1
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
2
|
Kumar SAS, Krishnan D, Jothipandiyan S, Durai R, Hari BNV, Nithyanand P. Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model. Antonie Van Leeuwenhoek 2024; 117:37. [PMID: 38367023 DOI: 10.1007/s10482-024-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/13/2024] [Indexed: 02/19/2024]
Abstract
Vulvovaginal candidiasis is the second most common vaginal infection caused by drug-resistant Candida species that affects about 70-75% of reproductive age group women across the globe. As current-day antifungal drugs are ineffective against the biofilms formed by the drug-resistant Candida strains, several natural compounds and antagonistic microbes are being explored as alternative antifungal agents. In the present study, we investigated the anti-biofilm activity of Cell-Free Supernatant (CFS) extracted from the commercially available probiotics VSL-3 against the biofilms of Candida species and also evaluated their efficacy in curbing the yeast-to-hyphal transition. Various methodologies like crystal violet staining and scanning electron microscopy were used to study the effect of CFS against the biofilms formed by the species. The ability of CFS to interfere with yeast to hyphal transition in Candida was studied by colony morphology assay and visually confirmed with phase contrast microscopy. The potential of the CFS of the probiotics was also evaluated using goat buccal tissue, a novel ex-vivo model that mimics the vaginal environment. Moreover, the supernatant extracted from VSL-3 had the ability to down-regulate the expression of virulence genes of Candida from the biofilm formed over the ex-vivo model. These results emphasize the anti-fungal and anti-infective properties of the CFS of VSL-3 against drug-resistant Candida strains causing vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Sudaarsan Aruna Senthil Kumar
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhesiga Krishnan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India
| | - Ramyadevi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - B Narayanan Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, Tamil Nadu, 613 401, India.
| |
Collapse
|
3
|
Alcántara C, Perez M, Huedo P, Altadill T, Espadaler-Mazo J, Arqués JL, Zúñiga M, Monedero V. Study of the biosynthesis and functionality of polyphosphate in Bifidobacterium longum KABP042. Sci Rep 2023; 13:11076. [PMID: 37422465 PMCID: PMC10329679 DOI: 10.1038/s41598-023-38082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Polyphosphate (poly-P) biosynthesis in bacteria has been linked to many physiological processes and has been characterized as an interesting functional molecule involved in intestinal homeostasis. We determined the capacity for poly-P production of 18 probiotic strains mainly belonging to Bifidobacterium and former Lactobacillus genera, showing that poly-P synthesis varied widely between strains and is dependent on the availability of phosphate and the growth phase. Bifidobacteria were especially capable of poly-P synthesis and poly-P kinase (ppk) genes were identified in their genomes together with a repertoire of genes involved in phosphate transport and metabolism. In Bifidobacterium longum KABP042, the strain we found with highest poly-P production, variations in ppk expression were linked to growth conditions and presence of phosphate in the medium. Moreover, the strain produced poly-P in presence of breast milk and lacto-N-tetraose increased the amount of poly-P synthesized. Compared to KABP042 supernatants low in poly-P, exposure of Caco-2 cells to KABP042 supernatants rich in poly-P resulted in decreased epithelial permeability and increased barrier resistance, induction of epithelial protecting factors such as HSP27 and enhanced expression of tight junction protein genes. These results highlight the role of bifidobacteria-derived poly-P as a strain-dependent functional factor acting on epithelial integrity.
Collapse
Affiliation(s)
- Cristina Alcántara
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Marta Perez
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Tatiana Altadill
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain.
| |
Collapse
|
4
|
De Simone C. The authenticity of probiotic foods and dietary supplements: facts and reflections from a court case. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2141344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Claudio De Simone
- Infectious Diseases, University of L’Aquila (Italy), L’Aquila, Italy
| |
Collapse
|
5
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|
6
|
Razafindralambo H, Correani V, Fiorucci S, Mattei B. Variability in Probiotic Formulations Revealed by Proteomics and Physico-chemistry Approach in Relation to the Gut Permeability. Probiotics Antimicrob Proteins 2021; 12:1193-1202. [PMID: 31482402 DOI: 10.1007/s12602-019-09590-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Variability in the efficacy, safety, and quality of probiotic formulations depends on many factors, including process conditions used by manufacturers. Developing reliable analytical tools is therefore essential to quickly monitor manufacturing differences in probiotic samples for their quality assessment. Here, multi-strain probiotics from two production sites and countries were investigated by proteomics and physico-chemistry approaches in relation to the protective effect on gut barrier. Proteomic analyses showed differences in protein abundances, identities, and origins of two series of VSL#3 samples from different sites. Even though both formulations were qualitatively similar in thermal and colloidal profiles, significant differences were quantitatively observed in terms of maximum decomposition temperature Tmax (p < 0.05) and phase transition temperature Tm (p < 0.01). Such variability in physical and biochemical features impacts on probiotic functionalities and translates into a differential modulation of gut permeability in mice. Physico-chemical scans provide coherent data with proteomics and represent a new tool for time and cost effective quality control of probiotic-based products.
Collapse
Affiliation(s)
- H Razafindralambo
- Department of Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie 2B-BAT 140 TERRA, B-5030, Gembloux, Belgium.
| | - V Correani
- Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - S Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - B Mattei
- Department of Biology and Biotechnology, "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Al-Yassir F, Khoder G, Sugathan S, Saseedharan P, Al Menhali A, Karam SM. Modulation of Stem Cell Progeny by Probiotics during Regeneration of Gastric Mucosal Erosions. BIOLOGY 2021; 10:596. [PMID: 34203400 PMCID: PMC8301058 DOI: 10.3390/biology10070596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Patients with gastric mucosal erosions are predisposed to chronic gastritis, ulcer or even cancer. The repair of mucosal erosions involves several events including proliferation of gastric epithelial stem cells. The aim of this study was to investigate the effects of the probiotic mixture of De Simone Formulation on gastric epithelial stem cell lineages in mouse models of gastric mucosal erosions. Gastric erosions were induced by a single oral gavage of 80% ethanol containing 15 mg/mL acetylsalicylic acid (5 mL/kg) following a daily dose of probiotic mixture (5 mg/day/mouse) for 10 days. In another protocol, erosions were induced by a daily gavage of acetylsalicylic acid (400 mg/kg/day/mouse) for 5 days before or after daily administration of probiotic mixture for 5 days. Control mice received water gavage for 10 days. All mice were injected with bromodeoxyuridine two hours before sacrifice to label S-phase cells. The stomachs of all mice were processed for histological examination, lectin binding, and immunohistochemical analysis. The results reveal that mice that received probiotics before or after the induction of erosion showed a decrease in erosion index with an increase in gastric epithelial stem/progenitor cell proliferation and enhanced production of mucus, trefoil factors, and ghrelin by mucous and enteroendocrine cell lineages. These mice also showed restoration of the amount of H+,K+-ATPase and pepsinogen involved in the production of the harsh acidic environment by parietal and chief cell lineages. In conclusion, this study demonstrates the beneficial effects of probiotics against gastric mucosal erosion and highlights the involvement and modulation of proliferative stem cells and their multiple glandular epithelial cell lineages.
