1
|
Hui CW, Wu WC, Tong TK, Shiu C, Ng HL, Leung SO. Discovery of a new anti-γc antibody in clinical development for the treatment of autoimmune diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:606-623. [PMID: 40163668 DOI: 10.1093/jimmun/vkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 04/02/2025]
Abstract
Autoimmune disease refers to a condition when the immune system anomalously attacks its own body and healthy cells. Although the exact causes of autoimmune diseases are unknown, it is recognized that excessive or aberrant cytokine responses contribute significantly to the development of autoimmunity. Among them, the common gamma c chain (γc) cytokines driven signaling cascade plays an indispensable role in driving pathogenic immune responses in patients with autoimmune diseases. Thus, we hypothesize that the development of an antibody targeting γc receptor could serve as a potential approach for treating autoimmune diseases and fulfil the unmet medical needs in this area. Here, we demonstrate that a humanized anti-γc antibody, hC2, could show high binding affinity to the human γc receptor and suppress 6 γc cytokines (interleukin [IL]-2, IL-4, IL-7, IL-9, IL-15 and IL-21)-driven STAT phosphorylation, leading to inhibition of autoimmunity and activation in B, T, and natural killer cell lines. Similar inhibitory effects were observed in the human peripheral blood mononuclear cell culture. Moreover, administration of hC2 could reduce expansion and tissue infiltration of T helper and cytotoxic T cells, leading to attenuation of damages to skin, liver, and kidney in the humanized xenograft mouse model. The current study demonstrates the potential of γc blockades for the treatment of T cell-mediated autoimmune diseases and chronic graft-versus-host disease. Anti-γc antibody hC2 might offer a more efficacious therapy compared with antibodies targeting a single γc cytokine and safer therapy than JAK inhibitors to fulfill the unmet medical needs in the autoimmune diseases in the future.
Collapse
Affiliation(s)
- Chin Wai Hui
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| | - Wai Chung Wu
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| | - Tak Keung Tong
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| | - Carol Shiu
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| | - Hoi Lam Ng
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| | - Shui On Leung
- SinoMab BioScience Limited, Pak Shek Kok, New Territories, Hong Kong, China
| |
Collapse
|
2
|
Inthanachai T, Boonkrai C, Phakham T, Pisitkun T, Thaiwong R, Chuthaphakdikun V, Sakunrangsit N, Limprasutr V, Chinsuwan T, Hirankarn N, Suppipat K, Watanabe N, Tawinwung S. Novel B7-H3 CAR T cells show potent antitumor effects in glioblastoma: a preclinical study. J Immunother Cancer 2025; 13:e010083. [PMID: 39863300 PMCID: PMC11784176 DOI: 10.1136/jitc-2024-010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy. METHODS Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining. B7-H3-specific mAbs were developed by immunizing mice with human B7-H3, screening with ELISA, and analyzing kinetics with surface plasmon resonance. These mAbs were used to create second-generation CAR constructs, which were evaluated in vitro and in vivo for their antitumor function. RESULTS We identified four mAb clones from immunized mice, with three demonstrating high specificity and affinity. The second-generation B7-H3 CAR T cells derived from these mAbs exhibited robust cytotoxicity against B7-H3-positive targets and successfully infiltrated and eliminated tumor spheroids in vitro. In a xenograft mouse model of glioblastoma, these CAR T cells, particularly those derived from clone A2H4, eradicated the primary tumor, and effectively controlled rechallenge tumor, resulting in prolonged survival of the xenograft mice. In vivo T cell trafficking revealed high accumulation and persistence of A2H4-derived CAR T cells at the tumor site. CONCLUSIONS Our results provide novel B7-H3-targeted CAR T cells with high efficacy, paving the way for clinical translation of solid tumor treatment.
