1
|
Sahoo P, Sarkar D, Sharma S, Verma A, Naik SK, Prashar V, Parkash J, Singh SK. Knockdown of type 2 orexin receptor in adult mouse testis potentiates testosterone production and germ cell proliferation. Mol Cell Endocrinol 2024; 592:112312. [PMID: 38866320 DOI: 10.1016/j.mce.2024.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Orexins (OXs) are neuropeptides which regulate various physiological processes. OXs exist in two different forms, mainly orexin A (OXA) and orexin B (OXB) and their effects are mediated via OX1R and OX2R. Presence of OXB and OX2R in mouse testis is also reported. However, the role of OXB/OX2R in the male gonad remains unexplored. Herein we investigated the role of OXB/OX2R system in testicular physiology under in vivo and ex vivo conditions. Adult mice were given a single dose of bilateral intratesticular injection of siRNA targeting OX2R and were sacrificed 96 h post-injection. OX2R-knockdown potentiated serum and intratesticular testosterone levels with up-regulation in the expressions of major steroidogenic proteins. Germ cell proliferation also increased in siRNA-treated mice. Results of the ex vivo experiment also supported the findings of the in vivo study. In conclusion, OX2R may regulate testosterone production and thereby control the fine-tuning between steroidogenesis and germ cell dynamics.
Collapse
Affiliation(s)
- Pratikshya Sahoo
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Debarshi Sarkar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India.
| | - Shubhangi Sharma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Arpit Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Suraj Kumar Naik
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Vikash Prashar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, 151401, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
2
|
Xie Z, Jiang J, Li T, Xu X, Wu L, Zhang Y, Chen M, Sun Y. Maternal exposure to Di-n-butyl phthalate (DBP) inhibit orexin receptor 1 (OX1R) expression to prevent Sertoli cells proliferation through the AKT signaling pathway. Toxicol Res (Camb) 2024; 13:tfae140. [PMID: 39238804 PMCID: PMC11371544 DOI: 10.1093/toxres/tfae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Studies have demonstrated that Sertoli cells are the direct target of Dibutyl phthalate (DBP). However, the role of neurotransmitter receptors is not elucidated. METHODS Based on our previous studies, maternal Sprague-Dawley (SD) rats in Gestation Day (GD) 14-18 and TM4 cells exposure to 750 mg/kg/day and 100 μM DBP were regarded as treated groups. Firstly, qRT-PCR array was used to determine the different expression of neurotransmitter receptors. We examined the OX1R expression on Rats in Control and DBP groups by immunohistochemistry. Real-time PCR and Western Blot were used to detect the protein and mRNA expression levels of OX1R in vivo and in vitro. The potential downstream signaling pathways were explored by analyzing the GSE99690 cohort. In addition, we extracted Primary Sertoli Cells (PSCs) from the testis of control group. The apoptosis-related proteins, AKT signaling pathway-related proteins and mRNA expressions were detected by Western Blot and Real-time PCR in PSCs. The validity of PSCs was measured by CCK-8 assay and flow cytometric analysis was used to demonstrate the apoptotic rates of PSCs after DBP exposure. RESULTS The Orexin receptor 1 (OX1R) was screened out by qRT-PCR array. Our results showed that DBP could significantly suppress the OX1R expression of Sertoli cells in vivo and in vitro. Functional analysis showed the AKT signaling pathway was mediated by OX1R. The highly expressed apoptosis level and impaired cell activity were observed in PSCs, which can be reversed by Orexin A. Meanwhile, the p-AKT signaling pathway were hindered after DBP exposure while rescued in DBP + Orexin-A group. CONCLUSIONS DBP can induce Sertoli cell apoptosis through its toxicological effect by suppressing OX1R and p-AKT expression, which provide a novel insight on the role of neurotransmitter receptors.