Collapse
Affiliation(s)
- Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Department of Biological Sciences, Faculty of Science, Debbieh Campus, Beirut Arab University, P.O. Box 11-50-20 Riad El Solh 11072809, Beirut, Lebanon
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, Sharjah Institute for Medical Research, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (F.A.-Y.); (S.S.); (P.S.)
- Zayed Research Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| |
Collapse
|
8
|
Patel F, Parwani K, Patel D, Mandal P. Metformin and Probiotics Interplay in Amelioration of Ethanol-Induced Oxidative Stress and Inflammatory Response in an In Vitro and In Vivo Model of Hepatic Injury. Mediators Inflamm 2021; 2021:6636152. [PMID: 33953643 PMCID: PMC8064785 DOI: 10.1155/2021/6636152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.
Collapse
Affiliation(s)
- Farhin Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
9
|
Bayer G, Ganobis CM, Allen-Vercoe E, Philpott DJ. Defined gut microbial communities: promising tools to understand and combat disease. Microbes Infect 2021; 23:104816. [PMID: 33785422 DOI: 10.1016/j.micinf.2021.104816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Defined gut microbial communities are emerging tools that allow detailed studies of microbial ecosystems and their interactions with the host. In this article, we review strategies underlying the design of defined consortia and summarize the efforts to introduce simplified communities into in vitro and in vivo models. We conclude by highlighting the potential of defined microbial ecosystems as effective modulation strategies for health benefits.
Collapse
Affiliation(s)
- Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
10
|
Soluble Fraction from Lysate of a High Concentration Multi-Strain Probiotic Formulation Inhibits TGF-β1-Induced Intestinal Fibrosis on CCD-18Co Cells. Nutrients 2021; 13:nu13030882. [PMID: 33803197 PMCID: PMC7998462 DOI: 10.3390/nu13030882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrosis is a severe complication of chronic inflammatory disorders, such as inflammatory bowel disease (IBD). Current strategies are not fully effective in treating fibrosis; therefore, innovative anti-fibrotic approaches are urgently needed. TGF-β1 plays a central role in the fibrotic process by inducing myofibroblast differentiation and excessive extracellular matrix (ECM) protein deposition. Here, we explored the potential anti-fibrotic impact of two high concentration multi-strain probiotic formulations on TGF-β1-activated human intestinal colonic myofibroblast CCD-18Co. Human colonic fibroblast CCD-18Co cells were cultured in the presence of TGF-β1 to develop a fibrotic phenotype. Cell viability and growth were measured using the Trypan Blue dye exclusion test. The collagen-I, α-SMA, and pSmad2/3 expression levels were evaluated by Western blot analysis. Fibrosis markers were also analyzed by immunofluorescence and microscopy. The levels of TGF-β1 in the culture medium were assessed by ELISA. The effects of commercially available probiotic products VSL#3® and Vivomixx® were evaluated as the soluble fraction of bacterial lysates. The results suggested that the soluble fraction of Vivomixx® formulation, but not VSL#3®, was able to antagonize the pro-fibrotic effects of TGF-β1 on CCD-18Co cells, being able to prevent all of the cellular and molecular parameters that are related to the fibrotic phenotype. The mechanism underlying the observed effect appeared to be associated with inhibition of the TGF-β1/Smad signaling pathway. To our knowledge, this study provides the first experimental evidence that Vivomixx® could be considered to be a promising candidate against intestinal fibrosis, being able to antagonize TGF-β1 pro-fibrotic effects. The differences that were observed in our fibrosis model between the two probiotics used could be attributable to the different number of strains in different proportions.
Collapse
|
11
|
Rekatsina M, Paladini A, Cifone MG, Lombardi F, Pergolizzi JV, Varrassi G. Influence of Microbiota on NSAID Enteropathy: A Systematic Review of Current Knowledge and the Role of Probiotics. Adv Ther 2020; 37:1933-1945. [PMID: 32291647 PMCID: PMC7467482 DOI: 10.1007/s12325-020-01338-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 12/25/2022]
Abstract
Microbiota are increasingly studied, providing more precise information on their important role in physiologic processes. They also influence some pathologic processes, such as NSAID-induced enteropathy. This side effect is much more diffuse than it has been described in the past. It derives mainly from the local action of the medicines and is caused by the local binding of gram-negative bacterial lipopolysaccharides and infiltration of neutrophils into the intestinal mucosa. The initial interest in the interaction between these damages and microbiota is very old, but new and interesting data are available. This review aims to focus on recent studies on NSAID-induced enteropathy, an often-underestimated medical condition, and on the influence of microbiota on this condition. Apart from the broadly investigated use of antibiotics and other mucosal protective solutions, this systematic review focuses mostly on the use of probiotics, which directly influence intestinal microflora. Other important factors influencing NSAID-induced enteropathy, such as sex, advanced age, infection and use of proton pump inhibitors, are also discussed.
Collapse
Affiliation(s)
| | - Antonella Paladini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Building Delta 6, 67100, L'Aquila, Italy
| | | | - Giustino Varrassi
- Paolo Procacci Foundation, Via Tacito 7, 00193, Rome, Italy.
