1
|
Yu W, Huang P, Jin Y, Wu F, Zhang C, Jing L, Chen Y, Xu H, Xiong J, Zhang R, Zhao K, Li X. Vitamin D enhances the therapeutic effect of TNF-α antibodies through lipid metabolism in overweight IBD patients. Cell Mol Life Sci 2025; 82:176. [PMID: 40285831 PMCID: PMC12033164 DOI: 10.1007/s00018-025-05626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 04/29/2025]
Abstract
The inhibitory effects of the tumor necrosis factor-α (TNF-α) antibody infliximab (IFX) on colitis are well established. Since IFX dosing is weight-based and associated with various side effects, there is a growing interest in identifying combination therapies that can enhance its efficacy, particularly in overweight inflammatory bowel disease (IBD) patients, to maximize the anti-inflammatory effect while minimizing the required dose. Our research revealed that overweight IBD patients present decreased vitamin D levels in the intestinal epithelium alongside elevated TNF-α levels. In mice fed a high-fat diet (HFD) for four weeks, treatment with the vitamin D analog palicalcitol (PAL) reduced lipid synthesis and TNF-α production in intestinal epithelial cells (IECs). In a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis model, PAL treatment mitigated TNF-α-induced damage to the intestinal epithelial barrier and reduced the activation of Th1 and Th17 cells in the lamina propria, thereby reducing colitis development in HFD-fed mice. Notably, the combination of IFX and PAL was more effective than IFX alone in treating colitis in these mice. Overall, our findings suggest that vitamin D inhibits TNF-α production by reducing lipid synthesis in IECs, thereby enhancing IFX therapy in overweight IBD patients.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Pengpeng Huang
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Yanling Jin
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Fang Wu
- Department of General, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Cuiping Zhang
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Lili Jing
- Immunology and Pathology Teaching and Research Office, Shandong College of Traditional Chinese Medicine, Yantai, 264199, Shandong, China
| | - Ying Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Han Xu
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Jiapin Xiong
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Rong Zhang
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Ke Zhao
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Xue Li
- Institute of Clinical Medicine Research, Zhejiang Provincial People'S Hospital(Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China.
- Department of Urology, Zhejiang Provincial People'S Hospital (Affiliated People'S Hospital), Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
2
|
Finch RH, Vitry G, Siew K, Walsh SB, Beheshti A, Hardiman G, da Silveira WA. Spaceflight causes strain-dependent gene expression changes in the kidneys of mice. NPJ Microgravity 2025; 11:11. [PMID: 40133368 PMCID: PMC11937539 DOI: 10.1038/s41526-025-00465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Incidence of kidney stones in astronauts is a major risk factor associated with long-term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through the downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to the development of new countermeasures against kidney disease in astronauts and people here on Earth.
Collapse
Affiliation(s)
- Rebecca H Finch
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK
| | - Geraldine Vitry
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Department of Oncology, 3970 Reservoir Rd, NW, New Research Building EP11, Washington, DC, 20057, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Afshin Beheshti
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Medicine, Medical University of South Carolina, MSC 403, 171 Ashley Ave Suite 419, Charleston, SC, 29425, USA
| | - Willian A da Silveira
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK.
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France.
