1
|
Zhao H, Jo C, Hwang J. Exosomal miR-365b-5p derived from keratinocyte promotes melanogenesis by directly targeting GLI2. Arch Dermatol Res 2025; 317:355. [PMID: 39918780 DOI: 10.1007/s00403-025-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025]
Abstract
In previous studies, we analyzed that exosomal microRNA (miRNA) secreted by keratinocytes exposed to Ultraviolet B(UVB) light regulate melanogenesis in melanocytes. Through functional experiments, it was determined that a subgroup of exosomal miRNAs had distinct impacts on melanogenesis. In the current study, we focused on hsa-miR-365b-5p which founded upregulated in UVB-irradiated keratinocyte exosomes and confirmed to exert enhancing effects on melanogenesis in human melanocyte. Hsa-miR-365b-5p is a specific, mature microRNA derived from the precursor hsa-miR-365. We demonstrated that the overexpression of hsa-miR-365b-5p in normal human epidermal melanocytes (NHEM) resulted in an approximate 50% increase in melanin content relative to the control group. Furthermore, treatment with an inhibitor of hsa-miR-365b-5p substantiated its specific regulatory role in melanogenesis, as inhibition resulted in a nearly 90% reduction in melanin production. Notably, hsa-miR-365b-5p upregulates the expression of genes associated with melanogenesis, including MITF, TYR, TRP1, and TRP2. Additionally, we established that GLI Family Zinc Finger 2 (GLI2) functions as a repressor of MITF, with its inhibition via siRNA leading to increased melanogenesis. Moreover, we constructed a luciferase reporter vector containing the 3' UTR of GLI2, confirming that hsa-miR-365b-5p specifically targets GLI2, a known repressor of MITF. These findings elucidate the regulatory pathways governing melanogenesis and underscore the significant role of hsa-miR-365b-5p in this biological process.
Collapse
Affiliation(s)
- HaiRu Zhao
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea
| | - ChanSong Jo
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea
| | - JaeSung Hwang
- Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.
| |
Collapse
|
2
|
Tian X, Wang H, Liu S, Liu W, Zhang K, Gao X, Li Q, Zhao H, Zhang L, Liu P, Liu M, Wang Y, Zhu X, Cui R, Zhou J. Melanocortin 1 receptor mediates melanin production by interacting with the BBSome in primary cilia. PLoS Biol 2024; 22:e3002940. [PMID: 39621784 PMCID: PMC11637432 DOI: 10.1371/journal.pbio.3002940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Production of melanin pigments is a protective mechanism of the skin against ultraviolet (UV)-induced damage and carcinogenesis. However, the molecular basis for melanogenesis is still poorly understood. Herein, we demonstrate a critical interplay between the primary cilium and the melanocortin 1 receptor (MC1R) signaling. Our data show that UV and α-melanocyte-stimulating hormone (α-MSH) trigger cilium formation in human melanocytes and melanoma cells. Deficiency of MC1R or the presence of its red hair color (RHC) variations significantly attenuates the UV/α-MSH-induced ciliogenesis. Further investigation reveals that MC1R enters the cilium upon UV/α-MSH stimulation, which is facilitated by the interaction of MC1R with the BBSome and the palmitoylation of MC1R. MC1R interacts with the BBSome through the second and third intercellular loops, which contain the common RHC variant alleles (R151C and R160W). These RHC variants of MC1R exhibit attenuated ciliary localization, and enforced ciliary localization of these variants elevates melanogenesis. Ciliary MC1R triggers a sustained cAMP signaling and selectively stimulates Sox9, which appears to up-regulate melanogenesis-related genes as the transcriptional cofactor for MITF. These findings reveal a previously unrecognized nexus between MC1R and cilia and suggest an important mechanism for RHC variant-related pigmentary defects.