- World Institute of Pain, Winston Salem, NC, USA.
| |
Collapse
|
12
|
The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients 2020; 12:nu12041040. [PMID: 32283870 PMCID: PMC7230804 DOI: 10.3390/nu12041040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Nickel (Ni) oral consumption may elicit systemic reactions in patients affected by systemic nickel allergy syndrome (SNAS), including gastrointestinal symptoms, which in turn are associated with gut dysbiosis. We evaluated the effects of a low-Ni diet alone or in combination with the oral consumption of appropriate probiotics on Ni-sensitivity and urinary dysbiosis markers in SNAS patients. Methods: n = 51 patients with SNAS and concomitant intestinal dysbiosis were enrolled in the study. According to the urinary indican/skatole levels, quantified through a colorimetric and a high-performance liquid chromatographic method, respectively, patients were assigned to a dysbiosis type/grade and followed a low-Ni diet for three months. Along with the diet, 22 patients also consumed probiotics based on the dysbiosis type. In particular, a Lactobacilli- or Bifidobacteria-containing formulation was administered to patients with fermentative or putrefactive dysbiosis, respectively, while a broad-spectrum probiotic formulation containing both Lactobacilli and Bifidobacteria was administered to patients with mixed dysbiosis. After three months, patients were invited to repeat the Ni-stimulation and the dysbiosis tests. Results: The fermentative dysbiosis group represented the largest group followed by the mixed dysbiosis group, while only two patients had putrefactive dysbiosis. Overall, at three months of treatment in general (diet alone with or without probiotics), the Ni-sensitivity and dysbiosis levels were strongly ameliorated. The association of a low-Ni diet with a specific probiotic oral supplementation was significantly more effective in decreasing dysbiosis levels or reaching eubiosis than with diet alone. Conclusion: Our results, while confirming the benefits of a low-Ni diet in SNAS patients, strongly support that appropriate adjuvant treatment with probiotics significantly helps to improve intestinal dysbiosis or restore a healthy microbiota.
Collapse
|
13
|
Lombardi F, Palumbo P, Mattei A, Augello FR, Cifone MG, Giuliani M, Cinque B. Soluble Fraction from Lysates of Selected Probiotic Strains Differently Influences Re-Epithelialization of HaCaT Scratched Monolayer through a Mechanism Involving Nitric Oxide Synthase 2. Biomolecules 2019; 9:biom9120756. [PMID: 31766379 PMCID: PMC6995614 DOI: 10.3390/biom9120756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence supports the use of probiotics in the treatment of several skin conditions, including wounds. Even if in vitro and in vivo studies have highlighted the pro-healing effects of some probiotic bacteria, the underlying mechanisms are still not fully defined. The current investigation aimed to determine the re-epithelialization potential of the soluble fraction from lysate of seven different probiotic strains belonging to different genera (i.e., Streptococcus, Lactobacillus, and Bifidobacterium) on in vitro physically wounded HaCaT monolayer model. The results suggested that the soluble fraction of S. thermophilus, L. plantarum, and L. acidophilus promoted the re-epithelialization of scratched HaCaT monolayers, whereas those from B. longum, B. infantis, and B. breve significantly inhibited the process. On the other hand, L. bulgaricus showed no significant effect on in vitro wound repair. The mechanisms underlying the pro- or anti-healing properties of selected bacterial strains strictly and positively correlated with their ability to modulate nitric oxide synthase 2 (NOS2) expression and activity. Accordingly, the pre-treatment with aminoguanidine (AG), a specific inhibitor of NOS2 activity, abrogated the pro-healing effects of S. thermophilus, L. plantarum, and L. acidophilus.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Antonella Mattei
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
| | - Maurizio Giuliani
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
- Unit of Plastic and Reconstructive Surgery, Casa di Cura “Di Lorenzo” SrL, Via Vittorio Veneto 37, Avezzano, 67051 L’Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Building Delta 6, Coppito, 67100 L’Aquila, Italy; (F.L.); (P.P.); (A.M.); (F.R.A.); (M.G.C.); (M.G.)
- Correspondence: ; Tel.: +39-0862-433-553
| |
Collapse
|
14
|
Khoder G, Al-Yassir F, Al Menhali A, Saseedharan P, Sugathan S, Tomasetto C, Karam SM. Probiotics Upregulate Trefoil Factors and Downregulate Pepsinogen in the Mouse Stomach. Int J Mol Sci 2019; 20:3901. [PMID: 31405107 PMCID: PMC6719917 DOI: 10.3390/ijms20163901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Probiotics are used in the management of some gastrointestinal diseases. However, little is known about their effects on normal gastric epithelial biology. The aim of this study was to explore how the probiotic mixture VSL#3 affects gastric cell lineages in mice with a special focus on protective and aggressive factors. Weight-matching littermate male mice (n = 14) were divided into treated and control pairs. The treated mice received VSL#3 (5 mg/day/mouse) by gastric gavage for 10 days. Control mice received only the vehicle. Food consumption and bodyweight were monitored. All mice were injected intraperitoneally with bromodeoxyuridine (120 mg/Kg bodyweight) two hours before sacrificed to label S-phase cells. Stomach tissues were processed for lectin- and immunohistochemical examination. ImageJ software was used to quantify immunolabeled gastric epithelial cells. Real-time quantitative polymerase chain reaction was used to provide relative changes in expression of gastric cell lineages specific genes. Results revealed that treated mice acquired (i) increased production of mucus, trefoil factor (TFF) 1 and TFF2, (ii) decreased production of pepsinogen, and (iii) increased ghrelin-secreting cells. No significant changes were observed in bodyweight, food consumption, cell proliferation, or parietal cells. Therefore, VSL#3 administration amplifies specific cell types specialized in the protection of the gastric epithelium.
Collapse
Affiliation(s)
- Ghalia Khoder
- Department of Pharmaceutics and Pharmaceuticals Technology, College of Pharmacy, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Farah Al-Yassir
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Debbieh Campus PO Box 11-50-20 Riad El Solh, Beirut 11072809, Lebanon
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Prashanth Saseedharan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
| | - Subi Sugathan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104, Université de Strasbourg, F-67404 Illkirch, France
| | - Sherif M Karam
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, AlAin 17666, UAE.
| |
Collapse
|
15
|
Razafindralambo H, Razafindralambo A, Blecker C. Thermophysical Fingerprinting of Probiotic-Based Products. Sci Rep 2019; 9:10011. [PMID: 31292519 PMCID: PMC6620332 DOI: 10.1038/s41598-019-46469-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/29/2019] [Indexed: 02/04/2023] Open
Abstract
Variability in efficacy and safety is a worldwide concern with commercial probiotics for their growing and inevitable use in food and health sectors. Here, we introduce a probiotic thermophysical fingerprinting methodology using a coupling thermogravimetry and differential scanning calorimetry. Qualitative and quantitative information on the material decomposition and transition phases is provided under heating conditions. By monitoring the changes in both mass and internal energy over temperature and time, a couple of thermal data at the maximum decomposition steps allow the creation of a unique and global product identity, depending on both strain and excipient components. We demonstrate that each powder formulation of monostrain and multistrain from different lots and origins have a unique thermophysical profile. Our approach also provides information on the formulation thermostability and additive/excipient composition. An original fingerprint form is proposed by converting the generated thermal data sequence into a star-like pattern for a perspective library construction.
