1
|
Lu J, An Y, Wang X, Zhang C, Guo S, Ma Y, Qiu Y, Wang S. Alleviating effect of chlorogenic acid on oxidative damage caused by hydrogen peroxide in bovine intestinal epithelial cells. J Vet Med Sci 2024; 86:1016-1026. [PMID: 39069486 PMCID: PMC11422687 DOI: 10.1292/jvms.24-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a polyphenol substance contained in many plants, which has good antioxidant activity. This experiment aimed to explore the protective effects of CGA on hydrogen peroxide (H2O2)-induced inflammatory response, apoptosis, and antioxidant capacity of bovine intestinal epithelial cells (BIECs-21) under oxidative stress and its mechanism. The results showed that compared with cells treated with H2O2 alone, CGA pretreatment could improve the viability of BIECs-21. Importantly, Chlorogenic acid pretreatment significantly reduced the formation of malondialdehyde (MDA), lowered reactive oxygen species (ROS) levels, and enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) (P<0.05). In addition, CGA can also improve the intestinal barrier by increasing the abundance of tight junction proteins claudin-1 and occludin. Meanwhile, CGA can reduce the gene expression levels of pro-inflammatory factors Interleukin-6 (IL-6) and Interleukin-8 (IL-8), increase the expression of anti-inflammatory factor Interleukin-10 (IL-10), promote the expression of the nuclear factor-related factor 2 (Nrf2) signaling pathway, enhance cell antioxidant capacity, and inhibit Nuclear Factor Kappa B (NF-κB) the activation of the signaling pathway reducing the inflammatory response, thereby alleviating inflammation and oxidative stress damage.
Collapse
Affiliation(s)
- Jia Lu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yongsheng An
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Zhang B, Tian M, Wu J, Qiu Y, Xu X, Tian C, Hou J, Wang L, Gao K, Yang X, Jiang Z. Chlorogenic Acid Enhances the Intestinal Health of Weaned Piglets by Inhibiting the TLR4/NF-κB Pathway and Activating the Nrf2 Pathway. Int J Mol Sci 2024; 25:9954. [PMID: 39337442 PMCID: PMC11432128 DOI: 10.3390/ijms25189954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chlorogenic acid (CGA) is a natural polyphenol with potent antioxidant and anti-inflammatory activities. However, the exact role of it in regulating intestinal health under oxidative stress is not fully understood. This study aims to investigate the effects of dietary CGA supplementation on the intestinal health of weaned piglets under oxidative stress, and to explore its regulatory mechanism. Twenty-four piglets were randomly divided into two groups and fed either a basal diet (CON) or a basal diet supplemented with 200 mg/kg CGA (CGA). CGA reduced the diarrhea rate, increased the villus height in the jejunum, and decreased the crypt depth in the duodenum, jejunum, and ileum of the weaned piglets (p < 0.05). Moreover, CGA increased the protein abundance of Claudin-1, Occludin, and zonula occludens (ZO)-1 in the jejunum and ileum (p < 0.05). In addition, CGA increased the mRNA expression of pBD2 in the jejunum, and pBD1 and pBD2 in the ileum (p < 0.05). The results of 16S rRNA sequencing showed that CGA altered the ileal microbiota composition and increased the relative abundance of Lactobacillus reuteri and Lactobacillus pontis (p < 0.05). Consistently, the findings suggested that the enhancement of the intestinal barrier in piglets was associated with increased concentrations of T-AOC, IL-22, and sIgA in the serum and T-AOC, T-SOD, and sIgA in the jejunum, as well as T-AOC and CAT in the ileum caused by CGA (p < 0.05). Meanwhile, CGA decreased the concentrations of MDA, IL-1β, IL-6, and TNF-α in the serum and jejunum and IL-1β and IL-6 in the ileum (p < 0.05). Importantly, this study found that CGA alleviated intestinal inflammation and oxidative stress in the piglets by inhibiting the TLR4/NF-κB signaling pathway and activating the Nrf2 signaling pathway. These findings showed that CGA enhances the intestinal health of weaned piglets by inhibiting the TLR4/NF-κB pathway and activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xiaoming Xu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chaoyang Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
3
|
Yan Y, Li Q, Yang F, Shen L, Guo K, Zhou X. Chlorogenic acid ameliorates intestinal inflammation via miRNA-microbe axis in db/db mice. FASEB J 2024; 38:e23665. [PMID: 38780085 DOI: 10.1096/fj.202400382r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Chlorogenic acid improves diabetic symptoms, including inflammation, via the modulation of the gut microbiota. However, the mechanism by which the microbiota is regulated by chlorogenic acid remains unknown. In this study, we firstly explored the effects of chlorogenic acid on diabetic symptoms, colonic inflammation, microbiota composition, and microRNA (miRNA) expression in db/db mice. The results showed that chlorogenic acid decreased body weight, improved glucose tolerance and intestinal inflammation, altered gut microbiota composition, and upregulated the expression level of five miRNAs, including miRNA-668-3p, miRNA-467d-5p, miRNA-129-1-3p, miRNA-770-3p, and miRNA-666-5p in the colonic content. Interestingly, the levels of these five miRNAs were positively correlated with the abundance of Lactobacillus johnsonii. We then found that miRNA-129-1-3p and miRNA-666-5p promoted the growth of L. johnsonii. Importantly, miRNA-129-1-3p mimicked the effects of chlorogenic acid on diabetic symptoms and colonic inflammation in db/db mice. Furthermore, L. johnsonii exerted beneficial effects on db/db mice similar to those of chlorogenic acid. In conclusion, chlorogenic acid regulated the gut microbiota composition via affecting miRNA expression and ameliorated intestinal inflammation via the miRNA-microbe axis in db/db mice.
Collapse
Affiliation(s)
- Yongwang Yan
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
| | - Qing Li
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
- Department of Pathology, Changsha Health Vocational College, Changsha, China
| | - Fengluan Yang
- Obstetrics and Gynecology, 921 Hospital of the Chinese People's Liberation Army, Changsha, China
| | - Ling Shen
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
| | - Kangxiao Guo
- Pharmaceutical College, Changsha Health Vocational College, Changsha, China
- National Engineering Laboratory for Rice and By-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xu Zhou
- Department of Spleen, Stomach and Liver Diseases, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Dai C, Li H, Zhao W, Fu Y, Cheng J. Bioactive functions of chlorogenic acid and its research progress in pig industry. J Anim Physiol Anim Nutr (Berl) 2024; 108:439-450. [PMID: 37975278 DOI: 10.1111/jpn.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Chlorogenic acid (CGA), also known as 3-caffeioylquinic acid or coffee tannin, is a water-soluble polyphenol phenylacrylate compound produced through the shikimate pathway by plants during aerobic respiration. CGA widely exists in higher dicotyledons, ferns and many Chinese medicinal materials, and enjoys the reputation of 'plant gold'. Here, we summarized the source, chemical structure, biological activity functions of CGA and its research progress in pigs, aiming to provide a more comprehensive understanding and theoretical basis for the prospect of CGA replacing antibiotics as a pig feed additive.
Collapse
Affiliation(s)
- Chaohui Dai
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Hui Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Weimin Zhao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| | - Jinhua Cheng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Crop and Livestock Integration Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Germplasm Resources Protection and Utilization Platform, Nanjing, China
| |
Collapse
|
5
|
Martins-Gomes C, Nunes FM, Silva AM. Natural Products as Dietary Agents for the Prevention and Mitigation of Oxidative Damage and Inflammation in the Intestinal Barrier. Antioxidants (Basel) 2024; 13:65. [PMID: 38247489 PMCID: PMC10812469 DOI: 10.3390/antiox13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Department of Chemistry, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Cell Biology and Biochemistry Laboratory, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4gro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Chen J, Zhou Z, Wu N, Li J, Xi N, Xu M, Wu F, Fu Q, Yan G, Liu Y, Xu X. Chlorogenic acid attenuates deoxynivalenol-induced apoptosis and pyroptosis in human keratinocytes via activating Nrf2/HO-1 and inhibiting MAPK/NF-κB/NLRP3 pathways. Biomed Pharmacother 2024; 170:116003. [PMID: 38091639 DOI: 10.1016/j.biopha.2023.116003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1β and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zhiyu Zhou
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Nanhui Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jie Li
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ningyuan Xi
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Mingyuan Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qiaoting Fu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Xiaoxiang Xu
- Department of Pathology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
7
|
Ling X, Yan W, Yang F, Jiang S, Chen F, Li N. Research progress of chlorogenic acid in improving inflammatory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1611-1620. [PMID: 38432890 PMCID: PMC10929889 DOI: 10.11817/j.issn.1672-7347.2023.230146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 03/05/2024]
Abstract
Long-term inflammation will develop into chronic inflammation and become inflammatory diseases. Antibiotics are commonly used in clinical practice to treat inflammatory diseases. But patients are prone to drug resistance. So we need to find new treatment. Chlorogenic acid is an organic compound extracted from honeysuckle and other plants. Its anti-inflammatory activity is strong, and it has a significant anti-inflammatory effect on inflammatory diseases in various systems. It has been shown that chlorogenic acid can regulate inflammation-related signaling pathways, such as nuclear factor κB (NF-κB) canonical signaling pathway, NF-κB atypical signaling pathway, nuclear factor-erythroid 2-related factor 2 (Nrf2) canonical signaling pathway, and Nrf2 atypical signaling pathway, etc. It can up-regulate the expression of anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-13 and down-regulate the expression of pro-inflammatory cytokine such as IL-1β, IL-6, and IL-8. Although chlorogenic acid has a strong anti-inflammatory effect, but clinical trials and application still face many difficulties. In the future, the anti-inflammatory molecular mechanism of chlorogenic acid should be further studied to explore its clinical application value and improve new ideas for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xinping Ling
- Nursing School, Nanchang University, Nanchang 330006.
| | - Wei Yan
- Nursing School, Nanchang University, Nanchang 330006
| | - Fen Yang
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Shuling Jiang
- Nursing School, Nanchang University, Nanchang 330006
| | - Fuqing Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Na Li
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang 330000, China.
