1
|
Thiruppathy D, Moyne O, Marotz C, Williams M, Navarro P, Zaramela L, Zengler K. Absolute quantification of the living skin microbiome overcomes relic-DNA bias and reveals specific patterns across volunteers. MICROBIOME 2025; 13:65. [PMID: 40038838 PMCID: PMC11877739 DOI: 10.1186/s40168-025-02063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/09/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND As the first line of defense against external pathogens, the skin and its resident microbiota are responsible for protection and eubiosis. Innovations in DNA sequencing have significantly increased our knowledge of the skin microbiome. However, current characterizations do not discriminate between DNA from live cells and remnant DNA from dead organisms (relic DNA), resulting in a combined readout of all microorganisms that were and are currently present on the skin rather than the actual living population of the microbiome. Additionally, most methods lack the capability for absolute quantification of the microbial load on the skin, complicating the extrapolation of clinically relevant information. RESULTS Here, we integrated relic-DNA depletion with shotgun metagenomics and bacterial load determination to quantify live bacterial cell abundances across different skin sites. Though we discovered up to 90% of microbial DNA from the skin to be relic DNA, we saw no significant effect of this on the relative abundances of taxa determined by shotgun sequencing. Relic-DNA depletion prior to sequencing strengthened underlying patterns between microbiomes across volunteers and reduced intraindividual similarity. We determined the absolute abundance and the fraction of population alive for several common skin taxa across body sites and found taxa-specific differential abundance of live bacteria across regions to be different from estimates generated by total DNA (live + dead) sequencing. CONCLUSIONS Our results reveal the significant bias relic DNA has on the quantification of low biomass samples like the skin. The reduced intraindividual similarity across samples following relic-DNA depletion highlights the bias introduced by traditional (total DNA) sequencing in diversity comparisons across samples. The divergent levels of cell viability measured across different skin sites, along with the inconsistencies in taxa differential abundance determined by total vs live cell DNA sequencing, suggest an important hypothesis for certain sites being susceptible to pathogen infection. Overall, our study demonstrates a characterization of the skin microbiome that overcomes relic-DNA bias to provide a baseline for live microbiota that will further improve mechanistic studies of infection, disease progression, and the design of therapies for the skin. Video Abstract.
Collapse
Affiliation(s)
- Deepan Thiruppathy
- Department of Bioengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Oriane Moyne
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Clarisse Marotz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Michael Williams
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Perris Navarro
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Livia Zaramela
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Karsten Zengler
- Department of Bioengineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Wang Z, Gong M, Fang Y, Yuan H, Zhang C. Reconstruction characteristics of gut microbiota from patients with type 1 diabetes affect the phenotypic reproducibility of glucose metabolism in mice. SCIENCE CHINA. LIFE SCIENCES 2025; 68:176-188. [PMID: 39285046 DOI: 10.1007/s11427-024-2658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 01/03/2025]
Abstract
The human microbiota-associated (HMA) mice model, especially the germ-free (GF)-humanized mice, has been widely used to probe the causal relationships between gut microbiota and human diseases such as type 1 diabetes (T1D). However, most studies have not clarified the extent to which the reconstruction of the human donor microbiota in recipient mice correlates with corresponding phenotypic reproducibility. In this study, we transplanted fecal microbiota from five patients with T1D and four healthy people into GF mice, and microbiota from each donor were transplanted into 10 mice. Mice with similar microbiota structure to the donor exhibited better phenotypic reproducibility. The characteristics of the microbial community assembly of donors also influenced the phenotypic reproducibility in mice, and individuals with a higher proportion of stochastic processes showed more severe disorders. Microbes enriched in patients with T1D had a stronger colonization potential in mice with impaired glucose metabolism, and microbiota functional features related to T1D were better reproduced in these mice. This indicates that assembly traits and colonization efficacy of microbiota influence phenotypic reproducibility in GF-humanized mice. Our findings provide important insights for using HMA mice models to explore links between gut microbiota and human diseases.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxue Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Lee JY, Kim Y, Kim J, Kim JK. Fecal Microbiota Transplantation: Indications, Methods, and Challenges. J Microbiol 2024; 62:1057-1074. [PMID: 39557804 DOI: 10.1007/s12275-024-00184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Over the past two decades, as the importance of gut microbiota to human health has become widely known, attempts have been made to treat diseases by correcting dysbiosis of gut microbiota through fecal microbiota transplantation (FMT). Apart from current knowledge of gut microbiota, FMT to treat disease has a long history, from the treatment of food poisoning in the fourth century to the treatment of Clostridioides difficile infections in the twentieth century. In 2013, FMT was recognized as a standard treatment for recurrent C. difficile because it consistently showed high efficacy. Though recurrent C. difficile is the only disease internationally recognized for FMT efficacy, FMT has been tested for other diseases and shown some promising preliminary results. Different FMT methods have been developed using various formulations and administration routes. Despite advances in FMT, some issues remain to be resolved, such as donor screening, manufacturing protocols, and unknown components in the fecal microbiota. In this review, we discuss the mechanisms, clinical indications, methods, and challenges of current FMT. We also discuss the development of alternative therapies to overcome the challenges of FMT.
Collapse
Affiliation(s)
- Jee Young Lee
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Yehwon Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyoun Kim
- Department of Medicine, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Jiyeun Kate Kim
- Department of Microbiology, Kosin University College of Medicine, Busan, 49267, Republic of Korea.
| |
Collapse
|
4
|
Cibulková I, Řehořová V, Wilhelm M, Soukupová H, Hajer J, Duška F, Daňková H, Cahová M. Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods. J Clin Lab Anal 2024; 38:e25105. [PMID: 39360586 PMCID: PMC11520942 DOI: 10.1002/jcla.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Veronika Řehořová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Marek Wilhelm
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Soukupová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of MicrobiologyKralovske Vinohrady University HospitalPragueCzech Republic
| | - Jan Hajer
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - František Duška
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Helena Daňková
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Monika Cahová
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
5
|
Bell J, Raidal S, Peters A, Hughes KJ. Storage of equine faecal microbiota transplantation solution has minimal impact on major bacterial communities and structure. Vet J 2024; 307:106220. [PMID: 39117173 DOI: 10.1016/j.tvjl.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Management of diarrhoea in horses is usually non-specific and supportive. Faecal microbiota transplantations (FMT) are used to manage dysbiosis in horses with diarrhoea. There are few studies investigating the effects of storage on prepared FMT solutions. This study was an in vitro non-randomised controlled experiment that investigated the effects of FMT solution preparation and storage on the faecal microbiota. Fresh faeces were collected from five healthy adult horses and used for DNA extraction and preparation of FMT. From each FMT, seven aliquots were collected and DNA was extracted immediately after FMT preparation (0 hr), after storage at 4 °C for 24, 48 or 72 hours, and after storage at -20°C for 7 days, 14 days or 28 days. The extracted DNA was used for 16 S rRNA gene sequencing. The relative abundance, alpha diversity and beta diversity between fresh faeces and FMT 0 hr showed no differences (P ≥ 0.05). There were minimal changes in the microbiota of FMT stored at 4°C for up to 72 hours and -20°C for up to 28 days. The results of this study indicate that preparation of equine FMT solution has minimal effect on the microbiota in comparison to fresh faeces. FMT solution can be stored at 4°C for up to 3 days and -20°C for 28 days without major change in microbiota.