Collapse
Affiliation(s)
- Hary Razafindralambo
- Laboratory of Food Science and Formulation, Department of Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, BAT 140 TERRA Teaching and Research Centre, B-5030, Gembloux, Belgium.
| | - Aurélie Razafindralambo
- Laboratory of Food Science and Formulation, Department of Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, BAT 140 TERRA Teaching and Research Centre, B-5030, Gembloux, Belgium
| | - Christophe Blecker
- Laboratory of Food Science and Formulation, Department of Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, BAT 140 TERRA Teaching and Research Centre, B-5030, Gembloux, Belgium
| |
Collapse
|
16
|
Ceccarelli G, Statzu M, Santinelli L, Pinacchio C, Bitossi C, Cavallari EN, Vullo V, Scagnolari C, d'Ettorre G. Challenges in the management of HIV infection: update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. Expert Opin Biol Ther 2019; 19:949-965. [PMID: 31260331 DOI: 10.1080/14712598.2019.1638907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Recent insights show that gut-mucosal immunity and intestinal microbiota play a key role in the pathogenesis of HIV infection. Alterations in the composition of intestinal flora (dysbiosis) could be associated with an impaired intestinal epithelium barrier activity and an impaired mucosal immunity function, significantly contributing to microbial translocation which is considered a major driver of chronic immune activation. Areas covered: This article provides an overview on the novel trends in probiotic therapy application. A particular emphasis is addressed to the importance of probiotics as a novel strategy to attenuate or prevent gastrointestinal involvement and to improve gut-mucosal immunity in HIV-infected subjects. Therefore, opportunities, limits and methodological criticalities of supplementation with probiotic therapy are considered and analyzed. Expert opinion: Use of probiotics is emerging as a novel strategy to manage dysbiosis and gut-mucosal impairment, to reduce immune activation and to limit a number of non-AIDS-related disorders. However, despite the growing use of probiotic therapy, mechanisms by which oral bacteria intake exhibits its effects are strain-related and disease-specific, hence clinicians need to take these two factors into consideration when suggesting probiotic supplementation to HIV-infected patients.
Collapse
Affiliation(s)
- Giancarlo Ceccarelli
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Maura Statzu
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Letizia Santinelli
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Claudia Pinacchio
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Camilla Bitossi
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - Eugenio Nelson Cavallari
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Vincenzo Vullo
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| | - Carolina Scagnolari
- b Laboratory of Virology, Department of Molecular Medicine, affiliated to Istituto Pasteur Italia - Cenci Bolognetti Foundation, Sapienza University of Rome , Rome , Italy
| | - GabrieIla d'Ettorre
- a Department of Public Health and Infectious Diseases, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
17
|
Palumbo P, Lombardi F, Cifone MG, Cinque B. The Epithelial Barrier Model Shows That the Properties of VSL#3 Depend from Where it is Manufactured. Endocr Metab Immune Disord Drug Targets 2019; 19:199-206. [PMID: 30360752 PMCID: PMC6425067 DOI: 10.2174/1871530318666181022164505] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
Background: VSL#3 has been extensively investigated and is currently recommended for the prevention and treatment of chronic pouchitis and ulcerative colitis. Nonetheless, in vitro and in vivo stud-ies have recently shown variability in the VSL#3 efficacy often attributed to the manufacturing process. Objective: The aim was to comparatively study the in vitro effects of two VSL#3 preparations produced in different sites (named US- and Italy-made VSL#3) on CaCo-2 epithelial barrier model in terms of trans-epithelial electrical resistance (TEER), dextran flux and expression of Tight Junctions (TJ) proteins i.e. zonulin-1 (ZO-1) and occludin, in the absence or presence of a heat stress-related damage of mono-layer. Methods: TEER was evaluated on CaCo-2 differentiated monolayers. Epithelial permeability of polarized monolayers was assessed by measuring the FITC-labeled dextran flux from the apical to basolateral chambers. ZO-1/occludin levels were analyzed by western blot analysis. A set of experiments was per-formed to compare the effects of both VSL#3 on TEER values, dextran flux and ZO-1/occludin expres-sion in CaCo-2 monolayers after heat stress exposure. Results: US- and Italy-made VSL#3 have opposing effects on TEER values, dextran flux, and ZO-1/occludin expression, being all these parameters negatively influenced just by Italy-made product. US-made probiotic did not affect baseline TEER, dextran flux and ZO-1 expression and strongly increased occludin levels. Of note, pre-treatment of monolayer with US-made VSL#3, but not Italy-made product, totally prevented the heat-induced epithelial barrier integrity loss. Conclusion: Our data trigger the need for reassessing efficacy or safety of the Italy-made VSL#3 con-sidering intestinal epithelial barrier plays an important role in maintaining host health.
Collapse
Affiliation(s)
- Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L'Aquila - Building Delta 6, Coppito, L'Aquila, Italy
| |
Collapse
|
18
|
Microbiota transplantation: Targeting cancer treatment. Cancer Lett 2019; 452:144-151. [DOI: 10.1016/j.canlet.2019.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
|
19
|
de Simone C. The Unregulated Probiotic Market. Clin Gastroenterol Hepatol 2019; 17:809-817. [PMID: 29378309 DOI: 10.1016/j.cgh.2018.01.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS This narrative review provides an overview of the current regulation of probiotics, with a focus on those used for the dietary management of medical conditions (Medical Foods). FINDINGS The probiotic market has grown rapidly, both for foods and supplements intended to enhance wellness in healthy individuals, and for preparations for the dietary management of disease. Regulation of probiotics varies between regions. Unless they make specific disease-related health claims, probiotics are regulated as food supplements and regulation is focused on the legitimacy of any claims, rather than efficacy, safety and quality. Many properties of probiotics are strain-specific, and safety and efficacy findings associated to specific formulations should not be generalized to other probiotic products. Manufacturing processes, conditions and ingredients are important determinants of product characteristics and changes to manufacturing are likely to give rise to a product not identical to the "original" in efficacy and safety if proper measures and controls are not taken. Current trademark law and the lack of stringent regulation of probiotic manufacturing mean that the trademark owner can commercialize any formulation under the same brand, even if significantly different from the original. These regulatory deficits may have serious consequences for patients where probiotics are used as part of clinical guideline-recommended management of serious conditions such as inflammatory bowel diseases, and may make doctors liable for prescribing a formulation not previously tested for safety and efficacy. CONCLUSIONS Current regulation of probiotics is inadequate to protect consumers and doctors, especially when probiotics are aimed at the dietary management of serious conditions.