| |
Collapse
|
8
|
Palkovicsné Pézsa N, Kovács D, Somogyi F, Karancsi Z, Móritz AV, Jerzsele Á, Rácz B, Farkas O. Effects of Lactobacillus rhamnosus DSM7133 on Intestinal Porcine Epithelial Cells. Animals (Basel) 2023; 13:3007. [PMID: 37835613 PMCID: PMC10571805 DOI: 10.3390/ani13193007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species. We established a co-culture model, in which gastrointestinal infection was modeled using Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium). Using intestinal porcine epithelial cells (IPEC-J2), the effects of pre-, co-, and post-treatment with Lactobacillus (L.) rhamnosus on the barrier function, intracellular (IC) reactive oxygen species (ROS) production, proinflammatory cytokine (IL-6 and IL-8) response, and adhesion inhibition were tested. E. coli- and S. Typhimurium-induced barrier impairment and increased ROS production could be counteracted using L. rhamnosus (p < 0.01). S. Typhimurium-induced IL-6 production was reduced via pre-treatment (p < 0.05) and post-treatment (p < 0.01); increased IL-8 secretion was decreased via pre-, co-, and post-treatment (p < 0.01) with L. rhamnosus. L. rhamnosus demonstrated significant inhibition of adhesion for both S. Typhimurium (p < 0.001) and E. coli (p < 0.001 in both pre-treatment and post-treatment; p < 0.05 in co-treatment). This study makes a substantial contribution to the understanding of the specific benefits of L. rhamnosus. Our findings can serve as a basis for further in vivo studies carried out in pigs and humans.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Fanni Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
| | - Zita Karancsi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Alma Virág Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| |
Collapse
|
9
|
Wilson SMG, Peach JT, Fausset H, Miller ZT, Walk ST, Yeoman CJ, Bothner B, Miles MP. Metabolic impact of polyphenol-rich aronia fruit juice mediated by inflammation status of gut microbiome donors in humanized mouse model. Front Nutr 2023; 10:1244692. [PMID: 37727634 PMCID: PMC10505616 DOI: 10.3389/fnut.2023.1244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background The Aronia melanocarpa fruit is emerging as a health food owing to its high polyphenolic content and associated antioxidant activity. Antioxidant-rich foods, such as Aronia fruit, may counter inflammatory stimuli and positively modulate the gut microbiome. However, a comprehensive study characterizing the impact of Aronia fruit supplementation has not been completed. Therefore, we completed analyses measuring the metabolic, microbial, and inflammatory effects of a diet supplemented with Aronia fruit juice. Method Humanized mice were generated by colonizing gnotobiotic mice with microbiomes from human donors presenting disparate inflammation levels. Blood and fecal samples were collected throughout the course of an 8-week dietary intervention with either Aronia juice or a carbohydrate-matched beverage alone (2 weeks) or in combination with a high-fat diet to induce inflammation (6 weeks). Samples were analyzed using 16S rRNA gene sequencing (stool) and liquid chromatography-mass spectrometry (serum). Results We demonstrated transfer of microbiome composition and diversity and metabolic characteristics from humans with low and high inflammation levels to second-generation humanized mice. Aronia supplementation provided robust protection against high-fat diet induced metabolic and microbiome changes that were dependent in part on microbiome donor. Aronia induced increases in bacteria of the Eggerthellaceae genus (7-fold) which aligns with its known ability to metabolize (poly)phenols and in phosphatidylcholine metabolites which are consistent with improved gut barrier function. The gut microbiome from a low inflammation phenotype donor provided protection against high-fat diet induced loss of microbiome β-diversity and global metabolomic shifts compared to that from the high inflammation donor. Conclusion These metabolic changes elucidate pathway-specific drivers of reduced inflammation stemming from both Aronia and the gut microbiota.
Collapse
Affiliation(s)
- Stephanie M. G. Wilson
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| | - Jesse T. Peach
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Hunter Fausset
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Zachary T. Miller
- Department of Research Centers, Montana State University, Bozeman, MT, United States
| | - Seth T. Walk
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Carl J. Yeoman
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
10
|
Alhawas B, Abd El-Hamid MI, Hassan Z, Ibrahim GA, Neamat-Allah ANF, Rizk El-Ghareeb W, Alahmad BAHY, Meligy AMA, Abdel-Raheem SM, Abdel-Moez Ahmed Ismail H, Ibrahim D. Curcumin loaded liposome formulation: Enhanced efficacy on performance, flesh quality, immune response with defense against Streptococcus agalactiae in Nile tilapia (Orechromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2023; 138:108776. [PMID: 37182798 DOI: 10.1016/j.fsi.2023.108776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Application of novel trend comprising antioxidant phytogenics is aiming to minimize the stress related factors and associated diseases in intensive fish culturing. Today, the concept of exploiting and protecting natural antioxidants represents a paradigm shift for the aqua feed industry. Therefore, our principal goal targeting liposome as a novel nanocarrier for curcumin is directed to attain superior performance, fillet antioxidant stability and bacterial resistance in Nile tilapia. A total of 500 Nile tilapia fingerlings (average body weight, 10.27 ± 0.10 g) assigned into five experimental groups in 25 glass aquaria of 120 L capacity at the density 20 fish/aquaria. The experimental groups were supplemented with varying doses of liposomal curcumin-NPs, LipoCur-NPs (0, 5, 15, 25 and 35 mg/kg diet) were reared for 12 weeks and later Streptococcus agalactiae (S. agalactiae) challenged model was performed. Inclusion of LipoCur-NPs (25 and 35 mg/kg diet) had the most prominent impact on Nile tilapia growth rate and feed conversion ratio. The immune boosting outcomes post supplementing 35 mg/kg diet of LipoCur-NPs were evidenced by higher myeloperoxidase, lysozyme and total immunoglobulin levels. Even after 4 weeks frozen storage, LipoCur-NPs at the dose of 35 mg/kg diet prominently increased (P < 0.05) the fillet scavenging capability for free radicals (1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) with an inverse reduction in lipid peroxidation biomarker (malondialdehyde). Notably, upregulation of GSH-Px, CAT, and SOD genes in fillet of 35 mg/kg LipoCur-NPs fed fish coordinated with higher T-AOC and lower oxidative markers (ROS and H2O2). Post S. agalactiae challenge, higher supplementation levels of LipoCur-NPs (35 mg/kg diet) greatly attenuated the expression of its vital virulence genes (cfb, fbsA and cpsA) with higher expression of Igm, CXC-chemokine and MHC genes. Concordantly, downregulation of inflammatory markers (IL-1β, TNF-α and IL-8) and upregulation of anti-inflammatory ones (IL-10 and TGF-β) were remarkably documented. Based on these findings, the innovative curcumin loaded liposome was considered a novel multitargeting alternative not only playing an imperative role in Nile tilapia growth promotion and fillet stability upon storage, but also protecting efficiently against S. agalactiae.
Collapse
Affiliation(s)
- Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Ghada A Ibrahim
- Department of Bacteriology, Animal Health Research Institute (AHRI), Ismailia Branch, Agriculture Research Center (ARC), Ismailia, 41522, Egypt.
| | - Ahmed N F Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Badr Abdul-Hakim Y Alahmad
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Physiology, Agricultural Research Center (ARC), Giza, Egypt.
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Hesham Abdel-Moez Ahmed Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box: 400, Hofuf, Al-Ahsa, 31982, Saudi Arabia; Food Hygiene Dept., Fac. of Vet. Med., Assiut Univ., Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
11
|
Qin Y, Wang S, Huang W, Li K, Wu M, Liu W, Han J. Chlorogenic acid improves intestinal morphology by enhancing intestinal stem-cell activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3287-3294. [PMID: 36698257 DOI: 10.1002/jsfa.12469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chlorogenic acid (CGA), as one of the most abundant naturally occurring phenolic acids, has been documented to be beneficial for intestinal health. However, the underlying mechanism is still not fully understood. The adult intestinal stem cell is the critical driver of epithelial homeostasis and regeneration. RESULTS This study hypothesized that CGA exerted intestinal health effects by modulating intestinal stem-cell functions. Lgr5-EGFP mice were treated for 14 days, and intestinal organoids derived from these mice were treated for 3 days, using CGA solution. In comparison with the control group, CGA treatment increased intestinal villous height and crypt depth in mice and augmented the area expansion and the number of budding intestinal organoids. Quantitative polymerase chain reaction (qPCR) analysis revealed that CGA treatment significantly increased the expression of genes coding intestinal stem-cell markers in intestinal tissue and organoids, and upregulated the expression of genes coding secretory cell lineages and enterocytes, although not statistically significantly. Fluorescence-activated cell-sorting analysis further confirmed that CGA augmented the number of stem cells. 5-Ethynyl-2'-deoxyuridine (EdU) incorporation and Ki67 immunostaining results also demonstrated that CGA treatment enhanced intestinal stem-cell proliferation. CONCLUSION Altogether, our findings indicate that CGA could activate intestinal stem-cell and epithelial regeneration, which could contribute to the improvement of intestinal morphology or organoid growth of mice. This highlights a promising mechanism for CGA as an excellent candidate for the formulation of dietary supplements and functional foods for intestinal protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yumei Qin
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Suqiang Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiwei Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Kejin Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Wu
- Ecology and Health Institute, Hangzhou Vocational and Technical College, Hangzhou, China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
12
|
Gligor O, Clichici S, Moldovan R, Decea N, Vlase AM, Fizeșan I, Pop A, Virag P, Filip GA, Vlase L, Crișan G. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091840. [PMID: 37176897 PMCID: PMC10180766 DOI: 10.3390/plants12091840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
One of the objectives of this study consists of the assessment of the antitumor activity of several extracts from three selected plant species: Xanthium spinosum L., Trifolium pratense L., and Coffea arabica L. and also a comparative study of this biological activity, with the aim of establishing a superior herbal extract for antitumor benefits. The phytochemical profile of the extracts was established by HPLC-MS analysis. Further, the selected extracts were screened in vitro for their antitumor activity and antioxidant potential on two cancer cell lines: A549-human lung adenocarcinoma and T47D-KBluc-human breast carcinoma and on normal cells. One extract per plant was selected for in vivo assessment of antitumor activity in an Ehrlich ascites mouse model. The extracts presented high content of antitumor compounds such as caffeoylquinic acids in the case of X. spinosum L. (7.22 µg/mL-xanthatin, 4.611 µg/mL-4-O-caffeoylquinic acid) and green coffee beans (10.008 µg/mL-cafestol, 265.507 µg/mL-4-O-caffeoylquinic acid), as well as isoflavones in the case of T. pratense L. (6806.60 ng/mL-ononin, 102.78 µg/mL-biochanin A). Concerning the in vitro results, the X. spinosum L. extracts presented the strongest anticancerous and antioxidant effects. In vivo, ascites cell viability decreased after T. pratense L. and green coffee bean extracts administration, whereas the oxidative stress reduction potential was important in tumor samples after T. pratense L. Cell viability was also decreased after administration of cyclophosphamide associated with X. spinosum L. and T. pratense L. extracts, respectively. These results suggested that T. pratense L. or X. spinosum L. extracts in combination with chemotherapy can induce lipid peroxidation in tumor cells and decrease the tumor viability especially, T. pratense L. extract.
Collapse
Affiliation(s)
- Octavia Gligor
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Piroska Virag
- Department of Radiobiology and Tumor Biology, Oncology Institute "Prof. Dr. Ion Chiricuță", 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400347 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Tan H, Zhen W, Bai D, Liu K, He X, Ito K, Liu Y, Liu Y, Zhang Y, Zhang B, Ma Y. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poult Sci 2023; 102:102623. [PMID: 36972676 PMCID: PMC10050632 DOI: 10.1016/j.psj.2023.102623] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Immune stress exerts detrimental effects on growth performance and intestinal barrier function during intensive animal production with ensuing serious economic consequences. Chlorogenic acid (CGA) is used widely as a feed additive to improve the growth performance and intestinal health of poultry. However, the effects of dietary CGA supplementation on amelioration of the intestinal barrier impairment caused by immune stress in broilers are unknown. This study investigated the effects of CGA on growth performance, intestinal barrier function, and the inflammatory response in lipopolysaccharide (LPS) mediated immune-stressed broilers. Three hundred and twelve 1-day-old male Arbor Acres broilers were divided randomly into 4 groups with 6 replicates of thirteen broilers. The treatments included: i) saline group: broilers injected with saline and fed with basal diet; ii) LPS group: broilers injected with LPS and fed with basal diet; iii) CGA group: broilers injected with saline and feed supplemented with CGA; and iv) LPS+CGA group: broilers injected with LPS and feed supplemented with CGA. Animals in the LPS and LPS+CGA groups were injected intraperitoneally with an LPS solution prepared with saline from 14 d of age for 7 consecutive days, whereas broilers in the other groups were injected only with saline. LPS induced a decrease in feed intake of broilers during the stress period, but CGA effectively alleviated this decrease. Moreover, CGA inhibited the reduction of villus height and improved the ratio of villus height to crypt depth in the duodenum of broilers 24 and 72 h after LPS injection. In addition, dietary CGA supplementation significantly restored the expression of cation-selective and channel-forming Claudin2 protein 2 h after LPS injection in the ileum. LPS enhanced the expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the small intestine, but this enhancement was blocked by CGA supplementation. The expression of interleukin-10 (IL-10) increased with LPS injection and CGA promoted the production of IL-10. CGA addition downregulated the expression of intestinal interleukin-6 (IL-6) of broilers under normal rearing conditions. However, CGA supplementation upregulated the expression of IL-6 of broilers 72 h after LPS injection. The data demonstrate that dietary supplementation with CGA alleviates intestinal barrier damage and intestinal inflammation induced by LPS injection during immune stress thereby improving growth performance of broilers.