Collapse
Affiliation(s)
- Thananya Inthanachai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rattapoom Thaiwong
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vichaya Chuthaphakdikun
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nithidol Sakunrangsit
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Vudhiporn Limprasutr
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Laboratory Animal Center, Chulalongkorn University, Bangkok, Thailand
| | - Thanyavi Chinsuwan
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Supannikar Tawinwung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
4
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Howard JN, Levinger C, Deletsu S, Fromentin R, Chomont N, Bosque A, for the AIDS Clinical Trials Group (ACTG) A5325 Team. Isotretinoin promotes elimination of translation-competent HIV latent reservoirs in CD4T cells. PLoS Pathog 2024; 20:e1012601. [PMID: 39401241 PMCID: PMC11501018 DOI: 10.1371/journal.ppat.1012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
Development of novel therapeutic strategies that reactivate latent HIV and sensitize reactivated cells to apoptosis is crucial towards elimination of the latent viral reservoir. Among the clinically relevant latency reversing agents (LRA) under investigation, the γc-cytokine IL-15 and the superagonist N-803 have been shown to reactivate latent HIV ex vivo and in vivo. However, their clinical benefit can be hindered by IL-15 promoting survival of infected cells. We previously identified a small molecule, HODHBt, that sensitizes latently infected cells to death upon reactivation with γc-cytokines through a STAT-dependent pathway. In here, we aimed to identify and evaluate FDA-approved compounds that could also sensitize HIV-infected cells to apoptosis. Using the Connectivity Map (CMap), we identified the retinol derivative 13-cis-retinoic acid (Isotretinoin) causes similar transcriptional changes as HODHBt. Isotretinoin enhances IL-15-mediated latency reversal without inducing proliferation of memory CD4 T cells. Ex vivo analysis of PBMCs from ACTG A5325, where Isotretinoin was administered to ART-suppressed people with HIV, showed that Isotretinoin treatment enhances IL-15-mediated latency reversal. Furthermore, we showed that a combination of IL-15 with Isotretinoin promotes the reduction of translation-competent reservoirs ex vivo. Mechanistically, combination of IL-15 and Isotretinoin increases caspase-3 activation specifically in HIV-infected cells but not uninfected cells. Our results suggest that Isotretinoin can be a novel approach to target and eliminate translation-competent HIV reservoirs.
Collapse
Affiliation(s)
- J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Selase Deletsu
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Nicolas Chomont
- Centre de recherche du CHUM et Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC, United States of America
| | | |
Collapse
|
6
|
Sánchez-Moreno I, Lasarte-Cia A, Martín-Otal C, Casares N, Navarro F, Gorraiz M, Sarrión P, Hervas-Stubbs S, Jordana L, Rodriguez-Madoz JR, San Miguel J, Prosper F, Lasarte JJ, Lozano T. Tethered IL15-IL15Rα augments antitumor activity of CD19 CAR-T cells but displays long-term toxicity in an immunocompetent lymphoma mouse model. J Immunother Cancer 2024; 12:e008572. [PMID: 38955421 PMCID: PMC11218034 DOI: 10.1136/jitc-2023-008572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.
Collapse
Affiliation(s)
- Inés Sánchez-Moreno
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Celia Martín-Otal
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Flor Navarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Patricia Sarrión
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Lorea Jordana
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
| | - Jesús San Miguel
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Felipe Prosper
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
- Hemato-Oncology Program, Centre for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona, Spain
- Hematology and Cell Therapy Department, Clínica Universidad de Navarra, (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Juan Jose Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, IdISNA, Pamplona, Spain
- Cancer Center Universidad de Navarra (CCUN), Pamplona, Spain
| |
Collapse
|
7
|
Pavlidis MA, Viborg N, Lausen M, Rønø B, Kleine-Kohlbrecher D. Refined analytical pipeline for the pharmacodynamic assessment of T-cell responses to vaccine antigens. Front Immunol 2024; 15:1404121. [PMID: 38720900 PMCID: PMC11076743 DOI: 10.3389/fimmu.2024.1404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Pharmacodynamic assessment of T-cell-based cancer immunotherapies often focus on detecting rare circulating T-cell populations. The therapy-induced immune cells in blood-derived clinical samples are often present in very low frequencies and with the currently available T-cell analytical assays, amplification of the cells of interest prior to analysis is often required. Current approaches aiming to enrich antigen-specific T cells from human Peripheral Blood Mononuclear Cells (PBMCs) depend on in vitro culturing in presence of their cognate peptides and cytokines. In the present work, we improved a standard, publicly available protocol for T-cell immune analyses based on the in vitro expansion of T cells. We used PBMCs from healthy subjects and well-described viral antigens as a model system for optimizing the experimental procedures and conditions. Using the standard protocol, we first demonstrated significant enrichment of antigen-specific T cells, even when their starting frequency ex vivo was low. Importantly, this amplification occurred with high specificity, with no or neglectable enrichment of irrelevant T-cell clones being observed in the cultures. Testing of modified culturing timelines suggested that the protocol can be adjusted accordingly to allow for greater cell yield with strong preservation of the functionality of antigen-specific T cells. Overall, our work has led to the refinement of a standard protocol for in vitro stimulation of antigen-specific T cells and highlighted its reliability and reproducibility. We envision that the optimized protocol could be applied for longitudinal monitoring of rare blood-circulating T cells in scenarios with limited sample material.