Collapse
|
20
|
The Use of Defined Microbial Communities To Model Host-Microbe Interactions in the Human Gut. Microbiol Mol Biol Rev 2019; 83:83/2/e00054-18. [PMID: 30867232 DOI: 10.1128/mmbr.00054-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human intestinal ecosystem is characterized by a complex interplay between different microorganisms and the host. The high variation within the human population further complicates the quest toward an adequate understanding of this complex system that is so relevant to human health and well-being. To study host-microbe interactions, defined synthetic bacterial communities have been introduced in gnotobiotic animals or in sophisticated in vitro cell models. This review reinforces that our limited understanding has often hampered the appropriate design of defined communities that represent the human gut microbiota. On top of this, some communities have been applied to in vivo models that differ appreciably from the human host. In this review, the advantages and disadvantages of using defined microbial communities are outlined, and suggestions for future improvement of host-microbe interaction models are provided. With respect to the host, technological advances, such as the development of a gut-on-a-chip system and intestinal organoids, may contribute to more-accurate in vitro models of the human host. With respect to the microbiota, due to the increasing availability of representative cultured isolates and their genomic sequences, our understanding and controllability of the human gut "core microbiota" are likely to increase. Taken together, these advancements could further unravel the molecular mechanisms underlying the human gut microbiota superorganism. Such a gain of insight would provide a solid basis for the improvement of pre-, pro-, and synbiotics as well as the development of new therapeutic microbes.
Collapse
|
21
|
Correction: Production Conditions Affect the In Vitro Anti-Tumoral Effects of a High Concentration Multi-Strain Probiotic Preparation. PLoS One 2019; 14:e0213134. [PMID: 30794716 PMCID: PMC6386502 DOI: 10.1371/journal.pone.0213134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0163216.].
Collapse
|
22
|
Expression of Concern: Production Conditions Affect the In Vitro Anti-Tumoral Effects of a High Concentration Multi-Strain Probiotic Preparation. PLoS One 2019; 14:e0212403. [PMID: 30731003 PMCID: PMC6366709 DOI: 10.1371/journal.pone.0212403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Divergent Effectiveness of Multispecies Probiotic Preparations on Intestinal Microbiota Structure Depends on Metabolic Properties. Nutrients 2019; 11:nu11020325. [PMID: 30717413 PMCID: PMC6412585 DOI: 10.3390/nu11020325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that probiotic functionality is not accurately predicted by their taxonomy. Here, we have set up a study to investigate the effectiveness of two probiotic formulations containing a blend of seven bacterial species in modulating intestinal inflammation in two rodent models of colitis, induced by treating mice with 2,4,6-Trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulfate (DSS). Despite the taxonomy of the bacterial species in the two probiotic formulations being similar, only one preparation (Blend 2-Vivomixx) effectively attenuated the development of colitis in both models. In the TNBS model of colitis, Blend 2 reduced the expression of pro-inflammatory genes while increasing the production of anti-inflammatory cytokines, promoting the expansion M2 macrophages and the formation of IL-10-producing Treg cells in the colon's lamina propria. In the DSS model of colitis, disease attenuation and Treg formation was observed only in mice administered with Blend 2, and this effect was associated with intestinal microbiota remodeling and increased formation of lactate, butyrate, and propionate. None of these effects were observed in mice administered with Blend 1 (VSL#3). In summary, we have shown that two probiotic mixtures obtained by combining taxonomically similar species produced with different manufacturing methods exert divergent effects in mouse models of colitis.
Collapse
|
24
|
|
25
|
Turner D, Ruemmele FM, Orlanski-Meyer E, Griffiths AM, de Carpi JM, Bronsky J, Veres G, Aloi M, Strisciuglio C, Braegger CP, Assa A, Romano C, Hussey S, Stanton M, Pakarinen M, de Ridder L, Katsanos K, Croft N, Navas-López V, Wilson DC, Lawrence S, Russell RK. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care-An Evidence-based Guideline From European Crohn's and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 67:257-291. [PMID: 30044357 DOI: 10.1097/mpg.0000000000002035] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The contemporary management of ambulatory ulcerative colitis (UC) continues to be challenging with ∼20% of children needing a colectomy within childhood years. We thus aimed to standardize daily treatment of pediatric UC and inflammatory bowel diseases (IBD)-unclassified through detailed recommendations and practice points. METHODS These guidelines are a joint effort of the European Crohn's and Colitis Organization (ECCO) and the Paediatric IBD Porto group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). An extensive literature search with subsequent evidence appraisal using robust methodology was performed before 2 face-to-face meetings. All 40 included recommendations and 86 practice points were endorsed by 43 experts in Paediatric IBD with at least an 88% consensus rate. RESULTS These guidelines discuss how to optimize the use of mesalamine (including topical), systemic and locally active steroids, thiopurines and, for more severe disease, biologics. The use of other emerging therapies and the role of surgery are also covered. Algorithms are provided to aid therapeutic decision-making based on clinical assessment and the Paediatric UC Activity Index (PUCAI). Advice on contemporary therapeutic targets incorporating the use of calprotectin and the role of therapeutic drug monitoring are presented, as well as other management considerations around pouchitis, extraintestinal manifestations, nutrition, growth, psychology, and transition. A brief section on disease classification using the PIBD-classes criteria and IBD-unclassified is also part of these guidelines. CONCLUSIONS These guidelines provide a guide to clinicians managing children with UC and IBD-unclassified management to provide modern management strategies while maintaining vigilance around appropriate outcomes and safety issues.
