1
|
de Oliveira DC, Cheikh Sleiman H, Payette K, Hutter J, Story L, Hajnal JV, Alexander DC, Shipley RJ, Slator PJ. A flexible generative algorithm for growing in silico placentas. PLoS Comput Biol 2024; 20:e1012470. [PMID: 39374295 PMCID: PMC11486434 DOI: 10.1371/journal.pcbi.1012470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/17/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
The placenta is crucial for a successful pregnancy, facilitating oxygen exchange and nutrient transport between mother and fetus. Complications like fetal growth restriction and pre-eclampsia are linked to placental vascular structure abnormalities, highlighting the need for early detection of placental health issues. Computational modelling offers insights into how vascular architecture correlates with flow and oxygenation in both healthy and dysfunctional placentas. These models use synthetic networks to represent the multiscale feto-placental vasculature, but current methods lack direct control over key morphological parameters like branching angles, essential for predicting placental dysfunction. We introduce a novel generative algorithm for creating in silico placentas, allowing user-controlled customisation of feto-placental vasculatures, both as individual components (placental shape, chorionic vessels, placentone) and as a complete structure. The algorithm is physiologically underpinned, following branching laws (i.e. Murray's Law), and is defined by four key morphometric statistics: vessel diameter, vessel length, branching angle and asymmetry. Our algorithm produces structures consistent with in vivo measurements and ex vivo observations. Our sensitivity analysis highlights how vessel length variations and branching angles play a pivotal role in defining the architecture of the placental vascular network. Moreover, our approach is stochastic in nature, yielding vascular structures with different topological metrics when imposing the same input settings. Unlike previous volume-filling algorithms, our approach allows direct control over key morphological parameters, generating vascular structures that closely resemble real vascular densities and allowing for the investigation of the impact of morphological parameters on placental function in upcoming studies.
Collapse
Affiliation(s)
- Diana C. de Oliveira
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Hani Cheikh Sleiman
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Lisa Story
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Daniel C. Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Rebecca J. Shipley
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Paddy J. Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
2
|
Clark A, Flouri D, Mufti N, James J, Clements E, Aughwane R, Aertsen M, David A, Melbourne A. Developments in functional imaging of the placenta. Br J Radiol 2023; 96:20211010. [PMID: 35234516 PMCID: PMC10321248 DOI: 10.1259/bjr.20211010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
The placenta is both the literal and metaphorical black box of pregnancy. Measurement of the function of the placenta has the potential to enhance our understanding of this enigmatic organ and serve to support obstetric decision making. Advanced imaging techniques are key to support these measurements. This review summarises emerging imaging technology being used to measure the function of the placenta and new developments in the computational analysis of these data. We address three important examples where functional imaging is supporting our understanding of these conditions: fetal growth restriction, placenta accreta, and twin-twin transfusion syndrome.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Eleanor Clements
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Rosalind Aughwane
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | - Michael Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna David
- Elizabeth Garrett Anderson Institute for Women’s Health, University College London, London, UK
| | | |
Collapse
|
3
|
May RW, Maso Talou GD, Clark AR, Mynard JP, Smolich JJ, Blanco PJ, Müller LO, Gentles TL, Bloomfield FH, Safaei S. From fetus to neonate: A review of cardiovascular modeling in early life. WIREs Mech Dis 2023:e1608. [DOI: 10.1002/wsbm.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
|
4
|
Covarrubias A, Aguilera-Olguín M, Carrasco-Wong I, Pardo F, Díaz-Astudillo P, Martín SS. Feto-placental Unit: From Development to Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:1-29. [PMID: 37466767 DOI: 10.1007/978-3-031-32554-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Collapse
Affiliation(s)
- Ambart Covarrubias
- Health Sciences Faculty, Universidad San Sebastián, Concepción, Chile
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Macarena Aguilera-Olguín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Ivo Carrasco-Wong
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Medicine and Science Faculty, Universidad San Sebastián, Santiago, Chile
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory, Interdisciplinary Centre of Territorial Health Research (CIISTe), Biomedical Research Center (CIB), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
| | - Pamela Díaz-Astudillo
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile
| | - Sebastián San Martín
- Biomedical Research Centre, School of Medicine, Universidad de Valparaíso, Viña del Mar, Chile.