Collapse
Affiliation(s)
- J Bell
- Charles Sturt University School of Agricultural, Environmental and Veterinary Sciences, 132 Agriculture Avenue, Wagga Wagga, NSW 2650, Australia.
| | - S Raidal
- Charles Sturt University School of Agricultural, Environmental and Veterinary Sciences, 132 Agriculture Avenue, Wagga Wagga, NSW 2650, Australia
| | - A Peters
- Charles Sturt University School of Agricultural, Environmental and Veterinary Sciences, 132 Agriculture Avenue, Wagga Wagga, NSW 2650, Australia
| | - K J Hughes
- Charles Sturt University School of Agricultural, Environmental and Veterinary Sciences, 132 Agriculture Avenue, Wagga Wagga, NSW 2650, Australia
| |
Collapse
|
6
|
Krause JL, Engelmann B, Lallinger DJD, Rolle-Kampczyk U, von Bergen M, Chang HD. Multi-Omics Analysis Unravels the Impact of Stool Sample Logistics on Metabolites and Microbial Composition. Microorganisms 2024; 12:1998. [PMID: 39458307 PMCID: PMC11509235 DOI: 10.3390/microorganisms12101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Human health and the human microbiome are inevitably intertwined, increasing their relevance in clinical research. However, the collection, transportation and storage of faecal samples may introduce bias due to methodological differences, especially since postal shipping is a common practise in large-scale clinical cohort studies. Using four different Omics layer, we determined the structural (16S rRNA sequencing, cytometric microbiota profiling) and functional integrity (SCFAs, global metabolome) of the microbiota in relation to different easy-to-handle conditions. These conditions were storage at -20 °C, -20 °C as glycerol stock, 4 °C and room temperature with and without oxygen exposure for a maximum of one week. Storage time affected the microbiota on all Omics levels. However, the magnitude was donor-dependent, highlighting the need for purpose-optimized sample collection in clinical multi-donor studies. The effects of oxygen exposure were negligible for all analyses. At ambient temperature, SCFA and compositional profiles were stable for 24 h and 48 h, respectively, while at 4 °C, SCFA profiles were maintained for 48 h. The global metabolome was highly susceptible, already changing at 24 h in non-frozen conditions. Thus, faecal microbiota was best preserved on all levels when transported as a native sample frozen within 24 h, leading to the least biased outcomes in the analysis. We conclude that the immediate freezing of native stool samples for transportation to the lab is best suited for planned multi-Omics analyses that include metabolomics to extend standard sequencing approaches.
Collapse
Affiliation(s)
- Jannike L. Krause
- German Rheumatism Research Center Berlin, A Leibniz Institute—DRFZ, Schwiete Laboratory for Microbiota and Inflammation, 10117 Berlin, Germany; (D.J.D.L.); (H.-D.C.)
| | - Beatrice Engelmann
- Helmholtz-Centre for Environmental Research—UFZ, Department of Molecular Toxicology, 04318 Leipzig, Germany; (B.E.); (U.R.-K.); (M.v.B.)
| | - David J. D. Lallinger
- German Rheumatism Research Center Berlin, A Leibniz Institute—DRFZ, Schwiete Laboratory for Microbiota and Inflammation, 10117 Berlin, Germany; (D.J.D.L.); (H.-D.C.)
| | - Ulrike Rolle-Kampczyk
- Helmholtz-Centre for Environmental Research—UFZ, Department of Molecular Toxicology, 04318 Leipzig, Germany; (B.E.); (U.R.-K.); (M.v.B.)
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research—UFZ, Department of Molecular Toxicology, 04318 Leipzig, Germany; (B.E.); (U.R.-K.); (M.v.B.)
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin, A Leibniz Institute—DRFZ, Schwiete Laboratory for Microbiota and Inflammation, 10117 Berlin, Germany; (D.J.D.L.); (H.-D.C.)
- Department for Cytometry, Institute of Biotechnology, Technical University Berlin, 10115 Berlin, Germany
| |
Collapse
|
7
|
Pacuta I, Gancarcikova S, Lauko S, Hajduckova V, Janicko M, Demeckova V, Rynikova M, Adamkova P, Mudronova D, Ambro L, Fialkovicova M, Nemetova D, Bertkova I. Evaluation of the Suitability of Selecting a Faecal Microbiota Transplant: Bacterial Composition and Subsequent Long-Term Monitoring of the Viability of Its Frozen and Lyophilised Forms. APPLIED SCIENCES 2024; 14:4856. [DOI: 10.3390/app14114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in frozen and lyophilised administration forms of FMT under various storage conditions. Methods: The bacterial microbiota composition of the FMT samples was assessed using amplicon sequencing via next-generation sequencing (NGS) technology, conducted on the Illumina MiSeq platform. The BD FACS Canto flow cytometer was used to analyse the metabolic activity of FMT samples. Results: FMT analysis confirmed the presence of key butyrate-producing organisms, specifically highlighting species such as Bifidobacterium adolescentis, Faecalibacterium prausnitzi, Coprococcus catus, Eubacterium rectale, alongside contributions from genera Roseburia and Blautia. These organisms play a crucial role in maintaining intestinal health in humans. The viable microorganism counts were significantly higher (p < 0.001) in the frozen form of FMT (−70 °C) in comparison to lyophilised forms (−70 °C, 4 °C and 20 °C) throughout the storage period. Conclusion: The conducted NGS analyses allowed us to confirm the suitability of our FMT donor as a potential candidate for the target group of patients diagnosed with ulcerative colitis. From the point of view of optimum utilisation of FMT at its highest metabolic activity for the purpose of transplantation, its storage for a maximum of 2 months under specified conditions was confirmed as the most suitable for the frozen and all lyophilised FMT forms.
Collapse
Affiliation(s)
- Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Rynikova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Fialkovicova
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| |
Collapse
|
8
|
Arora U, Kedia S, Ahuja V. The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res 2024; 22:44-64. [PMID: 37981746 PMCID: PMC10850701 DOI: 10.5217/ir.2023.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023] Open
Abstract
Current evidence posits a central role for gut microbiota and the metabolome in the pathogenesis and progression of inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been established as a means to manipulate this microbiome safely and sustainably. Several aspects of the technical improvement including pretreatment with antibiotics, use of frozen stool samples as well as short donor-to-recipient time are proposed to improve its response rates. Its efficacy in ulcerative colitis has been proven in clinical trials while data is emerging for Crohn's disease. This review describes briefly the biology behind FMT, the available evidence for its use in IBD, and the host, recipient and procedural factors which determine the clinical outcomes.
Collapse
Affiliation(s)
- Umang Arora
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|
10
|
Marsool MDM, Vora N, Marsool ADM, Pati S, Narreddy M, Patel P, Gadam S, Prajjwal P. Ulcerative colitis: Addressing the manifestations, the role of fecal microbiota transplantation as a novel treatment option and other therapeutic updates. Dis Mon 2023; 69:101606. [PMID: 37357103 DOI: 10.1016/j.disamonth.2023.101606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The prevalence and incidence of Ulcerative Colitis (UC), a recurrent and remitting inflammatory condition, are rising. Any part of the colon may be affected, beginning with inflammation of the mucosa in the rectum and continuing proximally continuously. Bloody diarrhea, tenesmus, fecal urgency, and stomach pain are typical presenting symptoms. Many patients present with extraintestinal manifestations (EIMs) including musculoskeletal, ocular, renal, hepatobiliary, and dermatological presentation, among others. Most cases are treated with pharmacological therapy including mesalazine and glucocorticoids. Fecal microbiota transplantation (FMT) is a novel procedure that is increasingly being used to treat UC, however, its use yet remains controversial because of uncertain efficacy. FMT can lower gut permeability and consequently disease severity by boosting short-chain fatty acids production, helping in epithelial barrier integrity preservation. Upadacitinib (JAK Kinase inhibitor) is another newer treatment option, which is an FDA-approved drug that is being used to treat UC. This review article provides a comprehensive review of the EIMs of UC, the role of FMT along with various recent clinical trials pertaining to FMT as well as other diagnostic and therapeutic updates.
Collapse
Affiliation(s)
| | - Neel Vora
- B. J. Medical College, Ahmedabad, India
| | | | - Shefali Pati
- St George's University, School of Medicine, Grenada
| | | | - Parth Patel
- Pramukhswami Medical College, Karamsad, India
| | | | | |
Collapse
|
11
|
Bénard MV, Arretxe I, Wortelboer K, Harmsen HJM, Davids M, de Bruijn CMA, Benninga MA, Hugenholtz F, Herrema H, Ponsioen CY. Anaerobic Feces Processing for Fecal Microbiota Transplantation Improves Viability of Obligate Anaerobes. Microorganisms 2023; 11:2238. [PMID: 37764082 PMCID: PMC10535047 DOI: 10.3390/microorganisms11092238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is under investigation for several indications, including ulcerative colitis (UC). The clinical success of FMT depends partly on the engraftment of viable bacteria. Because the vast majority of human gut microbiota consists of anaerobes, the currently used aerobic processing protocols of donor stool may diminish the bacterial viability of transplanted material. This study assessed the effect of four processing techniques for donor stool (i.e., anaerobic and aerobic, both direct processing and after temporary cool storage) on bacterial viability. By combining anaerobic culturing on customized media for anaerobes with 16S rRNA sequencing, we could successfully culture and identify the majority of the bacteria present in raw fecal suspensions. We show that direct anaerobic processing of donor stool is superior to aerobic processing conditions for preserving the bacterial viability of obligate anaerobes and butyrate-producing bacteria related to the clinical response to FMT in ulcerative colitis patients, including Faecalibacterium, Eubacterium hallii, and Blautia. The effect of oxygen exposure during stool processing decreased when the samples were stored long-term. Our results confirm the importance of sample conditioning to preserve the bacterial viability of oxygen-sensitive gut bacteria. Anaerobic processing of donor stool may lead to increased clinical success of FMT, which should further be investigated in clinical trials.