Collapse
Affiliation(s)
- Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Xinyu Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Yongqing Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| | - Min Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, NO. 160 Pu Jian Road, Shanghai 200127, China
| | - Yang Sun
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 100 Hai Ning Road, Shanghai 200080, China
| |
Collapse
|
3
|
Blais A, Denis I, Andriamihaja M, Gratio V, Champeil-Potokar G, Laouirem S, Chassac A, Couvelard A, Paradis V, Voisin T, Davila AM, Couvineau A. Orexins mitigate obesity-associated dysfunctions in mice. Obesity (Silver Spring) 2024; 32:1897-1909. [PMID: 39315414 DOI: 10.1002/oby.24120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE Obesity is a chronic disease that affects more than 400 million adults with severe comorbidities. The search for new treatments to reduce its negative consequences is necessary. Orexins are hypothalamic neuropeptides involved in various physiological processes related to obesity. The aim of this study was to investigate the consequences of chronic orexin-A treatment in mouse models. METHODS Female wild-type C57BL/6 mice that were obesity-prone or obesity-resistant and mice that were deficient for orexin receptors were fed with a high-fat diet. Glucose tolerance, indirect calorimetry, expression of brain neuropeptides and receptors, microglial activation, and microbiota were determined to evaluate the role of orexins on metabolic flexibility. RESULTS Orexin-A reduces weight gain in obesity-prone mice. This reduction is associated with a decrease in body fat, food intake, steatosis, and insulin resistance, as well as alterations of intestinal microbiota composition. A decreased expression of orexin receptors and neuropeptides involved in food intake was also observed in the hypothalamus. CONCLUSIONS Our data support the notion that orexin receptor signaling is involved in different aspects of energy metabolism and can mitigate several dysfunctions associated with obesity, suggesting that orexin receptors can represent new targets for obesity treatment.
Collapse
Affiliation(s)
- Anne Blais
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, Palaiseau, France
| | - Isabelle Denis
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, Palaiseau, France
| | | | - Valérie Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | | | - Samira Laouirem
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | - Anais Chassac
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | - Anne Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | - Valérie Paradis
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| | | | - Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Song X, Xu W, Li Z, Zhang X, Liu C, Han K, Chen L, Shi Y, Xu C, Han D, Luo R, Cao Y, Li Q, Yang H, Lu Q, Qin J, Wang X, Hu C, Li X. Peripheral 5-HT Mediates Gonadotropin-Inhibitory Hormone-Induced Feeding Behavior and Energy Metabolism Disorder in Chickens via the 5-HT2C Receptor. Neuroendocrinology 2024; 114:749-774. [PMID: 38718758 DOI: 10.1159/000539238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/11/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.
Collapse
Affiliation(s)
- Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Wenhao Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Zixin Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chengcheng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Kaiou Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Lei Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Changlin Xu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Dongyang Han
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Rongrong Luo
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Yajie Cao
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qingwen Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Huihua Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Qiucheng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Jin Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| |
Collapse
|
5
|
ANAEIGOUDARI A, SEYEDI F, KOOSHKI R, PORAN M, ZAMYAD M, ABBASNEJAD M. Methyl Jasmonate Modulates Feeding Behaviors and Hypothalamic Expression of the Orexin 1 Receptor in Rats. Turk J Pharm Sci 2024; 20:374-379. [PMID: 38254344 PMCID: PMC10803927 DOI: 10.4274/tjps.galenos.2023.63833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Objectives Active plant ingredients have been successfully used in modern medicine to control appetite and energy hemostasis. This study was designed to evaluate the efficacy of the phytohormone methyl jasmonate (MJ) on food-related behaviors in rats. Materials and Methods Adult male Wistar rats were randomly divided into different groups (7 rats) and infused intracerebroventricularly (i.c.v.) with MJ vehicle (DMSO) or MJ (2.5, 5 and 10 μg/rat). Then, the individual rats were placed in an automated open field-like apparatus to assess a 12-h food-related activity in light and dark times. After behavioral tests, immunofluorescence staining of the orexin 1 receptor (Orx1R) was studied in the hypothalamus of rats. Results MJ (2.5, 5, and 10 μg/rat) administration significantly decreased food intake in the light and dark phases compared with the control group. Moreover, all the MJ-treated groups exhibited a decrease in visits to food containers at the light and dark times (p < 0.001). In addition, rats infused with MJ at 5 μg and 10 μg spent less time in the ports of food containers in the light and dark phases in comparison with control rats. Time in zone-related to food and locomotor activity was significantly decreased in the MJ (5 μg) groups during the light time and in all MJ-injected groups in the dark time. Moreover, hypothalamic expression of Orx1R in rats treated with MJ (5 μg) was significantly lower as compared to the control group. Conclusion Overall, the results indicated the potential of MJ to modulate feeding-related behavior and Orx1R expression in the hypothalamus of rats.