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hanyu Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaiyue Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaohan Gao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Liangran Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Youjun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of the Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Thuy PX, Jang TK, Moon EY. Vinblastine Resistance Is Associated with Nephronophthisis 3-Mediated Primary Cilia via Intraflagellar Transport Protein 88 and Apoptosis-Antagonizing Transcription Factor. Int J Mol Sci 2024; 25:10369. [PMID: 39408701 PMCID: PMC11477320 DOI: 10.3390/ijms251910369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Primary cilia (PC) are microtubule-based organelles that function as cellular antennae to sense and transduce extracellular signals. Nephronophthisis 3 (NPHP3) is localized in the inversin compartment of PC. Mutations in NPHP3 are associated with renal-hepatic-pancreatic dysplasia. In this study, we investigated whether vinblastine (VBL), a microtubule destabilizer, induces anticancer drug resistance through NPHP3-associated PC formation in HeLa human cervical cancer cells. A considerable increase in PC frequency was observed in HeLa cells under serum-deprived (SD) conditions, which led to the inhibition of VBL-induced cell death. VBL-resistant cells were established by repetitive treatments with VBL and showed an increase in PC frequency. NPHP3 expression was also increased by VBL treatment under serum starvation as well as in VBL-resistant cells. NPHP3 expression and PC-associated resistance were positively correlated with apoptosis-antagonizing transcription factor (AATF) and negatively correlated with inhibition of NPHP3. In addition, AATF-mediated NPHP3 expression is associated with PC formation via the regulation of intraflagellar transport protein 88 (IFT88). VBL resistance ability was reduced by treating with ciliobrevin A, a well-known ciliogenesis inhibitor. Collectively, cancer cell survival following VBL treatment is regulated by PC formation via AATF-mediated expression of IFT88 and NPHP3. Our data suggest that the activation of AATF and IFT88 could be a novel regulator to induce anticancer drug resistance through NPHP3-associated PC formation.
Collapse
Affiliation(s)
| | | | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (P.X.T.); (T.-K.J.)
| |
Collapse
|
4
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
5
|
Kim NH, Lee AY. Oxidative Stress Induces Skin Pigmentation in Melasma by Inhibiting Hedgehog Signaling. Antioxidants (Basel) 2023; 12:1969. [PMID: 38001823 PMCID: PMC10669456 DOI: 10.3390/antiox12111969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing evidence that oxidative stress plays a role in melasma and disrupts primary cilia formation. Additionally, primary cilia have been suggested to have an inhibitory role in melanogenesis. This study examined the potential link between oxidative stress, skin hyperpigmentation, and primary cilia. We compared the expression levels of the nuclear factor E2-related factor 2 (NRF2), intraflagellar transport 88 (IFT88), and glioma-associated oncogene homologs (GLIs) in skin samples from patients with melasma, both in affected and unaffected areas. We also explored the roles of NRF2, IFT88, and GLIs in ciliogenesis and pigmentation using cultured adult human keratinocytes, with or without melanocytes. Our findings revealed decreased levels of NRF2, heme oxygenase-1, IFT88, and GLIs in lesional skin from melasma patients. The knockdown of NRF2 resulted in reduced expressions of IFT88 and GLI1, along with fewer ciliated cells. Furthermore, NRF2, IFT88, or GLI1 knockdown led to increased expressions in protease-activated receptor-2 (PAR2), K10, involucrin, tyrosinase, and/or melanin. These effects were reversed by the smoothened agonist 1.1. Calcium also upregulated these proteins, but not NRF2. The upregulation of involucrin and PAR2 after NRF2 knockdown was mitigated with a calcium chelator. In summary, our study suggests that oxidative stress in NRF2-downregulated melasma keratinocytes impedes ciliogenesis and related molecular processes. This inhibition stimulates keratinocyte differentiation, resulting in melanin synthesis and melanosome transfer, ultimately leading to skin hyperpigmentation.