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile.
| |
Collapse
|
5
|
Jaiman S, Romero R, Bhatti G, Jung E, Gotsch F, Suksai M, Gallo DM, Chaiworapongsa T, Kadar N. The role of the placenta in spontaneous preterm labor and delivery with intact membranes. J Perinat Med 2022; 50:553-566. [PMID: 35246973 PMCID: PMC9189066 DOI: 10.1515/jpm-2021-0681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To determine whether placental vascular pathology and impaired placental exchange due to maturational defects are involved in the etiology of spontaneous preterm labor and delivery in cases without histologic acute chorioamnionitis. METHODS This was a retrospective, observational study. Cases included pregnancies that resulted in spontaneous preterm labor and delivery (<37 weeks), whereas uncomplicated pregnancies that delivered fetuses at term (≥37-42 weeks of gestation) were selected as controls. Placental histological diagnoses were classified into three groups: lesions of maternal vascular malperfusion, lesions of fetal vascular malperfusion, and placental microvasculopathy, and the frequency of each type of lesion in cases and controls was compared. Moreover, we specifically searched for villous maturational abnormalities in cases and controls. Doppler velocimetry of the umbilical and uterine arteries were performed in a subset of patients. RESULTS There were 184 cases and 2471 controls, of which 95 and 1178 had Doppler studies, respectively. The frequency of lesions of maternal vascular malperfusion was greater in the placentas of patients with preterm labor than in the control group [14.1% (26/184) vs. 8.8% (217/2471) (p=0.023)]. Disorders of villous maturation were more frequent in the group with preterm labor than in the control group: 41.1% (39/95) [delayed villous maturation in 31.6% (30/95) vs. 2.5% (13/519) in controls and accelerated villous maturation in 9.5% (9/95) vs. none in controls]. CONCLUSIONS Maturational defects of placental villi were associated with approximately 41% of cases of unexplained spontaneous preterm labor and delivery without acute inflammatory lesions of the placenta and with delivery of appropriate-for-gestational-age fetuses.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
6
|
Berg M, Holroyd N, Walsh C, West H, Walker-Samuel S, Shipley R. Challenges and opportunities of integrating imaging and mathematical modelling to interrogate biological processes. Int J Biochem Cell Biol 2022; 146:106195. [PMID: 35339913 PMCID: PMC9693675 DOI: 10.1016/j.biocel.2022.106195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Advances in biological imaging have accelerated our understanding of human physiology in both health and disease. As these advances have developed, the opportunities gained by integrating with cutting-edge mathematical models have become apparent yet remain challenging. Combined imaging-modelling approaches provide unprecedented opportunity to correlate data on tissue architecture and function, across length and time scales, to better understand the mechanisms that underpin fundamental biology and also to inform clinical decisions. Here we discuss the opportunities and challenges of such approaches, providing literature examples across a range of organ systems. Given the breadth of the field we focus on the intersection of continuum modelling and in vivo imaging applied to the vasculature and blood flow, though our rationale and conclusions extend widely. We propose three key research pillars (image acquisition, image processing, mathematical modelling) and present their respective advances as well as future opportunity via better integration. Multidisciplinary efforts that develop imaging and modelling tools concurrently, and share them open-source with the research community, provide exciting opportunity for advancing these fields.
Collapse
Affiliation(s)
- Maxime Berg
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK
| | - Natalie Holroyd
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Claire Walsh
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK; UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Hannah West
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK
| | - Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Rebecca Shipley
- UCL Mechanical Engineering, Torrington Place, London WC1E 7JE, UK.
| |
Collapse
|
7
|
Computational modeling in pregnancy biomechanics research. J Mech Behav Biomed Mater 2022; 128:105099. [DOI: 10.1016/j.jmbbm.2022.105099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
8
|
Costa J, Mackay R, de Aguiar Greca SC, Corti A, Silva E, Karteris E, Ahluwalia A. The Role of the 3Rs for Understanding and Modeling the Human Placenta. J Clin Med 2021; 10:jcm10153444. [PMID: 34362227 PMCID: PMC8347836 DOI: 10.3390/jcm10153444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Modeling the physiology of the human placenta is still a challenge, despite the great number of scientific advancements made in the field. Animal models cannot fully replicate the structure and function of the human placenta and pose ethical and financial hurdles. In addition, increasingly stricter animal welfare legislation worldwide is incentivizing the use of 3R (reduction, refinement, replacement) practices. What efforts have been made to develop alternative models for the placenta so far? How effective are they? How can we improve them to make them more predictive of human pathophysiology? To address these questions, this review aims at presenting and discussing the current models used to study phenomena at the placenta level: in vivo, ex vivo, in vitro and in silico. We describe the main achievements and opportunities for improvement of each type of model and critically assess their individual and collective impact on the pursuit of predictive studies of the placenta in line with the 3Rs and European legislation.