Collapse
|
14
|
Network pharmacology-based analysis on geniposide, a component of gardenia jasminoides, beneficial effects to alleviate LPS-induced immune stress in piglets. Int Immunopharmacol 2023; 117:109894. [PMID: 36863144 DOI: 10.1016/j.intimp.2023.109894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Geniposide is the main medicinal component of Gardenia jasminoides, and its content is approximately 3-8% depending on its origin. Geniposide is a class of cyclic enol ether terpene glucoside compounds with strong antioxidant, free radical quenching and cancer-inhibiting activities. Many studies have reported that geniposide has hepatoprotective, cholestatic, neuroprotective, blood sugar and blood lipid regulation, soft tissue damage treatment, antithrombotic, antitumor and other effects. As a traditional Chinese medicine, gardenia, whether used as gardenia alone, as the monomer geniposide or as the effective part of cyclic either terpenoids, has been reported to have anti-inflammatory effects when used in the right amounts. Recent studies have found that geniposide has important roles in pharmacological activities such as anti-inflammation activity, inhibition of the NF-κB/IκB pathway, and cell adhesion molecule production. In this study, we predicted the anti-inflammatory and antioxidant effects of geniposide in piglets through network pharmacology based on the LPS-induced inflammatory response-regulated signaling pathway. The effects of geniposide on changes in inflammatory pathways and cytokine levels in the lymphocytes of inflammation-stressed piglets were investigated using in vivo and in vitro models of piglet lipopolysaccharide-induced oxidative stress. Network pharmacology identified 23 target genes, of which the main pathways of action were lipid and atherosclerosis, fluid shear stress and atherosclerosis, and Yersinia infection. The main relevant target genes were VEGFA, ROCK2, NOS3, and CCL2. Validation experiments showed that the interventional effects of geniposide reduced the relative expression of NF-κB pathway proteins and genes, restored the expression of COX-2 genes to normal levels, and increased the relative expression of tight junction proteins and genes in IPEC-J2 cells. This indicates that the addition of geniposide can alleviate inflammation and improve the level of cellular tight junctions.
Collapse
|
15
|
Palócz O, Erdélyi B, Sátorhelyi P, Csikó G. Impact of heat-inactivated Lactobacillus on inflammatory response in endotoxin- and chemotherapeutic-treated porcine enterocytes. Res Vet Sci 2023; 154:132-137. [PMID: 36584521 DOI: 10.1016/j.rvsc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Several factors such as pathogen bacteria, or oral chemotherapy disturb the intestinal integrity, leading to several undesirable effects. Inactivated probiotics may be beneficial in safely redress the physiological functions of the intestinal epithelium. Our aim is to determine the effect of tyndallized Lactobacillus on LPS- and 5-fluorouracil-treated porcine jejunal cells. IPEC-J2 cells derived from porcine jejunal epithelium were used as the in vitro model. The enterocyte cell cultures were treated with 109Lactobacillus reuteri cells/ml or 10 μg/ml lipopolysaccharides (LPS) or 100 μM 5-fluorouracil separately and simultaneously. We determined the alterations in mRNA levels of inflammatory mediators IL6, CXCL8/IL8, TNF. Furthermore, the protein level of IL-6 and IL-8 were measured. The fluorouracil treatment upregulated the IL6 gene expression, the endotoxin treatment upregulated the IL8 and TNF level. The heat-inactivated Lactobacillus increased the IL-8 level both at the gene expression and protein level. The co-administration of the non-viable probiotic with the 5-fluorouracil and the LPS resulted in decrease of IL6, IL8, and TNF level. The immune-modulator effect of tyndallized probiotic product is demonstrated in porcine jejunal cells. The inactivated Lactobacillus was able to prevent the accumulation of the selected inflammatory mediators in LPS- or 5-fluorouracil-exposed enterocytes.
Collapse
Affiliation(s)
- Orsolya Palócz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary.
| | - Balázs Erdélyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary
| |
Collapse
|
16
|
Lee Y, Bae CS, Ahn T. Chlorogenic acid attenuates pro-inflammatory response in the blood of streptozotocin-induced diabetic rats. Lab Anim Res 2022; 38:37. [PMID: 36461118 PMCID: PMC9719206 DOI: 10.1186/s42826-022-00148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Chlorogenic acid (CGA) has been shown to reduce pro-inflammation by scavenging reactive oxygen species (ROS) and reactive nitrogen species. In this study, the anti-inflammatory effect of CGA was expanded to streptozotocin (STZ)-induced diabetic rats. The inter-relationships among oxidative stress, pro-inflammation, and cytochrome P450 (CYP) 1A enzymes were also investigated in peripheral blood mononuclear cells (PBMC) of STZ-diabetic rats. RESULTS The levels of pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-alpha, increased by approximately 3.4- and 2.9-fold, respectively, and the albumin concentration decreased in the serum of STZ-induced diabetic rats compared to normal rats. The C-reactive protein (CRP) values also increased by about 3.8-fold higher, indicating that STZ induced an inflammation in the blood of STZ-diabetic rats. The expression levels and catalytic activities of CYP1A enzymes were elevated by approximately 2.2-2.5- and 4.3-6.7-fold, respectively, in the PBMC of STZ-treated rats. A decrease in the amount of PBMC-bound albumin was also observed. In contrast, the levels of cytokines and CRP in serum and the activities of CYP1A enzymes in PBMC were significantly reduced in CGA-treated diabetic rats in a CGA concentration-dependent manner. In addition, STZ-mediated elevation of ROS in serum and PBMC was decreased by the CGA administration. However, the CGA treatment did not change the enhanced blood glucose level and expression of CYP1A enzymes by STZ. STZ-mediated decrease in the levels of serum and PBMC-bound albumin was not also restored by the CGA administration. CONCLUSIONS These results suggest that CGA could be used to treat type 1 diabetes-induced inflammation.
Collapse
Affiliation(s)
- Youngchan Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
17
|
Luteolin and Chrysin Could Prevent E. coli Lipopolysaccharide-Ochratoxin A Combination-Caused Inflammation and Oxidative Stress in In Vitro Porcine Intestinal Model. Animals (Basel) 2022; 12:ani12202747. [PMID: 36290134 PMCID: PMC9597822 DOI: 10.3390/ani12202747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) and lipopolysaccharide (LPS) intake can cause gastrointestinal disorders. Polyphenolic chrysin (CHR) and luteolin (LUT) display anti-inflammatory and antioxidant properties. Porcine intestinal epithelial (jejunal) IPEC-J2 cells were treated with OTA (1 µM, 5 µM and 20 µM), E. coli LPS (10 µg/mL), CHR (1 µM) and LUT (8.7 µM) alone and in their combinations. Cell viabilities (MTS assay) and extracellular (EC) hydrogen-peroxide (H2O2) production (Amplex red method) were evaluated. Intracellular (IC) reactive oxygen species (ROS) were assessed using a 2′-7′dichlorodihydrofluorescein diacetate (DCFH-DA) procedure. ELISA assay was used to evaluate IL-6 and IL-8 secretion. OTA decreased cell viabilities (p < 0.001) which could not be alleviated by LUT or CHR (p > 0.05); however, EC H2O2 production was successfully suppressed by LUT in IPEC-J2 cells (p < 0.001). OTA with LPS elevated the IC ROS which was counteracted by CHR and LUT (p < 0.001). IL-6 and IL-8 secretion was elevated by LPS + OTA (p < 0.001) which could be inhibited by LUT (p < 0.01 for IL-6; p < 0.001 for IL-8). Based on our results, CHR and LUT exerted beneficial effects on IC ROS levels and on cytokine secretion (LUT) in vitro; thus, they might be used as dietary and feed supplements to avoid OTA- and LPS-related health risks.
Collapse
|
18
|
Mićović T, Katanić Stanković JS, Bauer R, Nöst X, Marković Z, Milenković D, Jakovljević V, Tomović M, Bradić J, Stešević D, Stojanović D, Maksimović Z. In vitro, in vivo and in silico evaluation of the anti-inflammatory potential of Hyssopus officinalis L. subsp. aristatus (Godr.) Nyman (Lamiaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115201. [PMID: 35358622 DOI: 10.1016/j.jep.2022.115201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal properties of hyssop have been used in traditional medicine since ancient times, inter alia, in diseases/conditions with an inherent inflammatory process. AIM OF THE STUDY Accordingly, the aim of this study was to investigate the anti-inflammatory properties of hyssop herb preparations (essential oil and methanol extracts) in vivo, in vitro and in silico. MATERIALS AND METHODS For in vitro testing of essential oils and extracts of hyssop herb, the cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays were used. In vivo anti-inflammatory potential of the extracts (at doses of 50, 100 and 200 mg/kg) was assessed using the carrageenan-induced rat paw edema test. Molecular docking and dynamics were used for in silico testing of the inhibitory activity of chlorogenic (CA) and rosmarinic (RA) acids, as the dominant compounds in the tested methanol extracts against COX-1 and COX-2 enzymes. RESULTS Significant inhibitory activity was shown in the COX-2 test regarding extracts (essential oils did not exhibit any significant activity). Namely, all analyzed extracts, at a concentration of 20 μg/mL, showed a percentage of inhibition of COX-2 enzyme (54.04-63.04%), which did not indicate a statistically significant difference from the positive control of celecoxib (61.60%) at a concentration of 8.8 μM. In vivo testing showed that all methanol extracts of hyssop herb, at the highest test dose of 200 mg/kg in the third and fourth hours, after carrageenan administration, exhibited a statistically significant (p < 0.05) inhibitory effect on the increase in rat paw edema in relation to control. This activity is comparable or higher in relation to the reference substance, indomethacin, at a concentration of 8 mg/kg. The preliminary in silico results suggest that investigated compounds (RA and CA) showed better inhibitory activity against COX-1 and COX-2 than standard non-steroidal anti-inflammatory drug (NSAID), ibuprofen, as evident from the free binding energy (ΔGbind in kJ mol-1). The binding energies of the docked compounds to COX-1 and -2 were found to be in the range between -47.4 and -49.2 kJ mol-1. Ibuprofen, as the one NSAID, for the same receptors targets, showed remarkably higher binding energy (ΔGbind = -31.3 kJ mol-1 to COX-1, and ΔGbind = -30.9 kJ mol-1 to COX-2). CONCLUSION The results obtained not only support the traditional use of hyssop herb in inflammatory conditions in folk medicine, but also open the door to and the need for further in vivo testing of extracts in order to examine the molecular mechanism of anti-inflammatory activity in living systems and possibly develop a new anti-inflammatory drug or supplement.