- School of Science, Engineering and Environment. University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
3
|
Wilson MH, Hensley MR, Shen MC, Lu HY, Quinlivan VH, Busch-Nentwich EM, Rawls JF, Farber SA. Zebrafish are resilient to the loss of major diacylglycerol acyltransferase enzymes. J Biol Chem 2024; 300:107973. [PMID: 39510175 PMCID: PMC11663968 DOI: 10.1016/j.jbc.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
In zebrafish, maternally deposited yolk is the source of nutrients for embryogenesis prior to digestive system maturation. Yolk nutrients are processed and secreted to the growing organism by an extra-embryonic tissue, the yolk syncytial layer (YSL). The export of lipids from the YSL occurs through the production of triacylglycerol-rich lipoproteins. Here we report that mutations in the triacylglycerol synthesis enzyme, diacylglycerol acyltransferase-2 (Dgat2), cause yolk sac opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. Although triacylglycerol synthesis continues, it is not properly coupled to lipoprotein production as dgat2 mutants produce fewer, smaller, ApoB-containing lipoproteins. Unlike DGAT2-null mice, which are lipopenic and die soon after birth, zebrafish dgat2 mutants are viable, fertile, and exhibit normal mass and adiposity. Residual Dgat activity cannot be explained by the activity of other known Dgat isoenzymes, as dgat1a;dgat1b;dgat2 triple mutants continue to produce YSL lipid droplets and remain viable as adults. Further, the newly identified diacylglycerol acyltransferase, Tmem68, is also not responsible for the residual triacylglycerol synthesis activity. Unlike overexpression of Dgat1a and Dgat1b, monoacylglycerol acyltransferase-3 (Mogat3b) overexpression does not rescue yolk opacity, suggesting it does not possess Dgat activity in the YSL. However, mogat3b;dgat2 double mutants exhibit increased yolk opacity and often have structural alterations of the yolk extension. Quadruple mogat3b;dgat1a;dgat1b;dgat2 mutants either have severely reduced viability and stunted growth or do not survive past 3 days post fertilization, depending on the dgat2 mutant allele present. Our study highlights the remarkable ability of vertebrates to synthesize triacylglycerol through multiple biosynthetic pathways.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Monica R Hensley
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, North Carolina, USA
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | | | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, North Carolina, USA
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Finch RH, Vitry G, Siew K, Walsh SB, Behesti A, Hardiman G, da Silveira WA. Spaceflight causes strain dependent gene expression changes associated with lipid and extracellular matrix dysregulation in the mouse kidney in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584781. [PMID: 38559158 PMCID: PMC10979940 DOI: 10.1101/2024.03.13.584781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To explore new worlds we must ensure humans can survive and thrive in the space environment. Incidence of kidney stones in astronauts is a major risk factor associated with long term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in other tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to development of new countermeasures against kidney disease in astronauts and people here on Earth.
Collapse
|
5
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Cheng J, Xu D, Yang X, Liu J, He L, Chen Z, Gong P, Zhang X. Polymorphisms of PLIN1 and MOGAT1 genes and their association with feed efficiency in Hu sheep. Gene 2024; 897:148072. [PMID: 38081333 DOI: 10.1016/j.gene.2023.148072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Feed cost accounts for a high proportion of sheep production, and improving sheep's utilization of feed will reduce production costs and improve economic benefits. The purpose of this study was to investigate the expression characteristics of PLIN1 and MOGAT1 genes and the relationship between their polymorphisms and feed efficiency traits in Hu sheep, and to find molecular Genetic marker that can be used in breeding. The expression levels of PLIN1 and MOGAT1 genes in various tissues were determined using quantitative real-time PCR (qRT-PCR). The results showed that PLIN1 and MOGAT1 genes were widely expressed in heart, liver, spleen, lungs, kidneys, rumen, duodenum, muscle, lymph, and tail fat. The PLIN1 gene had the highest expression level in in the tail fat compared to the other nine tissues. The expression levels of MOGAT1 gene in liver, tail fat, lung and heart was significantly higher than in kidney, muscle and lymph. The expression level of MOGAT1 was lowest in muscle compared to the other tissues (heart, liver, spleen, lung, rumen and tail fat). We recorded the body weight (BW80 and BW180) and feed intake (FI) information of 985 male Hu sheep at 80 and 180 days of age, and calculated the daily average feed intake (ADFI), average daily gain (ADG), and feed conversion rate (FCR) from 80 to 180 days of age. Two intronic mutations, g.18517910 A > G and g.224856118 G > C, were identified in PLIN1 and MOGAT1 genes by PCR amplification and Sanger sequencing. MassARRAY ® SNP detection technology was used to genotype the DNA of 985 Hu sheep and analyze its association with feed efficiency traits. The results showed that the SNP g.18517910 A > G was significantly associated with BW80, BW180, FI, ADFI and FCR (P < 0.05), while SNP g.2248561118 G > C was significantly associated with FCR (P < 0.05). Meanwhile, significant differences were also observed in different combinations of genotypes (P < 0.05). Therefore, these two polymorphic loci can serve as candidate molecular markers for improving feed utilization efficiency in Hu sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Yukun Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaolong Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Liming Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China.