Collapse
Affiliation(s)
- Akbar ANAEIGOUDARI
- Jiroft University of Medical Sciences School, of Medicine, Department of Physiology, Jiroft, Iran
| | - Fatemeh SEYEDI
- Jiroft University of Medical Sciences School, of Medicine, Department of Anatomy, Jiroft, Iran
| | - Razieh KOOSHKI
- Lorestan University Faculty of Sciences, Department of Biology, Khorramabad, Iran
| | - Mohadeseh PORAN
- Shahid Bahonar University of Kerman Faculty, of Sciences, Department of Biology, Kerman, Iran
| | - Mahnaz ZAMYAD
- Shahid Bahonar University of Kerman Faculty, of Sciences, Department of Biology, Kerman, Iran
| | - Mehdi ABBASNEJAD
- Shahid Bahonar University of Kerman Faculty, of Sciences, Department of Biology, Kerman, Iran
| |
Collapse
|
6
|
Blais A, Lan A, Blachier F, Benamouzig R, Jouet P, Couvineau A. Efficiency of Orexin-A for Inflammatory Flare and Mucosal Healing in Experimental Colitis: Comparison with the Anti-TNF Alpha Infliximab. Int J Mol Sci 2023; 24:9554. [PMID: 37298505 PMCID: PMC10253642 DOI: 10.3390/ijms24119554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Inflammatory bowel diseases are chronic inflammation of the intestinal mucosa characterized by relapsing-remitting cycle periods of variable duration. Infliximab (IFX) was the first monoclonal antibody used for the treatment of Crohn's disease and ulcerative colitis (UC). High variability between treated patients and loss of IFX efficiency over time support the further development of drug therapy. An innovative approach has been suggested based on the presence of orexin receptor (OX1R) in the inflamed human epithelium of UC patients. In that context, the aim of this study was to compare, in a mouse model of chemically induced colitis, the efficacy of IFX compared to the hypothalamic peptide orexin-A (OxA). C57BL/6 mice received 3.5% dextran sodium sulfate (DSS) in drinking water for 5 days. Since the inflammatory flare was maximal at day 7, IFX or OxA was administered based on a curative perspective at that time for 4 days using intraperitoneal injection. Treatment with OxA promoted mucosal healing and decreased colonic myeloperoxidase activity, circulating concentrations of lipopolysaccharide-binding protein, IL-6 and tumor necrosis factor alpha (TNFα) and decreased expression of genes encoding cytokines in colonic tissues with better efficacy than IFX allowing for more rapid re-epithelization. This study demonstrates the comparable anti-inflammatory properties of OxA and IFX and shows that OxA is efficient in promoting mucosal healing, suggesting that OxA treatment is a promising new biotherapy.
Collapse
Affiliation(s)
- Anne Blais
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France; (A.L.); (F.B.); (R.B.)
| | - Annaïg Lan
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France; (A.L.); (F.B.); (R.B.)
| | - François Blachier
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France; (A.L.); (F.B.); (R.B.)
| | - Robert Benamouzig
- UMR-PNCA, Université Paris-Saclay, AgroParisTech, INRAE, 91120 Palaiseau, France; (A.L.); (F.B.); (R.B.)
- Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France;
| | - Pauline Jouet
- Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, 93000 Bobigny, France;
| | - Alain Couvineau
- INSERM UMR 1149/Centre de Recherche sur l’Inflammation (CRI), Faculté de Médecine X. Bichat, Université Paris Cité, 75018 Paris, France
| |
Collapse
|
7
|
Protective Effects of Orexin A in a Murine Model of Cisplatin-Induced Acute Kidney Injury. J Clin Med 2022; 11:jcm11237196. [PMID: 36498769 PMCID: PMC9740499 DOI: 10.3390/jcm11237196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent widely used in the treatment of various cancers, but its application is often limited due to complications such as acute kidney injury (AKI). Orexins are hypothalamic neuropeptides that modulate the sleep-wake cycle, neuroendocrine function, and the autonomic nervous system. Emerging evidence suggests that orexin A (OXA) has anti-inflammatory and neuroprotective effects in animal models of neuroinflammatory diseases of the central nervous system. However, the effect of OXA on kidney diseases has not been examined. Here, we investigated whether OXA has a protective effect in a murine model of cisplatin-induced AKI. Intraperitoneal administration of OXA ameliorated renal dysfunction, and histological abnormalities in mice injected with cisplatin. OXA inhibited cisplatin-induced oxidative stress through the modulation of prooxidant and antioxidant enzymes. This peptide reduced apoptotic cell death by inhibiting the p53-mediated pathway in mice injected with cisplatin. OXA also alleviated cisplatin-induced cytokine production and macrophage infiltration into injured kidneys. Taken together, these results showed that OXA ameliorates cisplatin-induced AKI via antioxidant, anti-apoptotic, and anti-inflammatory actions. This peptide could be a potential therapeutic agent for cisplatin-induced AKI.