Collapse
|
8
|
Sakunrangsit N, Khuisangeam N, Inthanachai T, Yodsurang V, Taechawattananant P, Suppipat K, Tawinwung S. Incorporating IL7 receptor alpha signaling in the endodomain of B7H3-targeting chimeric antigen receptor T cells mediates antitumor activity in glioblastoma. Cancer Immunol Immunother 2024; 73:98. [PMID: 38619641 PMCID: PMC11018726 DOI: 10.1007/s00262-024-03685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
CAR-T-cell therapy has shown promise in treating hematological malignancies but faces challenges in treating solid tumors due to impaired T-cell function in the tumor microenvironment. To provide optimal T-cell activation, we developed a B7 homolog 3 protein (B7H3)-targeting CAR construct consisting of three activation signals: CD3ζ (signal 1), 41BB (signal 2), and the interleukin 7 receptor alpha (IL7Rα) cytoplasmic domain (signal 3). We generated B7H3 CAR-T cells with different lengths of the IL7Rα cytoplasmic domain, including the full length (IL7R-L), intermediate length (IL7R-M), and short length (IL7R-S) domains, and evaluated their functionality in vitro and in vivo. All the B7H3-IL7Rα CAR-T cells exhibited a less differentiated phenotype and effectively eliminated B7H3-positive glioblastoma in vitro. Superiority was found in B7H3 CAR-T cells contained the short length of the IL7Rα cytoplasmic domain. Integration of the IL7R-S cytoplasmic domain maintained pSTAT5 activation and increased T-cell proliferation while reducing activation-induced cell death. Moreover, RNA-sequencing analysis of B7H3-IL7R-S CAR-T cells after coculture with a glioblastoma cell line revealed downregulation of proapoptotic genes and upregulation of genes associated with T-cell proliferation compared with those in 2nd generation B7H3 CAR-T cells. In animal models, compared with conventional CAR-T cells, B7H3-IL7R-S CAR-T cells suppressed tumor growth and prolonged overall survival. Our study demonstrated the therapeutic potential of IL7Rα-incorporating CAR-T cells for glioblastoma treatment, suggesting a promising strategy for augmenting the effectiveness of CAR-T cell therapy.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattarika Khuisangeam
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thananya Inthanachai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varalee Yodsurang
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasrawin Taechawattananant
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Koramit Suppipat
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Fu C, Zhang X, Zhang X, Wang D, Han S, Ma Z. Advances in IL-7 Research on Tumour Therapy. Pharmaceuticals (Basel) 2024; 17:415. [PMID: 38675377 PMCID: PMC11054630 DOI: 10.3390/ph17040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Interleukin-7 (IL-7) is a versatile cytokine that plays a crucial role in regulating the immune system's homeostasis. It is involved in the development, proliferation, and differentiation of B and T cells, as well as being essential for the differentiation and survival of naïve T cells and the production and maintenance of memory T cells. Given its potent biological functions, IL-7 is considered to have the potential to be widely used in the field of anti-tumour immunotherapy. Notably, IL-7 can improve the tumour microenvironment by promoting the development of Th17 cells, which can in turn promote the recruitment of effector T cells and NK cells. In addition, IL-7 can also down-regulate the expression of tumour growth factor-β and inhibit immunosuppression to promote anti-tumour efficacy, suggesting potential clinical applications for anti-tumour immunotherapy. This review aims to discuss the origin of IL-7 and its receptor IL-7R, its anti-tumour mechanism, and the recent advances in the application of IL-7 in tumour therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (C.F.); (X.Z.); (X.Z.); (D.W.); (S.H.)
| |
Collapse
|
10
|
Vladyka O, Vrabcova P, Reiterova M, Parackova Z, Haesler R, Sediva A, Kalina T, Klocperk A. Th1/interferon-γ bias in 22q11.2 deletion syndrome is driven by memory T cells and exacerbated by IL-7. Clin Immunol 2023; 256:109793. [PMID: 37776967 DOI: 10.1016/j.clim.2023.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The aim of this study was to investigate the impact of thymic dysplasia on the phenotypic and functional characteristics of T cells in patients with 22q11.2 deletion syndrome, including T-cell phenotype, transcriptional profile, cytokine production, as well as the possibility of utilizing IL-7 to recover their numbers and function. We found a strong bias towards Th1 response in pediatric and young adult 22q11.2DS patients, expansion of CXCR5+ follicular helper cells and CXCR3+CCR6- Th1 cells, increased production of cytokines IFN-γ, IL-10, IL-2, IL-21 and TNF-α. This Th1 skew was primarily driven by expanded terminally differentiated T cells. IL-7 further reduced naive T cells, increased cytokine production and caused an upregulation of exhaustion markers. Thus, Th1 bias in T cell populations persists from infancy into adolescence and is accompanied by accelerated maturation of T cells into memory stages. This phenotype is exacerbated by IL-7 which causes further decrease in naïve T cells in vitro.