Collapse
Affiliation(s)
- Joana Costa
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
| | - Ruth Mackay
- Centre for Genome Engineering and Maintenance, Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, UK;
| | | | - Alessandro Corti
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
- Department of Translational Medicine, University of Pisa, 56126 Pisa, Italy
| | - Elisabete Silva
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.-C.d.A.G.); (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (S.-C.d.A.G.); (E.S.); (E.K.)
| | - Arti Ahluwalia
- Centro di Ricerca E.Piaggio, University of Pisa, 56126 Pisa, Italy; (J.C.); (A.C.)
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy
- Interuniversity Centro for the Promotion of 3Rs Principles in Teaching and Research (Centro3R), Italy
- Correspondence:
| |
Collapse
|
9
|
Tun WM, Poologasundarampillai G, Bischof H, Nye G, King ONF, Basham M, Tokudome Y, Lewis RM, Johnstone ED, Brownbill P, Darrow M, Chernyavsky IL. A massively multi-scale approach to characterizing tissue architecture by synchrotron micro-CT applied to the human placenta. J R Soc Interface 2021; 18:20210140. [PMID: 34062108 PMCID: PMC8169212 DOI: 10.1098/rsif.2021.0140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022] Open
Abstract
Multi-scale structural assessment of biological soft tissue is challenging but essential to gain insight into structure-function relationships of tissue/organ. Using the human placenta as an example, this study brings together sophisticated sample preparation protocols, advanced imaging and robust, validated machine-learning segmentation techniques to provide the first massively multi-scale and multi-domain information that enables detailed morphological and functional analyses of both maternal and fetal placental domains. Finally, we quantify the scale-dependent error in morphological metrics of heterogeneous placental tissue, estimating the minimal tissue scale needed in extracting meaningful biological data. The developed protocol is beneficial for high-throughput investigation of structure-function relationships in both normal and diseased placentas, allowing us to optimize therapeutic approaches for pathological pregnancies. In addition, the methodology presented is applicable in the characterization of tissue architecture and physiological behaviours of other complex organs with similarity to the placenta, where an exchange barrier possesses circulating vascular and avascular fluid spaces.
Collapse
Affiliation(s)
- W. M. Tun
- Diamond Light Source, Didcot OX11 0DE, UK
| | | | - H. Bischof
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - G. Nye
- Chester Medical School, University of Chester, Chester CH1 4BJ, UK
| | | | - M. Basham
- Diamond Light Source, Didcot OX11 0DE, UK
- Rosalind Franklin Institute, Didcot OX11 0DE, UK
| | - Y. Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - R. M. Lewis
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - E. D. Johnstone
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - P. Brownbill
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
| | - M. Darrow
- SPT Labtech Ltd, Melbourn SG8 6HB, UK
| | - I. L. Chernyavsky
- Maternal and Fetal Health Research Centre, School of Medical Sciences, University of Manchester, Manchester, UK
- MAHSC, St Mary's Hospital, NHS MFT, Manchester M13 9WL, UK
- Department of Mathematics, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Jaiman S, Romero R, Pacora P, Erez O, Jung E, Tarca AL, Bhatti G, Yeo L, Kim YM, Kim CJ, Kim JS, Qureshi F, Jacques SM, Gomez-Lopez N, Hsu CD. Disorders of placental villous maturation are present in one-third of cases with spontaneous preterm labor. J Perinat Med 2021; 49:412-430. [PMID: 33554577 PMCID: PMC8324068 DOI: 10.1515/jpm-2020-0138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spontaneous preterm labor is an obstetrical syndrome accounting for approximately 65-70% of preterm births, the latter being the most frequent cause of neonatal death and the second most frequent cause of death in children less than five years of age worldwide. The purpose of this study was to determine and compare to uncomplicated pregnancies (1) the frequency of placental disorders of villous maturation in spontaneous preterm labor; (2) the frequency of other placental morphologic characteristics associated with the preterm labor syndrome; and (3) the distribution of these lesions according to gestational age at delivery and their severity. METHODS A case-control study of singleton pregnant women was conducted that included (1) uncomplicated pregnancies (controls, n=944) and (2) pregnancies with spontaneous preterm labor (cases, n=438). All placentas underwent histopathologic examination. Patients with chronic maternal diseases (e.g., chronic hypertension, diabetes mellitus, renal disease, thyroid disease, asthma, autoimmune disease, and coagulopathies), fetal malformations, chromosomal abnormalities, multifetal gestation, preeclampsia, eclampsia, preterm prelabor rupture of the fetal membranes, gestational hypertension, gestational diabetes mellitus, and HELLP (hemolysis, elevated liver enzymes and low platelet count) syndrome were excluded from the study. RESULTS Compared to the controls, the most prevalent placental lesions among the cases were the disorders of villous maturation (31.8% [106/333] including delayed villous maturation 18.6% [62/333] vs. 1.4% [6/442], q<0.0001, prevalence ratio 13.7; and accelerated villous maturation 13.2% [44/333] vs. 0% [0/442], q<0.001). Other lesions in decreasing order of prevalence included hypercapillarized villi (15.6% [68/435] vs. 3.5% [33/938], q<0.001, prevalence ratio 4.4); nucleated red blood cells (1.1% [5/437] vs. 0% [0/938], q<0.01); chronic inflammatory lesions (47.9% [210/438] vs. 29.9% [282/944], q<0.0001, prevalence ratio 1.6); fetal inflammatory response (30.1% [132/438] vs. 23.2% [219/944], q<0.05, prevalence ratio 1.3); maternal inflammatory response (45.5% [195/438] vs. 36.1% [341/944], q<0.01, prevalence ratio 1.2); and maternal vascular malperfusion (44.5% [195/438] vs. 35.7% [337/944], q<0.01, prevalence ratio 1.2). Accelerated villous maturation did not show gestational age-dependent association with any other placental lesion while delayed villous maturation showed a gestational age-dependent association with acute placental inflammation (q-value=0.005). CONCLUSIONS Disorders of villous maturation are present in nearly one-third of the cases of spontaneous preterm labor.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Harper University Hospital, Detroit, Michigan, USA