Collapse
Affiliation(s)
- Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frank M Ruemmele
- Université Paris Descartes, Sorbonne Paris Cité, APHP, Hôpital Necker Enfants Malades, Paris, France
| | | | - Anne M Griffiths
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Jiri Bronsky
- Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| | - Gabor Veres
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania "Luigi Vanvitelli," Napoli, Italy
| | | | - Amit Assa
- Schneider Children's Hospital, Petach Tikva, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claudio Romano
- Pediatric Department, University of Messina, Messina, Italy
| | - Séamus Hussey
- National Children's Research Centre, Royal College of Surgeons of Ireland and University College Dublin, Dublin, Ireland
| | | | - Mikko Pakarinen
- Helsinki University Children's Hospital, Department of Pediatric Surgery, Helsinki, Finland
| | - Lissy de Ridder
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Nick Croft
- Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Victor Navas-López
- Pediatric Gastroenterology and Nutrition Unit. Hospital Materno, IBIMA, Málaga, Spain
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Sally Lawrence
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
26
|
Castelli V, Palumbo P, d'Angelo M, Moorthy NK, Antonosante A, Catanesi M, Lombardi F, Iannotta D, Cinque B, Benedetti E, Ippoliti R, Cifone MG, Cimini A. Probiotic DSF counteracts chemotherapy induced neuropathic pain. Oncotarget 2018; 9:27998-28008. [PMID: 29963257 PMCID: PMC6021327 DOI: 10.18632/oncotarget.25524] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Problem statement: Chemotherapy-induced peripheral neuropathy (CIPN) is a widespread and potentially disabling side effect of various anticancer drugs. In spite of the intensive research focused on obtaining therapies capable to treat or prevent CIPN, the medical demand remains very high. Microtubule-stabilizing agents, among which taxanes, are effective chemotherapeutic agents for the therapy of several oncologic diseases. The inflammatory process activated by chemotherapeutic agents has been interpreted as a potential trigger of the nociceptive process in CIPN. The chemotherapy-driven release of proinflammatory and chemokines has been recognized as one of the principal mechanisms controlling the establishment of CIPN. Several reports have indicated that probiotics are capable to regulate the balance of anti-inflammatory and pro-inflammatory cytokines. Accordingly, it has been suggested that some probiotic formulations, may have an effective role in the management of inflammatory pain symptoms. Experimental approaches used: we tested the hypothesis that paclitaxel-induced neuropathic pain can be counteracted by the probiotic DSF by using an in vitro model of sensitive neuron, the F11 cells. On this model, the biomolecular pathways involved in chemotherapy induced peripheral neuropathy depending on inflammatory cytokines were investigated by Real-time PCR, Western blotting and confocal microscopy. General conclusions: the results obtained, i.e. the increase of acetylated tubulin, the increase of the active forms of proteins involved in the establishment of neuropathic pain, point towards the use of this probiotic formulation as a possible adjuvant agent for counteracting CINP symptoms.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nandha Kumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, USA
| |
Collapse
|
27
|
Primavera R, Palumbo P, Celia C, Cinque B, Carata E, Carafa M, Paolino D, Cifone MG, Di Marzio L, Cilurzo F. An insight of in vitro transport of PEGylated non-ionic surfactant vesicles (NSVs) across the intestinal polarized enterocyte monolayers. Eur J Pharm Biopharm 2018; 127:432-442. [PMID: 29605467 DOI: 10.1016/j.ejpb.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 12/11/2022]
Abstract
PEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution. The NR-NSVs did not modify Caco-2 cell viability, which remained unaltered in vitro up to a concentration of 1 mM. The transport studies demonstrated that the NR-NSVs moved across the Caco-2 monolayers without affecting the transepithelial electrical resistance. These results were supported by flow cytometry analysis, which demonstrated that NR-NSVs were internalized inside the Caco-2 cells. Nanoparticle tracking and Transmission Electron Microscopy (TEM) analysis showed the presence of NR-NSVs in the basolateral side of the Caco-2 monolayers. TEM images also showed that NSVs were transported intact across the Caco-2 monolayers, thus demonstrating a predominant transcytosis mechanism of transport through endocytosis. The NSVs did not affect the integrity of the membrane barrier in vitro, and can potentially be used in clinics to increase the oral bioavailability and delivery of therapeutics.
Collapse
Affiliation(s)
- Rosita Primavera
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Paola Palumbo
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Benedetta Cinque
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Carata
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, University of Rome "Sapienza", Rome, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Catanzaro, Italy; IRC FSH-Interregional Research Center for Food Safety & Health, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Maria Grazia Cifone
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy.
| | | |
Collapse
|
28
|
Abstract
Purpose
Consumer inclination towards probiotic foods has been stimulated due to well-documented evidence of health benefits of probiotic-containing products and consumer demand for natural products. It is assumed that the viability and metabolic activities of probiotics are essential for extending health benefits and for successful marketing of probiotics as a functional food. The purpose of this paper is to demonstrate that even dead or inactivated probiotic cells could extend health benefits, indicating that probiotic viability is not always necessary for exhibiting health benefits.
Design/methodology/approach
Attempt has been made to review the literature on the status of probiotic foods available in the world market, their impact on the gut flora and the various factors affecting their viability. Both review and research papers related to efficacy of inactivated, killed or dead probiotic cells towards health benefits have been considered. Keywords used for data search included efficacy of viable or killed, inactivated probiotic cells.
Findings
The reviewed literature indicated that inactivated, killed or dead probiotic cells also possess functional properties but live cells are more efficacious. All live probiotic cultures are not equally efficacious, and accordingly, dead or inactivated cells did not demonstrate functional properties to extend health benefits to all diseases.
Originality/value
Capability of non-viable microorganisms to confer health benefits may attract food manufacturers owing to certain advantages over live probiotics such as longer shelf-life, handling and transportation and reduced requirements for refrigerated storage and inclusion of non-bacterial, biologically active metabolites present in fermented milks’ fraction as dried powders to food matrixes may result in the development of new functional foods.