Collapse
Affiliation(s)
- Tijana Mićović
- Institute for Medicines and Medical Devices of Montenegro, Bulevar Ivana Crnojevića 64a, 81000, Podgorica, Montenegro
| | - Jelena S Katanić Stanković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Xuehong Nöst
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstrasse 8, 8010, Graz, Austria
| | - Zoran Marković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Dejan Milenković
- Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia; Department of Human Pathology, First Moscow State Medical University I. M. Sechenov, Trubetskaya street 8, str. 2, 119991, Moscow, Russia
| | - Marina Tomović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Serbia
| | - Danijela Stešević
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro
| | - Danilo Stojanović
- Department of Botany, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| |
Collapse
|
19
|
Padilla P, Estévez M, Andrade MJ, Peña FJ, Delgado J. Proteomics reveal the protective effects of chlorogenic acid on Enterococcus faecium Q233 in a simulated pro-oxidant colonic environment. Food Res Int 2022; 157:111464. [PMID: 35761697 DOI: 10.1016/j.foodres.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Certain phytochemicals have been found to promote the beneficial effects of probiotic bacteria although the molecular mechanisms of such interactions are poorly understood. The objective of the present study was to evaluate the impact of the exposure to 0.5 mM chlorogenic acid (CA) on the redox status and proteome of Enterococcus faecium isolated from cheese and challenged with 2.5 mM hydrogen peroxide (H2O2). The bacterium was incubated in anaerobic conditions for 48 h at 37 °C. CA exposure led to a more intense oxidative stress and accretion of bacterial protein carbonyls than those induced by H2O2. The oxidative damage to bacterial proteins was even more severe in the bacterium treated with both CA and H2O2, yet, such combination led to a strengthening of the antioxidant defenses, namely, a catalase-like activity. The proteomic study indicated that H2O2 caused a decrease in energy supply and the bacterium responded by reinforcing the membrane and wall structures and counteracting the redox and pH imbalance. CA stimulated the accretion of proteins related to translation and transcription regulators, and hydrolases. This phytochemical was able to counteract certain proteomic changes induced by H2O2 (i.e. increase of ATP binding cassete (ABC) transporter complex) and cause the increase of Rex, a redox-sensitive protein implicated in controlling metabolism and responses to oxidative stress. Although this protection should be confirmed under in vivo conditions, such effects point to benefits in animals or humans affected by disorders in which oxidative stress plays a major role.
Collapse
Affiliation(s)
- P Padilla
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain; Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - M Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain.
| | - M J Andrade
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, University of Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| |
Collapse
|
20
|
The Impact of Quercetin and Its Methylated Derivatives 3-o-Methylquercetin and Rhamnazin in Lipopolysaccharide-Induced Inflammation in Porcine Intestinal Cells. Antioxidants (Basel) 2022; 11:antiox11071265. [PMID: 35883756 PMCID: PMC9312192 DOI: 10.3390/antiox11071265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress in the small intestine can lead to inflammation and barrier malfunction. The present study describes the effect of quercetin (Q), 3-o-methylquercetin (QM), and rhamnazin (R) on cell viability, paracellular permeability, production of intracellular reactive oxygen species (ROS), extracellular hydrogen peroxide (H2O2), and interleukin-6 (IL-6) after challenging jejunal cells (IPEC-J2) with different types (Salmonella enterica ser. Typhimurium, Escherichia coli O111:B4, and E. coli O127:B8) of lipopolysaccharides (LPS) applied in 10 µg/mL concentration. The intracellular ROS level increased after all LPS treatments, which could be decreased by all tested flavonoid compounds in 50 µM concentration. Extracellular H2O2 production significantly increased after Q and R treatment (50 µM). S. Typhimurium LPS could significantly increase IL-6 production of enterocytes, which could be alleviated by Q, QM, and R (50 µM) as well. Using fluorescein isothiocyanate dextran (FD4) tracer dye, we could demonstrate that S. Typhimurium LPS significantly increased the permeability of the cell layer. The simultaneous treatments of S. Typhimurium LPS and the flavonoid compounds showed no alteration in FD4 penetration compared to untreated cells. These results highlight that Q, QM, and R are promising substances that can be used to protect intestinal epithelial cells from the deteriorating effects of oxidative stress.
Collapse
|
21
|
Wang X, Zhao J, Feng Y, Feng Z, Ye Y, Liu L, Kang G, Cao X. Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Front Cell Infect Microbiol 2022; 12:916543. [PMID: 35811664 PMCID: PMC9257068 DOI: 10.3389/fcimb.2022.916543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal microbiome plays an essential role in human health and disease status. So far, microbiota transplantation is considered a potential therapeutic approach for treating some chronic diseases, including inflammatory bowel disease (IBD). The diversity of gut microbiota is critical for maintaining resilience, and therefore, transplantation with numerous genetically diverse gut microbiota with metabolic flexibility and functional redundancy can effectively improve gut health than a single probiotic strain supplement. Studies have shown that natural fecal microbiota transplantation or washing microbiota transplantation can alleviate colitis and improve intestinal dysbiosis in IBD patients. However, unexpected adverse reactions caused by the complex and unclear composition of the flora limit its wider application. The evolving strain isolation technology and modifiable pre-existing strains are driving the development of microbiota transplantation. This review summarized the updating clinical and preclinical data of IBD treatments from fecal microbiota transplantation to washing microbiota transplantation, and then to artificial consortium transplantation. In addition, the factors considered for strain combination were reviewed. Furthermore, four types of artificial consortium transplant products were collected to analyze their combination and possible compatibility principles. The perspective on individualized microbiota transplantation was also discussed ultimately.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuanhang Feng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Institute of Shaoxing, Tianjin University, Zhejiang, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- *Correspondence: Xiaocang Cao, ; Guangbo Kang,
| |
Collapse
|
22
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Zeng L, Xiang R, Fu C, Qu Z, Liu C. The Regulatory effect of chlorogenic acid on gut-brain function and its mechanism: A systematic review. Biomed Pharmacother 2022; 149:112831. [PMID: 35303566 DOI: 10.1016/j.biopha.2022.112831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022] Open
Abstract
Chlorogenic acid (CGA) is a phenolic compound that is widely distributed in honeysuckle, Eucommia, fruits and vegetables. It has various biological functions, including cardiovascular, nerve, kidney, and liver protection, and it exerts a protective effect on human health, according to clinical research and basic research. The intestine and brain are two important organs that are closely related in the human body. The intestine is even called the "second brain" in humans. However, among the many reports in the literature, an article systematically reporting the regulatory effects and specific mechanisms of CGA on the intestines and brain has not been published. In this context, this review uses the regulatory role and mechanism of CGA in the intestine and brain as the starting point and comprehensively reviews CGA metabolism in the body and the regulatory role and mechanism of CGA in the intestine and brain described in recent years. Additionally, the review speculates on the potential biological actions of CGA in the gut-brain axis. This study provides a scientific theory for CGA research in the brain and intestines and promotes the transformation of basic research and the application of CGA in food nutrition and health care.
Collapse
Affiliation(s)
- Li Zeng
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Rong Xiang
- The Library of Shaoyang University, Shaoyang, Hunan 422000, China
| | - Chunyan Fu
- Southwest Hunan Research Center of Engineering for Development and Utilization of Traditional Chinese Medicine, School of Pharmacy, Shaoyang University, Shaoyang, Hunan 422000, China
| | - Zhihao Qu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Changwei Liu
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| |
Collapse
|
24
|
Effects of Bacillus licheniformis and Bacillus subtilis on Gut Barrier Function, Proinflammatory Response, ROS Production and Pathogen Inhibition Properties in IPEC-J2—Escherichia coli/Salmonella Typhimurium Co-Culture. Microorganisms 2022; 10:microorganisms10050936. [PMID: 35630380 PMCID: PMC9145911 DOI: 10.3390/microorganisms10050936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of antimicrobial resistance raises serious concerns worldwide. Probiotics offer a promising alternative to enhance growth promotion in farm animals; however, their mode of action still needs to be elucidated. The IPEC-J2 cell line (porcine intestinal epithelial cells) is an appropriate tool to study the effect of probiotics on intestinal epithelial cells. In our experiments, IPEC-J2 cells were challenged by two gastrointestinal (GI) infection causing agents, Escherichia coli (E. coli) or Salmonella enterica ser. Typhimurium (S. Typhimurium). We focused on determining the effect of pre-, co-, and post-treatment with two probiotic candidates, Bacillus licheniformis or Bacillus subtilis, on the barrier function, proinflammatory cytokine (IL-6 and IL-8) response, and intracellular reactive oxygen species (ROS) production of IPEC-J2 cells, in addition to the adhesion inhibition effect. Bacillus licheniformis (B. licheniformis) and Bacillus subtilis (B. subtilis) proved to be anti-inflammatory and had an antioxidant effect under certain treatment combinations, and further effectively inhibited the adhesion of pathogenic bacteria. Interestingly, they had little effect on paracellular permeability. Based on our results, Bacillus licheniformis and Bacillus subtilis are both promising candidates to contribute to the beneficial effects of probiotic multispecies mixtures.
Collapse
|
25
|
Palkovicsné Pézsa N, Kovács D, Gálfi P, Rácz B, Farkas O. Effect of Enterococcus faecium NCIMB 10415 on Gut Barrier Function, Internal Redox State, Proinflammatory Response and Pathogen Inhibition Properties in Porcine Intestinal Epithelial Cells. Nutrients 2022; 14:nu14071486. [PMID: 35406099 PMCID: PMC9002907 DOI: 10.3390/nu14071486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/14/2023] Open
Abstract
In farm animals, intestinal diseases caused by Salmonella spp. and Escherichia coli may lead to significant economic loss. In the past few decades, the swine industry has largely relied on the prophylactic use of antibiotics to control gastrointestinal diseases. The development of antibiotic resistance has become an important issue both in animal and human health. The use of antibiotics for prophylactic purposes has been banned, moreover the new EU regulations further restrict the application of antibiotics in veterinary use. The swine industry seeks alternatives that are capable of maintaining the health of the gastrointestinal tract. Probiotics offer a promising alternative; however, their mode of action is not fully understood. In our experiments, porcine intestinal epithelial cells (IPEC-J2 cells) were challenged by Salmonella Typhimurium or Escherichia coli and we aimed at determining the effect of pre-, co-, and post-treatment with Enterococcus faecium NCIMB 10415 on the internal redox state, paracellular permeability, IL-6 and IL-8 secretion of IPEC-J2 cells. Moreover, the adhesion inhibition effect was also investigated. Enterococcus faecium was able to reduce oxidative stress and paracellular permeability of IPEC-J2 cells and could inhibit the adhesion of Salmonella Typhimurium and Escherichia coli. Based on our results, Enterococcus faecium is a promising candidate to maintain the health of the gastrointestinal tract.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
- Correspondence:
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Péter Gálfi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (P.G.); (O.F.)
| |
Collapse
|
26
|
Effects of Dietary Chlorogenic Acid Supplementation Derived from Lonicera macranthoides Hand-Mazz on Growth Performance, Free Amino Acid Profile, and Muscle Protein Synthesis in a Finishing Pig Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6316611. [PMID: 35313639 PMCID: PMC8934221 DOI: 10.1155/2022/6316611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Chlorogenic acid (CGA), as one of the richest polyphenol compounds in nature, has broad applications in many fields due to its various biological properties. However, initial data on the effects of dietary CGA on protein synthesis and related basal metabolic activity has rarely been reported. The current study is aimed at (1) determining whether dietary CGA supplementation improves the growth performance and carcass traits, (2) assessing whether dietary CGA alters the free amino acid profile, and (3) verifying whether dietary CGA promotes muscle protein synthesis in finishing pigs. Thirty-two (Large × White × Landrace) finishing barrows with an average initial body weight of
kg were randomly allotted to 4 groups and fed diets supplemented with 0, 0.02%, 0.04%, and 0.08% CGA, respectively. The results indicated that, compared with the control group, dietary supplementation with 0.04% CGA slightly stimulated the growth performance of pigs, whereas no significant correlation was noted between the dietary CGA levels and animal growth (
). Furthermore, the carcass traits of pigs were improved by 0.04% dietary CGA (
). In addition, dietary CGA significantly improved the serum free amino acid profiles of pigs (
), while 0.04% dietary CGA promoted more amino acids to translocate to skeletal muscles (
). The relative mRNA expression levels of SNAT2 in both longissimus dorsi (LD) and biceps femoris (BF) muscles were augmented in the 0.02% and 0.04% groups (
), and the LAT1 mRNA expression in the BF muscle was elevated in the 0.02% group (
). We also found that dietary CGA supplementation at the levels of 0.04% or 0.08% promoted the expression of p-Akt and activated the mTOR-S6K1-4EBP1 axis in the LD muscle (
). Besides, the MAFbx mRNA abundance in the 0.02% and 0.04% groups was significantly lower (
). Our results revealed that dietary supplementation with CGA of 0.04% improved the free amino acid profile and enhanced muscle protein biosynthesis in the LD muscle in finishing pigs.