Collapse
Affiliation(s)
- Ondrej Vladyka
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Michaela Reiterova
- CLIP - Childhood Leukaemia Investigation Prague, Czech Republic; Department of Pediatric Hematology, Charles University and Univ. Hospital Motol, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Robert Haesler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic
| | - Tomas Kalina
- CLIP - Childhood Leukaemia Investigation Prague, Czech Republic; Department of Pediatric Hematology, Charles University and Univ. Hospital Motol, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic.
| |
Collapse
|
11
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
12
|
Marton C, Minaud A, Coupet CA, Chauvin M, Dhiab J, Vallet H, Boddaert J, Kehrer N, Bastien B, Inchauspe G, Barraud L, Sauce D. IL-7 producing immunotherapy improves ex vivo T cell functions of immunosenescent patients, especially post hip fracture. Hum Vaccin Immunother 2023; 19:2232247. [PMID: 37417353 PMCID: PMC10332238 DOI: 10.1080/21645515.2023.2232247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Following acute stress such as trauma or sepsis, most of critically ill elderly patients become immunosuppressed and susceptible to secondary infections and enhanced mortality. We have developed a virus-based immunotherapy encoding human interleukin-7 (hIL-7) aiming at restoring both innate an adaptative immune homeostasis in these patients. We assessed the impact of this encoded hIL-7 on the ex vivo immune functions of T cells from PBMC of immunosenescent patients with or without hip fracture. T-cell ex vivo phenotyping was characterized in terms of senescence (CD57), IL-7 receptor (CD127) expression, and T cell differentiation profile. Then, post stimulation, activation status, and functionality (STAT5/STAT1 phosphorylation and T cell proliferation assays) were evaluated by flow cytometry. Our data show that T cells from both groups display immunosenescence features, express CD127 and are activated after stimulation by virotherapy-produced hIL-7-Fc. Interestingly, hip fracture patients exhibit a unique functional ability: An important T cell proliferation occurred compared to controls following stimulation with hIL-7-Fc. In addition, stimulation led to an increased naïve T cell as well as a decreased effector memory T cell proportions compared to controls. This preliminary study indicates that the produced hIL-7-Fc is well recognized by T cells and initiates IL-7 signaling through STAT5 and STAT1 phosphorylation. This signaling efficiently leads to T cell proliferation and activation and enables a T cell "rejuvenation." These results are in favor of the clinical development of the hIL-7-Fc expressing virotherapy to restore or induce immune T cell responses in immunosenescent hip fracture patients.
Collapse
Affiliation(s)
- Chrystel Marton
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- ImmmunResQ Department, Transgene, Lyon, France
| | - Alix Minaud
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | | | - Manon Chauvin
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Jamila Dhiab
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| | - Hélène Vallet
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Unité de Gériatrie Aigue, Paris, France
| | - Jacques Boddaert
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpétrière, Unité périopératoire gériatrique, Paris, France
| | | | | | | | - Luc Barraud
- ImmmunResQ Department, Transgene, Lyon, France
| | - Delphine Sauce
- Centre d’Immunologie et des Maladies Infectieuses, Sorbonne Université, Inserm, CIMI-Paris, Paris, France
| |
Collapse
|
13
|
Hesari M, Attar Z, Soltani-Shirazi S, Keshavarzian O, Taheri R, Tabrizi R, Fouladseresht H. The Therapeutic Values of IL-7/IL-7R and the Recombinant Derivatives in Glioma: A Narrative Review. J Interferon Cytokine Res 2023; 43:319-334. [PMID: 37566474 DOI: 10.1089/jir.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Interleukin-7 (IL-7) is essential for maintaining the immune system's defense functions by regulating the development and homeostasis of lymphocytes. Findings have shown the high efficacy of IL-7/IL-7 receptor (IL-7R)-based immunotherapy on various malignancies, with confirmation in both animal models and humans. In recent years, the progression-free survival and overall survival of patients suffering from gliomas significantly increased by introducing C7R-expressing chimeric antigen receptor (CAR)-T cells and long-acting IL-7 agonists such as NT-I7 (rhIL-7-hyFc, Efineptakin alfa). However, the effect of IL-7-based immunotherapies on the resistance of tumor cells to chemotherapy (when used simultaneously with chemotherapy agents) is still ambiguous and requires further studies. This article first reviews the pathophysiological roles of IL-7/IL-7R in tumors, focusing on gliomas. Subsequently, it discusses the therapeutic values of IL-7/IL-7R and the recombinant derivatives in gliomas.
