascular Center, University Hospital Lausanne, Switzerland
| | - Melroy X Miranda
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Lin Li
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Hassan S Alamri
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Valentin Gogonea
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Yoon-Mi Chung
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| |
Collapse
|
39
|
Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges. Pharmacol Ther 2017; 180:161-180. [DOI: 10.1016/j.pharmthera.2017.07.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
|
41
|
Qi J, You T, Li J, Pan T, Xiang L, Han Y, Zhu L. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med 2017; 22:185-194. [PMID: 28782886 PMCID: PMC5742728 DOI: 10.1111/jcmm.13307] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
Circulating trimethylamine N-oxide (TMAO), a canonical metabolite from gut flora, has been related to the risk of cardiovascular disorders. However, the association between circulating TMAO and the risk of cardiovascular events has not been quantitatively evaluated. We performed a systematic review and meta-analysis of all available cohort studies regarding the association between baseline circulating TMAO and subsequent cardiovascular events. Embase and PubMed databases were searched for relevant cohort studies. The overall hazard ratios for the developing of cardiovascular events (CVEs) and mortality were extracted. Heterogeneity among the included studies was evaluated with Cochran's Q Test and I2 statistics. A random-effect model or a fixed-effect model was applied depending on the heterogeneity. Subgroup analysis and meta-regression were used to evaluate the source of heterogeneity. Among the 11 eligible studies, three reported both CVE and mortality outcome, one reported only CVEs and the other seven provided mortality data only. Higher circulating TMAO was associated with a 23% higher risk of CVEs (HR = 1.23, 95% CI: 1.07-1.42, I2 = 31.4%) and a 55% higher risk of all-cause mortality (HR = 1.55, 95% CI: 1.19-2.02, I2 = 80.8%). Notably, the latter association may be blunted by potential publication bias, although sensitivity analysis by omitting one study at a time did not significantly change the results. Further subgroup analysis and meta-regression did not support that the location of the study, follow-up duration, publication year, population characteristics or the samples of TMAO affect the results significantly. Higher circulating TMAO may independently predict the risk of subsequent cardiovascular events and mortality.
Collapse
Affiliation(s)
- Jiaqian Qi
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Collaborative Innovation Centre of Haematology, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tao You
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Collaborative Innovation Centre of Haematology, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Jing Li
- Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tingting Pan
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Collaborative Innovation Centre of Haematology, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Li Xiang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Han
- Jiangsu Institute of Haematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Collaborative Innovation Centre of Haematology, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Li Zhu
- Cyrus Tang Medical Institute, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Collaborative Innovation Centre of Haematology, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| |
Collapse
|
42
|
Nowiński A, Ufnal M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 2017; 46:7-12. [PMID: 29290360 DOI: 10.1016/j.nut.2017.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/10/2023]
Abstract
Diet has been considered a general health determinant for many years. Recent research shows a connection between gut microbiota composition that is shaped by our diet and lifestyle diseases. Several studies point to a positive correlation between elevated plasma trimethylamine N-oxide (TMAO), a gut bacteria metabolite, and an increased risk for cardiovascular diseases, diabetes, and cancer. Therefore, it has been suggested that TMAO is a link between the diet, gut microbiota, and illness. Emerging experimental and clinical evidence shows that TMAO may be involved in the etiology of hypertension, atherosclerosis, coronary artery disease, diabetes, and renal failure. On the contrary, a number of studies have shown protective functions of TMAO, such as stabilization of proteins and protection of cells from osmotic and hydrostatic stresses. Finally, it is possible that TMAO is neither a causative nor a protecting factor, but may be merely a marker of disrupted homeostasis. Blood TMAO level depends on numerous factors including diet, gut microbiota composition and activity, permeability of the gut-blood barrier, activity of liver enzymes, and the rate of methylamines excretion. Therefore, the usefulness of TMAO as a specific biomarker in lifestyle diseases seems questionable. Here, we review research showing both physiological and pathophysiological actions of TMAO, as well as limitations of using TMAO as a biomarker.