Collapse
|
27
|
Dong Y, Xia Y, Yin J, Zhou D, Sang Y, Yan S, Liu Q, Li Y, Wang L, Zhao Y, Chen C, Huang Q, Wang Y, Abbasi MN, Yang H, Wang C, Li J, Tu Q, Yin J. Optimization, Characteristics, and Functions of Alkaline Phosphatase From Escherichia coli. Front Microbiol 2022; 12:761189. [PMID: 35265047 PMCID: PMC8899610 DOI: 10.3389/fmicb.2021.761189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Weaning of piglets could increase the risk of infecting with Gram-negative pathogens, which can further bring about a wide array of virulence factors including the endotoxin lipopolysaccharide (LPS). It is in common practice that the use of antibiotics has been restricted in animal husbandry. Alkaline phosphatase (AKP) plays an important role in the detoxification and anti-inflammatory effects of LPS. This study investigated the protective effects of AKP on intestinal epithelial cells during inflammation. Site-directed mutagenesis was performed to modulate the AKP activity. The enzyme activity tests showed that the activity of the DelSigD153G-D330N mutants in B. subtilis was nearly 1,600 times higher than that of the wild-type AKP. In this study, an in vitro LPS-induced inflammation model using IPEC-J2 cells was established. The mRNA expression of interleukin-(IL-) 6, IL-8, and tumor necrosis factor-α (TNF-α) were extremely significantly downregulated, and that of ASC amino acid transporter 2 (ASCT-2), zonula occludens protein-1 (ZO-1), and occludin-3 (CLDN-3) were significantly upregulated by the DelSigD153G-D330N mutant compared with LPS treatment. This concludes the anti-inflammatory role of AKP on epithelial membrane, and we are hopeful that this research could achieve a sustainable development for the pig industry.
Collapse
Affiliation(s)
- Yachao Dong
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yandong Xia
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jie Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yidan Sang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Sufeng Yan
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingshu Liu
- Hunan Institute of Microbiology, Changsha, China
| | - Yaqi Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Leli Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cang Chen
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Nazeer Abbasi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chuni Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
28
|
Liu Y, Guo J, Zhang J, Deng Y, Xiong G, Fu J, Wei L, Lu H. Chlorogenic acid alleviates thioacetamide-induced toxicity and promotes liver development in zebrafish (Danio rerio) through the Wnt signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106039. [PMID: 34856462 DOI: 10.1016/j.aquatox.2021.106039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Chlorogenic acid (CGA) is a phenylpropanoid compound that is well known to improve the antioxidant capacity and other biological activities. However, the roles of CGA in the liver development of organisms are unclear. In the present study, we aimed to investigate the function of CGA in the hepatic development in thioacetamide (TAA)-induced zebrafish embryos. We found that CGA exerted certain beneficial effects on zebrafish larvae from TAA-exposed zebrafish embryos, such as increasing the liver size, body length, heart rate, acetylcholinesterase activity, and motor ability. In addition, CGA displayed an antioxidant effect on TAA-induced zebrafish embryos by enhancing the activities of superoxide dismutase (SOD), catalase (CAT), and glucose-6-phosphate dehydrogenase (G6PDH), and decreasing of the contents of malondialdehyde (MDA), reactive oxygen species (ROS), and nitric oxide (NO). The results of western blotting analysis showed that CGA inhibited cell apoptosis by increasing the levels of Bcl2 apoptosis regulator and decreasing the levels of Bcl2 associated X (Bax), apoptosis regulator and tumor protein P53. Moreover, CGA promoted cell proliferation in TAA-induced zebrafish larvae, as detected using proliferating cell nuclear antigen fluorescence immunostaining. In addition, CGA inhibited the expression of Wnt signaling pathway genes Dkk1 (encoding Dickkopf Wnt signaling pathway inhibitors), and promoted the expression of Lef1 (encoding lymphoid enhancer binding factor 1) and Wnt2bb (encoding wingless-type MMTV integration site family, member 2Bb). When the Wnt signal inhibitor IWR-1 was added, there was no significant change in liver development in the IWR-1 + TAA group compared with the IWR-1 + TAA + CGA group (p <0.05), which suggested that CGA regulates liver development via Wnt signaling pathway. Overall, our results suggested that CGA might alleviate TAA-induced toxicity in zebrafish and promote liver development through the Wnt signaling pathway, which provides a basis for the therapeutic effect of CGA on liver dysplasia.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianpin Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases; Jiangxi Key Laboratory of Developmental Biology of Organs; College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
29
|
Palócz O, Noszticzius Z, Kály-Kullai K, Bradley E, Csikó G. In vitro study of chlorine dioxide on porcine intestinal epithelial cell gene markers. Vet Med Sci 2021; 8:591-597. [PMID: 34672097 PMCID: PMC8959260 DOI: 10.1002/vms3.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Chlorine dioxide (ClO2 ) is an inorganic, potent biocide and is available in highly purified aqueous solution. It can be administered as an oral antiseptic in this form. OBJECTIVES Our aim is to determine the level of inflammatory markers and cytochrome genes expressed by enterocytes exposed to different concentrations of hyperpure chlorine dioxide solution. METHODS Porcine jejunal enterocyte cell (IPEC-J2) cultures were treated with the aqueous solution of hyper-pure chlorine dioxide of various concentrations. We determined the alterations in mRNA levels of inflammatory mediators, such as IL6, CXCL8/IL8, TNF, HSPA6 (Hsp70), CAT and PTGS2 (COX2); furthermore, the expression of three cytochrome genes (CYP1A1, CYP1A2, CYP3A29) were analysed by quantitative PCR method. RESULTS The highest applied ClO2 concentration reduced the expression of all three investigated CYP genes. The gene expression of PTGS2 and CAT were not altered by most concentrations of ClO2 . The expression of IL8 gene was reduced by all applied concentrations of ClO2 . TNF mRNA level was also decreased by most ClO2 concentrations used. CONCLUSIONS Different concentrations of chlorine dioxide exhibited immunomodulatory activity and caused altered transcription of CYP450 genes in porcine enterocytes. Further studies are needed to determine the appropriate ClO2 concentration for oral use in animals.
Collapse
Affiliation(s)
- Orsolya Palócz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Zoltán Noszticzius
- Department of Physics, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Kristóf Kály-Kullai
- Department of Physics, Faculty of Natural Sciences, Budapest University of Technology and Economics, Budapest, Hungary
| | - Emma Bradley
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
30
|
Gao R, Tian S, Wang J, Zhu W. Galacto-oligosaccharides improve barrier function and relieve colonic inflammation via modulating mucosa-associated microbiota composition in lipopolysaccharides-challenged piglets. J Anim Sci Biotechnol 2021; 12:92. [PMID: 34376253 PMCID: PMC8356462 DOI: 10.1186/s40104-021-00612-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) have been shown to modulate the intestinal microbiota of suckling piglets to exert beneficial effects on intestinal function. However, the modulation of intestinal microbiota and intestinal function by GOS in intestinal inflammation injury models has rarely been reported. In this study, we investigated the effects of GOS on the colonic mucosal microbiota composition, barrier function and inflammatory response of lipopolysaccharides (LPS)-challenged suckling piglets. METHODS A total of 18 newborn suckling piglets were divided into three groups, the CON group, the LPS-CON group and the LPS-GOS group. Piglets in the LPS-GOS group were orally fed with 1 g/kg body weight of GOS solution every day. On the d 14, piglets in the LPS-CON and LPS-GOS group were challenged intraperitoneally with LPS solution. All piglets were slaughtered 2 h after intraperitoneal injection and sampled. RESULTS We found that the colonic mucosa of LPS-challenged piglets was significantly injured and shedding, while the colonic mucosa of the LPS-GOS group piglets maintained its structure. Moreover, GOS significantly reduced the concentration of malondialdehyde (MDA) and the activity of reactive oxygen species (ROS) in the LPS-challenged suckling piglets, and significantly increased the activity of total antioxidant capacity (T-AOC). GOS significantly increased the relative abundance of norank_f__Muribaculaceae and Romboutsia, and significantly decreased the relative abundance of Alloprevotella, Campylobacter and Helicobacter in the colonic mucosa of LPS-challenged suckling piglets. In addition, GOS increased the concentrations of acetate, butyrate and total short chain fatty acids (SCFAs) in the colonic digesta of LPS-challenged suckling piglets. GOS significantly reduced the concentrations of interleukin 1β (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and cluster of differentiation 14 (CD14), and the relative mRNA expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) in the LPS-challenged suckling piglets. In addition, GOS significantly reduced the relative mRNA expression of mucin2 (MUC2), and significantly increased the protein expression of Claudin-1 and zonula occluden-1 (ZO-1) in LPS-challenged suckling piglets. CONCLUSIONS These results suggested that GOS can modulate the colonic mucosa-associated microbiota composition and improve the intestinal function of LPS-challenged suckling piglets.
