1
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
2
|
Messat Y, Martin-Fernandez M, Assou S, Chung K, Guérin F, Gergely C, Cuisinier F, Zine A. Differentiation of Spiral Ganglion Neurons from Human Dental Pulp Stem Cells: A Further Step towards Autologous Auditory Nerve Recovery. Int J Mol Sci 2024; 25:9115. [PMID: 39201803 PMCID: PMC11354632 DOI: 10.3390/ijms25169115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFβ pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.
Collapse
Affiliation(s)
- Yassine Messat
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Marta Martin-Fernandez
- L2C, Laboratoire Charles Coulomb, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Said Assou
- IRMB, Institute for Regenerative Medicine & Biotherapy, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| | - Keshi Chung
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Frederic Guérin
- Faculté de Médecine, University of Montpellier, 34090 Montpellier, France
| | - Csilla Gergely
- L2C, Laboratoire Charles Coulomb, University of Montpellier, CNRS, 34095 Montpellier, France
| | - Frederic Cuisinier
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| | - Azel Zine
- LBN, Laboratory of Bioengineering and Nanoscience, University of Montpellier, 34193 Montpellier, France
| |
Collapse
|
3
|
Yoon JY, Vu HT, Lee JH, Shin JS, Kim HW, Lee HH, Kim JB, Lee JH. Evaluation of Human Platelet Lysate as an Alternative to Fetal Bovine Serum for Potential Clinical Applications of Stem Cells from Human Exfoliated Deciduous Teeth. Cells 2024; 13:847. [PMID: 38786069 PMCID: PMC11120611 DOI: 10.3390/cells13100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, there has been a surge in demand for and research focus on cell therapy, driven by the tissue-regenerative and disease-treating potentials of stem cells. Among the candidates, dental pulp stem cells (DPSCs) or human exfoliated deciduous teeth (SHED) have garnered significant attention due to their easy accessibility (non-invasive), multi-lineage differentiation capability (especially neurogenesis), and low immunogenicity. Utilizing these stem cells for clinical purposes requires careful culture techniques such as excluding animal-derived supplements. Human platelet lysate (hPL) has emerged as a safer alternative to fetal bovine serum (FBS) for cell culture. In our study, we assessed the impact of hPL as a growth factor supplement for culture medium, also conducting a characterization of SHED cultured in hPL-supplemented medium (hPL-SHED). The results showed that hPL has effects in enhancing cell proliferation and migration and increasing cell survivability in oxidative stress conditions induced by H2O2. The morphology of hPL-SHED exhibited reduced size and elongation, with a differentiation capacity comparable to or even exceeding that of SHED cultured in a medium supplemented with fetal bovine serum (FBS-SHED). Moreover, no evidence of chromosome abnormalities or tumor formation was detected. In conclusion, hPL-SHED emerges as a promising candidate for cell therapy, exhibiting considerable potential for clinical investigation.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (J.H.L.); (H.-W.K.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
| | - Huong Thu Vu
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
- Department of Pediatric Dentistry, Faculty of Odonto-Stomatology, University of Medincine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 17000, Vietnam
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
| | - Jun Hee Lee
- Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (J.H.L.); (H.-W.K.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Ji-Sun Shin
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
| | - Hae-Won Kim
- Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (J.H.L.); (H.-W.K.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jong-Bin Kim
- Department of Pediatric Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea;
| | - Jung-Hwan Lee
- Institute for Stem Cell & Matters, Cell & Matter Corporation, Cheonan 31116, Republic of Korea; (J.-Y.Y.); (J.H.L.); (H.-W.K.)
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea; (H.T.V.); (H.-H.L.)
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| |
Collapse
|
4
|
Fawzy El-Sayed KM, Rudert A, Geiken A, Tölle J, Mekhemar M, Dörfer CE. Toll-like receptor expression profile of stem/progenitor cells from human exfoliated deciduous teeth. Int J Paediatr Dent 2023; 33:607-614. [PMID: 37158295 DOI: 10.1111/ipd.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Stem/progenitor cells from human exfoliated deciduous teeth (SHED) show remarkable pluripotent, regenerative, and immunological capacities. During in vivo regenerative processes, there could be the presence of SHED in the surrounding inflammatory microenvironment, through toll-like receptors (TLRs). AIM The aim of this paper was to present a characteristic TLR expression profile on SHED for the first time. DESIGN Cells were harvested from extracted primary teeth (n = 10), anti-STRO-1 immunomagnetically sorted and cultivated, through colony-forming units (CFUs). SHED were examined for mesenchymal stem/progenitor cell traits, including the expression of clusters of differentiation (CDs) 14, 34, 45, 73, 90, 105, and 146, and their multilineage differentiation aptitude. TLRs 1-10 expression was investigated for SHED in uninflamed and inflamed (25 ng/mL IL-1β, 103 U/mL IFN-γ, 50 ng/mL TNF-α, and 3 × 103 U/mL IFN-α; SHED-i) microenvironmental conditions. RESULTS SHED were negative for CDs 14, 34, and 45, but were positive for CDs 73, 90, 105, and 146, and demonstrated characteristic multilineage differentiation. In an uninflamed microenvironment, SHED expressed TLRs 1, 2, 3, 4, 6, 8, 9, and 10. The inflammatory microenvironment downregulated TLR7 significantly on gene level and upregulated TLR8 on gene and protein levels (p < .05; Wilcoxon signed-rank test). CONCLUSION There appears to be a unique TLR expression profile on SHED, which could modulate their immunological and regenerative abilities in oral tissue engineering approaches.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Antonia Rudert