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Li Z, Zhang G, Pan K, Niu X, Shu-Chien AC, Chen T, Zhang X, Wu X. Functional transcriptome reveals hepatopancreatic lipid metabolism during the molting cycle of the Chinese mitten crab Eriocheir sinensis. Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111474. [PMID: 37406959 DOI: 10.1016/j.cbpa.2023.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Crustacean molting is highly related to energy and lipid metabolism. This study was conducted to detect the changes of total lipids (TL), triacylglyceride (TAG), phospholipid (PL) and lipid droplets in hepatopancreas, and then to investigate the gene expression patterns related to hepatopancreatic lipid metabolism during the molting cycle of Chinese mitten crab Eriocheir sinensis. Hepatopancreatic TL and TAG increased significantly from post-molt stage to pre-molt stage, then decreased significantly from pre-molt stage to ecdysis stage, which is consistent to the changes of neutral lipid-rich adipocytes in hepatopancreas. By transcriptomic analysis, 65,325 transcripts were sequenced and assembled, and 28,033 transcripts were annotated. Most genes were related to energy metabolism, and the enriched genes were involved in carbohydrate and lipid metabolism and biosynthesis, especially in de novo synthesis of fatty acids and TAG, and ketone body production. Compared to the inter-molt stages, acetyl-CoA carboxylase, fatty acid synthase and other genes related to the synthesis of fatty acids were upregulated in the pre-molt stage. TAG synthesis related genes, including Glycerol-3-phosphate acyltransferase and 1-acylglycerol-3-phosphate acyltransferases, were upregulated in the post-molt stage compared to the inter-molt stage. The expression of ketone body-related genes had no significant changes during the molting cycle. Compared to the TAG synthetic pathway, ketone body biosynthesis may contribute less/secondarily to fatty acid metabolic processes, which could be involved in the other physiological processes or metabolism. In conclusion, these results showed that TAG is the major lipid deposition during inter- and pre-molt stages, and the most genes are related to the fatty acids and TAG metabolism in the hepatopancreas during the molting cycle of E. sinensis.
Collapse
Affiliation(s)
- Zhi Li
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guangbao Zhang
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Kewu Pan
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Xingjian Niu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | | | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Xugan Wu
- Shanghai Collaborative Innovation Centre for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; School of Biological Sciences, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia; Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Gökçe G, Bayraktar M. Assessment of the association of the MOGAT1 and MOGAT3 gene with growth traits in different growth stages in Holstein calves. Arch Anim Breed 2022; 65:301-308. [PMID: 36035878 PMCID: PMC9400126 DOI: 10.5194/aab-65-301-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
The members of the monoacylglycerol acyltransferase (MOGAT) family are essential candidate genes that influence economic traits associated with triglyceride synthesis, dietary fat absorption, and storage in livestock. In addition, the MOGAT gene family may also play an essential function in human polygenic diseases, like type 2 diabetes and obesity. The present study was conducted on Holstein calves to find the association between MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A and growth traits. The polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method was performed for genotyping the MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A genes' locus using the TaqI, MspI, and BsuRI restriction enzyme. The allele frequency of A and G of the MOGAT1 locus was 0.79 and 0.21, respectively, while the genotype frequency was 0.65, 0.28, and 0.07 for AA, AG, and GG, respectively. While the allele and genotype frequencies of the MOGAT3/g.A229G locus were 00.57(A1), 0.43(G1), 0.35(A1A1), 0.45(A1G1), and 0.20(G1G1), the allele and genotype frequencies of the MOGAT3/g.G1627A locus were 0.49(A2), 0.51(G2), 0.25(A2A2), 0.49(A2G2), and 0.26(G2G2). Chi-square analysis showed that MOGAT3/g.G1627A distribution was at the Hardy–Weinberg disequilibrium (p < 0.05), and MOGAT1 and MOGAT3/g.A229G distribution was at the Hardy–Weinberg equilibrium (p > 0.05). In total, two statistical methods (general linear model (GLM) and PROC MIXED) were used to identify an association between gene locus and growth traits. An association analysis showed a statistically significant difference between the MOGAT1 and body weight, body length, and chest circumference, MOGAT3/g.A229G with average daily gain (ADG) and withers height, and MOGAT3/g.G1627A with body weight and body length (p < 0.05). The results confirmed that the MOGAT1, MOGAT3/g.A229G, and MOGAT3/g.G1627A locus are strong candidate genes that could be considered molecular markers for growth traits in cattle breeding.