Collapse
Affiliation(s)
| | - Zeinab Attar
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shakiba Soltani-Shirazi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE, Argilaguet J, Esteve-Codina A, Geiger K, Genescà M, Grau-Expósito J, Duran-Castells C, Rogenmoser S, Böttcher R, Jungfleisch J, Oliva B, Martinez JP, Li M, David M, Yamagishi M, Ruiz-Riol M, Brander C, Tsunetsugu-Yokota Y, Buzon MJ, Díez J, Meyerhans A. Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 2023; 6:487. [PMID: 37165099 PMCID: PMC10172343 DOI: 10.1038/s42003-023-04841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023] Open
Abstract
Latency is a major barrier towards virus elimination in HIV-1-infected individuals. Yet, the mechanisms that contribute to the maintenance of HIV-1 latency are incompletely understood. Here we describe the Schlafen 12 protein (SLFN12) as an HIV-1 restriction factor that establishes a post-transcriptional block in HIV-1-infected cells and thereby inhibits HIV-1 replication and virus reactivation from latently infected cells. The inhibitory activity is dependent on the HIV-1 codon usage and on the SLFN12 RNase active sites. Within HIV-1-infected individuals, SLFN12 expression in PBMCs correlated with HIV-1 plasma viral loads and proviral loads suggesting a link with the general activation of the immune system. Using an RNA FISH-Flow HIV-1 reactivation assay, we demonstrate that SLFN12 expression is enriched in infected cells positive for HIV-1 transcripts but negative for HIV-1 proteins. Thus, codon-usage dependent translation inhibition of HIV-1 proteins participates in HIV-1 latency and can restrict the amount of virus release after latency reversal.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.
| | - Katarína Frazão Smutná
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Florencia E Alonso
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kerstin Geiger
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Selina Rogenmoser
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - René Böttcher
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jennifer Jungfleisch
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier P Martinez
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Manqing Li
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Michael David
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Spain
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d´Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Andreas Meyerhans
- Infection Biology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
15
|
Wang C, Kong L, Kim S, Lee S, Oh S, Jo S, Jang I, Kim TD. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int J Mol Sci 2022; 23:ijms231810412. [PMID: 36142322 PMCID: PMC9499417 DOI: 10.3390/ijms231810412] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Interleukin-7 (IL-7) is a multipotent cytokine that maintains the homeostasis of the immune system. IL-7 plays a vital role in T-cell development, proliferation, and differentiation, as well as in B cell maturation through the activation of the IL-7 receptor (IL-7R). IL-7 is closely associated with tumor development and has been used in cancer clinical research and therapy. In this review, we first summarize the roles of IL-7 and IL-7Rα and their downstream signaling pathways in immunity and cancer. Furthermore, we summarize and discuss the recent advances in the use of IL-7 and IL-7Rα as cancer immunotherapy tools and highlight their potential for therapeutic applications. This review will help in the development of cancer immunotherapy regimens based on IL-7 and IL-7Rα, and will also advance their exploitation as more effective and safe immunotherapy tools.
Collapse
Affiliation(s)
- Chunli Wang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Lingzu Kong
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Seokmin Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sunyoung Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Sechan Oh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seona Jo
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Inhwan Jang
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
16
|
Jirapongwattana N, Thongchot S, Chiraphapphaiboon W, Chieochansin T, Sa-Nguanraksa D, Warnnissorn M, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Mesothelin‑specific T cell cytotoxicity against triple negative breast cancer is enhanced by 40s ribosomal protein subunit 3‑treated self‑differentiated dendritic cells. Oncol Rep 2022; 48:127. [PMID: 35616135 PMCID: PMC9164262 DOI: 10.3892/or.2022.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Triple negative breast cancer (TNBC) lacks targeted treatment resulting in poor prognosis. Targeting overexpressing mesothelin (MSLN) using MSLN‑specific T cells is an attractive treatment approach and the aim of the present study. The expression of MSLN in human TNBC paraffin sections was analyzed by immunohistochemistry. Lentiviral vector harbored granulocyte‑macrophage colony stimulating factor (GM‑CSF), interleukin‑4 (IL‑4) and MSLN cDNAs was constructed to generate self‑differentiated myeloid‑derived antigen‑presenting‑cells reactive against tumor expressing MSLN dendritic cell (MSLN‑SmartDC) for MSLN‑specific T cell activation. The results showed high MSLN in 32.8% of all breast cancer subtypes and 57% in TNBC. High MSLN was significantly associated with TNBC subtype and the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. MSLN‑SmartDC exhibited comparable phenotype to DC generated by exogenous cytokine treatment and an addition of 40s ribosomal protein subunit 3 (RPS3), a toll‑like receptor 4 ligand, enhanced DC maturation and function by upregulation of CD40, CD80 and CD83 expressions and IL‑12p70 secretion. MSLN‑specific CD8+CD69+ IFN‑γ+ T cells were detected in T cells activated by both MSLN‑SmartDC and RPS3‑MSLN‑SmartDC. MSLN‑specific T cells activated by these DCs showed more specific killing capability against naturally expressed MSLN‑HCC70 and artificially MSLN‑overexpressing MDA‑MB‑231 compared with parental MDA‑MB‑231 in both two dimensional (2D)‑ and 3D‑culture systems. In conclusion, the results demonstrated the efficacy of MSLN‑SmartDC to promote MSLN‑specific T cells response against TNBC and RPS3 can enhance the cytolytic activity of these T cells providing an alternative treatment approach for patients with TNBC.