Collapse
Affiliation(s)
- Artur Nowiński
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
43
|
Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc 2017; 6:JAHA.116.004947. [PMID: 28663251 PMCID: PMC5586261 DOI: 10.1161/jaha.116.004947] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Gut microbial metabolites have been implicated as novel risk factors for cardiovascular events and premature death. The strength and consistency of associations between blood concentrations of the gut microbial metabolites, trimethylamine-N-oxide (TMAO) and its precursors, with major adverse cardiovascular events (MACE) or death have not been comprehensively assessed. We quantified associations of blood concentrations of TMAO and its precursors with risks of MACE and mortality. METHODS AND RESULTS PubMed and Embase databases were searched up, and a total of 19 prospective studies from 16 publications (n=19 256, including 3315 incident cases) with quantitative estimates of the associations of TMAO with the development of MACE or death were included in our main analysis. Multivariate-adjusted relative risks (RRs) were used when these were available. Elevated concentrations of TMAO were associated with a pooled RR of 1.62 (95% CI, 1.45, 1.80; Pheterogeneity=0.2; I2=23.5%) for MACE compared with low TMAO levels, and 1 study of black participants influenced the heterogeneity of the association. After excluding the data of blacks, the RRs were not different according to body mass index, prevalence of diabetes mellitus, history of cardiovascular diseases, and kidney dysfunction. Furthermore, elevated TMAO concentrations were associated with a pooled RR of 1.63 (1.36, 1.95) for all-cause mortality. Individuals with elevated concentrations of TMAO precursors (l-carnitine, choline, or betaine) had an approximately 1.3 to 1.4 times higher risk for MACE compared to those with low concentrations. CONCLUSIONS Elevated concentrations of TMAO and its precursors were associated with increased risks of MACE and all-cause mortality independently of traditional risk factors.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA
| | - Wenjie Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
44
|
Rossner R, Kaeberlein M, Leiser SF. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem 2017; 292:11138-11146. [PMID: 28515321 DOI: 10.1074/jbc.r117.779678] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Flavin-containing monooxygenases (FMOs) are primarily studied as xenobiotic metabolizing enzymes with a prominent role in drug metabolism. In contrast, endogenous functions and substrates of FMOs are less well understood. A growing body of recent evidence, however, implicates FMOs in aging, several diseases, and metabolic pathways. The evidence suggests an important role for these well-conserved proteins in multiple processes and raises questions about the endogenous substrate(s) and regulation of FMOs. Here, we present an overview of evidence for FMOs' involvement in aging and disease, discussing the biological context and arguing for increased investigation into the function of these enzymes.
Collapse
Affiliation(s)
- Ryan Rossner
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Matt Kaeberlein
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Scott F Leiser
- the Departments of Molecular & Integrative Physiology and .,Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
45
|
路 浚, 王 珊, 尹 恝, 吴 珊, 何 彦, 郑 慧, 盛 华, 周 宏. [A machine learning model using gut microbiome data for predicting changes of trimethylamine-N-oxide in healthy volunteers after choline consumption]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:290-295. [PMID: 28377341 PMCID: PMC6780447 DOI: 10.3969/j.issn.1673-4254.2017.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To establish a machine learning model based on gut microbiota for predicting the level of trimethylamine N-oxide (TMAO) metabolism in vivo after choline intake to provide guidance of individualized precision diet and evidence for screening population at high risks of cardiovascular disease. METHODS We quantified plasma levels of TMAO in 18 healthy volunteers before and 8 h after a choline challenge (ingestion of two boiled eggs). The volunteers were divided into two groups with increased or decreased TMAO level following choline challenge. Fresh fecal samples were collected before taking fasting blood samples for amplifying 16S rRNA V4 tags, and the PCR products were sequenced using the platform of Illumina HiSeq 2000. The differences in gut microbiata between subjects with increased and decreased plasma TMAO were analyzed using QIIME. Based on the gut microbiota data and TMAO levels in the two groups, the prediction model was established using the machine learning random forest algorithm, and the validity of the model was tested using a verified dataset. RESULTS An obvious difference was found in beta diversity of the gut microbota between the subjects with increased and decreased plasma TMAO level following choline challenge. The area under the curve (AUC) of the model was 86.39% (95% CI: 72.7%-100%). Using the verified dataset, the model showed a much higher probability for correctly predicting TMAO variation following choline challenge. CONCLUSION The model is feasible and reliable for predicting the level of TMAO metabolism in vivo based on gut microbiota.