Collapse
|
8
|
Zhang Y, Bobe G, Miranda CL, Lowry MB, Hsu VL, Lohr CV, Wong CP, Jump DB, Robinson MM, Sharpton TJ, Maier CS, Stevens JF, Gombart AF. Tetrahydroxanthohumol, a xanthohumol derivative, attenuates high-fat diet-induced hepatic steatosis by antagonizing PPARγ. eLife 2021; 10:e66398. [PMID: 34128467 PMCID: PMC8205491 DOI: 10.7554/elife.66398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
We previously reported xanthohumol (XN), and its synthetic derivative tetrahydro-XN (TXN), attenuates high-fat diet (HFD)-induced obesity and metabolic syndrome in C57Bl/6J mice. The objective of the current study was to determine the effect of XN and TXN on lipid accumulation in the liver. Non-supplemented mice were unable to adapt their caloric intake to 60% HFD, resulting in obesity and hepatic steatosis; however, TXN reduced weight gain and decreased hepatic steatosis. Liver transcriptomics indicated that TXN might antagonize lipogenic PPARγ actions in vivo. XN and TXN inhibited rosiglitazone-induced 3T3-L1 cell differentiation concomitant with decreased expression of lipogenesis-related genes. A peroxisome proliferator activated receptor gamma (PPARγ) competitive binding assay showed that XN and TXN bind to PPARγ with an IC50 similar to pioglitazone and 8-10 times stronger than oleate. Molecular docking simulations demonstrated that XN and TXN bind in the PPARγ ligand-binding domain pocket. Our findings are consistent with XN and TXN acting as antagonists of PPARγ.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Gerd Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Cristobal L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Malcolm B Lowry
- Department of Microbiology, Oregon State UniversityCorvallisUnited States
| | - Victor L Hsu
- Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| | - Christiane V Lohr
- Department of Biomedical Science, Carlson College of Veterinary MedicineCorvallisUnited States
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Donald B Jump
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, Kinesiology Program, Oregon State UniversityCorvallisUnited States
| | - Thomas J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State UniversityCorvallisUnited States
| | - Claudia S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State UniversityCorvallisUnited States
| | - Adrian F Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State UniversityCorvallisUnited States
| |
Collapse
|
9
|
Sciascia QL, Daş G, Maak S, Kalbe C, Metzler-Zebeli BU, Metges CC. Transcript profile of skeletal muscle lipid metabolism genes affected by diet in a piglet model of low birth weight. PLoS One 2019; 14:e0224484. [PMID: 31661531 PMCID: PMC6818798 DOI: 10.1371/journal.pone.0224484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/15/2019] [Indexed: 01/04/2023] Open
Abstract
Dysregulated skeletal muscle metabolism (DSMM) is associated with increased inter- and intramuscular fat deposition in low birth weight (L) individuals. The mechanisms behind DSMM in L individuals are not completely understood but decreased muscle mass and shifts in lipid and carbohydrate utilisation may contribute. Previously, we observed lower fat oxidation in a porcine model of low birth weight. To elucidate the biological activities underpinning this difference microfluidic arrays were used to assess mRNA associated with lipid metabolism in longissimus dorsi (LD) and semitendinosus (ST) skeletal muscle samples from thirty-six female L and normal birth weight (N) pigs. Plasma samples were collected from a sub-population to measure metabolite concentrations. Following overnight fasting, skeletal muscle and plasma samples were collected and the association with birth weight, diet and age was assessed. Reduced dietary fat was associated with decreased LD intermuscular fat deposition and beta-oxidation associated mRNA, in both birth weight groups. Lipid uptake and intramuscular fat deposition associated mRNA was reduced in only L pigs. Abundance of ST mRNA associated with lipolysis, lipid synthesis and transport increased in both birth weight groups. Lipid uptake associated mRNA reduced in only L pigs. These changes were associated with decreased plasma L glucose and N triacylglycerol. Post-dietary fat reduction, LD mRNA associated with lipid synthesis and inter- and intramuscular fat deposition increased in L, whilst beta-oxidation associated mRNA remains elevated for longer in N. In the ST, mRNA associated with lipolysis and intramuscular fat deposition increased in both birth weight groups, however this increase was more significant in L pigs and associated with reduced beta-oxidation. Analysis of muscle lipid metabolism associated mRNA revealed that profile shifts are a consequence of birth weight. Whilst, many of the adaptions to diet and age appear to be similar in birth weight groups, the magnitude of response and individual changes underpin the previously observed lower fat oxidation in L pigs.