| | - Suzanne M. Jacques
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Pathology, Harper University Hospital, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
11
|
Byrne M, Aughwane R, James JL, Hutchinson JC, Arthurs OJ, Sebire NJ, Ourselin S, David AL, Melbourne A, Clark AR. Structure-function relationships in the feto-placental circulation from in silico interpretation of micro-CT vascular structures. J Theor Biol 2021; 517:110630. [PMID: 33607145 DOI: 10.1016/j.jtbi.2021.110630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A well-functioning placenta is critical for healthy fetal development, as the placenta brings fetal blood in close contact with nutrient rich maternal blood, enabling exchange of nutrients and waste between mother and fetus. The feto-placental circulation forms a complex branching structure, providing blood to fetal capillaries, which must receive sufficient blood flow to ensure effective exchange, but at a low enough pressure to prevent damage to placental circulatory structures. The branching structure of the feto-placental circulation is known to be altered in complications such as fetal growth restriction, and the presence of regions of vascular dysfunction (such as hypovascularity or thrombosis) are proposed to elevate risk of placental pathology. Here we present a methodology to combine micro-computed tomography and computational model-based analysis of the branching structure of the feto-placental circulation in ex vivo placentae from normal term pregnancies. We analyse how vascular structure relates to function in this key organ of pregnancy; demonstrating that there is a 'resilience' to placental vascular structure-function relationships. We find that placentae with variable chorionic vascular structures, both with and without a Hyrtl's anastomosis between the umbilical arteries, and those with multiple regions of poorly vascularised tissue are able to function with a normal vascular resistance. Our models also predict that by progressively introducing local heterogeneity in placental vascular structure, large increases in feto-placental vascular resistances are induced. This suggests that localised heterogeneities in placental structure could potentially provide an indicator of increased risk of placental dysfunction.
Collapse
Affiliation(s)
- Monika Byrne
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Rosalind Aughwane
- Department of Maternal Fetal Medicine, Prenatal Cell and Gene Therapy Group, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6HX, United Kingdom
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - J Ciaran Hutchinson
- NIHR GOS Institute of Child Health Biomedical Research Centre, University College, London, United Kingdom; Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Owen J Arthurs
- NIHR GOS Institute of Child Health Biomedical Research Centre, University College, London, United Kingdom; Paediatric Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Neil J Sebire
- NIHR GOS Institute of Child Health Biomedical Research Centre, University College, London, United Kingdom; Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Anna L David
- Department of Maternal Fetal Medicine, Prenatal Cell and Gene Therapy Group, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, WC1E 6HX, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, 149 Tottenham Court Road, London, W1T 7DN, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, United Kingdom
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Lewis RM, Pearson-Farr JE. Multiscale three-dimensional imaging of the placenta. Placenta 2020; 102:55-60. [DOI: 10.1016/j.placenta.2020.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 01/18/2023]
|
13
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
14
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
15
|
Clark AR, Lee TC, James JL. Computational modeling of the interactions between the maternal and fetal circulations in human pregnancy. WIREs Mech Dis 2020; 13:e1502. [PMID: 32744412 DOI: 10.1002/wsbm.1502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