Collapse
Affiliation(s)
- Mèlanie V. Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Iñaki Arretxe
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| | - Mark Davids
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Clara M. A. de Bruijn
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc A. Benninga
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam Medical Center, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Cyriel Y. Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
| |
Collapse
|
12
|
da Ponte Neto AM, Clemente ACO, Rosa PW, Ribeiro IB, Funari MP, Nunes GC, Moreira L, Sparvoli LG, Cortez R, Taddei CR, Mancini MC, de Moura EGH. Fecal microbiota transplantation in patients with metabolic syndrome and obesity: A randomized controlled trial. World J Clin Cases 2023; 11:4612-4624. [PMID: 37469721 PMCID: PMC10353513 DOI: 10.12998/wjcc.v11.i19.4612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 05/04/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Metabolic syndrome is a multifactorial disease, and the gut microbiota may play a role in its pathogenesis. Obesity, especially abdominal obesity, is associated with insulin resistance, often increasing the risk of type two diabetes mellitus, vascular endothelial dysfunction, an abnormal lipid profile, hypertension, and vascular inflammation, all of which promote the development of atherosclerotic cardiovascular disease. AIM To evaluate the outcomes of fecal microbiota transplantation (FMT) in patients with metabolic syndrome. METHODS This was a randomized, single-blind placebo-controlled trial comparing FMT and a sham procedure in patients with metabolic syndrome. We selected 32 female patients, who were divided into eight groups of four patients each. All of the patients were submitted to upper gastrointestinal endoscopy. In each group, two patients were randomly allocated to undergo FMT, and the other two patients received saline infusion. The patients were followed for one year after the procedures, during which time anthropometric, bioimpedance, and biochemical data were collected. The patients also had periodic consultations with a nutritionist and an endocrinologist. The primary end point was a change in the gut microbiota. RESULTS There was evidence of a postprocedural change in microbiota composition in the patients who underwent FMT in relation to that observed in those who underwent the sham procedure. However, we found no difference between the two groups in terms of the clinical parameters evaluated. CONCLUSION There were no significant differences in biochemical or anthropometric parameters, between the two groups evaluated. Nevertheless, there were significant postprocedural differences in the microbiota composition between the placebo group. To date, clinical outcomes related to FMT remain uncertain.
Collapse
Affiliation(s)
- Alberto Machado da Ponte Neto
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Aniele Cristine Ott Clemente
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Paula Waki Rosa
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Igor Braga Ribeiro
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Mateus Pereira Funari
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Gabriel Cairo Nunes
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| | - Luana Moreira
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Luiz Gustavo Sparvoli
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Ramon Cortez
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Carla Romano Taddei
- Department of Clinical and Toxicology Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05403-010, SP, Brazil
- School of Arts, Science and Humanities, University of São Paulo, São Paulo 05403-010, SP, Brazil
| | - Márcio C Mancini
- Department of Endocrinology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo 05403-010, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Departament of Gastroenterology, Faculdade de Medicina, Universidade de Sao Paulo, Serviço de Endoscopia Gastrointestinal do Hospital das Clínicas HCFMUSP, São Paulo 05403-010, SP, Brazil
| |
Collapse
|
13
|
Rakotonirina A, Galperine T, Audry M, Kroemer M, Baliff A, Carrez L, Sadeghipour F, Schrenzel J, Guery B, Allémann É. Dry alginate beads for fecal microbiota transplantation: from model strains to fecal samples. Int J Pharm 2023; 639:122961. [PMID: 37075927 DOI: 10.1016/j.ijpharm.2023.122961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Clostridioides difficile infection (CDI) is a critical nosocomial infection with more than 124,000 cases per year in Europe and a mortality rate of 15-17%. The standard of care (SoC) is antibiotic treatment. Unfortunately, the relapse rate is high (∼35%) and SoC is significantly less effective against recurrent infection (rCDI). Fecal microbiota transplantation (FMT) is a recommended treatment against rCDI from the second recurrence episode and has an efficacy of 90%. The formulation of diluted donor stool deserves innovation because its actual administration routes deserve optimization (naso-duodenal/jejunal tubes, colonoscopy, enema or several voluminous oral capsules). Encapsulation of model bacteria strains in gel beads were first investigated. Then, the encapsulation method was applied to diluted stools. Robust spherical gel beads were obtained. The mean particle size was around 2 mm. A high loading of viable microorganisms was obtained for model strains and fecal samples. For plate-counting, values ranged from 1015 to 1017 CFU/g for single and mixed model strains, and 106 to 108 CFU/g for fecal samples. This corresponded to a viability of 30% to 60% as assessed by flow cytometry. This novel formulation is promising as the technology is applicable to both model strains and bacteria contained in the gut microbiota.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland; French Group of Faecal Microbiota Transplantation, Paris, France
| | - Maxime Audry
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Marie Kroemer
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Aurélie Baliff
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland
| | - Laurent Carrez
- Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Farshid Sadeghipour
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; Service of Pharmacy, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Jacques Schrenzel
- Genomic Research Lab, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland
| | - Benoît Guery
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, 1011 & 1015 Lausanne, Switzerland
| | - Éric Allémann
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
14
|
Loublier C, Taminiau B, Heinen J, Lecoq L, Amory H, Daube G, Cesarini C. Evaluation of Bacterial Composition and Viability of Equine Feces after Processing for Transplantation. Microorganisms 2023; 11:microorganisms11020231. [PMID: 36838196 PMCID: PMC9966902 DOI: 10.3390/microorganisms11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been used empirically for decades in equine medicine to treat intestinal dysbiosis but evidence-based information is scarce. This in vitro study aimed at assessing the effect of a commonly used pre-FMT processing method on the bacterial composition and viability of the fecal filtrate. Three samples of fresh equine manure (T0) were processed identically: the initial manure was mixed with 1 L of lukewarm water and chopped using an immersion blender to obtain a mixture (T1), which was left uncovered during 30 min (T2) and percolated through a sieve to obtain a fecal filtrate (T3). Samples were taken throughout the procedure (Tn) and immediately stored at 4 °C until processing. The 16S rDNA amplicon profiling associated with propidium monoazide treatment was performed on each sample to select live bacteria. Analyses of α and β diversity and main bacterial populations and quantitative (qPCR) analysis were performed and statistically compared (significance p < 0.05) between time points (T0-T3). No significant differences in ecological indices or mean estimated total living bacteria were found in the final fecal filtrate (T3) in regard to the original manure (T0); however, relative abundances of some minor genera (Fibrobacter, WCHB1-41_ge and Akkermansia) were significantly different in the final filtrate. In conclusion, the results support the viability of the major bacterial populations in equine feces when using the described pre-FMT protocol.
Collapse
Affiliation(s)
- Clémence Loublier
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Department of Food Sciences—Microbiology, Faculty of Veterinary Medicine, University of Liege, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Julia Heinen
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Hélène Amory
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Department of Food Sciences—Microbiology, Faculty of Veterinary Medicine, University of Liege, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
15
|
Kang JTL, Teo JJY, Bertrand D, Ng A, Ravikrishnan A, Yong M, Ng OT, Marimuthu K, Chen SL, Chng KR, Gan YH, Nagarajan N. Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects. Nat Microbiol 2022; 7:1516-1524. [PMID: 36109646 PMCID: PMC9519440 DOI: 10.1038/s41564-022-01221-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
AbstractLong-term colonization of the gut microbiome by carbapenemase-producing Enterobacteriaceae (CPE) is a growing area of public health concern as it can lead to community transmission and rapid increase in cases of life-threatening CPE infections. Here, leveraging the observation that many subjects are decolonized without interventions within a year, we used longitudinal shotgun metagenomics (up to 12 timepoints) for detailed characterization of ecological and evolutionary dynamics in the gut microbiome of a cohort of CPE-colonized subjects and family members (n = 46; 361 samples). Subjects who underwent decolonization exhibited a distinct ecological shift marked by recovery of microbial diversity, key commensals and anti-inflammatory pathways. In addition, colonization was marked by elevated but unstable Enterobacteriaceae abundances, which exhibited distinct strain-level dynamics for different species (Escherichia coli and Klebsiella pneumoniae). Finally, comparative analysis with whole-genome sequencing data from CPE isolates (n = 159) helped identify substrain variation in key functional genes and the presence of highly similar E. coli and K. pneumoniae strains with variable resistance profiles and plasmid sharing. These results provide an enhanced view into how colonization by multi-drug-resistant bacteria associates with altered gut ecology and can enable transfer of resistance genes, even in the absence of overt infection and antibiotic usage.