Collapse
Affiliation(s)
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Kelly DE, Ramdas S, Ma R, Rawlings-Goss RA, Grant GR, Ranciaro A, Hirbo JB, Beggs W, Yeager M, Chanock S, Nyambo TB, Omar SA, Woldemeskel D, Belay G, Li H, Brown CD, Tishkoff SA. The genetic and evolutionary basis of gene expression variation in East Africans. Genome Biol 2023; 24:35. [PMID: 36829244 PMCID: PMC9951478 DOI: 10.1186/s13059-023-02874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Mapping of quantitative trait loci (QTL) associated with molecular phenotypes is a powerful approach for identifying the genes and molecular mechanisms underlying human traits and diseases, though most studies have focused on individuals of European descent. While important progress has been made to study a greater diversity of human populations, many groups remain unstudied, particularly among indigenous populations within Africa. To better understand the genetics of gene regulation in East Africans, we perform expression and splicing QTL mapping in whole blood from a cohort of 162 diverse Africans from Ethiopia and Tanzania. We assess replication of these QTLs in cohorts of predominantly European ancestry and identify candidate genes under selection in human populations. RESULTS We find the gene regulatory architecture of African and non-African populations is broadly shared, though there is a considerable amount of variation at individual loci across populations. Comparing our analyses to an equivalently sized cohort of European Americans, we find that QTL mapping in Africans improves the detection of expression QTLs and fine-mapping of causal variation. Integrating our QTL scans with signatures of natural selection, we find several genes related to immunity and metabolism that are highly differentiated between Africans and non-Africans, as well as a gene associated with pigmentation. CONCLUSION Extending QTL mapping studies beyond European ancestry, particularly to diverse indigenous populations, is vital for a complete understanding of the genetic architecture of human traits and can reveal novel functional variation underlying human traits and disease.
Collapse
Affiliation(s)
- Derek E Kelly
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Ramdas
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rong Ma
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Jibril B Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Beggs
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith Yeager
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Institutes of Health, Rockville, MD, USA
| | - Thomas B Nyambo
- Department of Biochemistry, Kampala International University in Tanzania, Dar Es Salaam, Tanzania
| | - Sabah A Omar
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dawit Woldemeskel
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Microbial Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hongzhe Li
- Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Brown
- Genomics and Computational Biology, University of Pennsylvania, Philadelphia, PA, USA
- Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah A Tishkoff
- Genetics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
8
|
Gweon B, Jang TK, Thuy PX, Moon EY. Primary Cilium by Polyinosinic:Polycytidylic Acid Regulates the Regenerative Migration of Beas-2B Bronchial Epithelial Cells. Biomol Ther (Seoul) 2022; 30:170-178. [PMID: 35221299 PMCID: PMC8902458 DOI: 10.4062/biomolther.2022.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.
Collapse
Affiliation(s)
- Bomi Gweon
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Kyu Jang
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Pham Xuan Thuy
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
9
|
Primary Ciliogenesis by 2-Isopropylmalic Acid Prevents PM2.5-Induced Inflammatory Response and MMP-1 Activation in Human Dermal Fibroblasts and a 3-D-Skin Model. Int J Mol Sci 2021; 22:ijms222010941. [PMID: 34681602 PMCID: PMC8535518 DOI: 10.3390/ijms222010941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Particulate matters (PMs) increase oxidative stress and inflammatory response in different tissues. PMs disrupt the formation of primary cilia in various skin cells, including keratinocytes and melanocytes. In this study, we found that 2-isopropylmalic acid (2-IPMA) promoted primary ciliogenesis and restored the PM2.5-induced dysgenesis of primary cilia in dermal fibroblasts. Moreover, 2-IPMA inhibited the generation of excessive reactive oxygen species and the activation of stress kinase in PM2.5-treated dermal fibroblasts. Further, 2-IPMA inhibited the production of pro-inflammatory cytokines, including IL-6 and TNF-α, which were upregulated by PM2.5. However, the inhibition of primary ciliogenesis by IFT88 depletion reversed the downregulated cytokines by 2-IPMA. Moreover, we found that PM2.5 treatment increased the MMP-1 expression in dermal fibroblasts and a human 3-D-skin model. The reduced MMP-1 expression by 2-IPMA was further reversed by IFT88 depletion in PM2.5-treated dermal fibroblasts. These findings suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in dermal fibroblasts.