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Antje Geiken
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Johannes Tölle
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Mohamed Mekhemar
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
5
|
Namjoynik A, Islam MA, Islam M. Evaluating the efficacy of human dental pulp stem cells and scaffold combination for bone regeneration in animal models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:132. [PMID: 37189187 DOI: 10.1186/s13287-023-03357-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Human adult dental pulp stem cells (hDPSC) and stem cells from human exfoliated deciduous teeth (SHED) hold promise in bone regeneration for their easy accessibility, high proliferation rate, self-renewal and osteogenic differentiation capacity. Various organic and inorganic scaffold materials were pre-seeded with human dental pulp stem cells in animals, with promising outcomes in new bone formation. Nevertheless, the clinical trial for bone regeneration using dental pulp stem cells is still in its infancy. Thus, the aim of this systematic review and meta-analysis is to synthesise the evidence of the efficacy of human dental pulp stem cells and the scaffold combination for bone regeneration in animal bone defect models. METHODOLOGY This study was registered in PROSPERO (CRD2021274976), and PRISMA guideline was followed to include the relevant full-text papers using exclusion and inclusion criteria. Data were extracted for the systematic review. Quality assessment and the risk of bias were also carried out using the CAMARADES tool. Quantitative bone regeneration data of the experimental (scaffold + hDPSC/SHED) and the control (scaffold-only) groups were also extracted for meta-analysis. RESULTS Forty-nine papers were included for systematic review and only 27 of them were qualified for meta-analysis. 90% of the included papers were assessed as medium to low risk. In the meta-analysis, qualified studies were grouped by the unit of bone regeneration measurement. Overall, bone regeneration was significantly higher (p < 0.0001) in experimental group (scaffold + hDPSC/SHED) compared to the control group (scaffold-only) (SMD: 1.863, 95% CI 1.121-2.605). However, the effect is almost entirely driven by the % new bone formation group (SMD: 3.929, 95% CI 2.612-5.246) while % BV/TV (SMD: 2.693, 95% CI - 0.001-5.388) shows a marginal effect. Dogs and hydroxyapatite-containing scaffolds have the highest capacity in % new bone formation in response to human DPSC/SHED. The funnel plot exhibits no apparent asymmetry representing a lack of remarkable publication bias. Sensitivity analysis also indicated that the results generated in this meta-analysis are robust and reliable. CONCLUSION This is the first synthesised evidence showing that human DPSCs/SHED and scaffold combination enhanced bone regeneration highly significantly compared to the cell-free scaffold irrespective of scaffold type and animal species used. So, dental pulp stem cells could be a promising tool for treating various bone diseases, and more clinical trials need to be conducted to evaluate the effectiveness of dental pulp stem cell-based therapies.
Collapse
Affiliation(s)
- Amin Namjoynik
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK
| | - Md Asiful Islam
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad Islam
- School of Dentistry, University of Dundee, Dundee, DD1 4HR, Scotland, UK.
| |
Collapse
|
6
|
Fracaro L, Hochuli AHD, Selenko AH, Capriglione LGA, Brofman PRS, Senegaglia AC. Mesenchymal stromal cells derived from exfoliated deciduous teeth express neuronal markers before differentiation induction. J Appl Oral Sci 2023; 31:e20220489. [PMID: 37075387 PMCID: PMC10118381 DOI: 10.1590/1678-7757-2022-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and βIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and βIII-tubulin; the fluorescent signal intensity was significantly higher in βIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.
Collapse
Affiliation(s)
- Letícia Fracaro
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Agner Henrique Dorigo Hochuli
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Ana Helena Selenko
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | | | - Paulo Roberto Slud Brofman
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| | - Alexandra Cristina Senegaglia
- Pontificia Universidade Católica do Paraná, School of Medicine and Life Sciences - Core for Cell Technology, Curitiba, PR, Brasil
| |
Collapse
|
7
|
Gao P, Liu S, Wang X, Ikeya M. Dental applications of induced pluripotent stem cells and their derivatives. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:162-171. [PMID: 35516907 PMCID: PMC9065891 DOI: 10.1016/j.jdsr.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Periodontal tissue regeneration is the ideal tactic for treating periodontitis. Tooth regeneration is the potential strategy to restore the lost teeth. With infinite self-renewal, broad differentiation potential, and less ethical issues than embryonic stem cells, induced pluripotent stem cells (iPSCs) are promising cell resource for periodontal and tooth regeneration. This review summarized the optimized technologies of generating iPSC lines and application of iPSC derivatives, which reduce the risk of tumorigenicity. Given that iPSCs may have epigenetic memory from the donor tissue and tend to differentiate into lineages along with the donor cells, iPSCs derived from dental tissues may benefit for personalized dental application. Neural crest cells (NCCs) and mesenchymal stem or stomal cells (MSCs) are lineage-specific progenitor cells derived from iPSCs and can differentiate into multilineage cell types. This review introduced the updated technologies of inducing iPSC-derived NCCs and iPSC-derived MSCs and their application in periodontal and tooth regeneration. Given the complexity of periodontal tissues and teeth, it is crucial to elucidate the integrated mechanisms of all constitutive cells and the spatio-temporal interactions among them to generate structural periodontal tissues and functional teeth. Thus, more sophisticated studies in vitro and in vivo and even preclinical investigations need to be conducted.