Collapse
|
29
|
Affiliation(s)
- C De Simone
- Retired Professor and former member of the Faculty of Medicine of the University of L'Aquila, Italy, Chateau d'Oex, 1660, Switzerland
| |
Collapse
|
30
|
Eom T, Kim YS, Choi CH, Sadowsky MJ, Unno T. Current understanding of microbiota- and dietary-therapies for treating inflammatory bowel disease. J Microbiol 2018; 56:189-198. [PMID: 29492876 DOI: 10.1007/s12275-018-8049-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Inflammatory bowel disease (IBD) is a result of chronic inflammation caused, in some part, by dysbiosis of intestinal microbiota, mainly commensal bacteria. Gut dysbiosis can be caused by multiple factors, including abnormal immune responses which might be related to genetic susceptibility, infection, western dietary habits, and administration of antibiotics. Consequently, the disease itself is characterized as having multiple causes, etiologies, and severities. Recent studies have identified >200 IBD risk loci in the host. It has been postulated that gut microbiota interact with these risk loci resulting in dysbiosis, and this subsequently leads to the development of IBD. Typical gut microbiota in IBD patients are characterized with decrease in species richness and many of the commensal, and beneficial, fecal bacteria such as Firmicutes and Bacteroidetes and an increase or bloom of Proteobacteria. However, at this time, cause and effect relationships have not been rigorously established. While treatments of IBD usually includes medications such as corticosteroids, 5-aminosalicylates, antibiotics, immunomodulators, and anti-TNF agents, restoration of gut dysbiosis seems to be a safer and more sustainable approach. Bacteriotherapies (now called microbiota therapies) and dietary interventions are effective way to modulate gut microbiota. In this review, we summarize factors involved in IBD and studies attempted to treat IBD with probiotics. We also discuss the potential use of microbiota therapies as one promising approach in treating IBD. As therapies based on the modulation of gut microbiota becomes more common, future studies should include individual gut microbiota differences to develop personalized therapy for IBD.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yong Sung Kim
- Department of Gastroenterology, Wonkwang Digestive Disease Research Institute, Wonkwang University Sanbon Hospital, Gunpo, 15865, Republic of Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, 06974, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, 55108, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Tatsuya Unno
- Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
- Faculty of Biotechnology, School of life sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
31
|
Trinchieri V, Laghi L, Vitali B, Parolin C, Giusti I, Capobianco D, Mastromarino P, De Simone C. Efficacy and Safety of a Multistrain Probiotic Formulation Depends from Manufacturing. Front Immunol 2017; 8:1474. [PMID: 29163538 PMCID: PMC5681494 DOI: 10.3389/fimmu.2017.01474] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background Variability in probiotics manufacturing may affect their properties, with potential implications for their efficacy and safety. This is of particular concern with probiotic products destined for use in patients with serious medical conditions, including human immunodeficiency virus (HIV) infection. The purpose of the study was to carry out a series of experiments comparing the properties of the US-made probiotic formulation originally commercialized under the brand name VSL#3®, with those of the Italian-made formulation now commercialized under the same name. The US-made formulation has previously shown beneficial effects at the intestinal and neurological levels in HIV-infected subjects as well as in patients with inflammatory bowel diseases and hepatic encephalopathy. Methods Eleven subjects receiving combined antiretroviral therapy for HIV-1 were treated for 6 months with the US-made VSL#3 formulation. At baseline and 6 months, T-cells were analyzed for phenotype and activation markers, and fecal samples were analyzed for bifidobacteria, lactobacilli, and their metabolites. The fecal metabolome was assessed using 1H-NMR spectroscopy. Production of metabolites of interest by bacteria obtained from sachets of the two formulations was compared in vitro and their effects on a rat intestinal epithelial cell line (IEC-6) were assessed. Particular attention was paid to the metabolite 1,3-dihydroxyacetone (DHA). Results At 6 months, fecal samples showed a significant increase in the specific bacterial genera contained in the probiotic supplement. Immune activation was reduced as shown by a significant reduction in the percentage of CD4+CD38+HLA-DR+ T-cells at 6 months. Fecal concentrations of DHA decreased significantly. In vitro, significant differences in the production and metabolism of DHA were found between bacteria from the US-made and Italian-made formulations: the US-made formulation was able to metabolize DHA whereas the bacteria in the Italian-made formulation were producing DHA. DHA reduced the viability of Streptococcus thermophilus, reduced IEC-6 cell viability in a dose-dependent manner, and also led to a lower rate of repair to scratched IEC-6 cell monolayer. Conclusion Our data, in conjunction with previously published findings, confirm that the new Italian-made formulation of VSL#3® is different from the previous US-made VSL#3 and therefore its efficacy and safety in HIV-infected subjects is still unproven.
Collapse
Affiliation(s)
- Vito Trinchieri
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Cesena, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale S. Tommasi, Coppito, Italy
| | - Daniela Capobianco
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Disease, Section of Microbiology, Sapienza University Rome, Rome, Italy
| | | |
Collapse
|
32
|
Zacarías MF, Souza TC, Zaburlín N, Carmona Cara D, Reinheimer J, Nicoli J, Vinderola G. Influence of Technological Treatments on the Functionality ofBifidobacterium lactisINL1, a Breast Milk-Derived Probiotic. J Food Sci 2017; 82:2462-2470. [DOI: 10.1111/1750-3841.13852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- María Florencia Zacarías
- Inst. de Lactología Industrial (INLAIN); Univ. Nacional del Litoral; Santiago del Estero 2829 3000 Santa Fe Argentina
| | - Tassia Costa Souza
- Inst. de Lactología Industrial (INLAIN); Univ. Nacional del Litoral; Santiago del Estero 2829 3000 Santa Fe Argentina
| | - Natalia Zaburlín
- Inst. de Lactología Industrial (INLAIN); Univ. Nacional del Litoral; Santiago del Estero 2829 3000 Santa Fe Argentina
| | - Denise Carmona Cara
- the Dept. de Morfologia, Inst. de Ciências Biológicas (ICB); Univ. Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - Jorge Reinheimer
- Inst. de Lactología Industrial (INLAIN); Univ. Nacional del Litoral; Santiago del Estero 2829 3000 Santa Fe Argentina
| | - Jacques Nicoli
- the Dept. de Microbiologia; Inst. de Ciências Biológicas (ICB); Univ. Federal de Minas Gerais; Belo Horizonte MG Brazil
| | - Gabriel Vinderola
- Inst. de Lactología Industrial (INLAIN); Univ. Nacional del Litoral; Santiago del Estero 2829 3000 Santa Fe Argentina
| |
Collapse
|
33
|
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46:389-400. [PMID: 28653751 DOI: 10.1111/apt.14203] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/23/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) and Crohn's disease (CD) are inflammatory bowel diseases (IBD). Evidence implicates disturbances of the gastrointestinal microbiota in their pathogenesis. AIM To perform a systematic review and meta-analysis to examine the efficacy of probiotics in IBD. METHODS MEDLINE, EMBASE, and the Cochrane Controlled Trials Register were searched (until November 2016). Eligible randomised controlled trials (RCTs) recruited adults with UC or CD, and compared probiotics with 5-aminosalicylates (5-ASAs) or placebo. Dichotomous symptom data were pooled to obtain a relative risk (RR) of failure to achieve remission in active IBD, or RR of relapse of disease activity in quiescent IBD, with 95% confidence intervals (CIs). RESULTS The search identified 12 253 citations. Twenty-two RCTs were eligible. There was no benefit of probiotics over placebo in inducing remission in active UC (RR of failure to achieve remission=0.86; 95% CI=0.68-1.08). However, when only trials of VSL#3 were considered there appeared to be a benefit (RR=0.74; 95% CI=0.63-0.87). Probiotics appeared equivalent to 5-ASAs in preventing UC relapse (RR=1.02; 95% CI=0.85-1.23). There was no benefit of probiotics in inducing remission of active CD, in preventing relapse of quiescent CD, or in preventing relapse of CD after surgically induced remission. CONCLUSIONS VSL#3 may be effective in inducing remission in active UC. Probiotics may be as effective as 5-ASAs in preventing relapse of quiescent UC. The efficacy of probiotics in CD remains uncertain, and more evidence from RCTs is required before their utility is known.