Collapse
|
10
|
Toriyama M, Ishii KJ. Primary Cilia in the Skin: Functions in Immunity and Therapeutic Potential. Front Cell Dev Biol 2021; 9:621318. [PMID: 33644059 PMCID: PMC7905053 DOI: 10.3389/fcell.2021.621318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan.,Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Kim SH, Paik BR, Lee SH, Lee SM, Kim MJ, Kim EJ, Leow CY, Cho C, Park WS, Suh BF. Clinical brightening efficacy and safety of Melasolv™ (3,4,5-trimethoxy cinnamate thymol ester, TCTE) in Southeast Asian women. J Cosmet Dermatol 2021; 20:2851-2859. [PMID: 33533074 DOI: 10.1111/jocd.13969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Skin darkening because of increased and irregular synthesis of melanin causes melasma, solar lentigo, and freckles. Melasolv™, produced in the early 2000s, shows potent depigmenting effect and has low cytotoxicity. It has been used as a brightening agent in cosmetics for decades. AIMS This study was conducted to investigate whether Melasolv™ is effective for the skin of ASEAN (Southeast Asia) women. METHODS We recruited ASEAN women in Singapore and divided them into two groups (active group vs. placebo group). Melasolv™ and placebo formulations were applied twice a day for 12 weeks. The changes in the pigmented spots were visually evaluated by an expert and assessed using a spectrophotometer and Mexameter at 0, 4, 8, and 12 weeks. RESULTS The visual evaluation revealed significant improvements, in both size and color intensity, in the active group compared with those in the placebo group at 12 weeks. In the spectrophotometric evaluation, the L* value of the pigmented spots in the active group was significantly higher than that in the placebo group at 12 weeks. Similar results were obtained in the evaluation using the Mexameter. After 12 weeks, the melanin index of the pigmented spots significantly decreased, and it was significantly higher than that in the placebo group. There was no significant change in the erythema index. In the image analysis, there were no significant differences in skin color brightness and evenness in the active group compared with those in the placebo group. CONCLUSION Melasolv™ can be effective used for skin brightening.
Collapse
Affiliation(s)
- Seung Hun Kim
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Byung Ryol Paik
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Sung Hoon Lee
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - So Mi Lee
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Mi Jin Kim
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Eun Joo Kim
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Chin Yong Leow
- Institut d'Expertise Clinique (IEC) Singapore, Singapore City, Singapore
| | - Changhui Cho
- Clinical Research Center, Institut d'Expertise Clinique (IEC) Korea, Suwon-si, Gyeonggi-do, Korea
| | - Won-Seok Park
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| | - Byung-Fhy Suh
- AMOREPACIFIC Research and Development Center, Gyeonggi-do, Korea
| |
Collapse
|
12
|
Lee JW, Thuy PX, Han HK, Moon EY. Di-(2-ethylhexyl) phthalate-induced tumor growth is regulated by primary cilium formation via the axis of H 2O 2 production-thymosin beta-4 gene expression. Int J Med Sci 2021; 18:1247-1258. [PMID: 33526986 PMCID: PMC7847613 DOI: 10.7150/ijms.53595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) that is one of the most commonly used phthalates in manufacturing plastic wares regulates tumorigenesis. Thymosin beta-4 (TB4), an actin-sequestering protein, has been reported as a novel regulator to form primary cilia that are antenna-like organelles playing a role in various physiological homeostasis and pathological development including tumorigenesis. Here, we investigated whether DEHP affects tumor growth via primary cilium (PC) formation via the axis of TB4 gene expression and the production of reactive oxygen species (ROS). Tumor growth was increased by DEHP treatment that enhanced TB4 expression, PC formation and ROS production. The number