Collapse
|
16
|
Huang T, Xu J, Wang M, Pu K, Li L, Zhang H, Liang Y, Sun W, Wang Y. An updated systematic review and meta-analysis of fecal microbiota transplantation for the treatment of ulcerative colitis. Medicine (Baltimore) 2022; 101:e29790. [PMID: 35905229 PMCID: PMC9333500 DOI: 10.1097/md.0000000000029790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) as a promising therapy for ulcerative colitis (UC) remains controversial. We conducted a systematic review and meta-analysis to assess the efficiency and safety of FMT as a treatment for UC. METHODS The target studies were identified by searching PubMed, EMBASE, the Cochrane Library, Web of Science, and ClinicalTrials and by manual supplementary retrieval. We conducted a general review and quantitative synthesis of included studies. We used the RevMan and Stata programs in the meta-analysis. The outcomes were total remission, clinical remission, steroid-free remission, and serious adverse events. We also performed subgroup analyses based on different populations. RESULTS A total of 34 articles were included in the general review. Only 16 articles, including 4 randomized controlled trials, 2 controlled clinical trials, and 10 cohort studies, were selected for the meta-analysis. We found that donor FMT might be more effective than placebo for attaining total remission (risk ratio [RR]: 2.77, 95% confidence interval [CI]: 1.54-4.98; P = .0007), clinical remission (RR: 0.33, 95% CI: 0.24-0.41; P < .05), and steroid-free remission (RR: 3.63, 95% CI: 1.57-8.42; P = .003), but found no statistically significant difference in the incidence of serious adverse events (RR: 0.88, 95% CI: 0.34-2.31, P = .8). The subgroup analyses revealed significant differences between the pooled clinical remission rates for different regions, degrees of severity of the disease, and patients with steroid- or nonsteroid-dependent UC. CONCLUSIONS FMT can achieve clinical remission and clinical response in patients with UC.
Collapse
Affiliation(s)
- Taobi Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Jinlan Xu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Maoying Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ke Pu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Longquan Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Yuan Liang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yu Ping Wang, Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, Gansu 730000, China (e-mail:
| | - Yuping Wang
- Department of Gastroenterology, the First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Gastrointestinal Diseases in Lanzhou University, Lanzhou, China
- *Correspondence: Yu Ping Wang, Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, No.1 West Donggang Road, Lanzhou, Gansu 730000, China (e-mail:
| |
Collapse
|
17
|
Rakotonirina A, Galperine T, Allémann E. Fecal microbiota transplantation: a review on current formulations in Clostridioides difficile infection and future outlooks. Expert Opin Biol Ther 2022; 22:929-944. [PMID: 35763604 DOI: 10.1080/14712598.2022.2095901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The role of the gut microbiota in health and the pathogenesis of several diseases has been highlighted in recent years. Even though the precise mechanisms involving the microbiome in these ailments are still unclear, microbiota-modulating therapies have been developed. Fecal microbiota transplantation (FMT) has shown significant results against Clostridioides difficile infection (CDI), and its potential has been investigated for other diseases. Unfortunately, the technical aspects of the treatment make it difficult to implement. Pharmaceutical technology approaches to encapsulate microorganisms could play an important role in providing this treatment and render the treatment modalities easier to handle. AREAS COVERED After an overview of CDI, this narrative review aims to discuss the current formulations for FMT and specifically addresses the technical aspects of the treatment. This review also distinguishes itself by focusing on the hurdles and emphasizing the possible improvements using pharmaceutical technologies. EXPERT OPINION FMT is an efficient treatment for recurrent CDI. However, its standardization is overlooked. The approach of industrial and hospital preparations of FMT are different, but both show promise in their respective methodologies. Novel FMT formulations could enable further research on dysbiotic diseases in the future.
Collapse
Affiliation(s)
- Adèle Rakotonirina
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Tatiana Galperine
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland.,French Group of Faecal Microbiota Transplantation
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Selma-Royo M, Calvo-Lerma J, Bäuerl C, Esteban-Torres M, Cabrera-Rubio R, Collado MC. Human milk microbiota: what did we learn in the last 20 years? MICROBIOME RESEARCH REPORTS 2022; 1:19. [PMID: 38046359 PMCID: PMC10688795 DOI: 10.20517/mrr.2022.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
Human milk (HM) is the gold standard for infant nutrition during the first months of life. Beyond its nutritional components, its complex bioactive composition includes microorganisms, their metabolites, and oligosaccharides, which also contribute to gut colonization and immune system maturation. There is growing evidence of the beneficial effects of bacteria present in HM. However, current research presents limited data on the presence and functions of other organisms. The potential biological impacts on maternal and infant health outcomes, the factors contributing to milk microbes' variations, and the potential functions in the infant's gut remain unclear. This review provides a global overview of milk microbiota, what the actual knowledge is, and what the gaps and challenges are for the next years.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia 46980, Spain
| |
Collapse
|
19
|
Shang L, Tu J, Dai Z, Zeng X, Qiao S. Microbiota Transplantation in an Antibiotic-Induced Bacterial Depletion Mouse Model: Reproducible Establishment, Analysis, and Application. Microorganisms 2022; 10:902. [PMID: 35630347 PMCID: PMC9146686 DOI: 10.3390/microorganisms10050902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The fecal bacteria transplantation (FMT) technique is indispensable when exploring the pathogenesis and potential treatments for microbiota-related diseases. For FMT clinical treatments, there are already systematic guidelines for donor selection, fecal bacterial separation, FMT frequency, and infusion methods. However, only a few studies have demonstrated the use of standardized FMT procedures for animal models used in theoretical research, creating difficulties for many new researchers in this field. In the present paper, we provide a brief overview of FMT and discuss its contribution to the current understanding of disease mechanisms that relate to microbiota. This protocol can be used to generate a commonly used FMT mouse model and provides a literature reference of customizable steps.
Collapse
Affiliation(s)
- Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
20
|
Abstract
Alcohol is part of the usual diet of millions of individuals worldwide. However, not all individuals who drink alcohol experience the same effects, nor will everyone develop an alcohol use disorder. Here we propose that the intestinal microbiota (IMB) helps explain the different consumption patterns of alcohol among individuals. 507 humans participated in this study and alcohol consumption and IMB composition were analyzed. On the other hand, in 80 adult male Wistar rats, behavioral tests, alcohol intoxication, fecal transplantation, administration of antibiotics and collection of fecal samples were performed. For identification and relative quantification of bacterial taxa was used the bacterial 16 S ribosomal RNA gene. In humans, we found that heavy episodic drinking is associated with a specific stool type phenotype (type 1, according to Bristol Stool Scale; p < 0.05) and with an increase in the abundance of Actinobacteria (p < 0.05). Next, using rats, we demonstrate that the transfer of IMB from alcohol-intoxicated animals causes an increase in voluntary alcohol consumption in transplant-recipient animals (p < 0.001). The relative quantification data indicate that the genus Porphyromonas could be associated with the effect on voluntary alcohol consumption. We also show that gut microbiota depletion by antibiotics administration causes a reduction in alcohol consumption (p < 0.001) and altered the relative abundance of relevant phyla such as Firmicutes, Bacteroidetes or Cyanobacteria (p < 0.05), among others. Benjamini-Hochberg false discovery rate (FDR) correction was performed for multiple comparisons. These studies reveal some of the consequences of alcohol on the IMB and provide evidence that manipulation of IMB may alter voluntary alcohol consumption.