Collapse
Affiliation(s)
- Niphat Jirapongwattana
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Doonyapat Sa-Nguanraksa
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
17
|
Luangwattananun P, Chiraphapphaiboon W, Thuwajit C, Junking M, Yenchitsomanus PT. Activation of cytotoxic T lymphocytes by self-differentiated myeloid-derived dendritic cells for killing breast cancer cells expressing folate receptor alpha protein. Bioengineered 2022; 13:14188-14203. [PMID: 35734827 PMCID: PMC9342379 DOI: 10.1080/21655979.2022.2084262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach for cancer treatment. Activation of T lymphocytes by self-differentiated myeloid-derived antigen-presenting-cells reactive against tumor (SmartDC) resulted in specific anti-cancer function. Folate receptor alpha (FRα) is highly expressed in breast cancer (BC) cells and thus potential to be a target antigen for ACT. To explore the SmartDC technology for treatment of BC, we create SmartDC expressing FRα antigen (SmartDC-FRα) for activation of FRα-specific T lymphocytes. Human primary monocytes were transduced with lentiviruses containing tri-cistronic complementary DNA sequences encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-4 (IL-4), and FRα to generate SmartDC-FRα. Autologous T lymphocytes were activated by SmartDC-FRα by coculture. The activated T lymphocytes exhibited enhanced cytotoxicity against FRα-expressing BC cell cultures. Up to 84.9 ± 6.2% of MDA-MB-231 and 89.7 ± 1.9% of MCF-7 BC cell lines were specifically lysed at an effector-to-target ratio of 20:1. The cytotoxicity of T lymphocytes activated by SmartDC-FRα was also demonstrated in three-dimensional (3D) spheroid culture of FRα-expressing BC cells marked by size reduction and spheroid disruption. This study thus portray the potential development of T lymphocytes activated by SmartDC-FRα as ACT in FRα-expressing BC treatment.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, Thailand
| |
Collapse
|
18
|
Innis EA, Levinger C, Szaniawski MA, Williams ESCP, Alcamí J, Bosque A, Schiffer JT, Coiras M, Spivak AM, Planelles V. Pharmacologic control of homeostatic and antigen-driven proliferation to target HIV-1 persistence. Biochem Pharmacol 2021; 194:114816. [PMID: 34715067 DOI: 10.1016/j.bcp.2021.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
The presence of latent human immunodeficiency virus 1 (HIV-1) in quiescent memory CD4 + T cells represents a major barrier to viral eradication. Proliferation of memory CD4 + T cells is the primary mechanism that leads to persistence of the latent reservoir, despite effective antiretroviral therapy (ART). Memory CD4 + T cells are long-lived and can proliferate through two mechanisms: homeostatic proliferation via γc-cytokine stimulation or antigen-driven proliferation. Therefore, therapeutic modalities that perturb homeostatic and antigen-driven proliferation, combined with ART, represent promising strategies to reduce the latent reservoir. In this study, we investigated a library of FDA-approved oncology drugs to determine their ability to inhibit homeostatic and/or antigen-driven proliferation. We confirmed potential hits by evaluating their effects on proliferation in memory CD4 + T cells from people living with HIV-1 on ART (PLWH) and interrogated downstream signaling of γc-cytokine stimulation. We found that dasatinib and ponatinib, tyrosine kinase inhibitors, and trametinib, a MEK inhibitor, reduced both homeostatic and antigen-driven proliferationby >65%, with a reduction in viability <45%, ex vivo. In memory CD4 + T cells from PLWH, only dasatinib restricted both homeostatic and antigen-driven proliferation and prevented spontaneous rebound, consistent with promoting a smaller reservoir size. We show that dasatinib restricts IL-7 induced proliferation through STAT5 phosphorylation inhibition. Our results establish that the anti-cancer agent dasatinib is an exciting candidate to be used as an anti-proliferative drug in a clinical trial, since it efficiently blocks proliferation and iswell tolerated in patients with chronic myeloid leukemia (CML).