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of General and Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Division of Oral Ecology and Biochemistry, Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Li Y, Sun M, Wang X, Cao X, Li N, Pei D, Li A. Dental stem cell-derived extracellular vesicles transfer miR-330-5p to treat traumatic brain injury by regulating microglia polarization. Int J Oral Sci 2022; 14:44. [PMID: 36064768 PMCID: PMC9445009 DOI: 10.1038/s41368-022-00191-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) contributes to the key causative elements of neurological deficits. However, no effective therapeutics have been developed yet. In our previous work, extracellular vesicles (EVs) secreted by stem cells from human exfoliated deciduous teeth (SHED) offered new insights as potential strategies for functional recovery of TBI. The current study aims to elucidate the mechanism of action, providing novel therapeutic targets for future clinical interventions. With the miRNA array performed and Real-time PCR validated, we revealed the crucial function of miR-330-5p transferred by SHED-derived EVs (SHED-EVs) in regulating microglia, the critical immune modulator in central nervous system. MiR-330-5p targeted Ehmt2 and mediated the transcription of CXCL14 to promote M2 microglia polarization and inhibit M1 polarization. Identified in our in vivo data, SHED-EVs and their effector miR-330-5p alleviated the secretion of inflammatory cytokines and resumed the motor functional recovery of TBI rats. In summary, by transferring miR-330-5p, SHED-EVs favored anti-inflammatory microglia polarization through Ehmt2 mediated CXCL14 transcription in treating traumatic brain injury.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Meng Sun
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyu Cao
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
9
|
Dental pulp stem cells as a therapy for congenital entero-neuropathy. Sci Rep 2022; 12:6990. [PMID: 35484137 PMCID: PMC9051124 DOI: 10.1038/s41598-022-10077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Hirschsprung's disease is a congenital entero-neuropathy that causes chronic constipation and intestinal obstruction. New treatments for entero-neuropathy are needed because current surgical strategies have limitations5. Entero-neuropathy results from enteric nervous system dysfunction due to incomplete colonization of the distal intestine by neural crest-derived cells. Impaired cooperation between the enteric nervous system and intestinal pacemaker cells may also contribute to entero-neuropathy. Stem cell therapy to repair these multiple defects represents a novel treatment approach. Dental pulp stem cells derived from deciduous teeth (dDPSCs) are multipotent cranial neural crest-derived cells, but it remains unknown whether dDPSCs have potential as a new therapy for entero-neuropathy. Here we show that intravenous transplantation of dDPSCs into the Japanese Fancy-1 mouse, an established model of hypoganglionosis and entero-neuropathy, improves large intestinal structure and function and prolongs survival. Intravenously injected dDPSCs migrate to affected regions of the intestine through interactions between stromal cell-derived factor-1α and C-X-C chemokine receptor type-4. Transplanted dDPSCs differentiate into both pacemaker cells and enteric neurons in the proximal colon to improve electrical and peristaltic activity, in addition to their paracrine effects. Our findings indicate that transplanted dDPSCs can differentiate into different cell types to correct entero-neuropathy-associated defects.
Collapse
|
10
|
Zhang X, Caetano AJ, Sharpe PT, Volponi AA. Oral stem cells, decoding and mapping the resident cells populations. BIOMATERIALS TRANSLATIONAL 2022; 3:24-30. [PMID: 35837342 PMCID: PMC9255788 DOI: 10.12336/biomatertransl.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
The teeth and their supporting tissues provide an easily accessible source of oral stem cells. These different stem cell populations have been extensively studied for their properties, such as high plasticity and clonogenicity, expressing stem cell markers and potency for multilineage differentiation in vitro. Such cells with stem cell properties have been derived and characterised from the dental pulp tissue, the apical papilla region of roots in development, as well as the supporting tissue of periodontal ligament that anchors the tooth within the alveolar socket and the soft gingival tissue. Studying the dental pulp stem cell populations in a continuously growing mouse incisor model, as a traceable in vivo model, enables the researchers to study the properties, origin and behaviour of mesenchymal stem cells. On the other side, the oral mucosa with its remarkable scarless wound healing phenotype, offers a model to study a well-coordinated system of healing because of coordinated actions between epithelial, mesenchymal and immune cells populations. Although described as homogeneous cell populations following their in vitro expansion, the increasing application of approaches that allow tracing of individual cells over time, along with single-cell RNA-sequencing, reveal that different oral stem cells are indeed diverse populations and there is a highly organised map of cell populations according to their location in resident tissues, elucidating diverse stem cell niches within the oral tissues. This review covers the current knowledge of diverse oral stem cells, focusing on the new approaches in studying these cells. These approaches "decode" and "map" the resident cells populations of diverse oral tissues and contribute to a better understanding of the "stem cells niche architecture and interactions. Considering the high accessibility and simplicity in obtaining these diverse stem cells, the new findings offer potential in development of translational tissue engineering approaches and innovative therapeutic solutions.