Collapse
|
21
|
Hosokawa M, Endoh T, Kamata K, Arikawa K, Nishikawa Y, Kogawa M, Saeki T, Yoda T, Takeyama H. Strain-level profiling of viable microbial community by selective single-cell genome sequencing. Sci Rep 2022; 12:4443. [PMID: 35292746 PMCID: PMC8924182 DOI: 10.1038/s41598-022-08401-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Culture-independent analysis with high-throughput sequencing has been widely used to characterize bacterial communities. However, signals derived from non-viable bacteria and non-cell DNA may inhibit its characterization. Here, we present a method for viable bacteria-targeted single-cell genome sequencing, called PMA-SAG-gel, to obtain comprehensive whole-genome sequences of surviving uncultured bacteria from microbial communities. PMA-SAG-gel uses gel matrixes that enable sequential enzymatic reactions for cell lysis and genome amplification of viable single cells from the microbial communities. PMA-SAG-gel removed the single-amplified genomes (SAGs) derived from dead bacteria and enabled selective sequencing of viable bacteria in the model samples of Escherichia coli and Bacillus subtilis. Next, we demonstrated the recovery of near-complete SAGs of eight oxygen-tolerant bacteria, including Bacteroides spp. and Phocaeicola spp., from 1331 human feces SAGs. We found the presence of two different strains in each species and identified their specific genes to investigate the metabolic functions. The survival profile of an entire population at the strain level will provide the information for understanding the characteristics of the surviving bacteria under the specific environments or sample processing and insights for quality assessment of live bacterial products or fecal microbiota transplantation and for understanding the effect of antimicrobial treatments.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Taruho Endoh
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Kazuma Kamata
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Koji Arikawa
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Yohei Nishikawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Tatsuya Saeki
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Takuya Yoda
- bitBiome, Inc., 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
22
|
Kraimi N, Lormant F, Calandreau L, Kempf F, Zemb O, Lemarchand J, Constantin P, Parias C, Germain K, Rabot S, Philippe C, Foury A, Moisan MP, Carvalho AV, Coustham V, Dardente H, Velge P, Chaumeil T, Leterrier C. Microbiota and stress: a loop that impacts memory. Psychoneuroendocrinology 2022; 136:105594. [PMID: 34875421 DOI: 10.1016/j.psyneuen.2021.105594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022]
Abstract
Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and β diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.
Collapse
Affiliation(s)
- Narjis Kraimi
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Flore Lormant
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | - Florent Kempf
- INRAE, ISP, Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Olivier Zemb
- INRAE-INPT-ENSAT, Université de Toulouse, GenPhySE, 31326 Castanet-Tolosan, France
| | - Julie Lemarchand
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Paul Constantin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Céline Parias
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Karine Germain
- INRAE, UE1206 Systèmes d'Elevage Avicoles Alternatifs, Le Magneraud, 17700 Surgères, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Aline Foury
- INRAE, UMR 1286, Université de Bordeaux, Nutrition et Neurobiologie Intégrée, 33076 Bordeaux, France
| | - Marie-Pierre Moisan
- INRAE, UMR 1286, Université de Bordeaux, Nutrition et Neurobiologie Intégrée, 33076 Bordeaux, France
| | | | | | - Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Philippe Velge
- INRAE, ISP, Université de Tours, UMR 1282, 37380 Nouzilly, France
| | - Thierry Chaumeil
- INRAE, UE Plate-Forme d'Infectiologie Expérimentale, 37380 Nouzilly, France
| | | |
Collapse
|
23
|
Bloom PP, Tapper EB, Young VB, Lok AS. Microbiome therapeutics for hepatic encephalopathy. J Hepatol 2021; 75:1452-1464. [PMID: 34453966 PMCID: PMC10471317 DOI: 10.1016/j.jhep.2021.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by neuropsychiatric and motor dysfunction. Microbiota-host interactions play an important role in HE pathogenesis. Therapies targeting microbial community composition and function have been explored for the treatment of HE. Prebiotics, probiotics and faecal microbiota transplant (FMT) have been used with the aim of increasing the abundance of potentially beneficial taxa, while antibiotics have been used to decrease the abundance of potentially harmful taxa. Other microbiome therapeutics, including postbiotics and absorbents, have been used to target microbial products. Microbiome-targeted therapies for HE have had some success, notably lactulose and rifaximin, with probiotics and FMT also showing promise. However, there remain several challenges to the effective application of microbiome therapeutics in HE, including the resilience of the microbiome to sustainable change and unpredictable clinical outcomes from microbiota alterations. Future work in this space should focus on rigorous trial design, microbiome therapy selection, and a personalised approach to HE.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA.
| | - Elliot B Tapper
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, USA; Department of Microbiology and Immunology, University of Michigan, USA
| | - Anna S Lok
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| |
Collapse
|
24
|
Browne PD, Cold F, Petersen AM, Halkjær SI, Christensen AH, Günther S, Hestbjerg Hansen L. Engraftment of strictly anaerobic oxygen-sensitive bacteria in irritable bowel syndrome patients following fecal microbiota transplantation does not improve symptoms. Gut Microbes 2021; 13:1-16. [PMID: 34074214 PMCID: PMC8183560 DOI: 10.1080/19490976.2021.1927635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dysbiosis of the gut microbiome has been correlated with irritable bowel syndrome (IBS). Fecal microbiota transplantation (FMT) is being explored as a therapeutic option. Little is known of the mechanisms of engraftment of microbes following FMT and whether the engraftment of certain microbes correlate with clinical improvement in IBS. Microbiome data, from a previously reported placebo-controlled trial of treatment of IBS with FMT or placebo capsules, were used to investigate microbial engraftment 15 days, 1, 3 and 6 months after treatment through assessment of gains, losses and changes in abundance of amplicon sequence variants (ASVs) and microbial diversity (CHAO-1 richness) between the FMT group and the placebo group. These data were compared to changes in IBS Symptom Severity Scores (IBS-SSS). Twelve days of treatment with 25 daily multi-donor FMT capsules induced significant short- and long-term changes in the recipients' microbiomes for at least 6 months, with persistent engraftment of a variety of anaerobic bacteria from keystone genera, such as Faecalibacterium, Prevotella and Bacteroides and increased microbial diversity, particularly in patients with low initial diversity. FMT recipients lost ASVs after treatment, which was seen to a much lesser extent in the placebo group. No ASVs increased to a greater extent between FMT responders and non-responders following treatment. Major long-term changes, lasting for at least 6 months, in the gut microbiomes of IBS patients are seen following treatment with FMT capsules. None of these changes correlated with clinical improvement. The relationship between the microbiome and the etiology of IBS still remains unsolved.
Collapse
Affiliation(s)
- Patrick Denis Browne
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederik Cold
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark,Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark,Department of Gastroenterology, Aleris-Hamlet Hospitals Copenhagen, Soeborg, Denmark
| | - Andreas Munk Petersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark,Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Sofie Ingdam Halkjær
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Stig Günther
- Department of Gastroenterology, Aleris-Hamlet Hospitals Copenhagen, Soeborg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark,CONTACT Lars Hestbjerg Hansen Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
25
|
Fehily SR, Basnayake C, Wright EK, Kamm MA. Fecal microbiota transplantation therapy in Crohn's disease: Systematic review. J Gastroenterol Hepatol 2021; 36:2672-2686. [PMID: 34169565 DOI: 10.1111/jgh.15598] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The gastrointestinal microbiota is the key antigenic drive in the inflammatory bowel diseases. Randomized controlled trials (RCTs) in ulcerative colitis have established fecal microbiota transplantation (FMT) as an effective therapy. We have conducted a systematic review to evaluate the efficacy of FMT in Crohn's disease. METHODS A systematic literature search was performed through to August 2020 (MEDLINE; Embase). Studies were included if they reported FMT administration in patients with Crohn's disease, and reported on clinical outcomes. RESULTS Fifteen studies published between 2014 and 2020, comprising 13 cohort studies and two RCTs, were included in the analysis. The majority of trials evaluated FMT for induction of remission, with follow-up duration varying from 4 to 52 weeks. One RCT in 21 patients, of single-dose FMT versus placebo, following steroid-induced remission, showed a higher rate of steroid-free clinical remission in the FMT group compared to the control group: 87.5% vs 44.4% at week 10 (P = 0.23). Another RCT, two-dose FMT in 31 patients, showed an overall clinical remission rate of 36% at week 8, however, with no difference in clinical or endoscopic endpoints between FMT administered by gastroscopy and colonoscopy. Considering all studies, the clinical response rates in early follow up were higher following multiple FMT than with single FMT. FMT dose did not appear to influence clinical outcomes, nor did whether FMT was fresh or frozen. FMT delivered via upper gastrointestinal route demonstrated higher early efficacy rates of 75 to 100% compared with lower delivery route rates of 30% to 58%, but on follow up beyond 8 weeks, this difference was not maintained. Whether pre-FMT antibiotic administration was beneficial was not able to be determined due to the limited number of patients receiving antibiotics and varying antibiotic regimens. No serious adverse events were reported. CONCLUSIONS Preliminary studies suggest that FMT may be an effective therapy in Crohn's disease. However large controlled trials are needed. No serious safety concerns have been identified.