Collapse
Affiliation(s)
- Ren Gao
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shiyi Tian
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Experimental Teaching Demonstration Center of Animal Science, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
31
|
Amraie E, Pouraboli I, Rajaei Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct 2021; 11:6608-6621. [PMID: 32648872 DOI: 10.1039/d0fo01030h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Levisticum officinale (Apiaceae) has been identified as a medicinal plant in traditional medicine, with the anti-inflammatory, antioxidant, and anticholinesterase activities. The present study aims to evaluate the effects of Levisticum officinale extract (LOE) on lipopolysaccharide (LPS)-induced learning and memory deficits and to examine its potential mechanisms. LOE was administered to adult male Wistar rats at doses of 100, 200, and 400 mg kg-1 for a week. Later, LPS was intraperitoneally injected at a dose of 1 mg kg-1 to induce neuroinflammation, and treatment with LOE continued for 3 more weeks. Behavioral, biochemical, and molecular analyses were performed at the end of the experiment. Moreover, quantitative immunohistochemical assessments of the expression of Ki-67 (intracellular proliferation marker) in the hippocampus were performed. The results revealed that LPS injection caused spatial memory impairment in the rats. Daily LOE treatment at applied doses for 4 weeks attenuated spatial learning and memory deficits in LPS-injected rats. Furthermore, LPS significantly increased the mRNA expression level of interleukin-6 in the hippocampus, which was accompanied by decreased brain-derived neurotrophic factor (BDNF) mRNA expression levels. Moreover, LPS increased the levels of malondialdehyde, reduced the antioxidant enzyme activities of catalase and superoxide dismutase in the hippocampus, and impaired neurogenesis. However, pre-treatment with LOE at a dose of 100 mg kg-1 significantly reversed the LPS-induced changes, and improved neurogenesis. In conclusion, the beneficial effect of LOE on the improvement of learning and memory could be attributed to its anti-inflammatory and antioxidant activities, along with its ability to increase BDNF expression and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Esmaeil Amraie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iran Pouraboli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Dietary alternatives to in-feed antibiotics, gut barrier function and inflammation in piglets post-weaning: Where are we now? Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Assessment of In Vitro Bioaccessibility of Polyphenols from Annurca, Limoncella, Red Delicious, and Golden Delicious Apples Using a Sequential Enzymatic Digestion Model. Antioxidants (Basel) 2021; 10:antiox10040541. [PMID: 33808499 PMCID: PMC8067271 DOI: 10.3390/antiox10040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Four different varieties of apples have been considered (Limoncella, Annurca, Red Delicious, and Golden Delicious) to estimate the extent of colon polyphenolics release after in vitro sequential enzyme digestion. Since several studies report a positive effect of apple polyphenols in colonic damage, we found of interest to investigate the colon release of polyphenols in different varieties of apples in order to assess their prevention of colonic damage. UHPLC-HRMS analysis and antioxidant activity (ABTS, DPPH, and FRAP assays) were carried out on the apple extracts (peel, flesh, and whole fruit) obtained from not digested samples and on bioaccessible fractions (duodenal and colon bioaccessible fractions) after in vitro digestion. Polyphenolic content and antioxidant activities were found to vary significantly among the tested cultivars with Limoncella showing the highest polyphenol content accompanied by an excellent antioxidant activity in both flesh and whole fruit. The overall trend of soluble antioxidant capacity from the soluble duodenal phase (SDP) and soluble colonic phase (SCP) followed the concentrations of flavanols, procyandinis, and hydroxycinnamic acids under the same digestive steps. Our results highlighted that on average 64.2% of the total soluble antioxidant activity was released in the SCP with Limoncella exhibiting the highest values (82.31, 70.05, and 65.5%, respectively for whole fruit, flesh, and peel). This result suggested that enzymatic treatment with pronase E and viscozyme L, to reproduce biochemical conditions occurring in the colon, is effective for breaking the dietary fiber-polyphenols interactions and for the release of polyphenols which can exercise their beneficial effects in the colon. The beneficial effects related to the Limoncella consumption could thus be of potential great relevance to counteract the adverse effects of pro-oxidant and inflammatory processes on intestinal cells.
Collapse
|
34
|
Pediococcus pentosaceus ZJUAF-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury. Appl Microbiol Biotechnol 2021; 105:1657-1668. [PMID: 33475796 DOI: 10.1007/s00253-021-11111-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Lactic acid bacteria (LAB) play a key role in promoting health and preventing diseases because of their beneficial effects, such as antimicrobial activities, modulating immune responses, maintaining the gut epithelial barrier and antioxidant capacity. However, the mechanisms with which LAB relieve oxidative stress and intestinal injury induced by diquat in vivo are poorly understood. In the present study, Pediococcus pentosaceus ZJUAF-4 (LAB, ZJUAF-4), a selected probiotics strain with strong antioxidant capacities, was appointed to evaluate the efficiency against oxidative stress in diquat-induced intestinal injury of mice. Alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed to estimate the liver injury. The intestinal permeability was evaluated by 4 kDa fluorescein isothiocyanate (FITC)-dextran (FD4), D-lactate (DLA), and diamine oxidase (DAO) levels. Jejunum reactive oxygen species (ROS) production was examined by dihydroethidium (DHE) staining. Western blotting was used to detect the expression of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and its downstream genes in jejunum. The gut microbiota was analyzed by high-throughput sequencing method based on the 16S rRNA genes. The results showed that ZJUAF-4 pretreatment was found to protect the intestinal barrier function and maintain intestinal redox homeostasis under diquat stimulation. Moreover, oral administration of ZJUAF-4 increased the expression of Nrf2 and its downstream genes. High-throughput sequencing analysis indicated that ZJUAF-4 contributed to restoring the gut microbiota influenced by diquat. Our results suggested that ZJUAF-4 protected the intestinal barrier from oxidative stress-induced damage by modulating the Nrf2 pathway and gut microbiota, indicating that ZJUAF-4 may have potential applications in preventing and treating oxidative stress-related intestinal diseases. KEY POINTS: • ZJUAF-4 exerted protective effects against diquat-induced intestinal injury. • Activation of Nrf2 and its downstream targets towards oxidative stress. • ZJUAF-4 administration restoring gut microbiota.
Collapse
|
35
|
Pomothy JM, Barna RF, Pászti EA, Babiczky Á, Szóládi Á, Jerzsele Á, Gere EP. Beneficial Effects of Rosmarinic Acid on IPEC-J2 Cells Exposed to the Combination of Deoxynivalenol and T-2 Toxin. Mediators Inflamm 2020; 2020:8880651. [PMID: 33424439 PMCID: PMC7772027 DOI: 10.1155/2020/8880651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination in feedstuffs is a worldwide problem that causes serious health issues both in humans and animals, and it contributes to serious economic losses. Deoxynivalenol (DON) and T-2 toxin (T-2) are major trichothecene mycotoxins and are known to challenge mainly intestinal barrier functions. Polyphenolic rosmarinic acid (RA) appeared to have antioxidant and anti-inflammatory properties in vitro. The aim of this study was to investigate protective effects of RA against DON and T-2 or combined mycotoxin-induced intestinal damage in nontumorigenic porcine cell line, IPEC-J2. It was ascertained that simultaneous treatment of DON and T-2 (DT2: 1 μmol/L DON + 5 nmol/L T - 2) for 48 h and 72 h reduced transepithelial electrical resistance of cell monolayer, which was restored by 50 μmol/L RA application. It was also found that DT2 for 48 h and 72 h could induce oxidative stress and elevate interleukin-6 (IL-6) and interleukin-8 (IL-8) levels significantly, which were alleviated by the administration of RA. DT2 administration contributed to the redistribution of claudin-1; however, occludin membranous localization was not altered by combined mycotoxin treatment. In conclusion, beneficial effect of RA was exerted on DT2-deteriorated cell monolayer integrity and on the perturbated redox status of IPEC-J2 cells.
Collapse
Affiliation(s)
- Judit Mercédesz Pomothy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Réka Fanni Barna
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Erzsébet Anna Pászti
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Ákos Babiczky
- Neuronal Networks and Behaviour Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Faculty of Natural Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Áron Szóládi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Erzsébet Pásztiné Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| |
Collapse
|
36
|
Xu X, Chang J, Wang P, Yin Q, Liu C, Li M, Song A, Zhu Q, Lu F. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111376. [PMID: 32961488 DOI: 10.1016/j.ecoenv.2020.111376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Deoxynivalenol (DON) is extensively detected in many kinds of foods and feeds to harm human and animal health. This research aims to investigate the effect of chlorogenic acid (CGA) on alleviating inflammation and apoptosis of swine jejunal epithelial cells (IPEC-J2) triggered by DON. The results demonstrated that cell viability was decreased when DON concentrations increased or incubation time expanded. The pretreatment with CGA (40 μg/mL) for 1 h increased cell viability, decreased lactate dehydrogenase (LDH) release and apoptosis in cells triggered by DON at 0.5 μg/mL for 6 h, compared with the DON alone-treated cells. Moreover, the mRNA abundances of IL-8, IL-6, TNF-α, COX-2, caspase-3, Bax and ASCT2 genes, and protein expressions of COX-2, Bax and ASCT2 were significantly down-regulated; while the mRNA abundances of ZO-1, claudin-1, occludin, PePT1 and GLUT2 genes, and protein expressions of ZO-1, claudin-1 and PePT1 were significantly up-regulated in the CGA + DON group, compared with the DON alone group. This study indicated that CGA pretreatment alleviated cytotoxicity, inflammation and apoptosis in DON-triggered IPEC-J2 cells, and protected intestinal cell integrity from DON damages.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Maolong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Andong Song
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| |
Collapse
|
37
|
Lee YM, Shin DW, Lim BO. Chlorogenic Acid Improves Symptoms of Inflammatory Bowel Disease in Interleukin-10 Knockout Mice. J Med Food 2020; 23:1043-1053. [PMID: 33054539 DOI: 10.1089/jmf.2019.4621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal inflammation that is highly prevalent worldwide. Interleukin (IL)-10 can effectively inhibit negative cascades such as the production of inflammatory mediators (inducible nitric oxide synthase [iNOS], cyclooxygenase-2), accumulation of inflammatory infiltrates (macrophages, eosinophils, neutrophils), toxicity (lower T cell subsets), and secretion of pro-inflammatory cytokines (IL-1β, TNF-α) in tissues such as the spleen, mesenteric lymph nodes (MLN), Peyer's patch (PP), and colon. In this study, we investigated whether chlorogenic acid (CHA) can regulate inflammation in IL-10 knockout (KO) mice used as an IBD animal model. CHA significantly increased the ratio of CD4+/CD8+, T cell subsets in PP, and MLN of IL-10 KO mice. In addition, CHA also morphologically attenuated colon inflammation in IL-10 KO mice. We demonstrated that CHA significantly reduced the expression levels of iNOS, IL-1β, TNF-α, which were highly expressed in IL-10 KO mice. Therefore, CHA may provide beneficial effects for improving IBD by decreasing inflammations.