Collapse
Affiliation(s)
- Xuechen Zhang
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Ana Justo Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK
| | - Paul T. Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, CAS, v.v.i., Brno, Czech Republic,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College University of London, London, UK,Corresponding authors: Ana Angelova Volponi, ; Paul T. Sharpe,
| |
Collapse
|
11
|
Solis-Castro OO, Rivolta MN, Boissonade FM. Neural Crest-Derived Stem Cells (NCSCs) Obtained from Dental-Related Stem Cells (DRSCs): A Literature Review on Current Knowledge and Directions toward Translational Applications. Int J Mol Sci 2022; 23:ijms23052714. [PMID: 35269856 PMCID: PMC8911272 DOI: 10.3390/ijms23052714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
Evidence from dental-related stem cells (DRSCs) suggests an enhanced potential for ectodermal lineage differentiation due to their neural crest origin. Growing evidence that DRSC cultures can produce cells with a neural crest-derived stem cell (NCSC)-like phenotype supports their potential for future therapeutic approaches for neurodegenerative diseases and nerve injuries. However, most of the evidence is limited to the characterization of DRSCs as NCSCs by detecting the expression of neural crest markers. Only a few studies have provided proof of concept of an improved neuro-glial differentiation or direct applicability in relevant models. In addition, a current problem is that several of the existing protocols do not meet manufacturing standards for transferability to a clinical scenario. This review describes the current protocols to obtain NCSCs from DRSCs and their characterization. Also, it provides important considerations from previous work where DRSCs were established and characterized as mesenchymal stromal cells but studied for their neuro-glial differentiation potential. The therapeutic advancement of DRSCs would depend on establishing protocols that can yield a neural crest-like phenotype efficiently, using appropriate manufacturing standards and testing them in relevant models of disease or injury. Achieving these conditions could then facilitate and validate the therapeutic potential of DRSC-NCSCs in regenerative therapies.
Collapse
Affiliation(s)
- Oscar O. Solis-Castro
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK;
| | - Marcelo N. Rivolta
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Fiona M. Boissonade
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK;
- The Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence:
| |
Collapse
|
12
|
Mercado-Rubio MD, Pérez-Argueta E, Zepeda-Pedreguera A, Aguilar-Ayala FJ, Peñaloza-Cuevas R, Kú-González A, Rojas-Herrera RA, Rodas-Junco BA, Nic-Can GI. Similar Features, Different Behaviors: A Comparative In VitroStudy of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. J Pers Med 2021; 11:jpm11080738. [PMID: 34442382 PMCID: PMC8401480 DOI: 10.3390/jpm11080738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022] Open
Abstract
Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.
Collapse
Affiliation(s)
- Melissa D. Mercado-Rubio
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Erick Pérez-Argueta
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Alejandro Zepeda-Pedreguera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Fernando J. Aguilar-Ayala
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
| | - Ricardo Peñaloza-Cuevas
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
| | - Angela Kú-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97200, Yucatán, Mexico;
| | - Rafael A. Rojas-Herrera
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico; (M.D.M.-R.); (E.P.-A.); (A.Z.-P.); (R.A.R.-H.)
| | - Beatriz A. Rodas-Junco
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Correspondence: (B.A.R.-J.); or (G.I.N.-C.)
| | - Geovanny I. Nic-Can
- Laboratorio Translacional de Células Troncales-Facultad de Odontología, Universidad Autónoma de Yucatán, Calle 61-A X Av. Itzaes Costado Sur “Parque de la Paz”, Col. Centro, Mérida 97000, Yucatán, Mexico; (F.J.A.-A.); (R.P.-C.)
- CONACYT-Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Kilómetro 33.5, Tablaje Catastral 13615, Chuburná de Hidalgo Inn, Mérida 97203, Yucatán, Mexico
- Correspondence: (B.A.R.-J.); or (G.I.N.-C.)
| |
Collapse
|
13
|
Gazarian K, Ramirez-Garcia L, Tapía Orozco L, Luna-Muñoz J, Pacheco-Herrero M. Human Dental Pulp Stem Cells Display a Potential for Modeling Alzheimer Disease-Related Tau Modifications. Front Neurol 2021; 11:612657. [PMID: 33569035 PMCID: PMC7868559 DOI: 10.3389/fneur.2020.612657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
We present here the first description of tau in human dental pulp stem cells (DPSCs) evidenced by RT-PCR data on expression of the gene MAPT and by immunocytochemical detection of epitopes by 12 anti-tau antibodies. The tau specificity of eight of these antibodies was confirmed by their affinity to neurofibrillary tangles (NFTs) in Alzheimer's disease (AD) postmortem brain samples. We therefore used DPSCs and AD brain samples as a test system for determining the probability of the involvement of tau epitopes in the mechanisms converting tau into NFT in AD. Three antibodies to non-phosphorylated and seven antibodies to phosphorylated epitopes bound tau in both DPSCs and AD NFTs, thus suggesting that their function was not influenced by inducers of formation of NFTs in the AD brain. In contrast, AT100, which recognizes a hyperphosphorylated epitope, did not detect it in the cytoplasm of DPSCs but detected it in AD brain NFTs, demonstrating its AD diagnostic potential. This indicated that the phosphorylation/conformational events required for the creation of this epitope do not occur in normal cytoplasm and are a part of the mechanism (s) leading to NFT in AD brain. TG3 bound tau in the cytoplasm and in mitotic chromosomes but did not find it in nuclei. Collectively, these observations characterize DPSCs as a novel tau-harboring neuronal lineage long-term propagable in vitro cellular system for the normal conformational state of tau sites, detectable by antibodies, with their state in AD NFTs revealing those involved in the pathological processes converting tau into NFTs in the course of AD. With this information, one can model the interaction of tau with inducers and inhibitors of hyperphosphorylation toward NFT-like aggregates to search for drug candidates. Additionally, the clonogenicity of DPSCs provides the option for generation of cell lineages with CRISPR-mutagenized genes of familial AD modeling.