Collapse
Affiliation(s)
- Quentin L. Sciascia
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Gürbüz Daş
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Claudia Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| | - Barbara U. Metzler-Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Cornelia C. Metges
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee, Dummerstorf, Germany
| |
Collapse
|
10
|
Shi L, Liu L, Lv X, Ma Z, Yang Y, Li Y, Zhao F, Sun D, Han B. Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk fatty acid traits in Chinese Holstein. BMC Genet 2019; 20:69. [PMID: 31419940 PMCID: PMC6698030 DOI: 10.1186/s12863-019-0769-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/06/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Our initial genome-wide association study (GWAS) identified 20 promising candidate genes for milk fatty acid (FA) traits in a Chinese Holstein population, including PRLR, MOGAT1, MINPP1 and CHUK genes. In this study, we performed whether they had significant genetic effects on milk FA traits in Chinese Holstein. RESULTS We re-sequenced the entire exons and 3000 bp of the 5' and 3' flanking regions, and identified 11 single nucleotide polymorphisms (SNPs), containing four in PRLR, two in MOGAT1, two in MINPP1, and three in CHUK. The SNP-based association analyses showed that all the 11 SNPs were significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001), and none of them had association with C11:0, C13:0, C15:0 and C16:0 (P > 0.05). By the linkage disequilibrium (LD) analyses, we found two, one, one, and one haplotype blocks in PRLR, MOGAT1, MINPP1, and CHUK, respectively, and each haplotype block was significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001). Further, g.38949011G > A in PRLR, and g.111599360A > G and g.111601747 T > A in MOGAT1 were predicted to alter the transcription factor binding sites (TFBSs). A missense mutation, g.39115344G > A, could change the PRLR protein structure. The g.20966385C > G of CHUK varied the binding sequences for microRNAs. Therefore, we deduced the five SNPs as the potential functional mutations. CONCLUSION In summary, we first detected the genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk FA traits, and researched the potential functional mutations. These data provided the basis for further investigation on function validation of the four genes in Chinese Holstein.
Collapse
Affiliation(s)
- Lijun Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Xiaoqing Lv
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing, 100101 China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Feng Zhao
- Beijing Dairy Cattle Center, Beijing, 100192 China
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| | - Bo Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
11
|
Lutkewitte AJ, McCommis KS, Schweitzer GG, Chambers KT, Graham MJ, Wang L, Patti GJ, Hall AM, Finck BN. Hepatic monoacylglycerol acyltransferase 1 is induced by prolonged food deprivation to modulate the hepatic fasting response. J Lipid Res 2019; 60:528-538. [PMID: 30610082 PMCID: PMC6399500 DOI: 10.1194/jlr.m089722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/05/2018] [Indexed: 01/14/2023] Open
Abstract
During prolonged fasting, the liver plays a central role in maintaining systemic energy homeostasis by producing glucose and ketones in processes fueled by oxidation of fatty acids liberated from adipose tissue. In mice, this is accompanied by transient hepatic accumulation of glycerolipids. We found that the hepatic expression of monoacylglycerol acyltransferase 1 (Mogat1), an enzyme with monoacylglycerol acyltransferase (MGAT) activity that produces diacyl-glycerol from monoacylglycerol, was significantly increased in the liver of fasted mice compared with mice given ad libitum access to food. Basal and fasting-induced expression of Mogat1 was markedly diminished in the liver of mice lacking the transcription factor PPARα. Suppressing Mogat1 expression in liver and adipose tissue with antisense oligonucleotides (ASOs) reduced hepatic MGAT activity and triglyceride content compared with fasted controls. Surprisingly, the expression of many other PPARα target genes and PPARα activity was also decreased in mice given Mogat1 ASOs. When mice treated with control or Mogat1 ASOs were gavaged with the PPARα ligand, WY-14643, and then fasted for 18 h, WY-14643 administration reversed the effects of Mogat1 ASOs on PPARα target gene expression and liver triglyceride content. In conclusion, Mogat1 is a fasting-induced PPARα target gene that may feed forward to regulate liver PPARα activity during food deprivation.