Collapse
Affiliation(s)
- Sasha R Fehily
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chamara Basnayake
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Emily K Wright
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Dowdell AS, Colgan SP. Metabolic Host-Microbiota Interactions in Autophagy and the Pathogenesis of Inflammatory Bowel Disease (IBD). Pharmaceuticals (Basel) 2021; 14:708. [PMID: 34451805 PMCID: PMC8399382 DOI: 10.3390/ph14080708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a family of conditions characterized by chronic, relapsing inflammation of the gastrointestinal tract. IBD afflicts over 3 million adults in the United States and shows increasing prevalence in the Westernized world. Current IBD treatments center on modulation of the damaging inflammatory response and carry risks such as immunosuppression, while the development of more effective treatments is hampered by our poor understanding of the molecular mechanisms of IBD pathogenesis. Previous genome-wide association studies (GWAS) have demonstrated that gene variants linked to the cellular response to microorganisms are most strongly associated with an increased risk of IBD. These studies are supported by mechanistic work demonstrating that IBD-associated polymorphisms compromise the intestine's anti-microbial defense. In this review, we summarize the current knowledge regarding IBD as a disease of defects in host-microbe interactions and discuss potential avenues for targeting this mechanism for future therapeutic development.
Collapse
Affiliation(s)
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
27
|
Ramírez-Acosta S, Arias-Borrego A, Navarro-Roldán F, Selma-Royo M, Calatayud M, Collado MC, Huertas-Abril PV, Abril N, Barrera TG. Omic methodologies for assessing metal(-loid)s-host-microbiota interplay: A review. Anal Chim Acta 2021; 1176:338620. [PMID: 34399890 DOI: 10.1016/j.aca.2021.338620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Omic methodologies have become key analytical tools in a wide number of research topics such as systems biology, environmental analysis, biomedicine or food analysis. They are especially useful when they are combined providing a new perspective and a holistic view of the analytical problem. Methodologies for microbiota analysis have been mostly focused on genome sequencing. However, information provided by these metagenomic studies is limited to the identification of the presence of genes, taxa and their inferred functionality. To achieve a deeper knowledge of microbial functionality in health and disease, especially in dysbiosis conditions related to metal and metalloid exposure, the introduction of additional meta-omic approaches including metabolomics, metallomics, metatranscriptomics and metaproteomics results essential. The possible impact of metals and metalloids on the gut microbiota and their effects on gut-brain axis (GBA) only begin to be figured out. To this end new analytical workflows combining powerful tools are claimed such as high resolution mass spectrometry and heteroatom-tagged proteomics for the absolute quantification of metal-containing biomolecules using the metal as a "tag" in a sensitive and selective detector (e.g. ICP-MS). This review focus on current analytical methodologies related with the analytical techniques and procedures available for metallomics and microbiota analysis with a special attention on their advantages and drawbacks.
Collapse
Affiliation(s)
- Sara Ramírez-Acosta
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Francisco Navarro-Roldán
- Department of Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, University of Huelva, Spain
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Marta Calatayud
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Agustin Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Paula V Huertas-Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain.
| | - Tamara García Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain.
| |
Collapse
|
28
|
Chen J, Zaman A, Ramakrishna B, Olesen SW. Stool Banking for Fecal Microbiota Transplantation: Methods and Operations at a Large Stool Bank. Front Cell Infect Microbiol 2021; 11:622949. [PMID: 33937092 PMCID: PMC8082449 DOI: 10.3389/fcimb.2021.622949] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives Fecal microbiota transplantation (FMT) is a recommended therapy for recurrent Clostridioides difficile infection and is being investigated as a potential therapy for dozens of microbiota-mediated indications. Stool banks centralize FMT donor screening and FMT material preparation with the goal of expanding access to FMT material while simultaneously improving its safety, quality, and convenience. Although there are published consensuses on donor screening guidelines, there are few reports about the implementation of those guidelines in functioning stool banks. Methods To help inform consensus standards with data gathered from real-world settings and, in turn, to improve patient care, here we describe the general methodology used in 2018 by OpenBiome, a large stool bank, and its outputs in that year. Results In 2018, the stool bank received 7,536 stool donations from 210 donors, a daily average of 20.6 donations, and processed 4,271 of those donations into FMT preparations. The median time a screened and enrolled stool donor actively donated stool was 5.8 months. The median time between the manufacture of an FMT preparation and its shipment to a hospital or physician was 8.9 months. Half of the stool bank's partner hospitals and physicians ordered an average of 0.75 or fewer FMT preparations per month. Conclusions Further knowledge sharing should help inform refinements of stool banking guidelines and best practices.
Collapse
|
29
|
Björkqvist O, Rangel I, Serrander L, Magnusson C, Halfvarson J, Norén T, Bergman-Jungeström M. Faecalibacterium prausnitzii increases following fecal microbiota transplantation in recurrent Clostridioides difficile infection. PLoS One 2021; 16:e0249861. [PMID: 33836037 PMCID: PMC8034738 DOI: 10.1371/journal.pone.0249861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Fecal microbiota transplantation (FMT) is a highly effective treatment for Clostridioides difficile infection (CDI). However, the fecal transplant's causal components translating into clearance of the CDI are yet to be identified. The commensal bacteria Faecalibacterium prausnitzii may be of great interest in this context, since it is one of the most common species of the healthy gut microbiota and produces metabolites with anti-inflammatory properties. Although there is mounting evidence that F. prausnitzii is an important regulator of intestinal homeostasis, data about its role in CDI and FMT are relatively scarce. METHODS Stool samples from patients with recurrent CDI were collected to investigate the relative abundance of F. prausnitzii before and after FMT. Twenty-one patients provided fecal samples before the FMT procedure, at 2 weeks post-FMT, and at 2-4 months post-FMT. The relative abundance of F. prausnitzii was determined using quantitative polymerase chain reaction. RESULTS The abundance of F. prausnitzii was elevated in samples (N = 9) from donors compared to pre-FMT samples (N = 15) from patients (adjusted P<0.001). No significant difference in the abundance of F. prausnitzii between responders (N = 11) and non-responders (N = 4) was found before FMT (P = 0.85). In patients with CDI, the abundance of F. prausnitzii significantly increased in the 2 weeks post-FMT samples (N = 14) compared to the pre-FMT samples (N = 15, adjusted P<0.001). The increase persisted 2-4 months post-FMT (N = 15) compared to pre-FMT samples (N = 15) (adjusted P<0.001). CONCLUSIONS FMT increases the relative abundance of F. prausnitzii in patients with recurrent CDI, and this microbial shift remains several months later. The baseline abundance of F. prausnitzii in donors or recipients was not associated with future treatment response, although a true predictive capacity cannot be excluded because of the limited sample size. Further studies are needed to discern whether F. prausnitzii plays an active role in the resolution of CDI.
Collapse
Affiliation(s)
- Olle Björkqvist
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| | - Ignacio Rangel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Lena Serrander
- Division of Clinical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia Magnusson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Region Jönköping County, Jönköping, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Torbjörn Norén
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides Difficile, Clinical Microbiology, Örebro University, Örebro, Sweden
| | - Malin Bergman-Jungeström
- Division of Clinical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
Bolte LA, Klaassen MAY, Collij V, Vich Vila A, Fu J, van der Meulen TA, de Haan JJ, Versteegen GJ, Dotinga A, Zhernakova A, Wijmenga C, Weersma RK, Imhann F. Patient attitudes towards faecal sampling for gut microbiome studies and clinical care reveal positive engagement and room for improvement. PLoS One 2021; 16:e0249405. [PMID: 33831035 PMCID: PMC8031379 DOI: 10.1371/journal.pone.0249405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
Faecal sample collection is crucial for gut microbiome research and its clinical applications. However, while patients and healthy volunteers are routinely asked to provide stool samples, their attitudes towards sampling remain largely unknown. Here, we investigate the attitudes of 780 Dutch patients, including participants in a large Inflammatory Bowel Disease (IBD) gut microbiome cohort and population controls, in order to identify barriers to sample collection and provide recommendations for gut microbiome researchers and clinicians. We sent questionnaires to 660 IBD patients and 112 patients with other disorders who had previously been approached to participate in gut microbiome studies. We also conducted 478 brief interviews with participants in our general population cohort who had collected stool samples. Statistical analysis of the data was performed using R. 97.4% of respondents reported that they had willingly participated in stool sample collection for gut microbiome research, and most respondents (82.9%) and interviewees (95.6%) indicated willingness to participate again, with their motivations for participating being mainly altruistic (57.0%). Responses indicated that storing stool samples in the home freezer for a prolonged time was the main barrier to participation (52.6%), but clear explanations of the sampling procedures and their purpose increased participant willingness to collect and freeze samples (P = 0.046, P = 0.003). To account for participant concerns, gut microbiome researchers establishing cohorts and clinicians trying new faecal tests should provide clear instructions, explain the rationale behind their protocol, consider providing a small freezer and inform patients about study outcomes. By assessing the attitudes, motives and barriers surrounding participation in faecal sample collection, we provide important information that will contribute to the success of gut microbiome research and its near-future clinical applications.