Collapse
Affiliation(s)
- Karlen Gazarian
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis Ramirez-Garcia
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis Tapía Orozco
- Laboratorio de Reprogramación Celular, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, Mexico.,Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago De Los Caballeros, Dominican Republic
| |
Collapse
|
14
|
Wen B, He C, Zhang Q, Zhang F, Li N, Pan Y, Deng M, Wang Y, Li J, Qiu J. Overexpression of microRNA-221 promotes the differentiation of stem cells from human exfoliated deciduous teeth to neurons through activation of Wnt/β-catenin pathway via inhibition of CHD8. Cell Cycle 2020; 19:3231-3248. [PMID: 33198579 PMCID: PMC7751633 DOI: 10.1080/15384101.2020.1816308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/11/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022] Open
Abstract
microRNAs have been proved to function in some processes of differentiation and the effect is favorable. At present, the differentiation of stem cells is not so ideal because of the high expenses and inaccessibility. Therefore, we explored the possibility that microRNA-221 (miR-221) affects differentiation from stem cells from human deciduous tooth (SHEDs) to neurons through Wnt/β-catenin pathway via binding to CHD8. After collection of SHEDs, differentiation from SHEDs to neurons was conducted by neurotrophic factor induction method in vitro, followed by gain- and loss-of-function experiments. Expression of neuron-related genes in SHEDs was examined by immunohistochemistry. The relationship between CHD8 and miR-221 was detected by dual luciferase reporter gene assay. RT-qPCR and Western blot analysis were used to determine miR-221 expression, and the mRNA and protein expression of CHD8, Wnt/β-catenin pathway- and neuron-related genes. Cell viability, and cell cycle and apoptosis were investigated by MTT assay and flow cytometry respectively. Dual luciferase reporter assay displayed that miR-221 targeted CHD8 and then affected the differentiation progression. Results of RT-qPCR and Western blot analysis showed that expression of Wnt/β-catenin pathway-related genes increased significantly, CHD8 expression decreased in neuron-induced SHEDs after miR-221 overexpression or CHD8 silencing. In response to miR-221 overexpression and CHD8 silencing, cell viability and cell cycle entry were increased, and apoptosis was reduced. Moreover, overexpression of miR-221 or silencing of CHD8 elevated the expression of neuron-related genes in neuron-induced SHEDs. Taken together, upregulation of miR-221 promotes differentiation from SHEDs to neuron cells through activation of Wnt/β-catenin pathway by binding to CHD8.
Collapse
Affiliation(s)
- Bing Wen
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Chenjiang He
- Undergraduate Class of Stomatology, Grade 2015, Fuzhou Medical College of Nanchang University, Fuzhou, P.R. China
| | - Qin Zhang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Fanglin Zhang
- College of Pharmacy, Nanchang University School of Medicine, Nanchang, P.R. China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Pan
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Mengting Deng
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yue Wang
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jianping Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Jiaxuan Qiu
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
15
|
Solis‐Castro OO, Boissonade FM, Rivolta MN. Establishment and neural differentiation of neural crest-derived stem cells from human dental pulp in serum-free conditions. Stem Cells Transl Med 2020; 9:1462-1476. [PMID: 32633468 PMCID: PMC7581455 DOI: 10.1002/sctm.20-0037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/11/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
The potential of obtaining cell cultures with neural crest resemblance (neural crest-derived stem cells [NCSCs]) from dental-related tissues, including human dental pulp cells (hDPCs), has been discussed in the literature. However, most reports include the use of serum-rich conditions and do not describe the potential for neural differentiation, slowing translation to the clinic. Therefore, we aimed to culture and characterize NCSCs from the human dental pulp in vitro and evaluate their ability to differentiate into neurons; we also investigated the effectiveness of the addition of BMP4 to enhance this potential. Cultures were established from a varied cohort of patient samples and grown, as monolayers, in serum, serum-free, and also under sphere-aggregation conditions to induce and identify a NCSC phenotype. hDPC cultures were characterized by immunocytochemistry and reverse transcription quantitative polymerase chain reaction. Monolayer cultures expressed stem cell, neural progenitor and neural crest-related markers. Culturing hDPCs as neurospheres (hDPC-NCSCs) resulted in an increased expression of neural crest-related genes, while the addition of BMP4 appeared to produce better NCSC characteristics and neural differentiation. The neural-like phenotype was evidenced by the expression of TUJ1, peripherin, NFH, TAU, SYN1, and GAP43. Our results describe the establishment of hDPC cultures from a large variety of patients in serum-free medium, as NCSC that differentiate into neural-like cells, as well as an important effect of BMP4 in enhancing the neural crest phenotype and differentiation of hDPCs.