In pregnancy, fetal growth is supported by its placenta. In turn, the placenta is nourished by maternal blood, delivered from the uterus, in which the vasculature is dramatically transformed to deliver this blood an ever increasing volume throughout gestation. A healthy pregnancy is thus dependent on the development of both the placental and maternal circulations, but also the interface where these physically separate circulations come in close proximity to exchange gases and nutrients between mum and baby. As the system continually evolves during pregnancy, our understanding of normal vascular anatomy, and how this impacts placental exchange function is limited. Understanding this is key to improve our ability to understand, predict, and detect pregnancy pathologies, but presents a number of challenges, due to the inaccessibility of the pregnant uterus to invasive measurements, and limitations in the resolution of imaging modalities safe for use in pregnancy. Computational approaches provide an opportunity to gain new insights into normal and abnormal pregnancy, by connecting observed anatomical changes from high-resolution imaging to function, and providing metrics that can be observed by routine clinical ultrasound. Such advanced modeling brings with it challenges to scale detailed anatomical models to reflect organ level function. This suggests pathways for future research to provide models that provide both physiological insights into pregnancy health, but also are simple enough to guide clinical focus. We the review evolution of computational approaches to understanding the physiology and pathophysiology of pregnancy in the uterus, placenta, and beyond focusing on both opportunities and challenges. This article is categorized under: Reproductive System Diseases >Computational Models.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Tet Chuan Lee
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Hyndman L, McKee S, Mottram NJ, Singh B, Webb SD, McGinty S. Mathematical modelling of fluid flow and solute transport to define operating parameters for in vitro perfusion cell culture systems. Interface Focus 2020; 10:20190045. [PMID: 32194930 PMCID: PMC7061945 DOI: 10.1098/rsfs.2019.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023] Open
Abstract
In recent years, there has been a move away from the use of static in vitro two-dimensional cell culture models for testing the chemical safety and efficacy of drugs. Such models are increasingly being replaced by more physiologically relevant cell culture systems featuring dynamic flow and/or three-dimensional structures of cells. While it is acknowledged that such systems provide a more realistic environment within which to test drugs, progress is being hindered by a lack of understanding of the physical and chemical environment that the cells are exposed to. Mathematical and computational modelling may be exploited in this regard to unravel the dependency of the cell response on spatio-temporal differences in chemical and mechanical cues, thereby assisting with the understanding and design of these systems. In this paper, we present a mathematical modelling framework that characterizes the fluid flow and solute transport in perfusion bioreactors featuring an inlet and an outlet. To demonstrate the utility of our model, we simulated the fluid dynamics and solute concentration profiles for a variety of different flow rates, inlet solute concentrations and cell types within a specific commercial bioreactor chamber. Our subsequent analysis has elucidated the basic relationship between inlet flow rate and cell surface flow speed, shear stress and solute concentrations, allowing us to derive simple but useful relationships that enable prediction of the behaviour of the system under a variety of experimental conditions, prior to experimentation. We describe how the model may used by experimentalists to define operating parameters for their particular perfusion cell culture systems and highlight some operating conditions that should be avoided. Finally, we critically comment on the limitations of mathematical and computational modelling in this field, and the challenges associated with the adoption of such methods.
Collapse
Affiliation(s)
- Lauren Hyndman
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sean McKee
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Nigel J. Mottram
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK
| | - Bhumika Singh
- Kirkstall Ltd, York House, Outgang Lane, Osbaldwick, York YO19 5UP, UK
| | - Steven D. Webb
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 5UA, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Shipley RJ, Smith AF, Sweeney PW, Pries AR, Secomb TW. A hybrid discrete-continuum approach for modelling microcirculatory blood flow. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2020; 37:40-57. [PMID: 30892609 DOI: 10.1093/imammb/dqz006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/15/2022]
Abstract
In recent years, biological imaging techniques have advanced significantly and it is now possible to digitally reconstruct microvascular network structures in detail, identifying the smallest capillaries at sub-micron resolution and generating large 3D structural data sets of size >106 vessel segments. However, this relies on ex vivo imaging; corresponding in vivo measures of microvascular structure and flow are limited to larger branching vessels and are not achievable in three dimensions for the smallest vessels. This suggests the use of computational modelling to combine in vivo measures of branching vessel architecture and flows with ex vivo data on complete microvascular structures to predict effective flow and pressures distributions. In this paper, a hybrid discrete-continuum model to predict microcirculatory blood flow based on structural information is developed and compared with existing models for flow and pressure in individual vessels. A continuum-based Darcy model for transport in the capillary bed is coupled via point sources of flux to flows in individual arteriolar vessels, which are described explicitly using Poiseuille's law. The venular drainage is represented as a spatially uniform flow sink. The resulting discrete-continuum framework is parameterized using structural data from the capillary network and compared with a fully discrete flow and pressure solution in three networks derived from observations of the rat mesentery. The discrete-continuum approach is feasible and effective, providing a promising tool for extracting functional transport properties in situations where vascular branching structures are well defined.