Collapse
Affiliation(s)
- Young Min Lee
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Beong Ou Lim
- College of Biomedical and Health Science, Konkuk University, Chungju, Korea.,Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Korea
| |
Collapse
|
38
|
Li C, Liu H, Yang J, Mu J, Wang R, Zhao X. Effect of soybean milk fermented with Lactobacillus plantarum HFY01 isolated from yak yogurt on weight loss and lipid reduction in mice with obesity induced by a high-fat diet. RSC Adv 2020; 10:34276-34289. [PMID: 35519026 PMCID: PMC9056763 DOI: 10.1039/d0ra06977a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023] Open
Abstract
Soybean milk fermented with Lactobacillus plantarum HFY01 (LP-HFY01) was used for weight and lipid reduction in mice with obesity induced by a high-fat diet. We evaluated the gastrointestinal tolerance in vitro, organ index, body fat rate, pathological changes, serum index, mRNA expression and changes of isoflavones in soybean milk. Results indicated that LP-HFY01 exhibited good tolerance to pH 3.0 artificial gastric juice (69.87 ± 0.04%) and 0.3% bile salt (15.94 ± 0.3%). LP-HFY01-fermented soybean milk reduced the body fat rate and liver index of obese mice (p < 0.05). Organ sections showed that LP-HFY01-fermented soybean milk improved fatty degeneration and liver cell damage caused by a high-fat diet. LP-HFY01-fermented soybean milk inhibited increases in low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), alkaline phosphatase (AKP), and glutamic oxaloacetic transaminase (GOT) and the decrease in high-density lipoprotein cholesterol (HDL-c) in the serum of obese mice, and inhibited CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA expression, as well as activated cuprozinc-superoxide dismutase (SOD1) and lipoprotein lipase (LPL) mRNA expression in the liver and epididymal fat of obese mice (p < 0.05). Daidzin, glycitin, daidzein, glycitein, genistein, and genistin contents in soybean milk were determined before and after fermentation by high-performance liquid chromatography (HPLC); the daidzin and genistin contents in the fermented soybean milk decreased, whereas the daidzein and genistein contents increased significantly. Therefore, the LP-HFY01-fermented soybean milk strongly inhibits obesity induced by a high-fat diet, and shows good potential for utilization.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Huilin Liu
- Department of Clinical Nutrition, Chongqing University Three Gorges Hospital Chongqing 500101 China
| | - Jiao Yang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
39
|
Chlorogenic Acid Potentiates the Anti-Inflammatory Activity of Curcumin in LPS-Stimulated THP-1 Cells. Nutrients 2020; 12:nu12092706. [PMID: 32899726 PMCID: PMC7551420 DOI: 10.3390/nu12092706] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/03/2023] Open
Abstract
The anti-inflammatory effects of curcumin are well documented. However, the bioavailability of curcumin is a major barrier to its biological efficacy. Low-dose combination of complimentary bioactives appears to be an attractive strategy for limiting barriers to efficacy of bioactive compounds. In this study, the anti-inflammatory potential of curcumin in combination with chlorogenic acid (CGA), was investigated using human THP-1 macrophages stimulated with lipopolysaccharide (LPS). Curcumin alone suppressed TNF-α production in a dose-dependent manner with a decrease in cell viability at higher doses. Although treatment with CGA alone had no effect on TNF-α production, it however enhanced cell viability and co-administration with curcumin at a 1:1 ratio caused a synergistic reduction in TNF-α production with no impact on cell viability. Furthermore, an qRT-PCR analysis of NF-κB pathway components and inflammatory biomarkers indicated that CGA alone was not effective in reducing the mRNA expression of any of the tested inflammatory marker genes, except TLR-4. However, co-administration of CGA with curcumin, potentiated the anti-inflammatory effects of curcumin. Curcumin and CGA together reduced the mRNA expression of pro-inflammatory cytokines [TNF-α (~88%) and IL-6 (~99%)], and COX-2 (~92%), possibly by suppression of NF-κB (~78%), IκB-β-kinase (~60%) and TLR-4 receptor (~72%) at the mRNA level. Overall, co-administration with CGA improved the inflammation-lowering effects of curcumin in THP-1 cells.
Collapse
|
40
|
Lu H, Tian Z, Cui Y, Liu Z, Ma X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr Rev Food Sci Food Saf 2020; 19:3130-3158. [PMID: 33337063 DOI: 10.1111/1541-4337.12620] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Chlorogenic acids (CGAs), a group of hydroxycinnamates, are generally abundant in everyday foods and beverages, most prominently in certain coffee drinks. Among them, the chlorogenic acid (CGA), also termed as 5-O-caffeoylquinic acid (5-CQA), is one of the most abundant, highly functional polyphenolic compounds in the human diet. The evidence of its health benefits obtained from clinical studies, as well as basic research, indicates an inverse correlation between 5-CQA consumption and a lower risk of metabolic syndromes and chronic diseases. This review focuses on the beneficial properties for health and mechanisms of action of 5-CQA, starting with its history, isomers, dietary sources, processing effects, preparation methods, pharmacological safety evaluation, and bioavailability. It also provides the possible molecular mechanistic bases to explain the health beneficial effects of 5-CQA including neuroprotective, cardiovascular protective, gastrointestinal protective, renoprotective, hepatoprotective, glucose and lipid metabolism regulatory, and anticarcinogenic effects. The information summarized here could aid in the basic and clinical research on 5-CQA as a natural dietary additive, potential drug candidate, as well as a natural health promoter.
Collapse
Affiliation(s)
- Huijie Lu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Zhimei Tian
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
| | - Yiyan Cui
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zhichang Liu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China
| | - Xianyong Ma
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China.,Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou, China.,Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
41
|
Beneficial Effect of a Fermented Wheat Germ Extract in Intestinal Epithelial Cells in case of Lipopolysaccharide-Evoked Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1482482. [PMID: 32849997 PMCID: PMC7436289 DOI: 10.1155/2020/1482482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
In this study, the protective effect of a fermented wheat germ extract (FWGE) against LPS-induced inflammation and oxidative stress in IPEC-J2 porcine intestinal epithelial cells was studied. Enterocytes were treated with LPS derived from Salmonella enterica ser. Typhimurium and Escherichia coli O55:B5, O111:B4, and O127:B8 strains. Intracellular ROS level and extracellular H2O2 level were followed up by two fluorescent assays (DCFH-DA and Amplex Red). The effect of FWGE on the intestinal barrier integrity was determined by transepithelial electric resistance measurements and using a FD4 fluorescent tracer dye. IL-6 concentration of supernatants was also measured by the ELISA method. Our data revealed that FWGE had a significant lowering effect on the inflammatory response especially related to oxidative stress. Treatment with FWGE (1-2%) significantly decreased the level of intracellular ROS compared to LPS-treated cells. Furthermore, LPS-triggered partial disruption of epithelial integrity was reduced after FWGE application.
Collapse
|
42
|
Hui Q, Ammeter E, Liu S, Yang R, Lu P, Lahaye L, Yang C. Eugenol attenuates inflammatory response and enhances barrier function during lipopolysaccharide-induced inflammation in the porcine intestinal epithelial cells. J Anim Sci 2020; 98:skaa245. [PMID: 32735667 PMCID: PMC7531220 DOI: 10.1093/jas/skaa245] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Eugenol (4-allyl-2-methoxyphenol) is an essential oil component, possessing antimicrobial, anti-inflammatory, and antioxidative properties; however, the effect of eugenol on porcine gut inflammation has not yet been investigated. In this study, an in vitro lipopolysaccharide (LPS)-induced inflammation model in porcine intestinal epithelial cells (IPEC-J2) has been set up. Cells were pretreated with 100 μM (16.42 mg/L) eugenol for 2 h followed by 10 μg/mL LPS stimulation for 6 h. Proinflammatory cytokine secretion; reactive oxygen species; gene expression of proinflammatory cytokines, tight junction proteins, and nutrient transporters; the expression and distribution of zonula occludens-1 (ZO-1); transepithelial electrical resistance (TEER); and cell permeability were measured to investigate the effect of eugenol on inflammatory responses and gut barrier function. The results showed that eugenol pretreatment significantly suppressed the LPS-stimulated interleukin-8 level and the mRNA abundance of tumor necrosis factor-α and restored the LPS-stimulated decrease of the mRNA abundance of tight junction proteins, such as ZO-1 and occludin, and the mRNA abundance of nutrient transporters, such as B0 1 system ASC sodium-dependent neutral amino acid exchanger 2, sodium-dependent glucose transporter 1, excitatory amino acid transporter 1, and peptide transporter 1. In addition, eugenol improved the expression and even redistribution of ZO-1 and tended to increase TEER value and maintained the barrier integrity. In conclusion, a low dose of eugenol attenuated inflammatory responses and enhanced selectively permeable barrier function during LPS-induced inflammation in the IPEC-J2 cell line.
Collapse
Affiliation(s)
- Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Emily Ammeter
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Runqiang Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
43
|
Wieczfinska J, Sitarek P, Kowalczyk T, Pawliczak R. Leonurus sibiricus root extracts decrease airway remodeling markers expression in fibroblasts. Clin Exp Immunol 2020; 202:28-46. [PMID: 32562256 DOI: 10.1111/cei.13481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bronchial asthma is believed to be provoked by the interaction between airway inflammation and remodeling. Airway remodeling is a complex and poorly understood process, and controlling it appears key for halting the progression of asthma and other obstructive lung diseases. Plants synthesize a number of valuable compounds as constitutive products and as secondary metabolites, many of which have curative properties. The aim of this study was to evaluate the anti-remodeling properties of extracts from transformed and transgenic Leonurus sibiricus roots with transformed L. sibiricus roots extract with transcriptional factor AtPAP1 overexpression (AtPAP1). Two fibroblast cell lines, Wistar Institute-38 (WI-38) and human fetal lung fibroblast (HFL1), were incubated with extracts from transformed L. sibiricus roots (TR) and roots with transcriptional factor AtPAP1 over-expression (AtPAP1 TR). Additionally, remodeling conditions were induced in the cultures with rhinovirus 16 (HRV16). The expressions of metalloproteinase 9 (MMP)-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), arginase I and transforming growth factor (TGF)-β were determined by quantitative polymerase chain reaction (qPCR) and immunoblotting methods. AtPAP1 TR decreased arginase I and MMP-9 expression with no effect on TIMP-1 or TGF-β mRNA expression. This extract also inhibited HRV16-induced expression of arginase I, MMP-9 and TGF-β in both cell lines (P < 0·05) Our study shows for the first time to our knowledge, that transformed AtPAP1 TR extract from L. sibiricus root may affect the remodeling process. Its effect can be attributed an increased amount of phenolic acids such as: chlorogenic acid, caffeic acid or ferulic acid and demonstrates the value of biotechnology in medicinal research.
Collapse
Affiliation(s)
- J Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| | - P Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - T Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz, Poland
| | - R Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants (Basel) 2020; 9:antiox9070610. [PMID: 32664392 PMCID: PMC7402165 DOI: 10.3390/antiox9070610] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) tract is crucial for food digestion and nutrient absorption in humans. However, the GI tract is usually challenged with oxidative stress that can be induced by various factors, such as exogenous pathogenic microorganisms and dietary alterations. As a part of gut microbiota, Lactobacillus spp. play an important role in modulating oxidative stress in cells and tissues, especially in the GI tract. Oxidative stress is linked with excessive reactive oxygen species (ROS) that can be formed by a few enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). The redox mechanisms of Lactobacillus spp. may contribute to the downregulation of these ROS-forming enzymes. In addition, nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2) and nuclear factor kappa B (NF-κB) are two common transcription factors, through which Lactobacillus spp. modulate oxidative stress as well. As oxidative stress is closely associated with inflammation and certain diseases, Lactobacillus spp. could potentially be applied for early treatment and amelioration of these diseases, either individually or together with prebiotics. However, further research is required for revealing their mechanisms of action as well as their extensive application in the future.
Collapse
|
45
|
Parohan M, Djalali M, Sarraf P, Yaghoubi S, Seraj A, Foroushani AR, Ranji-Burachaloo S, Javanbakht MH. Effect of probiotic supplementation on migraine prophylaxis: a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2020; 25:511-518. [PMID: 32420827 DOI: 10.1080/1028415x.2020.1764292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The prevalence of migraine is higher in patients with gastrointestinal disorders. Possible underlying mechanisms could be increased intestinal permeability and systemic inflammation. Probiotics may reduce gut permeability as well as inflammation, and therefore may improve the clinical features of migraine. This systematic review and meta-analysis aimed to evaluate the impact of probiotic supplementation on the frequency and severity of migraine attacks.Methods: A systematic review of the literature was conducted using ISI Web of Science, PubMed/Medline, Scopus, Cochrane Library, EMBASE, Google Scholar, Magiran.com and Sid.ir to identify eligible studies published up to October 2019. A meta-analysis of eligible trials was performed using the random-effects model to estimate pooled effect size.Results: Three randomized controlled trials with 179 patients (probiotic group = 94, placebo group = 85) were included. Probiotic supplementation had no significant effect on frequency (weighted mean difference (WMD) = -2.54 attacks/month, 95%CI: -5.31-0.22, p = 0.071) and severity of migraine attacks (WMD = -1.23 visual analog scale (VAS) score, 95%CI = -3.37-0.92, p = 0.262) with significant heterogeneity among the studies (I2 = 98%, p < 0.001).Conclusions: A pooled analysis of available randomized controlled clinical trials showed that probiotic supplementation had no significant effect on the frequency and severity of episodic migraine attacks.