Collapse
Affiliation(s)
- Y Derwa
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - D J Gracie
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - P J Hamlin
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK
| | - A C Ford
- Leeds Gastroenterology Institute, St. James's University Hospital, Leeds, UK.,Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
34
|
Biagioli M, Laghi L, Carino A, Cipriani S, Distrutti E, Marchianò S, Parolin C, Scarpelli P, Vitali B, Fiorucci S. Metabolic Variability of a Multispecies Probiotic Preparation Impacts on the Anti-inflammatory Activity. Front Pharmacol 2017; 8:505. [PMID: 28804459 PMCID: PMC5532379 DOI: 10.3389/fphar.2017.00505] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Background: In addition to strain taxonomy, the ability of probiotics to confer beneficial effects on the host rely on a number of additional factors including epigenetic modulation of bacterial genes leading to metabolic variability and might impact on probiotic functionality. Aims: To investigate metabolism and functionality of two different batches of a probiotic blend commercialized under the same name in Europe in models of intestinal inflammation. Methods: Boxes of VSL#3, a probiotic mixture used in the treatment of pouchitis, were obtained from pharmacies in UK subjected to metabolomic analysis and their functionality tested in mice rendered colitis by treatment with DSS or TNBS. Results: VSL#3-A (lot DM538), but not VSL#3-B (lot 507132), attenuated “clinical” signs of colitis in the DSS and TNBS models. In both models, VSL#3-A, but not VSL#3-B, reduced macroscopic scores, intestinal permeability, and expression of TNFα, IL-1β, and IL-6 mRNAs, while increased the expression of TGFβ and IL-10, occludin, and zonula occludens-1 (ZO-1) mRNAs and shifted colonic macrophages from a M1 to M2 phenotype (P < 0.05 vs. TNBS). In contrast, VSL#3-B failed to reduce inflammation, and worsened intestinal permeability in the DSS model (P < 0.001 vs. VSL#3-A). A metabolomic analysis of the two formulations allowed the identification of two specific patterns, with at least three-folds enrichment in the concentrations of four metabolites, including 1–3 dihydroxyacetone (DHA), an intermediate in the fructose metabolism, in VSL#3-B supernatants. Feeding mice with DHA, increased intestinal permeability. Conclusions: Two batches of a commercially available probiotic show divergent metabolic activities. DHA, a product of probiotic metabolism, increases intestinal permeability, highlighting the complex interactions between food, microbiota, probiotics, and intestinal inflammation.
Collapse
Affiliation(s)
- Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, Interdepartmental Centre for Agri-Food Industrial Research, University of BolognaCesena, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Sciences, University of PerugiaPerugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di PerugiaPerugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of PerugiaPerugia, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Paolo Scarpelli
- Department of Experimental Medicine, Laboratory of Biotechnology, University of PerugiaPerugia, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of PerugiaPerugia, Italy
| |
Collapse
|
35
|
Cinque B, La Torre C, Lombardi F, Palumbo P, Evtoski Z, Jr Santini S, Falone S, Cimini A, Amicarelli F, Cifone MG. VSL#3 probiotic differently influences IEC-6 intestinal epithelial cell status and function. J Cell Physiol 2017; 232:3530-3539. [PMID: 28109129 DOI: 10.1002/jcp.25814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
Abstract
The data here reported introduce the wound-healing assay as a tool for testing probiotics aimed at protecting gastrointestinal mucosal surfaces and to verify the consistency of their manufacturing. At the scope, we compared the in vitro effects of two multi-strain high concentration formulations both commercialized under the same brand VSL#3 but sourced from different production sites (USA and Italy) on a non-transformed small-intestinal epithelial cell line, IEC-6. The effects on cellular morphology, viability, migration, and H2 O2 -induced damage, were assessed before and after the treatment with both VSL#3 formulations. While the USA-sourced product ("USA-made") VSL#3 did not affect monolayer morphology and cellular density, the addition of bacteria from the Italy-derived product ("Italy-made") VSL#3 caused clear morphological cell damage and strongly reduced cellularity. The treatment with "USA-made" lysate led to a higher rate of wounded monolayer healing, while the addition of "Italy-made" bacterial lysate did not influence the closure rate as compared to untreated cells. While lysates from "USA-made" VSL#3 clearly enhanced the formation of elongated and aligned stress fibers, "Italy-made" lysates had not similar effect. "USA-made" lysate was able to cause a total inhibition of H2 O2 -induced cytotoxic effect whereas "Italy-made" VSL#3 lysate was unable to protect IEC-6 cells from H2 O2 -induced damage. ROS generation was also differently influenced, thus supporting the hypotesis of a protective action of "USA-made" VSL#3 lysates, as well as the idea that "Italy-made" formulation was unable to prevent significantly the H2 O2 -induced oxidative stress.
Collapse
Affiliation(s)
- Benedetta Cinque
- Division of Public Health, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Cristina La Torre
- Division of Public Health, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Francesca Lombardi
- Division of Public Health, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Paola Palumbo
- Division of Molecular Medicine, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Zoran Evtoski
- Division of Molecular Medicine, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Silvano Jr Santini
- Division of Biological and Biotechnological Sciences, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Stefano Falone
- Division of Biological and Biotechnological Sciences, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Annamaria Cimini
- Division of Biological and Biotechnological Sciences, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
- National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - Fernanda Amicarelli
- Division of Biological and Biotechnological Sciences, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
- Institute of Translational Pharmacology (IFT) -National Research Council (CNR), L'Aquila, Italy
| | - Maria Grazia Cifone
- Division of Molecular Medicine, Department of Life, Health and Environmental Sciences, University of L'Aquila, Coppito, L'Aquila, Italy
| |
Collapse
|