Collapse
Affiliation(s)
- Oscar O. Solis‐Castro
- Centre for Stem Cell Biology, Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Fiona M. Boissonade
- School of Clinical DentistryUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Marcelo N. Rivolta
- Centre for Stem Cell Biology, Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- The Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
16
|
Alansary M, Drummond B, Coates D. Immunocytochemical characterization of primary teeth pulp stem cells from three stages of resorption in serum-free medium. Dent Traumatol 2020; 37:90-102. [PMID: 32955751 DOI: 10.1111/edt.12607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS Dental pulp stem cells from primary teeth cultured in serum-free conditions may have clinical use for the repair and regeneration of teeth as well as other complex tissues and organs. The aim of this study was to test the change in the stem cell markers expression/ stem cell population in human primary pulp cells at the different stages of root resorption. METHODS Caries-free human primary canines at defined stages of physiological root resorption were included (n = 9). In vitro cultures were established in xeno-free, serum-free Essential 8™ medium with human truncated vitronectin for cell attachment. An embryonic stem cell line (GENEA002) was used as a positive control. The expression of embryonic stem cell markers (Oct4, Nanog and Sox2), neural crest stem cell markers (nestin and Dlx2) and mesenchymal stem cell surface markers (CD90, CD73 and CD105) were investigated by immunocytochemistry. Mesenchymal stem cell markers CD105, CD73 and CD90 and haematopoietic markers: CD45, CD34, CD11b, CD19 and HLA-DR were quantified with flow cytometry. RESULTS The early neural progenitor markers nestin and Dlx2 were detected in most serum-free cultured dental pulp stem cells, regardless of the tooth resorption stage from which they were harvested. Only isolated cells were found that expressed the embryonic stem cell transcription factors Oct4A, Nanog and Sox2, and in the late stages of resorption, no Oct4A was detected. The majority expressed the mesenchymal stem cell markers CD90, CD73 and CD105. Flow cytometry found positive signals for CD90 > 97.3%, CD73 > 99.6% and CD105 > 82.5%, with no detectable differences between resorption stages. CONCLUSIONS This study identified populations of dental pulp cells in vitro with markers characteristically associated with embryonic stem cells, neural crest-derived cells and mesenchymal stem cells. Flow cytometry found CD105 expressed at lower levels than CD90 and CD73. The consistency of stem cell marker expression in cells cultured from teeth at different resorption stages suggests that pre-exfoliated primary teeth that are free of caries may provide a convenient source of multipotent stem cells for use in regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Alansary
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Bernadette Drummond
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Dawn Coates
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Yusof MFH, Hashim SNM, Zahari W, Chandra H, Noordin KBAA, Kannan TP, Hamid SSA, Mokhtar KI, Azlina A. Amniotic Membrane Enhance the Effect of Vascular Endothelial Growth Factor on the Angiogenic Marker Expression of Stem Cells from Human Exfoliated Deciduous Teeth. Appl Biochem Biotechnol 2020; 191:177-190. [PMID: 32096060 DOI: 10.1007/s12010-020-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Previously, it was reported that human amniotic membrane (AM) induced stem cells from human deciduous exfoliated teeth (SHED) endothelial-like-cell differentiation. This interesting effect of AM matrix on SHED demands further elucidation. Objective of this in vitro work was to study the effect of 24-h VEGF induced on SHED endothelial differentiation when seeded on acellular stromal side (SS) of AM matrix. Stemness of SHED was identified by flow cytometry. Cell attachment and morphological changes towards the matrix was observed by scanning electron microscopy. Protein expression of endothelial marker was examined by Western blot. The expression of stem cells and endothelial-specific gene markers of VEGF-induced SHED cultured on human AM was inspected via reverse transcriptase-polymerase chain reaction. Results showed SHED at both passages retain stemness property. Ang-1 protein was expressed in SHED. Cells treated with VEGF and cultured on AM transformed attached well to AM. VEGF-induced SHED expressed both stem cell and endothelial-specific markers throughout the treatments and timeline. Interestingly, prolonged VEGF treatment increased the expression of Cox-2 and VE-Cadherin genes in all treated groups when compared to SHED. It was concluded that the VEGF-induced SHED showed better expression of endothelial-specific markers when cultured on SS of AM, with prolonged VEGF treatment.
Collapse
Affiliation(s)
- Muhammad Fuad Hilmi Yusof
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wafa' Zahari
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hamshawagini Chandra
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Abdul Hamid
- Tissue Bank, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Khairani Idah Mokhtar
- Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Aljohani H, Senbanjo LT, Chellaiah MA. Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells. PLoS One 2019; 14:e0225598. [PMID: 31805069 PMCID: PMC6894810 DOI: 10.1371/journal.pone.0225598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Methylsulfonylmethane (MSM) is a naturally occurring, sulfate-containing, organic compound. It has been shown to stimulate the differentiation of mesenchymal stem cells into osteoblast-like cells and bone formation. In this study, we investigated whether MSM influences the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into osteoblast-like cells and their osteogenic potential. Here, we report that MSM induced osteogenic differentiation through the expression of osteogenic markers such as osterix, osteopontin, and RUNX2, at both mRNA and protein levels in SHED cells. An increase in the activity of alkaline phosphatase and mineralization confirmed the osteogenic potential of MSM. These MSM-induced effects were observed in cells grown in basal medium but not osteogenic medium. MSM induced transglutaminase-2 (TG2), which may be responsible for the cross-linking of extracellular matrix proteins (collagen or osteopontin), and the mineralization process. Inhibition of TG2 ensued a significant decrease in the differentiation of SHED cells and cross-linking of matrix proteins. A comparison of mineralization with the use of mineralized and demineralized bone particles in the presence of MSM revealed that mineralization is higher with mineralized bone particles than with demineralized bone particles. In conclusion, these results indicated that MSM could promote differentiation and osteogenic potential of SHED cells. This osteogenic property is more in the presence of mineralized bone particles. TG2 is a likely cue in the regulation of differentiation and mineral deposition of SHED cells in response to MSM.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