Collapse
Affiliation(s)
- Rebecca J Shipley
- Biomechanical Engineering Group, Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | - Amy F Smith
- Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS, Toulouse, France
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| | - Paul W Sweeney
- Biomechanical Engineering Group, Department of Mechanical Engineering, University College London, Torrington Place, London, UK
| | - Axel R Pries
- Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Lewis RM, Cleal JK, Sengers BG. Placental perfusion and mathematical modelling. Placenta 2020; 93:43-48. [PMID: 32250738 DOI: 10.1016/j.placenta.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 01/31/2023]
Abstract
The isolated perfused placental cotyledon technique has led to numerous advances in placental biology. Combining placental perfusion with mathematical modelling provides an additional level of insight into placental function. Mathematical modelling of perfusion data provides a quantitative framework to test the understanding of the underlying biology and to explore how different processes work together within the placenta as part of an integrated system. The perfusion technique provides a high degree of control over the experimental conditions as well as regular measurements of functional parameters such as pressure, solute concentrations and pH over time. This level of control is ideal for modelling as it allows placental function to be studied across a wide range of different conditions which permits robust testing of mathematical models. By placing quantitative values on different processes (e.g. transport, metabolism, blood flow), their relative contribution to the system can be estimated and those most likely to become rate-limiting identified. Using a combined placental perfusion and modelling approach, placental metabolism was shown to be a more important determinant of amino acid and fatty acid transfer. In contrast, metabolism was a less important determinant of placental cortisol transfer than initially thought. Identifying the rate-limiting factors in the system allows future work to be focused on the factors that are most likely to underlie placental dysfunction. A combined experimental and modelling approach using placental perfusions promotes an integrated view of placental physiology that can more effectively identify the processes leading to placental pathologies.
Collapse
Affiliation(s)
- Rohan M Lewis
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK.
| | - Jane K Cleal
- University of Southampton, Faulty of Medicine, UK; University of Southampton, Institute for Life Sciences, UK
| | - Bram G Sengers
- University of Southampton, Institute for Life Sciences, UK; University of Southampton, Faculty of Engineering and Physical Sciences, UK
| |
Collapse
|
19
|
Erlich A, Nye GA, Brownbill P, Jensen OE, Chernyavsky IL. Quantifying the impact of tissue metabolism on solute transport in feto-placental microvascular networks. Interface Focus 2019; 9:20190021. [PMID: 31485311 PMCID: PMC6710657 DOI: 10.1098/rsfs.2019.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.
Collapse
Affiliation(s)
- Alexander Erlich
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Gareth A. Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Chester Medical School, University of Chester, Chester CH1 4AR, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
20
|
Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165535. [PMID: 31442531 DOI: 10.1016/j.bbadis.2019.165535] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 08/15/2019] [Indexed: 01/28/2023]
Abstract
The placenta is a transitory organ, located between the mother and the foetus, which supports intrauterine life. This organ has nutritional, endocrine and immunologic functions to support foetal development. Several factors are related to the correct functioning of the placenta including foetal and maternal blood flow, appropriate nutrients, expression and function of receptors and transporters, and the morphology of the placenta itself. Placental morphology is crucial for understanding the pathophysiology of the organ as represents the physical structure where nutrient exchange occurs. In pathologies of pregnancy such as diabetes mellitus in humans and animal models, several changes in the placental morphology occur, related mainly with placental size, hypervascularization, higher branching capillaries of the villi and increased glycogen deposits among others. Gestational diabetes mellitus is associated with modifications in the structure of the human placenta including changes in the surface area and volume, as well as histological changes including an increased volume of intervillous space and terminal villi, syncytiotrophoblast number, fibrinoid areas, and glycogen deposits. These modifications may result in functional changes in this organ thus limiting the wellbeing of the developing foetus. This review gives an overview of recurrent morphological changes at macroscopic and histological levels seen in the placenta from gestational diabetes in humans and animal models. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
|
21
|
Tun WM, Yap CH, Saw SN, James JL, Clark AR. Differences in placental capillary shear stress in fetal growth restriction may affect endothelial cell function and vascular network formation. Sci Rep 2019; 9:9876. [PMID: 31285454 PMCID: PMC6614400 DOI: 10.1038/s41598-019-46151-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, leading to clinically significant fetal morbidity and mortality. FGR placentae frequently exhibit poor vascular branching, but the mechanisms driving this are poorly understood. We hypothesize that vascular structural malformation at the organ level alters microvascular shear stress, impairing angiogenesis. A computational model of placental vasculature predicted elevated placental micro-vascular shear stress in FGR placentae (0.2 Pa in severe FGR vs 0.05 Pa in normal placentae). Endothelial cells cultured under predicted FGR shear stresses migrated significantly slower and with greater persistence than in shear stresses predicted in normal placentae. These cell behaviors suggest a dominance of vessel elongation over branching. Taken together, these results suggest (1) poor vascular development increases vessel shear stress, (2) increased shear stress induces cell behaviors that impair capillary branching angiogenesis, and (3) impaired branching angiogenesis continues to drive elevated shear stress, jeopardizing further vascular formation. Inadequate vascular branching early in gestation could kick off this cyclic loop and continue to negatively impact placental angiogenesis throughout gestation.