Collapse
Affiliation(s)
- 浚齐 路
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 珊 王
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 恝 尹
- 南方医科大学南方医院神经内科,广东 广州 510515Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 珊 吴
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 彦 何
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 慧敏 郑
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 华芳 盛
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 宏伟 周
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
46
|
路 浚, 王 珊, 尹 恝, 吴 珊, 何 彦, 郑 慧, 盛 华, 周 宏. [A machine learning model using gut microbiome data for predicting changes of trimethylamine-N-oxide in healthy volunteers after choline consumption]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:290-295. [PMID: 28377341 PMCID: PMC6780447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To establish a machine learning model based on gut microbiota for predicting the level of trimethylamine N-oxide (TMAO) metabolism in vivo after choline intake to provide guidance of individualized precision diet and evidence for screening population at high risks of cardiovascular disease. METHODS We quantified plasma levels of TMAO in 18 healthy volunteers before and 8 h after a choline challenge (ingestion of two boiled eggs). The volunteers were divided into two groups with increased or decreased TMAO level following choline challenge. Fresh fecal samples were collected before taking fasting blood samples for amplifying 16S rRNA V4 tags, and the PCR products were sequenced using the platform of Illumina HiSeq 2000. The differences in gut microbiata between subjects with increased and decreased plasma TMAO were analyzed using QIIME. Based on the gut microbiota data and TMAO levels in the two groups, the prediction model was established using the machine learning random forest algorithm, and the validity of the model was tested using a verified dataset. RESULTS An obvious difference was found in beta diversity of the gut microbota between the subjects with increased and decreased plasma TMAO level following choline challenge. The area under the curve (AUC) of the model was 86.39% (95% CI: 72.7%-100%). Using the verified dataset, the model showed a much higher probability for correctly predicting TMAO variation following choline challenge. CONCLUSION The model is feasible and reliable for predicting the level of TMAO metabolism in vivo based on gut microbiota.
Collapse
Affiliation(s)
- 浚齐 路
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 珊 王
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 恝 尹
- 南方医科大学南方医院神经内科,广东 广州 510515Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 珊 吴
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 彦 何
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 慧敏 郑
- 南方医科大学 公共卫生学院环境卫生学系,广东 广州 510282Department of Environmenta Health, School of Public Health, Southern Medical University, Guangzhou 510515, China
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 华芳 盛
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 宏伟 周
- 南方医科大学珠江医院检验医学部,广东 广州 510282Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
47
|
Vernetti L, Gough A, Baetz N, Blutt S, Broughman JR, Brown JA, Foulke-Abel J, Hasan N, In J, Kelly E, Kovbasnjuk O, Repper J, Senutovitch N, Stabb J, Yeung C, Zachos NC, Donowitz M, Estes M, Himmelfarb J, Truskey G, Wikswo JP, Taylor DL. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Sci Rep 2017; 7:42296. [PMID: 28176881 PMCID: PMC5296733 DOI: 10.1038/srep42296] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements.
Collapse
Affiliation(s)
- Lawrence Vernetti
- University of Pittsburgh, Drug Discovery Institute Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Baltimore, PA, USA
| | - Albert Gough
- University of Pittsburgh, Drug Discovery Institute Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Baltimore, PA, USA
| | - Nicholas Baetz
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah Blutt
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James R Broughman
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Jennifer Foulke-Abel
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nesrin Hasan
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie In
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward Kelly
- Department of Pharmaceutics, University of Washington, WA, USA
| | - Olga Kovbasnjuk
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Repper
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nina Senutovitch
- University of Pittsburgh, Drug Discovery Institute Pittsburgh, PA, USA
| | - Janet Stabb
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine Yeung
- Department of Pharmacy, University of Washington, WA, USA.,Kidney Research Institute, University of Washington, WA, USA
| | - Nick C Zachos
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, GI Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary Estes
- Departments of Molecular Virology and Microbiology and Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Himmelfarb
- Kidney Research Institute, University of Washington, WA, USA.,Department of Medicine, University of Washington, WA, USA
| | - George Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - D Lansing Taylor
- University of Pittsburgh, Drug Discovery Institute Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Baltimore, PA, USA.,University of Pittsburgh Cancer Institute, PA, USA
| |
Collapse
|
48
|
Cho CE, Caudill MA. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol Metab 2017; 28:121-130. [PMID: 27825547 DOI: 10.1016/j.tem.2016.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
Abstract
Trimethylamine-N-oxide (TMAO), a gut-derived metabolite, has recently emerged as a candidate risk factor for cardiovascular disease and other adverse health outcomes. However, the relation between TMAO and chronic disease can be confounded by several factors, including kidney function, the gut microbiome, and flavin-containing monooxygenase 3 (FMO3) genotype. Thus, whether TMAO is a causative agent in human disease development and progression, or simply a marker of an underlying pathology, remains inconclusive. Importantly, dietary sources of TMAO have beneficial health effects and provide nutrients that have critical roles in many biological functions. Pre-emptive dietary strategies to restrict TMAO-generating nutrients as a means to improve human health warrant careful consideration and may not be justified at this time.
Collapse
Affiliation(s)
- Clara E Cho
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|