Collapse
Affiliation(s)
- E A Innis
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - C Levinger
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - M A Szaniawski
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - E S C P Williams
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - J Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Bosque
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, USA
| | - J T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA 98109, USA
| | - M Coiras
- AIDS Immunopathology Unit, National Center of Microbiology (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A M Spivak
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - V Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Basar R, Uprety N, Ensley E, Daher M, Klein K, Martinez F, Aung F, Shanley M, Hu B, Gokdemir E, Nunez Cortes AK, Mendt M, Reyes Silva F, Acharya S, Laskowski T, Muniz-Feliciano L, Banerjee PP, Li Y, Li S, Melo Garcia L, Lin P, Shaim H, Yates SG, Marin D, Kaur I, Rao S, Mak D, Lin A, Miao Q, Dou J, Chen K, Champlin RE, Shpall EJ, Rezvani K. Generation of glucocorticoid-resistant SARS-CoV-2 T cells for adoptive cell therapy. Cell Rep 2021; 36:109432. [PMID: 34270918 PMCID: PMC8260499 DOI: 10.1016/j.celrep.2021.109432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.
Collapse
Affiliation(s)
- Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Klein
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Martinez
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fleur Aung
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingqian Hu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elif Gokdemir
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayela Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tamara Laskowski
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sufang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hila Shaim
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Sean G Yates
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Indreshpal Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angelique Lin
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Qin SS, Melucci AD, Chacon AC, Prieto PA. Adoptive T Cell Therapy for Solid Tumors: Pathway to Personalized Standard of Care. Cells 2021; 10:cells10040808. [PMID: 33916369 PMCID: PMC8067276 DOI: 10.3390/cells10040808] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-infiltrating T cells (TILs) has emerged as a promising therapy for the treatment of unresectable or metastatic solid tumors. One challenge to finding a universal anticancer treatment is the heterogeneity present between different tumors as a result of genetic instability associated with tumorigenesis. As the epitome of personalized medicine, TIL-ACT bypasses the issue of intertumoral heterogeneity by utilizing the patient’s existing antitumor immune response. Despite being one of the few therapies capable of inducing durable, complete tumor regression, many patients fail to respond. Recent research has focused on increasing therapeutic efficacy by refining various aspects of the TIL protocol, which includes the isolation, ex vivo expansion, and subsequent infusion of tumor specific lymphocytes. This review will explore how the therapy has evolved with time by highlighting various resistance mechanisms to TIL therapy and the novel strategies to overcome them.
Collapse
Affiliation(s)
- Shuyang S. Qin
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA;
| | - Alexa D. Melucci
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Alexander C. Chacon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Peter A. Prieto
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
- Correspondence: ; Tel.: +1-(585)-703-4655
| |
Collapse
|
21
|
Marton C, Mercier-Letondal P, Galaine J, Godet Y. An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cell Immunol 2021; 363:104314. [PMID: 33677140 DOI: 10.1016/j.cellimm.2021.104314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
T cell-based adoptive cell transfer therapy is now clinically used to fight cancer with CD19-targeting chimeric antigen receptor T cells. The use of other T cell-based immunotherapies relying on antigen-specific T cells, genetically modified or not, is expanding in various neoplastic diseases. T cell manufacturing has evolved through sophisticated processes to produce T cells with improved therapeutic potential. Clinical-grade manufacturing processes associated with these therapies must meet pharmaceutical requirements and therefore be standardized. Here, we focus on the use of cytokines to expand minimally differentiated T cells, as well as their standardization and harmonization in research and clinical settings.