of cells with primary cilia was enhanced time-dependently higher in HeLa cells incubated in the culture medium with 0.1% fetal bovine serum (FBS). The number of cells with primary cilia was decreased by the inhibition of TB4 expression. The incubation of cells with 0.1% FBS enhanced ROS production and the transcriptional activity of TB4 that was reduced by ciliobrevin A (CilioA), the inhibitor of ciliogenesis. ROS production was decreased by catalase treatment but not by mito-TEMPO, which affected to PC formation with the same trend. H2O2 production was reduced by siRNA-based inhibition of TB4 expression. H2O2 also increased the number of ciliated cells, which was reduced by siRNA-TB4 or the co-incubation with CilioA. Tumor cell viability was maintained by ciliogenesis, which was correlated with the changes of intracellular ATP amount rather than a simple mitochondrial enzyme activity. TB4 overexpression enhanced PC formation and DEHP-induced tumor growth. Taken together, data demonstrate that DEHP-induced tumor growth might be controlled by PC formation via TB4-H2O2 axis. Therefore, it suggests that TB4 could be a novel bio-marker to expect the risk of DEHP on tumor growth.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Pham Xuan Thuy
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Hae-Kyoung Han
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
13
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Kang MC, Lee JW, Lee TH, Subedi L, Wahedi HM, Do SG, Shin E, Moon EY, Kim SY. UP256 Inhibits Hyperpigmentation by Tyrosinase Expression/Dendrite Formation via Rho-Dependent Signaling and by Primary Cilium Formation in Melanocytes. Int J Mol Sci 2020; 21:E5341. [PMID: 32731326 PMCID: PMC7432859 DOI: 10.3390/ijms21155341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022] Open
Abstract
Skin hyperpigmentation is generally characterized by increased synthesis and deposition of melanin in the skin. UP256, containing bakuchiol, is a well-known medication for acne vulgaris. Acne sometimes leaves dark spots on the skin, and we hypothesized that UP256 may be effective against hyperpigmentation-associated diseases. UP256 was treated for anti-melanogenesis and melanocyte dendrite formation in cultured normal human epidermal melanocytes as well as in the reconstituted skin and zebrafish models. Western blot analysis and glutathione S-transferase (GST)-pull down assays were used to evaluate the expression and interaction of enzymes related in melanin synthesis and transportation. The cellular tyrosinase activity and melanin content assay revealed that UP256 decreased melanin synthesis by regulating the expression of proteins related on melanogenesis including tyrosinase, TRP-1 and -2, and SOX9. UP256 also decreased dendrite formation in melanocytes via regulating the Rac/Cdc42/α-PAK signaling proteins, without cytotoxic effects. UP256 also inhibited ciliogenesis-dependent melanogenesis in normal human epidermal melanocytes. Furthermore, UP256 suppressed melanin contents in the zebrafish and the 3D human skin tissue model. All things taken together, UP256 inhibits melanin synthesis, dendrite formation, and primary cilium formation leading to the inhibition of melanogenesis.
Collapse
Affiliation(s)
- Min Cheol Kang
- College of Pharmacy, Gachon University 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (L.S.)
| | - Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Taek Hwan Lee
- College of Pharmacy, Yonsei University, Songdo-dong, Yeonsu-gu, Incheon 21936, Korea;
| | - Lalita Subedi
- College of Pharmacy, Gachon University 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (L.S.)
| | - Hussain M. Wahedi
- Department of Biological Sciences, National University of Medical Sciences, Mall Road, Rawalpindi 46000, Pakistan;
| | - Seon-Gil Do
- Wellness R&D Center, Univera, Inc., Seoul 04782, Korea; (S.-G.D.); (E.S.)
| | - Eunju Shin
- Wellness R&D Center, Univera, Inc., Seoul 04782, Korea; (S.-G.D.); (E.S.)
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (L.S.)