Collapse
|
8
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Krishnan GP, Keim NL, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv Nutr 2022; 13:792-820. [PMID: 35191467 PMCID: PMC9156388 DOI: 10.1093/advances/nmac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak. After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing these aspects are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
9
|
Maudsley S, Leysen H, van Gastel J, Martin B. Systems Pharmacology: Enabling Multidimensional Therapeutics. COMPREHENSIVE PHARMACOLOGY 2022:725-769. [DOI: 10.1016/b978-0-12-820472-6.00017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Yang D, Hou X, Yang G, Li M, Zhang J, Han M, Zhang Y, Liu Y. Effects of the POMC System on Glucose Homeostasis and Potential Therapeutic Targets for Obesity and Diabetes. Diabetes Metab Syndr Obes 2022; 15:2939-2950. [PMID: 36186941 PMCID: PMC9521683 DOI: 10.2147/dmso.s380577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The hypothalamus is indispensable in energy regulation and glucose homeostasis. Previous studies have shown that pro-opiomelanocortin neurons receive both central neuronal signals, such as α-melanocyte-stimulating hormone, β-endorphin, and adrenocorticotropic hormone, as well as sense peripheral signals such as leptin, insulin, adiponectin, glucagon-like peptide-1, and glucagon-like peptide-2, affecting glucose metabolism through their corresponding receptors and related signaling pathways. Abnormalities in these processes can lead to obesity, type 2 diabetes, and other metabolic diseases. However, the mechanisms by which these signal molecules fulfill their role remain unclear. Consequently, in this review, we explored the mechanisms of these hormones and signals on obesity and diabetes to suggest potential therapeutic targets for obesity-related metabolic diseases. Multi-drug combination therapy for obesity and diabetes is becoming a trend and requires further research to help patients to better control their blood glucose and improve their prognosis.
Collapse
Affiliation(s)
- Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Minmin Han
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Yi Zhang, Department of Pharmacology, Shanxi Medical University, Taiyuan, People’s Republic of China, Email
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Yunfeng Liu, Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China, Tel +86 18703416196, Email
| |
Collapse
|
11
|
Marcos P, Coveñas R. Involvement of the Orexinergic System in Feeding. APPLIED SCIENCES 2021; 12:86. [DOI: 10.3390/app12010086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
To know the processes involved in feeding, the dysregulation of hypothalamic neuropeptides promoting anorexigenic/orexigenic mechanisms must be investigated. Many neuropeptides are involved in this behavior and in overweight/obesity. Current pharmacological strategies for the treatment of obesity are unfortunately not very effective and, hence, new therapeutic strategies must be investigated and developed. Due to the crucial role played by orexins in feeding behavior, the aim of this review is to update the involvement of the orexinergic system in this behavior. The studies performed in experimental animal models and humans and the relationships between the orexinergic system and other substances are mentioned and discussed. Promising research lines on the orexinergic system are highlighted (signaling pathways, heterogeneity of the hypothalamic orexinergic neurons, receptor-receptor interaction, and sex differences). Each of the orexin 1 and 2 receptors plays a unique role in energy metabolism, exerting a differential function in obesity. Additional preclinical/clinical studies must be carried out to demonstrate the beneficial effects mediated by orexin receptor antagonists. Because therapies applied are in general ineffective when they are directed against a single target, the best option for successful anti-obesity treatments is the development of combination therapies as well as the development of new and more specific orexin receptor antagonists.
Collapse
Affiliation(s)
- Pilar Marcos
- CRIB (Regional Centre of Biomedical Research), Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, c/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Couvineau A, Voisin T, Nicole P, Gratio V, Blais A. Orexins: A promising target to digestive cancers, inflammation, obesity and metabolism dysfunctions. World J Gastroenterol 2021; 27:7582-7596. [PMID: 34908800 PMCID: PMC8641057 DOI: 10.3748/wjg.v27.i44.7582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/22/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hypothalamic neuropeptides named hypocretin/orexins which were identified in 1998 regulate critical functions such as wakefulness in the central nervous system. These past 20 years had revealed that orexins/receptors system was also present in the peripheral nervous system where they participated to the regulation of multiple functions including blood pressure regulation, intestinal motility, hormone secretion, lipolyze and reproduction functions. Associated to these peripheral functions, it was found that orexins and their receptors were involved in various diseases such as acute/chronic inflammation, metabolic syndrome and cancers. The present review suggests that orexins or the orexin neural circuitry represent potential therapeutic targets for the treatment of multiple pathologies related to inflammation including intestinal bowel disease, multiple sclerosis and septic shock, obesity and digestive cancers.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Thierry Voisin
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Pascal Nicole
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Valerie Gratio
- INSERM UMR1149/Inflammation Research Center, Team “From inflammation to cancer in digestive diseases” labeled by “la Ligue Nationale contre le Cancer”, University of Paris, DHU UNITY, Paris 75018, France
| | - Anne Blais
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris 75005, France
| |
Collapse
|
13
|