Collapse
Affiliation(s)
- Laura A. Bolte
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolein A. Y. Klaassen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Taco A. van der Meulen
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jacco J. de Haan
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerbrig J. Versteegen
- Department of Medical Psychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Huang W, Kong D. The intestinal microbiota as a therapeutic target in the treatment of NAFLD and ALD. Biomed Pharmacother 2021; 135:111235. [DOI: 10.1016/j.biopha.2021.111235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023] Open
|
32
|
Podlesny D, Fricke WF. Strain inheritance and neonatal gut microbiota development: A meta-analysis. Int J Med Microbiol 2021; 311:151483. [PMID: 33689953 DOI: 10.1016/j.ijmm.2021.151483] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/15/2021] [Accepted: 02/23/2021] [Indexed: 01/11/2023] Open
Abstract
As many inflammatory and metabolic disorders have been associated with structural deficits of the human gut microbiota, the principles and mechanisms that govern its initialization and development are of considerable scientific interest and clinical relevance. However, our current understanding of the developing gut microbiota dynamics remains incomplete. We carried out a large-scale, comprehensive meta-analysis of over 1900 available metagenomic shotgun samples from neonates, infants, adolescents, and their families, using our recently introduced SameStr program for strain-level microbiota profiling and the detection of microbial strain transfer and persistence. We found robust associations between fecal microbiota composition and age, as well as delivery mode, which was measurable for up to two years of life. C-section was associated with increased relative abundances of non-gut species and delayed transition from a predominantly oxygen-tolerant to intolerant microbial community. Unsupervised networks based on shared strain profiles generated family-specific clusters connecting infants, their siblings, parents and grandparents and, in one case, suggested strain transfer between neonates from the same hospital ward, but could also be used to identify potentially mislabeled metagenome samples. Vaginally delivered newborns shared more strains with their mothers than C-section infants, but strain sharing was reduced if mothers underwent antibiotic treatment. Shared strains persisted in infants throughout the first year of life and belonged to the same bacterial species as strains that were shared between adults and their parents. Irrespective of delivery type, older children shared strains with their mothers and fathers and, into adulthood, could be accurately distinguished from unrelated sample pairs. Prominent fecal commensal bacteria were both among frequently transferred (e.g. Bacteroides and Sutterella) and newly acquired taxa (e.g. Blautia, Faecalibacterium, and Ruminococcus). Our meta-analysis presents a more detailed and comprehensive picture of the highly dynamic neonatal and infant fecal microbiota development than previous studies and presents evidence for taxonomic and functional compositional differences early in life between infants born naturally or by C-section, which persist well into adolescence.
Collapse
Affiliation(s)
- Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Quantifying Live Microbial Load in Human Saliva Samples over Time Reveals Stable Composition and Dynamic Load. mSystems 2021; 6:6/1/e01182-20. [PMID: 33594005 PMCID: PMC8561659 DOI: 10.1128/msystems.01182-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evaluating microbial community composition through next-generation sequencing has become increasingly accessible. However, metagenomic sequencing data sets provide researchers with only a snapshot of a dynamic ecosystem and do not provide information about the total microbial number, or load, of a sample. Additionally, DNA can be detected long after a microorganism is dead, making it unsafe to assume that all microbial sequences detected in a community came from living organisms. By combining relic DNA removal by propidium monoazide (PMA) with microbial quantification with flow cytometry, we present a novel workflow to quantify live microbial load in parallel with metagenomic sequencing. We applied this method to unstimulated saliva samples, which can easily be collected longitudinally and standardized by passive collection time. We found that the number of live microorganisms detected in saliva was inversely correlated with salivary flow rate and fluctuated by an order of magnitude throughout the day in healthy individuals. In an acute perturbation experiment, alcohol-free mouthwash resulted in a massive decrease in live bacteria, which would have been missed if we did not consider dead cell signal. While removing relic DNA from saliva samples did not greatly impact the microbial composition, it did increase our resolution among samples collected over time. These results provide novel insight into the dynamic nature of host-associated microbiomes and underline the importance of applying scale-invariant tools in the analysis of next-generation sequencing data sets. IMPORTANCE Human microbiomes are dynamic ecosystems often composed of hundreds of unique microbial taxa. To detect fluctuations over time in the human oral microbiome, we developed a novel workflow to quantify live microbial cells with flow cytometry in parallel with next-generation sequencing, and applied this method to over 150 unstimulated, timed saliva samples. Microbial load was inversely correlated with salivary flow rate and fluctuated by an order of magnitude within a single participant throughout the day. Removing relic DNA improved our ability to distinguish samples over time and revealed that the percentage of sequenced bacteria in a given saliva sample that are alive can range from nearly 0% up to 100% throughout a typical day. These findings highlight the dynamic ecosystem of the human oral microbiome and the benefit of removing relic DNA signals in longitudinal microbiome study designs.
Collapse
|
34
|
Iakupova AA, Abdulkhakov SR, Safin AG, Alieva IM, Oslopova JV, Abdulkhakov RA. [Fecal microbiota transplantation: donor selection criteria, storage and preparation of biomaterials (review of current recommendations)]. TERAPEVT ARKH 2021; 93:215-221. [PMID: 36286640 DOI: 10.26442/00403660.2021.02.200615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Fecal microbiota transplantation is a treatment method based on the introduction of donated fecal material to the recipient in order to restore the damaged composition of the intestinal microbiota. This review summarizes existing data on indications for fecal microbiota transplantation, recommendations for donor selection, processing and storage of donor biomaterial.
Collapse
Affiliation(s)
| | - S R Abdulkhakov
- Kazan (Volga Region) Federal University
- Kazan State Medical University
| | - A G Safin
- Kazan (Volga Region) Federal University
| | | | | | | |
Collapse
|
35
|
Taguer M, Quillier O, Maurice CF. Effects of oxygen exposure on relative nucleic acid content and membrane integrity in the human gut microbiota. PeerJ 2021; 9:e10602. [PMID: 33604166 PMCID: PMC7866891 DOI: 10.7717/peerj.10602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
While the diversity of the human gut microbiota is becoming increasingly well characterized, bacterial physiology is still a critical missing link in understanding how the gut microbiota may be implicated in disease. The current best practice for studying bacterial physiology involves the immediate storage of fecal samples in an anaerobic chamber. This reliance on immediate access to anaerobic chambers greatly limits the scope of sample populations that can be studied. Here, we assess the effects of short-term oxygen exposure on gut bacterial physiology and diversity. We use relative nucleic acid content and membrane integrity as markers of bacterial physiology, and 16S rRNA gene amplicon sequencing to measure bacterial diversity. Samples were stored for up to 6 h in either ambient conditions or in anoxic environments created with gas packs or in an anaerobic chamber. Our data indicate that AnaeroGen sachets preserve bacterial membrane integrity and nucleic acid content over the course of 6 h similar to storage in an anaerobic chamber. Short-term oxygen exposure increases bacterial membrane permeability, without exceeding inter-individual differences. As oxygen exposure remains an important experimental consideration for bacterial metabolism, our data suggest that AnaeroGen sachets are a valid alternative limiting loss of membrane integrity for short-term storage of samples from harder-to-access populations.
Collapse
Affiliation(s)
- Mariia Taguer
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Ophélie Quillier
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Corinne F. Maurice
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Ross CN, Reveles KR. Feasibility of fecal microbiota transplantation via oral gavage to safely alter gut microbiome composition in marmosets. Am J Primatol 2020; 82:e23196. [PMID: 32970852 PMCID: PMC7679041 DOI: 10.1002/ajp.23196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 11/10/2022]
Abstract
Disruption of microbial communities within human hosts has been associated with infection, obesity, cognitive decline, cancer risk and frailty, suggesting that microbiome-targeted therapies may be an option for improving healthspan and lifespan. The objectives of this study were to determine the feasibility of delivering fecal microbiota transplants (FMTs) to marmosets via oral gavage and to evaluate if alteration of the gut microbiome post-FMT could be achieved. This was a prospective study of marmosets housed at the Barshop Institute for Longevity and Aging Studies in San Antonio, Texas. Eligible animals included healthy young adult males (age 2-5 years) with no recent medication use. Stool from two donors was combined and administered in 0.5 ml doses to five young recipients once weekly for 3 weeks. Safety outcomes and alterations in the gut microbiome composition via 16S ribosomal RNA sequencing were compared at baseline and monthly up to 6 months post-FMT. Overall, significant differences in the percent relative abundance was seen in FMT recipients at the phylum and family levels from baseline to 1 month and baseline to 6 months post-FMT. In permutational multivariate analysis of variance analyses, treatment status (donor vs. recipient) (p = .056) and time course (p = .019) predicted β diversity (p = .056). The FMT recipients did not experience any negative health outcomes over the course of the treatment. FMT via oral gavage was safe to administer to young adult marmosets. The marmoset microbiome may be altered by FMT; however, progressive changes in the microbiome are strongly driven by the host and its baseline microbiome composition.