- Department of Oral Medicine and Diagnostics Sciences, King Saud University School of Dentistry, Riyadh, KSA
| | - Linda T. Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| |
Collapse
|
19
|
Coates DE, Alansary M, Friedlander L, Zanicotti DG, Duncan WJ. Dental pulp stem cells in serum-free medium for regenerative medicine. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1673447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mohammad Alansary
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Lara Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Diogo G. Zanicotti
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick J. Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Zhang J, Ding H, Liu X, Sheng Y, Liu X, Jiang C. Dental Follicle Stem Cells: Tissue Engineering and Immunomodulation. Stem Cells Dev 2019; 28:986-994. [PMID: 30968740 DOI: 10.1089/scd.2019.0012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jie Zhang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Hong Ding
- Department of Orthodontics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinfeng Liu
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunfei Sheng
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Xinqiang Liu
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Chunmiao Jiang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 2019; 10:217. [PMID: 31358051 PMCID: PMC6664599 DOI: 10.1186/s13287-019-1340-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors are implicated in the pathogenesis of cleft palate. However, the molecular and cellular mechanisms that regulate the development of palatal shelves, which are composed of mesenchymal cells, have not yet been fully elucidated. This study aimed to determine the stemness and multilineage differentiation potential of mouse embryonic palatal mesenchyme (MEPM) cells in palatal shelves and to explore the underlying regulatory mechanism associated with cleft palate formation. METHODS Palatal shelves excised from mice models were cultured in vitro to ascertain whether MEPM are stem cells through immunofluorescence and flow cytometry. The osteogenic, adipogenic, and chondrogenic differentiation potential of MEPM cells were also determined to characterize MEPM stemness. In addition, the role of the PTEN-Akt-mTOR autophagic pathway was investigated using quantitative RT-PCR, Western blotting, and transmission electron microscopy. RESULTS MEPM cells in culture exhibited cell surface marker expression profiles similar to that of mouse bone marrow stem cells and exhibited positive staining for vimentin (mesodermal marker), nestin (ectodermal marker), PDGFRα, Efnb1, Osr2, and Meox2 (MEPM cells markers). In addition, exposure to PDGFA stimulated chemotaxis of MEPM cells. MEPM cells exhibited stronger potential for osteogenic differentiation as compared to that for adipogenic and chondrogenic differentiation. Undifferentiated MEPM cells displayed a high concentration of autophagosomes, which disappeared after differentiation (at passage four), indicating the involvement of PTEN-Akt-mTOR signaling. CONCLUSIONS Our findings suggest that MEPM cells are ectomesenchymal stem cells with a strong osteogenic differentiation potential and that maintenance of their stemness via PTEN/AKT/mTOR autophagic signaling prevents cleft palate development.
Collapse
Affiliation(s)
- Lungang Shi
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Binchen Li
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Binna Zhang
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Congyuan Zhen
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| |
Collapse
|
22
|
Dental derived stem cell conditioned media for hair growth stimulation. PLoS One 2019; 14:e0216003. [PMID: 31042749 PMCID: PMC6493760 DOI: 10.1371/journal.pone.0216003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia.
Collapse
|
23
|
Identification of novel fibroblast-like cells from stem cells from human exfoliated deciduous teeth. Clin Oral Investig 2019; 23:3959-3966. [DOI: 10.1007/s00784-019-02827-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
|
24
|
Comparative Analysis of Biological Properties of Large-Scale Expanded Adult Neural Crest-Derived Stem Cells Isolated from Human Hair Follicle and Skin Dermis. Stem Cells Int 2019; 2019:9640790. [PMID: 30915126 PMCID: PMC6399535 DOI: 10.1155/2019/9640790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/14/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction The adult neural crest-derived stem cells (NCSCs) have significant perspectives for use in regenerative medicine. The most attractive sources for adult NCSC isolation are the hair follicles (HF) and skin dermis (SD) because of easy access and minimally invasive biopsy. The aim of this study was to compare the biological properties of HF- and SD-derived NCSCs after their large-scale expansion. Methods The conventional explant method was used to obtain HF NCSCs. For the isolation of SD NCSCs, a new combined technique consisting of preplating and subsequent culturing in 3D blood plasma-derived fibrin hydrogel was applied. The studied cells were characterized by flow cytometry, ICC, qPCR, Bio-Plex multiplex assay, and directed multilineage differentiation assays. Results We have obtained both adult SD and HF NCSCs from each skin sample (n = 5). Adult SD and HF NCSCs were positive for key neural crest markers: SOX10, P75 (CD271), NESTIN, SOX2, and CD349. SD NCSCs showed a higher growth rate during the large-scale expansion compared to HF NCSCs (p < 0.01). Final population of SD NCSCs also contained more clonogenic cells (p < 0.01) and SOX10+, CD271+, CD105+, CD140a+, CD146+, CD349+ cells (p < 0.01). Both HF and SD NCSCs had similar gene expression profiling and produced growth factors, but some quantitative differences were detected. Adult HF and SD NCSCs were able to undergo directed differentiation into neurons, Schwann cells, adipocytes, and osteoblasts. Conclusion The HF and SD are suitable sources for large-scale manufacturing of adult NCSCs with similar biological properties. We demonstrated that the NCSC population from SD was homogenous and displayed significantly higher growth rate than HF NCSCs. Moreover, SD NCSC isolation is cheaper, easier, and minimally time-consuming method.
Collapse
|
25
|
Popuri SK. Concerns of a Pediatric Dentist in Dental Stem Cells: An Overview. Open Dent J 2018; 12:596-604. [PMID: 30288183 PMCID: PMC6142655 DOI: 10.2174/1745017901814010596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Stem cell biology has become an essential part of regenerative medicine and dentistry. The fact of availability of these stem cells among various dental tissues has doubled the researcher’s enthusiasm in the recent years due to fewer ethical constraints and minimally invasive nature. Stem cells from deciduous tooth among the dental stem cells are the ones obtained with least or no trauma. To date, enormous research has been reported on dental stem cells. The purpose of this review is to focus only on certain aspects of dental stem cells that are important to the specialty of pedodontics. Thus, a detailed emphasis is given on stem cells obtained from human deciduous teeth including their harvesting and storage techniques.