Li S, Kim Y, Chen JDZ, Madhoun MF. Intestinal Electrical Stimulation Alters Hypothalamic Expression of Oxytocin and Orexin and Ameliorates Diet-Induced Obesity in Rats. Obes Surg 2021; 31:1664-1672. [PMID: 33392995 PMCID: PMC10433780 DOI: 10.1007/s11695-020-05177-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Intestinal electrical stimulation (IES) has been proposed as a potential treatment for obesity. The aim of this study was to explore the central mechanism underlying the reduction of food intake and body weight by IES by studying the expression of anorexigenic- and orexigenic-peptide-containing neurons in the hypothalamus. MATERIALS AND METHODS Diet-induced obese (DIO) rats were divided into three groups to receive sham, IES, and pair-feeding for 4 weeks. Food intake was measured automatically and presented as daily and body weight measured weekly. The expressions of oxytocin, an anorexigenic neuropeptide, in the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nuclei of the hypothalamus (SON) and orexin-A, an orexigenic neuropeptide, in the lateral hypothalamic area (LHA) were studied using immunohistochemistry. RESULTS Compared with sham, IES reduced daily food intake by 28.3% at week 1, 35.6% at week 2, 15.6% at week 3, and 27.1% at week 4. Consistently, IES reduced body weight by 6.3%, compared with a weight gain of 7.2% in sham, and a slight weight loss of 0.5% in pair-feeding. Compared with sham, IES increased the expression of oxytocin-immunoreactive neurons in PVN and SON. Compared with sham, IES decreased the expression of orexin-immunoreactive neurons in LHA. Rats with pair-feeding also showed a relative decease in weight without any changes in the central hormones. CONCLUSION IES reduces food intake and body weight and improves glucose tolerance and insulin sensitivity in DIO rats. Its central mechanisms involve enhancement of anorexigenic peptides and suppression of orexigenic peptides in the hypothalamus.
Collapse
Affiliation(s)
- Shiying Li
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Yeram Kim
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad F Madhoun
- Veterans Research Education Foundation, Oklahoma City Veterans Health Care System, Oklahoma City, OK, USA.
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021; 22:E795. [PMID: 33466831 PMCID: PMC7830608 DOI: 10.3390/ijms22020795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Aside from the classical motor symptoms, Parkinson's disease also has various non-classical symptoms. Interestingly, orexin neurons, involved in the regulation of exploratory locomotion, spontaneous physical activity, and energy expenditure, are affected in Parkinson's. In this study, we hypothesized that Parkinson's-disease-associated pathology affects orexin neurons and therefore impairs functions they regulate. To test this, we used a transgenic animal model of Parkinson's, the A53T mouse. We measured body composition, exploratory locomotion, spontaneous physical activity, and energy expenditure. Further, we assessed alpha-synuclein accumulation, inflammation, and astrogliosis. Finally, we hypothesized that chemogenetic inhibition of orexin neurons would ameliorate observed impairments in the A53T mice. We showed that aging in A53T mice was accompanied by reductions in fat mass and increases in exploratory locomotion, spontaneous physical activity, and energy expenditure. We detected the presence of alpha-synuclein accumulations in orexin neurons, increased astrogliosis, and microglial activation. Moreover, loss of inhibitory pre-synaptic terminals and a reduced number of orexin cells were observed in A53T mice. As hypothesized, this chemogenetic intervention mitigated the behavioral disturbances induced by Parkinson's disease pathology. This study implicates the involvement of orexin in early Parkinson's-disease-associated impairment of hypothalamic-regulated physiological functions and highlights the importance of orexin neurons in Parkinson's disease symptomology.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
| | - Catherine M. Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, 321 Church St SE, Minneapolis, MN 55455, USA; (J.P.P.); (C.M.K.)
- Minneapolis VA Health Care System, GRECC, 1 Veterans Dr, Minneapolis, MN 55417, USA
| |
Collapse
|
15
|
Su M, Yan M, Yao J, Fang Y, Jin H, Gong Y. Unacylated Ghrelin Regulates Glucose-Sensitive Neurons Activity and Glycolipid Metabolism via Orexin-A Neurons in the Lateral Hypothalamic Area. Horm Metab Res 2020; 52:747-754. [PMID: 32731263 DOI: 10.1055/a-1207-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study was to investigate the regulatory actions of unacylated ghrelin (UAG) on glucose-sensitive (GS) neurons and glycolipid metabolism in the lateral hypothalamus area (LHA) and its involvement with orexin-A-immunopositive neurons. The effects of UAG administered into the LHA on GS neurons discharges and glycolipid metabolism were detected by single neuron discharge recording, biochemical index analysis and quantitative real-time PCR; the level of c-fos protein in orexin-A-immunopositive neurons was observed using immunofluorescence staining. UAG microinjected into the LHA activated glucose-inhibited neurons, which were partially blocked by pre-administration of anti-orexin-A antibody in the LHA. Furthermore, UAG microinjected into the LHA significantly reduced serum triglycerides (TG), total cholesterol, low-density lipoprotein cholesterol, blood glucose, insulin and hepatic TG levels, while elevated serum high-density lipoprotein cholesterol levels. UAG elevated the mRNA expression of carnitine palmitoyltransferase-1 and reduced the mRNA expression of acetyl-CoA carboxylase-1 in the liver. The above-mentioned effects of UAG were partially blocked by pre-administration of anti-orexin-A antibody. The expressions of orexin-A and c-fos were observed in the LHA. After UAG injection into the LHA, some neurons showed double labeling, and the percentage of double-labeled orexin-A/c-fos neurons in orexin-A-immunopositive neurons increased significantly. UAG in the LHA regulates glycolipid metabolism by activating orexin-A-immunopositive neurons in the LHA.