Collapse
Affiliation(s)
- Chrystel Marton
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| |
Collapse
|
22
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
23
|
Burnham RE, Zoine JT, Story JY, Garimalla SN, Gibson G, Rae A, Williams E, Bixby L, Archer D, Doering CB, Spencer HT. Characterization of Donor Variability for γδ T Cell ex vivo Expansion and Development of an Allogeneic γδ T Cell Immunotherapy. Front Med (Lausanne) 2020; 7:588453. [PMID: 33282892 PMCID: PMC7691424 DOI: 10.3389/fmed.2020.588453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
Gamma delta (γδ) T cells recently emerged as an attractive candidate for cancer immunotherapy treatments due to their inherent cytotoxicity against both hematological and solid tumors. Moreover, γδ T cells provide a platform for the development of allogeneic cell therapies, as they can recognize antigens independent of MHC recognition and without the requirement for a chimeric antigen receptor. However, γδ T cell adoptive cell therapy depends on ex vivo expansion to manufacture sufficient cell product numbers, which remains challenging and limited by inter-donor variability. In the current study, we characterize the differences in expansion of γδ T cells from various donors that expand (EX) and donors that fail to expand, i.e., non-expanders (NE). Further, we demonstrate that IL-21 can be used to increase the expansion potential of NE. In order to reduce the risk of graft vs. host disease (GVHD) induced by an allogeneic T cell product, αβ T cell depletions must be considered due to the potential for HLA mismatch. Typically, αβ T cell depletions are performed at the end of expansion, prior to infusion. We show that γδ T cell cultures can be successfully αβ depleted on day 6 of expansion, providing a better environment for the γδ T cells to expand, and that the αβ T cell population remains below clinically acceptable standards for T cell-depleted allogeneic stem cell products. Finally, we assess the potential for a mixed donor γδ T cell therapy and characterize the effects of cryopreservation on γδ T cells. Collectively, these studies support the development of an improved allogeneic γδ T cell product and suggest the possibility of using mixed donor γδ T cell immunotherapies.
Collapse
Affiliation(s)
- Rebecca E Burnham
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States.,Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Jaquelyn T Zoine
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States.,Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Jamie Y Story
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States.,Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Swetha N Garimalla
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Aaron Rae
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Erich Williams
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa Bixby
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - David Archer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - H Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
24
|
Thi VAD, Jeon HM, Park SM, Lee H, Kim YS. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice. Mol Cells 2019; 42:869-883. [PMID: 31760731 PMCID: PMC6939657 DOI: 10.14348/molcells.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancercell vaccine using mitomycin C (MMC)-treated IL-15:IL15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) longterm protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hyung Min Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
25
|
Sommer C, Boldajipour B, Kuo TC, Bentley T, Sutton J, Chen A, Geng T, Dong H, Galetto R, Valton J, Pertel T, Juillerat A, Gariboldi A, Pascua E, Brown C, Chin SM, Sai T, Ni Y, Duchateau P, Smith J, Rajpal A, Van Blarcom T, Chaparro-Riggers J, Sasu BJ. Preclinical Evaluation of Allogeneic CAR T Cells Targeting BCMA for the Treatment of Multiple Myeloma. Mol Ther 2019; 27:1126-1138. [PMID: 31005597 DOI: 10.1016/j.ymthe.2019.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Clinical success of autologous CD19-directed chimeric antigen receptor T cells (CAR Ts) in acute lymphoblastic leukemia and non-Hodgkin lymphoma suggests that CAR Ts may be a promising therapy for hematological malignancies, including multiple myeloma. However, autologous CAR T therapies have limitations that may impact clinical use, including lengthy vein-to-vein time and manufacturing constraints. Allogeneic CAR T (AlloCAR T) therapies may overcome these innate limitations of autologous CAR T therapies. Unlike autologous cell therapies, AlloCAR T therapies employ healthy donor T cells that are isolated in a manufacturing facility, engineered to express CARs with specificity for a tumor-associated antigen, and modified using gene-editing technology to limit T cell receptor (TCR)-mediated immune responses. Here, transcription activator-like effector nuclease (TALEN) gene editing of B cell maturation antigen (BCMA) CAR Ts was used to confer lymphodepletion resistance and reduced graft-versus-host disease (GvHD) potential. The safety profile of allogeneic BCMA CAR Ts was further enhanced by incorporating a CD20 mimotope-based intra-CAR off switch enabling effective CAR T elimination in the presence of rituximab. Allogeneic BCMA CAR Ts induced sustained antitumor responses in mice supplemented with human cytokines, and, most importantly, maintained their phenotype and potency after scale-up manufacturing. This novel off-the-shelf allogeneic BCMA CAR T product is a promising candidate for clinical evaluation.
Collapse
Affiliation(s)
- Cesar Sommer
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| | - Bijan Boldajipour
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Tracy C Kuo
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Trevor Bentley
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Janette Sutton
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Amy Chen
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Tao Geng
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Holly Dong
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Roman Galetto
- Cellectis SA, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Julien Valton
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Thomas Pertel
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | | | - Edward Pascua
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Colleen Brown
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Sherman M Chin
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Tao Sai
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Yajin Ni
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | - Julianne Smith
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | - Arvind Rajpal
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Thomas Van Blarcom
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Javier Chaparro-Riggers
- Pfizer Cancer Immunology Discovery, Pfizer Worldwide Research and Development, 230 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Barbra J Sasu
- Allogene Therapeutics, Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA.
| |
Collapse
|