Collapse
Affiliation(s)
- Andrew J Lutkewitte
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kyle S McCommis
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - George G Schweitzer
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Kari T Chambers
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | | | - Lingjue Wang
- Department of Chemistry, Washington University, St. Louis, MO
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Angela M Hall
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| | - Brian N Finck
- Center for Human Nutrition Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Song L, Wang H, Wang YJ, Wang JL, Zhu Q, Wu F, Zhang W, Jiang B. Hippocampal PPARα is a novel therapeutic target for depression and mediates the antidepressant actions of fluoxetine in mice. Br J Pharmacol 2018; 175:2968-2987. [PMID: 29722018 DOI: 10.1111/bph.14346] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Developing novel pharmacological targets beyond the monoaminergic system is now a popular strategy for treating depression. PPARα is a nuclear receptor protein that functions as a transcription factor,-regulating gene expression. We have previously reported that both WY14643 and fenofibrate, two pharmacological agonists of PPARα, have antidepressant-like effects in mice, implying that PPARα is a potential antidepressant target. EXPERIMENTAL APPROACH We first used various biotechnological methods to evaluate the effects of chronic stress and fluoxetine on hippocampal PPARα. The viral-mediated genetic approach was then employed to explore whether hippocampal PPARα was an antidepressant target. PPARα inhibitors, PPARα-knockout (KO) mice and PPARα-knockdown (KD) mice were further used to determine the role of PPARα in the antidepressant effects of fluoxetine. KEY RESULTS Chronic stress significantly decreased mRNA and protein levels of PPARα in the hippocampus, but not other regions, and also fully reduced the recruitment of hippocampal PPARα to the cAMP response element-binding (CREB) promoter. Genetic overexpression of hippocampal PPARα induced significant antidepressant-like actions in mice by promoting CREB-mediated biosynthesis of brain-derived neurotrophic factor. Moreover, fluoxetine notably restored the stress-induced negative effects on hippocampal PPARα. Using PPARα antagonists fully blocked the antidepressant effects of fluoxetine in mice, and similarly, both PPARα-KO and PPARα-KD abolished the effects of fluoxetine. Besides, PPARα-KO and PPARα-KD aggravated depression in mice. CONCLUSIONS AND IMPLICATIONS Hippocampal PPARα is a potential novel antidepressant target that mediates the antidepressant actions of fluoxetine in mice.
Collapse
Affiliation(s)
- Lu Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Hao Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Ying-Jie Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Jin-Liang Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Qing Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China.,Provincial Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu, China
| |
Collapse
|
13
|
Ramon-Krauel M, Pentinat T, Bloks VW, Cebrià J, Ribo S, Pérez-Wienese R, Vilà M, Palacios-Marin I, Fernández-Pérez A, Vallejo M, Téllez N, Rodríguez MÀ, Yanes O, Lerin C, Díaz R, Plosch T, Tietge UJF, Jimenez-Chillaron JC. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance. FASEB J 2018; 32:fj201700717RR. [PMID: 29812971 DOI: 10.1096/fj.201700717rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Postnatal overfeeding increases the risk of chronic diseases later in life, including obesity, insulin resistance, hepatic steatosis, and type 2 diabetes. Epigenetic mechanisms might underlie the long-lasting effects associated with early nutrition. Here we aimed to explore the molecular pathways involved in early development of insulin resistance and hepatic steatosis, and we examined the potential contribution of DNA methylation and histone modifications to long-term programming of metabolic disease. We used a well-characterized mouse model of neonatal overfeeding and early adiposity by litter size reduction. Neonatal overfeeding led to hepatic insulin resistance very early in life that persisted throughout adulthood despite normalizing food intake. Up-regulation of monoacylglycerol O-acyltransferase ( Mogat) 1 conceivably mediates hepatic steatosis and insulin resistance through increasing intracellular diacylglycerol content. Early and sustained deregulation of Mogat1 was associated with a combination of histone modifications that might favor Mogat1 expression. In sum, postnatal overfeeding causes extremely rapid derangements of hepatic insulin sensitivity that remain relatively stable until adulthood. Epigenetic mechanisms, particularly histone modifications, could contribute to such long-lasting effects. Our data suggest that targeting hepatic monoacylglycerol acyltransferase activity during early life might provide a novel strategy to improve hepatic insulin sensitivity and prevent late-onset insulin resistance and fatty liver disease.-Ramon-Krauel, M., Pentinat, T., Bloks, V. W., Cebrià, J., Ribo, S., Pérez-Wienese, R., Vilà, M., Palacios-Marin, I., Fernández-Pérez, A., Vallejo, M., Téllez, N., Rodríguez, M. À., Yanes, O., Lerin, C., Díaz, R., Plosch, T., Tietge, U. J. F., Jimenez-Chillaron, J. C. Epigenetic programming at the Mogat1 locus may link neonatal overnutrition with long-term hepatic steatosis and insulin resistance.
Collapse
Affiliation(s)
- Marta Ramon-Krauel
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Thais Pentinat
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Judith Cebrià
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Silvia Ribo
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ricky Pérez-Wienese
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Maria Vilà
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Antonio Fernández-Pérez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Mario Vallejo
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Noèlia Téllez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, Barcelona, Spain
| | - Miguel Àngel Rodríguez
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Ciber de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Rubén Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, Barcelona, Spain
| | - Torsten Plosch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
14
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|