Collapse
Affiliation(s)
- Manqing Su
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meixing Yan
- Qingdao Women and Children's Hospital, Qingdao, China
| | - Jiatong Yao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanpeng Fang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hong Jin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Kim JY, Barua S, Jeong YJ, Lee JE. Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer's Disease. Int J Mol Sci 2020; 21:6419. [PMID: 32899357 PMCID: PMC7504582 DOI: 10.3390/ijms21176419] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
Animal and human mechanistic studies have consistently shown an association between obesity and Alzheimer's disease (AD). AD, a degenerative brain disease, is the most common cause of dementia and is characterized by the presence of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles disposition. Some studies have recently demonstrated that Aβ and tau cannot fully explain the pathophysiological development of AD and that metabolic disease factors, such as insulin, adiponectin, and antioxidants, are important for the sporadic onset of nongenetic AD. Obesity prevention and treatment can be an efficacious and safe approach to AD prevention. Adiponectin is a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation. It has been shown to be inversely correlated with adipose tissue dysfunction and may enhance the risk of AD because a range of neuroprotection adiponectin mechanisms is related to AD pathology alleviation. In this study, we summarize the recent progress that addresses the beneficial effects and potential mechanisms of adiponectin in AD. Furthermore, we review recent studies on the diverse medications of adiponectin that could possibly be related to AD treatment, with a focus on their association with adiponectin. A better understanding of the neuroprotection roles of adiponectin will help clarify the precise underlying mechanism of AD development and progression.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Ye Jun Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
- BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
17
|
Valenzano A, Polito R, Trimigno V, Di Palma A, Moscatelli F, Corso G, Sessa F, Salerno M, Montana A, Di Nunno N, Astuto M, Daniele A, Carotenuto M, Messina G, Cibelli G, Monda V. Effects of Very Low Calorie Ketogenic Diet on the Orexinergic System, Visceral Adipose Tissue, and ROS Production. Antioxidants (Basel) 2019; 8:643. [PMID: 31847149 PMCID: PMC6943716 DOI: 10.3390/antiox8120643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caloric restriction is a valid strategy to reduce the visceral adipose tissue (VAT) content in obese persons. Hypocretin-1 (orexin-A) is a neuropeptide synthesized in the lateral hypothalamus that strongly modulates food intake, thus influencing adipose tissue accumulation. Therapeutic diets in obesity treatment may combine the advantages of caloric restriction and dietary ketosis. The current study aimed to evaluate the effect of a very low calorie ketogenic diet (VLCKD) in a population of obese patients. METHODS Adiposity parameters and orexin-A serum profiling were quantified over an 8 week period. The effect of the VLCKD on reactive oxygen species (ROS) production and cell viability was evaluated, in vitro, by culturing Hep-G2 cells in the presence of VLCKD sera. RESULTS Dietary intervention induced significant effects on body weight, adiposity, and blood chemistry parameters. Moreover, a selective reduction in VAT was measured by dual-energy X-ray absorptiometry. Orexin-A levels significantly increased after dietary treatment. Hep-G2 cell viability was not affected after 24, 48, and 72 h incubation with patients' sera, before and after the VLCKD. In the same model system, ROS production was not significantly influenced by dietary treatment. CONCLUSION The VLCKD exerts a positive effect on VAT decrease, ameliorating adiposity and blood chemistry parameters. Furthermore, short-term mild dietary ketosis does not appear to have a cytotoxic effect, nor does it represent a factor capable of increasing oxidative stress. Finally, to the best of our knowledge, this is the first study that shows an effect of the VLCKD upon the orexinergic system, supporting the usefulness of such a therapeutic intervention in promoting obesity reduction in the individual burden of this disease.