- Gachon Institute of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
15
|
Dijkhoff IM, Drasler B, Karakocak BB, Petri-Fink A, Valacchi G, Eeman M, Rothen-Rutishauser B. Impact of airborne particulate matter on skin: a systematic review from epidemiology to in vitro studies. Part Fibre Toxicol 2020; 17:35. [PMID: 32711561 PMCID: PMC7382801 DOI: 10.1186/s12989-020-00366-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Air pollution is killing close to 5 million people a year, and harming billions more. Air pollution levels remain extremely high in many parts of the world, and air pollution-associated premature deaths have been reported for urbanized areas, particularly linked to the presence of airborne nano-sized and ultrafine particles. MAIN TEXT To date, most of the research studies did focus on the adverse effects of air pollution on the human cardiovascular and respiratory systems. Although the skin is in direct contact with air pollutants, their damaging effects on the skin are still under investigation. Epidemiological data suggested a correlation between exposure to air pollutants and aggravation of symptoms of chronic immunological skin diseases. In this study, a systematic literature review was conducted to understand the current knowledge on the effects of airborne particulate matter on human skin. It aims at providing a deeper understanding of the interactions between air pollutants and skin to further assess their potential risks for human health. CONCLUSION Particulate matter was shown to induce a skin barrier dysfunction and provoke the formation of reactive oxygen species through direct and indirect mechanisms, leading to oxidative stress and induced activation of the inflammatory cascade in human skin. Moreover, a positive correlation was reported between extrinsic aging and atopic eczema relative risk with increasing particulate matter exposure.
Collapse
Affiliation(s)
- Irini M Dijkhoff
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Bedia Begum Karakocak
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
- Department of Animal Sciences, PHHI NCRC, North Carolina State University, Kannapolis, NC, USA
| | | | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
16
|
Lee JW, Kim HS, Moon EY. Thymosin β-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep 2019; 9:6849. [PMID: 31048733 PMCID: PMC6497666 DOI: 10.1038/s41598-019-43235-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/10/2019] [Indexed: 11/09/2022] Open
Abstract
Thymosinβ-4(Tβ4) is an actin-sequestering protein involved in tumor malignancy. Primary cilia, microtubule-based organelles, are present in most eukaryotic cells, which might be related to tumor cell transformation. Here, we investigated whether ciliogenesis is affected by Tβ4 in HeLa human cervical cancer cells. The inhibition of Tβ4 attenuated primary cilia formation. The frequency of cilia was increased by Tβ4 overexpression. When yeast two-hybrid assay was performed by using Tβ4 as a bait, we rescued nephronophthisis 3(NPHP3), one of the components of primary cilia. Interaction of Tβ4 with NPHP3 in mammalian cells was confirmed by GST-pulldown assay. Their intracellular co-localization was observed by immunofluorescence staining at peripheral surface of cells. In addition, the number of ciliated cells was reduced by the inhibition of NPHP3. Moreover, NPHP3 expression was decreased by the inhibition of Tβ4 but it was increased by Tβ4 overexpression. Taken together, the results demonstrate that primary cilia formation could be regulated by Tβ4 through its interaction with NPHP3 and/or the control of NPHP3 expression. It suggests that Tβ4 is a novel regulator for primary cilia formation by NPHP3. It also suggests that tumorigenesis could be associated with inappropriate regulation of Tβ4 and/or NPHP3 expression to maintain primary cilia formation normally.
Collapse
Affiliation(s)
- Jae-Wook Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hong Sug Kim
- Macrogen Inc., 254, Beotkkot-ro, Geumcheon-gu, Seoul, 08511, Republic of Korea
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
17
|
Bae JE, Choi H, Shin DW, Na HW, Park NY, Kim JB, Jo DS, Cho MJ, Lyu JH, Chang JH, Lee EH, Lee TR, Kim HJ, Cho DH. Fine particulate matter (PM2.5) inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and skin keratinocytes. Sci Rep 2019; 9:3994. [PMID: 30850686 PMCID: PMC6408442 DOI: 10.1038/s41598-019-40670-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 01/27/2023] Open
Abstract
Exposure to fine particulate matter (PM) with diameter <2.5 µm (PM2.5) causes epithelium injury and endothelial dysfunction. Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses and have roles in physiology. To date, there have been no studies investigating whether PM2.5 affects primary cilia in skin. We addressed this in the present study using normal human epidermal keratinocytes (NHEKs) and retinal pigment epithelium (RPE) cells. We found that formation of primary cilium is increased in differentiated NHEKs. However, treatment with PM2.5 blocked increased ciliogenesis in NHEKs and RPE cells. Furthermore, PM2.5 transcriptionally upregulated small proline rich protein 3 (SPRR3) expression by activating c-Jun, and ectopic expression of SPRR3 inhibits suppressed the ciliogenesis. Accordingly, treatment with c-Jun activator (anisomycin) induced SPRR3 expression, whereas the inhibitor (SP600125) recovered the ciliated cells and cilium length in PM2.5-treated cells. Moreover, c-Jun inhibitor suppressed upregulation of SPRR3 in PM2.5-treated cells. Taken together, our finding suggested that PM2.5 inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and keratinocytes.