Collapse
Affiliation(s)
- Win M Tun
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
22
|
Erlich A, Pearce P, Mayo RP, Jensen OE, Chernyavsky IL. Physical and geometric determinants of transport in fetoplacental microvascular networks. SCIENCE ADVANCES 2019; 5:eaav6326. [PMID: 31001587 PMCID: PMC6469945 DOI: 10.1126/sciadv.aav6326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/01/2019] [Indexed: 05/14/2023]
Abstract
Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics, we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusion-limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.
Collapse
Affiliation(s)
- Alexander Erlich
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Philip Pearce
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | - Romina Plitman Mayo
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
| | - Oliver E. Jensen
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| |
Collapse
|
23
|
Jensen OE, Chernyavsky IL. Blood flow and transport in the human placenta. ANNUAL REVIEW OF FLUID MECHANICS 2019; 51:25-47. [PMID: 38410641 PMCID: PMC7615669 DOI: 10.1146/annurev-fluid-010518-040219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The placenta is a multi-functional organ that exchanges blood gases and nutrients between a mother and her developing fetus. In humans, fetal blood flows through intricate networks of vessels confined within villous trees, the branches of which are bathed in pools of maternal blood. Fluid mechanics and transport processes play a central role in understanding how these elaborate structures contribute to the function of the placenta, and how their disorganization may lead to disease. Recent advances in imaging and computation have spurred significant advances in simulations of fetal and maternal flows within the placenta, across a range of lengthscales. Models describe jets of maternal blood emerging from spiral arteries into a disordered and deformable porous medium, and solute uptake by fetal blood flowing through elaborate three-dimensional capillary networks. We survey recent developments and emerging challenges in modeling flow and transport in this complex organ.
Collapse
Affiliation(s)
| | - Igor L. Chernyavsky
- School of Mathematics, University of Manchester, UK
- Maternal and Fetal Health Research Centre, Division of Developmental
Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine
& Health, University of Manchester, UK
| |
Collapse
|
24
|
Advances in Human Placental Biomechanics. Comput Struct Biotechnol J 2018; 16:298-306. [PMID: 30181841 PMCID: PMC6120428 DOI: 10.1016/j.csbj.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 11/21/2022] Open
Abstract
Pregnancy complications are a major clinical concern due to the related maternal and fetal morbidity. Many are caused through defective placentation, but research into placental function is difficult, principally because of the ethical limitations associated with the in-vivo organ and the difficulty of extrapolating animal models. Perfused by two separate circulations, the maternal and fetal bloodstreams, the placenta has a unique structure and performs multiple complex functions. Three-dimensional imaging and computational modelling are becoming popular tools to investigate the morphology and physiology of this organ. These techniques bear the potential for better understanding the aetiology and development of placental pathologies, however, their full potential is yet to be exploited. This review aims to summarize the recent insights into placental structure and function by employing these novel techniques.
Collapse
|
25
|
Mirbod P. Analytical model of the feto-placental vascular system: consideration of placental oxygen transport. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180219. [PMID: 29765697 PMCID: PMC5936962 DOI: 10.1098/rsos.180219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The placenta is a transient vascular organ that enables nutrients and blood gases to be exchanged between fetal and maternal circulations. Herein, the structure and oxygen diffusion across the trophoblast membrane between the fetal and maternal red blood cells in the feto-placental vasculature system in both human and mouse placentas are presented together as a functional unit. Previous models have claimed that the most efficient fetal blood flow relies upon structures containing a number of 'conductive' symmetrical branches, offering a path of minimal resistance that maximizes blood flow to the terminal villi, where oxygen diffusion occurs. However, most of these models have disregarded the actual descriptions of the exchange at the level of the intermediate and terminal villi. We are proposing a 'mixed model' whereby both 'conductive' and 'terminal' villi are presumed to be present at the end of single (in human) or multiple (in mouse) pregnancies. We predict an optimal number of 18 and 22 bifurcation levels in the human and the mouse placentas, respectively. Wherever possible, we have compared our model's predictions with experimental results reported in the literature and found close agreement between them.