Collapse
Affiliation(s)
- Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Valentina Trimigno
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Antonella Di Palma
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.S.); (A.M.)
| | - Angelo Montana
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (M.S.); (A.M.)
| | - Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, 73100 Lecce, Italy;
| | - Marinella Astuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Aurora Daniele
- CEINGE Biotecnologie Avanzate S.C. a r.l., 80131 Napoli, Italy;
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.V.); (R.P.); (V.T.); (A.D.P.); (F.M.); (G.C.); (F.S.); (G.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80100 Naples, Italy;
| |
Collapse
|
18
|
Yang M, Ma H, Jia M, Li Y, Miao D, Cui C, Wu L. The role of the nucleus accumbens OXR1 in cocaine-induced locomotor sensitization. Behav Brain Res 2019; 379:112365. [PMID: 31743729 DOI: 10.1016/j.bbr.2019.112365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/15/2022]
Abstract
Re-exposure to drug or drug-associated cues after withdrawal can induce behavioral sensitization expression in animals or increase in the expected effect to drug in humans, which mean an enhanced drug seeking/taking motivation to trigger relapse after abstinence. The Nucleus accumbens (NAc) is known to play a key role in mediating this motivation. Recently, it has been shown that systemic administration of orexin receptor 1 (OXR1) antagonist attenuates animals' motivation behavior to take drug by self-administration paradigm, which is more effectively than orexin receptor 2 (OXR2) antagonist. However, the effect of OXR1 in the NAc on drug-induced locomotor sensitization remains elusive. The present study was designed to investigate the effect of OXR1 in the NAc on chronic cocaine-induced locomotor sensitization. Rats were given 10 mg/kg cocaine intraperitoneal injection (i.p.) for five consecutive days, followed by 10 mg/kg cocaine re-exposure (challenge) on the 14th day of withdrawal. Results showed that re-exposure to cocaine after withdrawal could induce locomotor sensitization expression in cocaine-sensitized rats. Simultaneously, the number of OXR1 positive neurons and OXR1 membrane protein level in the NAc core but not the shell were significantly increased following the cocaine re-exposure. Further, micro-infusion of SB-334867, an OXR1 selective antagonist, into the NAc core but not the shell before cocaine re-exposure, significantly attenuated the expression of locomotor sensitization in rats. The findings demonstrate that OXR1 in the NAc core partially mediates the expression of chronic cocaine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Mingda Yang
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Hui Ma
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Meng Jia
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Yijing Li
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Degen Miao
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China
| | - Cailian Cui
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| | - Liuzhen Wu
- Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience of the Ministry of Education and National Health Commission, Neuroscience Research Institute, Peking University, Beijing, China.
| |
Collapse
|
19
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
20
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
21
|
Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res 2018; 1731:146085. [PMID: 30590027 DOI: 10.1016/j.brainres.2018.12.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Hypothalmic orexin/hypocretin (Orx) neurons in the lateral and dorsomedial perifornical region (LH-DMH/PeF) innervate broadly throughout the brain, and receive similar inputs. This wide distribution, as well as two Orx peptides (OrxA and OrxB) and two Orx receptors (Orx1 and Orx2) allow for functionally related but distinctive behavioral outcomes, that include arousal, sleep-wake regulation, food seeking, metabolism, feeding, reward, addiction, and learning. These are all motivational functions, and tie the orexin systems to anxiety and depression as well. We present evidence, that for affective behavior, Orx1 and Orx2 receptors appear to have opposing functions. The majority of research on anxiety- and depression-related outcomes has focused on Orx1 receptors, which appear to have primarily anxiogenic and pro-depressive actions. Although there is significant research suggesting contrary findings, the primary potential for pharmacotherapies linked to the Orx1 receptor is via antagonists to block anxious and depressive behavior. Dual orexin receptor antagonists have been approved for treatment of sleep disorders, and are likely candidates for adaptation for affect disorder treatments. However, we present evidence here that demonstrates the Orx2 receptors are anxiolytic and antidepressive. Using a new experimental pre-clinical model of anxious and depressive behavior stimulated by social stress and decision-making that produces two stable behavioral phenotypes, Escape/Resilient and Stay/Susceptible, we tested the effects of intracerebroventricular injections of Orx2 agonist and antagonist drugs. Over ten behavioral measures, we have demonstrated that Orx2 agonists promote resilience, as well as anxiolytic and antidepressive behavior. In contrast, Orx2 antagonists or knockdown kindle anxious and pro-depressive behavior plus increase susceptibility. The results suggest that the Orx2 receptor may be a useful target for pharmacotherapies to treat anxiety and depression.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA.