Collapse
Affiliation(s)
- Suseela Keerti Popuri
- Taytu Specialty Dental Clinic and Ras Dashen Specialty Dental Clinic, Gondar, Ethiopia
| |
Collapse
|
26
|
Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther 2018; 9:245. [PMID: 30257724 PMCID: PMC6158826 DOI: 10.1186/s13287-018-1005-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neurodegenerative disorders have a complex pathology and are characterized by a progressive loss of neuronal architecture in the brain or spinal cord. Neuroprotective agents have demonstrated promising results at the preclinical stage, but this has not been confirmed at the clinical stage. Thus far, no neuroprotective drug that can prevent neuronal degeneration in patients with neurodegenerative disorders is available. MAIN BODY Recent studies have focused on neurorestorative measures, such as cell-based therapy, rather than neuroprotective treatment. The utility of cell-based approaches for the treatment of neurodegenerative disorders has been explored extensively, and the results have been somewhat promising with regard to reversing the outcome. Because of their neural crest origin, ease of harvest, accessibility, ethical suitability, and potential to differentiate into the neurogenic lineage, dental-derived stem cells (DSCs) have become an attractive source for cell-based neurorestoration therapies. In the present review, we summarize the possible use of DSC-based neurorestoration therapy as an alternative treatment for neurodegenerative disorders, with a particular emphasis on the mechanism underlying recovery in neurodegenerative disorders. CONCLUSION Transplantation research in neurodegenerative diseases should aim to understand the mechanism providing benefits both at the molecular and functional level. Due to their ease of accessibility, plasticity, and ethical suitability, DSCs hold promise to overcome the existing challenges in the field of neurodegeneration through multiple mechanisms, such as cell replacement, bystander effect, vasculogenesis, synaptogenesis, immunomodulation, and by inhibiting apoptosis.
Collapse
Affiliation(s)
- Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India. .,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, 226003, India.
| | - Aurel Popa Wagner
- Departmentof Dental Materials, RUHS College of Dental Sciences, Subhash Nagar, Jaipur, Rajasthan, 302002, India.,Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania.,School of Medicine, Griffith University, Southport, QLD, Australia
| | - Yawer S Hussain
- Department of Neurology, Chair of Vascular Neurology and Dementia, Essen University Hospital, Essen, Germany
| | - Mohsin Ali Khan
- Era Medical College & Hospital, Era University, Lucknow, Uttar Pradesh, 226003, India
| |
Collapse
|
27
|
Latin American contributions to the neural crest field. Mech Dev 2018; 153:17-29. [PMID: 30081090 DOI: 10.1016/j.mod.2018.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/15/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
The neural crest (NC) is one of the most fascinating structures during embryonic development. Unique to vertebrate embryos, these cells give rise to important components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes and ganglia of the peripheral nervous system. Worldwide, several groups have been studying NC development and specifically in the Latin America (LA) they have been growing in numbers since the 1990s. It is important for the world to recognize the contributions of LA researchers on the knowledge of NC development, as it can stimulate networking and improvement in the field. We developed a database of LA publications on NC development using ORCID and PUBMED as search engines. We thoroughly describe all of the contributions from LA, collected in five major topics on NC development mechanisms: i) induction and specification; ii) migration; iii) differentiation; iv) adult NC; and, v) neurocristopathies. Further analysis was done to correlate each LA country with topics and animal models, and to access collaboration between LA countries. We observed that some LA countries have made important contributions to the comprehension of NC development. Interestingly, some LA countries have a topic and an animal model as their strength; in addition, collaboration between LA countries is almost inexistent. This review will help LA NC research to be acknowledged, and to facilitate networking between students and researchers worldwide.
Collapse
|
28
|
Ghayor C, Weber FE. Osteoconductive Microarchitecture of Bone Substitutes for Bone Regeneration Revisited. Front Physiol 2018; 9:960. [PMID: 30072920 PMCID: PMC6060436 DOI: 10.3389/fphys.2018.00960] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
In the last three decades, all efforts in bone tissue engineering were driven by the dogma that the ideal pore size in bone substitutes lies between 0.3 and 0.5 mm in diameter. Newly developed additive manufacturing methodologies for ceramics facilitate the total control over pore size, pore distribution, bottleneck size, and bottleneck distribution. Therefore, this appears to be the method of choice with which to test the aforementioned characteristics of an ideal bone substitute. To this end, we produced a library of 15 scaffolds with diverse defined pore/bottleneck dimensions and distributions, tested them in vivo in a calvarial bone defect model in rabbits, and assessed the clinically most relevant parameters: defect bridging and bony regenerated area. Our in vivo data revealed that the ideal pore/bottleneck dimension for bone substitutes is in the range of 0.7-1.2 mm, and appears therefore to be twofold to fourfold more extended than previously thought. Pore/bottleneck dimensions of 1.5 and 1.7 mm perform significantly worse and appear unsuitable in bone substitutes. Thus, our results set the ideal range of pore/bottleneck dimensions and are likely to have a significant impact on the microarchitectural design of future bone substitutes for use in orthopedic, trauma, cranio-maxillofacial and oral surgery.
Collapse
Affiliation(s)
- Chafik Ghayor
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|