Collapse
Affiliation(s)
- Ji-Eun Bae
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Hyunjung Choi
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Dong Woon Shin
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Hye-Won Na
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Na Yeon Park
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Doo Sin Jo
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Min Ji Cho
- Department of Genetic Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jung Ho Lyu
- Department of Genetic Engineering, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, South Korea
| | - Eunjoo H Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Tae Ryong Lee
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea
| | - Hyoung-June Kim
- R&D Unit, AmorePacific Corporation, Yongin, Gyeonggi-do, 17074, Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
18
|
Haws RM, McIntee TJ, Green CB. Cutaneous findings in Bardet‐Biedl syndrome. Int J Dermatol 2019; 58:1160-1164. [DOI: 10.1111/ijd.14412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
|
19
|
Chou FS, Li R, Wang PS. Molecular components and polarity of radial glial cells during cerebral cortex development. Cell Mol Life Sci 2018; 75:1027-1041. [PMID: 29018869 PMCID: PMC11105283 DOI: 10.1007/s00018-017-2680-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Originating from ectodermal epithelium, radial glial cells (RGCs) retain apico-basolateral polarity and comprise a pseudostratified epithelial layer in the developing cerebral cortex. The apical endfeet of the RGCs faces the fluid-filled ventricles, while the basal processes extend across the entire cortical span towards the pial surface. RGC functions are largely dependent on this polarized structure and the molecular components that define it. In this review, we will dissect existing molecular evidence on RGC polarity establishment and during cerebral cortex development and provide our perspective on the remaining key questions.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
- Division of Neonatology, Children's Mercy-Kansas City, Kansas City, MO, USA
| | - Rong Li
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Shan Wang
- Department of Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
20
|
Mamat N, Dou J, Lu X, Eblimit A, Haji Akber A. Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:800-807. [PMID: 28910976 DOI: 10.1093/abbs/gmx072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/07/2023] Open
Abstract
Isochlorogenic acid A, also called 3,5-dicaffeoylquinic acid (3,5-diCQA), is a widespread phenolic compound in the plant. Recent studies have shown that it has antioxidant and anti-inflammatory activity. In addition, oxidative stress and inflammation induced by solar ultraviolet radiation is a very significant reason for skin depigmentation. Therefore, in this study, we evaluated the effect of 3,5-diCQA on B16 cells and explored its molecular mechanism. Results showed that 3,5-diCQA upregulated intracellular melanin production in a time- and dose-dependent manner. Tyrosinase (TYR) activity was also increased after treatment with 3,5-diCQA in a dose-dependent manner. Expressions of TYR, TYR-related protein1, TYR-related protein2, and microphthalmia-associated transcription factor were upregulated in a dose-dependent manner after 48 h of treatment with 3,5-diCQA. Results also showed that 3,5-diCQA promoted the phosphorylation of Akt at Thr308 and glycogen synthase kinase-3β at Ser 9. Moreover, 3,5-diCQA increased the content of β-catenin in cell cytoplasm and nucleus by reducing the content of phosphorylated β-catenin (p-β-catenin). All these results suggest that 3,5-diCQA may mediate the acceleration of melanin synthesis by the β-catenin signal pathway.
Collapse
Affiliation(s)
- Nuramina Mamat
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Dou
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| | - Xueying Lu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aisa Haji Akber
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| |
Collapse
|