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - David H Arendt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
22
|
Messal N, Fernandez N, Dayot S, Gratio V, Nicole P, Prochasson C, Chantret I, LeGuilloux G, Jarry A, Couvelard A, Tréton X, Voisin T, Ogier-Denis E, Couvineau A. Ectopic expression of OX1R in ulcerative colitis mediates anti-inflammatory effect of orexin-A. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3618-3628. [PMID: 30251681 DOI: 10.1016/j.bbadis.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/07/2018] [Accepted: 08/17/2018] [Indexed: 02/08/2023]
Abstract
Orexins (orexin-A and orexin-B) are hypothalamic peptides that are produced by the same precursor and are involved in sleep/wake control, which is mediated by two G protein-coupled receptor subtypes, OX1R and OX2R. Ulcerative colitis (UC) is an inflammatory bowel disease, (IBD) which is characterized by long-lasting inflammation and ulcers that affect the colon and rectum mucosa and is known to be a significant risk factor for colon cancer development. Based on our recent studies showing that OX1R is aberrantly expressed in colon cancer, we wondered whether orexin-A could play a role in UC. Immunohistochemistry studies revealed that OX1R is highly expressed in the affected colonic epithelium of most UC patients, but not in the non-affected colonic mucosa. Injection of exogenous orexin-A specifically improved the inflammatory symptoms in the two colitis murine models. Conversely, injection of inactive orexin-A analog, OxB7-28 or OX1R specific antagonist SB-408124 did not have anti-inflammatory effect. Moreover, treatment with orexin-A in DSS-colitis induced OX1R-/- knockout mice did not have any protective effect. The orexin-A anti-inflammatory effect was due to the decreased expression of pro-inflammatory cytokines in immune cells and specifically in T-cells isolated from colonic mucosa. Moreover, orexin-A inhibited canonical NFκB activation in an immune cell line and in intestinal epithelial cell line. These results suggest that orexin-A might represent a promising alternative to current UC therapies.
Collapse
Affiliation(s)
- N Messal
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - N Fernandez
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - S Dayot
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - V Gratio
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - P Nicole
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - C Prochasson
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - I Chantret
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Inflammatory and stress responses in chronic liver diseases", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - G LeGuilloux
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - A Jarry
- EA4273 Biometadys, Faculté de Médecine, Université de Nantes, 1 Rue Gaston Veil, 44035 Nantes, France
| | - A Couvelard
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - X Tréton
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - T Voisin
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - E Ogier-Denis
- INSERM UMR1149/Inflammation Research Center (CRI), Team "Intestinal inflammation", Paris-Diderot University, DHU UNITY, 75018 Paris, France
| | - A Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team "From inflammation to cancer in digestive diseases" labeled by "la Ligue Nationale contre le Cancer", Paris-Diderot University, DHU UNITY, 75018 Paris, France.
| |
Collapse
|
23
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep, a mysterious behavior, has recently been recognized as a crucial factor for health and longevity. The daily sleep/wake cycle provides the basis of biorhythms controlling whole-body homeostasis and homeodynamics; therefore, disruption of sleep causes several physical and psychological disorders, including cardiovascular disease, obesity, diabetes, cancer, anxiety, depression, and cognitive dysfunction. However, the mechanism linking sleep disturbances and sleep-related disorders remains unknown. Orexin (also known as hypocretin) is a neuropeptide produced in the hypothalamus. Central levels of orexin oscillate with the daily rhythm and peak at the awake phase. Orexin plays a major role in stabilizing the wakefulness state. Orexin deficiency causes sleep/wake-state instability, resulting in narcolepsy. Hyper-activation of the orexin system also causes sleep disturbances, such as insomnia, and hence, suvorexant, an orexin receptor antagonist, has been clinically used to treat insomnia. Importantly, central actions of orexin regulate motivated behaviors, stress response, and energy/glucose metabolism by coordinating the central-autonomic nervous systems and endocrine systems. These multiple actions of orexin maintain survival. However, it remains unknown whether chronopharmacological interventions targeting the orexin system ameliorate sleep-related disorders as well as sleep in humans. To understand the significance of adequate orexin action for prevention of these disorders, this review summarizes the physiological functions of daily orexin action and pathological implications of its mistimed or reduced action in sleep disturbances and sleep-related disorders (lifestyle-related physical and neurological disorders in particular). Timed administration of drugs targeting the orexin system may prevent lifestyle-related diseases by improving the quality of life in patients with sleep disturbances.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
24
|
DePorter DP, Coborn JE, Teske JA. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure. Obesity (Silver Spring) 2017; 25:1716-1722. [PMID: 28815952 DOI: 10.1002/oby.21944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. METHODS Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. RESULTS Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. CONCLUSIONS Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain.
Collapse
Affiliation(s)
- Danielle P DePorter
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jamie E Coborn
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- Department of Food Science & Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
- Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|