Collapse
Affiliation(s)
- Mohammad Parohan
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Sarraf
- Iranian center of Neurological research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Asal Seraj
- Department of Nursing, Damavand Branch, Islamic Azad University, Damavand, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Ranji-Burachaloo
- Iranian center of Neurological research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Javanbakht
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Kaschubek T, Mayer E, Rzesnik S, Grenier B, Bachinger D, Schieder C, König J, Teichmann K. Effects of phytogenic feed additives on cellular oxidative stress and inflammatory reactions in intestinal porcine epithelial cells1. J Anim Sci 2020; 96:3657-3669. [PMID: 29982751 PMCID: PMC6127757 DOI: 10.1093/jas/sky263] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/05/2018] [Indexed: 11/14/2022] Open
Abstract
Due to increasing concerns about the use of antibiotic growth promoters (AGP) in livestock production and their complete ban in the European Union in 2006, suitable alternatives are urgently needed. Among others, anti-inflammatory activities of AGP are discussed as their putative mode of action. As numerous phytochemicals are known to modulate the cellular antioxidant capacity and immune response, we studied the antioxidative and anti-inflammatory properties of a phytogenic (plant-derived) feed additive (PFA) in intestinal porcine epithelial cells (IPEC-J2). The effects of the PFA were compared with those of selected phytogenic ingredients (grape seed extract [GRS], licorice extract [LIC], menthol [MENT], methyl salicylate [MES], oak bark extract [OAK], oregano essential oil [ORE], and a plant powder mix [PLA]), and with the effects of the AGP tylosin (TYL). Oxidative or inflammatory stress was induced by stimulating IPEC-J2 with hydrogen peroxide (H2O2; 0.5 mM) or tumor necrosis factor alpha (TNF-α; 10 ng/mL), respectively. The antioxidative effects of feed additives were assessed with a reactive oxygen species (ROS)-sensitive probe and by measuring the expression of 6 antioxidative target genes via quantitative real-time PCR (RT-qPCR). Anti-inflammatory potential was analyzed using a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) reporter gene assay. Moreover, the expression levels of 6 NF-κB target genes were measured using RT-qPCR analysis, and the release of IL-6 was analyzed via ELISA. Significant decreases in cellular ROS upon H2O2 treatment were observed for the PFA (P < 0.001), LIC (P < 0.001), ORE (P < 0.05), and GRS (P < 0.01). No significant changes in the expression of antioxidative genes were found. NF-κB activation upon TNF-α treatment was significantly inhibited by the PFA (P < 0.05) and by ORE (P < 0.001). Moreover, the PFA and ORE significantly reduced the gene expression of IL-6 (P < 0.001), IL-8 (P < 0.001), and C-C motif chemokine ligand 2 (CCL2; P < 0.05), as well as the release of IL-6 (P < 0.05). The other phytogenic compounds as well as the AGP TYL did not significantly affect any of the inflammatory parameters. In summary, we revealed the antioxidative properties of the PFA, LIC, ORE, and GRS, as well as anti-inflammatory properties of the PFA and ORE in IPEC-J2, providing a better understanding of the mode of action of this PFA under our experimental conditions.
Collapse
Affiliation(s)
- Theresa Kaschubek
- BIOMIN Research Center, Tulln an der Donau, Austria.,Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Jürgen König
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | | |
Collapse
|
47
|
Han Y, Yoon J, Choi M. Tracing the Anti‐Inflammatory Mechanism/Triggers of
d
‐Allulose: A Profile Study of Microbiome Composition and mRNA Expression in Diet‐Induced Obese Mice. Mol Nutr Food Res 2020; 64:e1900982. [DOI: 10.1002/mnfr.201900982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Youngji Han
- Department of Food Science and NutritionKyungpook National University 1370 San‐Kyuk Dong Puk‐Ku 702‐701 Daegu Republic of Korea
- Center for Food and Nutritional Genomics ResearchKyungpook National University 1370 San‐Kyuk Dong Puk‐Ku 702‐701 Daegu Republic of Korea
| | - Joon Yoon
- Harvard University T. H. Chan School of Public Health 655 Huntington Ave Boston MA 02115 USA
| | - Myung‐Sook Choi
- Department of Food Science and NutritionKyungpook National University 1370 San‐Kyuk Dong Puk‐Ku 702‐701 Daegu Republic of Korea
- Center for Food and Nutritional Genomics ResearchKyungpook National University 1370 San‐Kyuk Dong Puk‐Ku 702‐701 Daegu Republic of Korea
| |
Collapse
|
48
|
Hu P, Zhao F, Wang J, Zhu W. Lactoferrin attenuates lipopolysaccharide-stimulated inflammatory responses and barrier impairment through the modulation of NF-κB/MAPK/Nrf2 pathways in IPEC-J2 cells. Food Funct 2020; 11:8516-8526. [DOI: 10.1039/d0fo01570a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactoferrin attenuated LPS-induced inflammatory responsesviainhibiting NF-κB/MAPK pathways in IPEC-J2 cells.
Collapse
Affiliation(s)
- Ping Hu
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Fangzhou Zhao
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Jing Wang
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health
- Laboratory of Gastrointestinal Microbiology
- National Experimental Teaching Demonstration Center of Animal Science
- College of Animal Science and Technology
| |
Collapse
|
49
|
Cui K, Wang Q, Wang S, Diao Q, Zhang N. The Facilitating Effect of Tartary Buckwheat Flavonoids and Lactobacillus plantarum on the Growth Performance, Nutrient Digestibility, Antioxidant Capacity, and Fecal Microbiota of Weaned Piglets. Animals (Basel) 2019; 9:ani9110986. [PMID: 31752173 PMCID: PMC6912274 DOI: 10.3390/ani9110986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Simple Summary There has been a growing interest in the use of flavonoids and probiotics as alternatives of antibiotics in livestock production and as natural products for human health benefit. The effect of tartary buckwheat flavonoid supplementation in the diet has not been clearly investigated. The supplementation of tartary buckwheat flavonoids or Lactobacillus plantarum improved the growth performance, nutrient digestibility, and antioxidant capacity of weaned piglets. In combination, they exhibited a synergistic effect on nutrient digestibility. Abstract Natural plant extracts and probiotics has been proved as the most preferred and effective alternatives for antibiotics in animal feeding. The current study aimed to investigate the facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and microbiota of weaned piglets. Fifty 35-day-old weaned piglets (7.85 ± 0.67 kg) were randomly divided into five treatments with 10 piglets per treatment. Piglets in the negative control (NC) group were fed a basal diet, and others were fed basal diets supplemented with 40 mg/kg of colistin sulfate (positive control, PC), 109 CFU/kg Lactobacillus plantarum (LP), 40 mg/kg of tartary buckwheat flavonoids (BF), and a combination of 109 CFU/kg Lactobacillus plantarum and 40 mg/kg of tartary buckwheat flavonoids (LB). Supplementation of BF increased the average daily gain of piglets in the BF group (p < 0.05). The nutrient digestibility of piglets in the NC group was lower than that in other groups, while the digestibility of gross energy, dry matter, organic matter, and phosphorus of piglets in the LB group was higher than the other four groups (p < 0.05). Compared with the NC and pC group, supplementation of Lp increased the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-px), and catalase (CAT), while the BF increased the content of IgA and IgM (p < 0.05). Supplementation of colistin sulfate decreased the alpha diversity index, including chao and observed species, while the addition of Lp or combination of Lp and BF increased the abundance of Selenomonas or Mitsuokella in fecal samples, respectively. The results indicated that supplementation of Lactobacillus plantarum can improve the antioxidant capacity, while tartary buckwheat flavones can increase the growth performance and immune ability of weaned piglets. Moreover, in combination, they promote nutrient digestibility.
Collapse
Affiliation(s)
- Kai Cui
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing 100193, China; (K.C.); (Q.W.); (S.W.); (Q.D.)
| | - Qiang Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing 100193, China; (K.C.); (Q.W.); (S.W.); (Q.D.)
- Institute of Animal Husbandry and Veterinary Science of Liangshan, Xichang 615042, China
| | - Shiqin Wang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing 100193, China; (K.C.); (Q.W.); (S.W.); (Q.D.)
| | - Qiyu Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing 100193, China; (K.C.); (Q.W.); (S.W.); (Q.D.)
| | - Naifeng Zhang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, National Engineering Research Center of Biological Feed, Beijing 100193, China; (K.C.); (Q.W.); (S.W.); (Q.D.)
- Correspondence:
| |
Collapse
|
50
|
Wang WW, Jia HJ, Zhang HJ, Wang J, Lv HY, Wu SG, Qi GH. Supplemental Plant Extracts From Flos lonicerae in Combination With Baikal skullcap Attenuate Intestinal Disruption and Modulate Gut Microbiota in Laying Hens Challenged by Salmonella pullorum. Front Microbiol 2019; 10:1681. [PMID: 31396190 PMCID: PMC6668501 DOI: 10.3389/fmicb.2019.01681] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary inclusions of baicalin and chlorogenic acid were beneficial for intestinal health in pigs. Nevertheless, it is unknown whether these plant-derived products had protection for intestine against bacterial challenge in chickens. This study was aimed at evaluating the potential mitigating effects of plant extracts (PE) from Flos lonicerae combined with Baikal skullcap (the active components are chlorogenic acid and baicalin) on intestinal disruption and dysbacteriosis induced by Salmonella pullorum in laying hens. A total of 216 41-week-old layers were randomly divided into 3 groups (6 replicates per group): negative control (NC), S. pullorum-infected positive control (PC), and the S. pullorum-infected group with supplementation of PE at 1000 mg/kg. All birds except those in NC were challenged with S. pullorum at the end of 4 weeks of the experiment. S. pullorum challenge impaired (P < 0.05) the production performance (egg production, feed intake, and feed efficiency) of laying hens, increased (P < 0.05) serum endotoxin content and frequency of Salmonella-positive organs, as well as up-regulated (P < 0.05) ileal expression of pro-inflammatory cytokines including IFNG, TNFA, IL8, and IL1B, whereas PE addition reversed (P < 0.05) these changes and increased (P < 0.05) ileal IL10 expression. Supplemental PE moderated ileal microbiota dysbiosis in challenged birds, characterized by a reduced abundance of Firmicutes along with increased abundances of Bacteroidetes (Bacteroides), Deferribacteres and several butyrate-producers such as Prevotellaceae, Faecalibacterium, Blautia, Butyricicoccus, Lachnoclostridium, and Olsenella, which may assist with energy harvesting and boost anti-inflammatory capacity of host. The decreased abundance of Firmicutes with the increased abundance of Bacteroidetes caused by PE addition had positive correlations with the decreased expression of ileal pro-inflammatory cytokines. The increased abundances of Bacteroidetes (Bacteroides) and Prevotellaceae following PE addition were also positively correlated with the improvement of performance (egg production and feed intake) of laying hens. Collectively, supplemental PE from Flos lonicerae in combination with Baikal skullcap alleviated S. pullorum-induced intestinal disruption and performance impairment in laying hens, which could be at least partially responsible by the modulation of gut microbial composition.
Collapse
Affiliation(s)
- Wei-wei Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-jie Jia
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Shu-geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture and Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|