Collapse
Affiliation(s)
- Parisa Mirbod
- Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
26
|
Merz G, Schwenk V, Shah R, Salafia C, Necaise P, Joyce M, Villani T, Johnson M, Crider N. Three-dimensional Rendering and Analysis of Immunolabeled, Clarified Human Placental Villous Vascular Networks. J Vis Exp 2018. [PMID: 29658922 DOI: 10.3791/57099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nutrient and gas exchange between mother and fetus occurs at the interface of the maternal intervillous blood and the vast villous capillary network that makes up much of the parenchyma of the human placenta. The distal villous capillary network is the terminus of the fetal blood supply after several generations of branching of vessels extending out from the umbilical cord. This network has a contiguous cellular sheath, the syncytial trophoblast barrier layer, which prevents mixing of fetal blood and the maternal blood in which it is continuously bathed. Insults to the integrity of the placental capillary network, occurring in disorders such as maternal diabetes, hypertension and obesity, have consequences that present serious health risks for the fetus, infant, and adult. To better define the structural effects of these insults, a protocol was developed for this study that captures capillary network structure on the order of 1 - 2 mm3 wherein one can investigate its topological features in its full complexity. To accomplish this, clusters of terminal villi from placenta are dissected, and the trophoblast layer and the capillary endothelia are immunolabeled. These samples are then clarified with a new tissue clearing process which makes it possible to acquire confocal image stacks to z- depths of ~1 mm. The three-dimensional renderings of these stacks are then processed and analyzed to generate basic capillary network measures such as volume, number of capillary branches, and capillary branch end points, as validation of the suitability of this approach for capillary network characterization.
Collapse
Affiliation(s)
- George Merz
- The Institute for Basic Research, The New York State Office for People with Developmental Disabilities;
| | - Valerie Schwenk
- The Institute for Basic Research, The New York State Office for People with Developmental Disabilities
| | | | - Carolyn Salafia
- The Institute for Basic Research, The New York State Office for People with Developmental Disabilities; Placental Analytics LLC
| | | | - Michael Joyce
- The Institute for Basic Research, The New York State Office for People with Developmental Disabilities
| | | | | | | |
Collapse
|
27
|
Nye GA, Ingram E, Johnstone ED, Jensen OE, Schneider H, Lewis RM, Chernyavsky IL, Brownbill P. Human placental oxygenation in late gestation: experimental and theoretical approaches. J Physiol 2018; 596:5523-5534. [PMID: 29377190 PMCID: PMC6265570 DOI: 10.1113/jp275633] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.
Collapse
Affiliation(s)
- Gareth A Nye
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Emma Ingram
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Edward D Johnstone
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Oliver E Jensen
- School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Henning Schneider
- Department of Obstetrics and Gynecology, Inselspital, University of Bern, CH-3010, Bern, Switzerland
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Igor L Chernyavsky
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,School of Mathematics, University of Manchester, Manchester, M13 9PL, UK
| | - Paul Brownbill
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.,St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| |
Collapse
|
28
|
Viscosity and haemodynamics in a late gestation rat feto-placental arterial network. Biomech Model Mechanobiol 2017; 16:1361-1372. [PMID: 28258413 DOI: 10.1007/s10237-017-0892-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
The placenta is a transient organ which develops during pregnancy to provide haemotrophic support for healthy fetal growth and development. Fundamental to its function is the healthy development of vascular trees in the feto-placental arterial network. Despite the strong association of haemodynamics with vascular remodelling mechanisms, there is a lack of computational haemodynamic data that may improve our understanding of feto-placental physiology. The aim of this work was to create a comprehensive 3D computational fluid dynamics model of a substructure of the rat feto-placental arterial network and investigate the influence of viscosity on wall shear stress (WSS). Late gestation rat feto-placental arteries were perfused with radiopaque Microfil and scanned via micro-computed tomography to capture the feto-placental arterial geometry in 3D. A detailed description of rat fetal blood viscosity parameters was developed, and three different approaches to feto-placental haemodynamics were simulated in 3D using the finite volume method: Newtonian model, non-Newtonian Carreau-Yasuda model and Fåhræus-Lindqvist effect model. Significant variability in WSS was observed between different viscosity models. The physiologically-realistic simulations using the Fåhræus-Lindqvist effect and rat fetal blood estimates of viscosity revealed detailed patterns of WSS throughout the arterial network. We found WSS gradients at bifurcation regions, which may contribute to vessel enlargement, and sprouting and pruning during angiogenesis. This simulation of feto-placental haemodynamics shows the heterogeneous WSS distribution throughout the network and demonstrates the ability to determine physiologically-relevant WSS magnitudes, patterns and gradients. This model will help advance our understanding of vascular physiology and remodelling in the feto-placental network.
Collapse
|