Collapse
Affiliation(s)
- Corinna N Ross
- Department of Science and Mathematics, Texas A&M University San Antonio, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Research, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kelly R Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
- Pharmacotherapy Education & Research Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
37
|
Haifer C, Leong RW, Paramsothy S. The role of faecal microbiota transplantation in the treatment of inflammatory bowel disease. Curr Opin Pharmacol 2020; 55:8-16. [PMID: 33035780 PMCID: PMC7538387 DOI: 10.1016/j.coph.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Faecal microbiota transplantation (FMT) has emerged as a potent form of therapeutic microbial manipulation. There is much interest in exploring its potential in conditions such as inflammatory bowel disease (IBD) where disturbances in the gastrointestinal microbiota play a crucial role in disease pathogenesis. RECENT FINDINGS There are 4 randomized controlled trials of FMT as induction therapy in ulcerative colitis, with meta-analyses suggesting significant benefit over placebo. Allied microbial studies have identified potential microbial and metabolic predictors of therapeutic efficacy and highlighted the importance of optimizing future donor and patient selection. Recent literature has evaluated the use of complementary microbial manipulation through pre-antibiotics to improve treatment efficacy. Studies have also assessed the durability of FMT response and its use in maintenance therapy of UC. While data on FMT are more limited in Crohn's disease and pouchitis, cohort and pilot randomized controlled data a now also emerging in these areas.
Collapse
Affiliation(s)
- Craig Haifer
- Concord Clinical School, The University of Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, New South Wales, Australia
| | - Rupert W Leong
- Concord Clinical School, The University of Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, New South Wales, Australia; Department of Gastroenterology, Macquarie University & Macquarie University Hospital, New South Wales, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, The University of Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, New South Wales, Australia; Department of Gastroenterology, Macquarie University & Macquarie University Hospital, New South Wales, Australia.
| |
Collapse
|
38
|
Allegretti JR, Elliott RJ, Ladha A, Njenga M, Warren K, O’Brien K, Budree S, Osman M, Fischer M, Kelly CR, Kassam Z. Stool processing speed and storage duration do not impact the clinical effectiveness of fecal microbiota transplantation. Gut Microbes 2020; 11:1806-1808. [PMID: 32552337 PMCID: PMC7524162 DOI: 10.1080/19490976.2020.1768777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Jessica R. Allegretti
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA,CONTACT Jessica R. Allegretti Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA02115
| | | | - Alim Ladha
- OpenBiome, Cambridge, MA, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | - Shrish Budree
- OpenBiome, Cambridge, MA, USA,Finch Therapeutics, Somerville, MA, USA
| | | | - Monika Fischer
- Division of Gastroenterology, Indiana University, Indianapolis, IN, USA
| | - Colleen R. Kelly
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | |
Collapse
|
39
|
Holmes ZC, Silverman JD, Dressman HK, Wei Z, Dallow EP, Armstrong SC, Seed PC, Rawls JF, David LA. Short-Chain Fatty Acid Production by Gut Microbiota from Children with Obesity Differs According to Prebiotic Choice and Bacterial Community Composition. mBio 2020; 11:e00914-20. [PMID: 32788375 PMCID: PMC7439474 DOI: 10.1128/mbio.00914-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Pediatric obesity remains a public health burden and continues to increase in prevalence. The gut microbiota plays a causal role in obesity and is a promising therapeutic target. Specifically, the microbial production of short-chain fatty acids (SCFA) from the fermentation of otherwise indigestible dietary carbohydrates may protect against pediatric obesity and metabolic syndrome. Still, it has not been demonstrated that therapies involving microbiota-targeting carbohydrates, known as prebiotics, will enhance gut bacterial SCFA production in children and adolescents with obesity (age, 10 to 18 years old). Here, we used an in vitro system to examine the SCFA production by fecal microbiota from 17 children with obesity when exposed to five different commercially available over-the-counter (OTC) prebiotic supplements. We found microbiota from all 17 patients actively metabolized most prebiotics. Still, supplements varied in their acidogenic potential. Significant interdonor variation also existed in SCFA production, which 16S rRNA sequencing supported as being associated with differences in the host microbiota composition. Last, we found that neither fecal SCFA concentration, microbiota SCFA production capacity, nor markers of obesity positively correlated with one another. Together, these in vitro findings suggest the hypothesis that OTC prebiotic supplements may be unequal in their ability to stimulate SCFA production in children and adolescents with obesity and that the most acidogenic prebiotic may differ across individuals.IMPORTANCE Pediatric obesity remains a major public health problem in the United States, where 17% of children and adolescents are obese, and rates of pediatric "severe obesity" are increasing. Children and adolescents with obesity face higher health risks, and noninvasive therapies for pediatric obesity often have limited success. The human gut microbiome has been implicated in adult obesity, and microbiota-directed therapies can aid weight loss in adults with obesity. However, less is known about the microbiome in pediatric obesity, and microbiota-directed therapies are understudied in children and adolescents. Our research has two important findings: (i) dietary prebiotics (fiber) result in the microbiota from adolescents with obesity producing more SCFA, and (ii) the effectiveness of each prebiotic is donor dependent. Together, these findings suggest that prebiotic supplements could help children and adolescents with obesity, but that these therapies may not be "one size fits all."
Collapse
Affiliation(s)
- Zachary C Holmes
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Justin D Silverman
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina, USA
| | - Holly K Dressman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Microbiome Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Zhengzheng Wei
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eric P Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sarah C Armstrong
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patrick C Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
40
|
Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture. mSystems 2020; 5:5/3/e00864-19. [PMID: 32606031 PMCID: PMC7329328 DOI: 10.1128/msystems.00864-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs. Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution. IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.
Collapse
|
41
|
Fadda HM. The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech 2020; 21:114. [PMID: 32296975 DOI: 10.1208/s12249-020-1637-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
The community of symbiotic microorganisms that reside in our gastrointestinal tract is integral to human health. Fecal microbiota transplantation (FMT) has been shown to be highly effective in treating recurrent Clostridioides difficile infection (rCDI) and is now recommended by medical societies for patients suffering from rCDI who have failed to respond to conventional therapy. The main challenges with FMT are its accessibility, acceptability, lack of standardization, and regulatory complexity, which will be discussed in this review. Access to FMT is being addressed through the development of frozen and lyophilized FMT preparations that can be prepared at stool banks and shipped to the point of care. Both access and patient acceptance would be enhanced by oral FMT capsules, and there is potential to reduce capsule burden by utilizing colonic release capsules, targeting the site of disease. This review compares the efficacy of different FMT routes of administration: capsules, nasal feeding tubes, enemas, and colonoscopic infusions. FMT is considered investigational by the Food and Drug Administration. In effort to improve access to FMT, physicians may perform FMT outside of an investigational new drug application for treating CDI infections not responsive to standard therapies. The majority of FMT studies report only minor adverse effects; however, there is risk of transmission of infections.
Collapse
|
42
|
DuPont HL, Jiang ZD, DuPont AW, Utay NS. Abnormal Intestinal Microbiome in Medical Disorders and Potential Reversibility by Fecal Microbiota Transplantation. Dig Dis Sci 2020; 65:741-756. [PMID: 32008133 DOI: 10.1007/s10620-020-06102-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduction in diversity of the intestinal microbiome (dysbiosis) is being identified in many disease states, and studies are showing important biologic contributions of microbiome to health and disease. Fecal microbiota transplantation (FMT) is being evaluated as a way to reverse dysbiosis in diseases and disorders in an attempt to improve health. The published literature was reviewed to determine the value of FMT in the treatment of medical disorders for which clinical trials have recently been conducted. FMT is effective in treating recurrent C. difficile infection in one or two doses, with many healthy donors providing efficacious fecal-derived products. In inflammatory bowel disease (IBD), FMT may lead to remission in approximately one-third of moderate-to-severe illnesses with one study suggesting that more durable FMT responses may be seen when used once medical remissions have been achieved. Donor products differ in their efficacy in treatment of IBD. Combining donor products has been one way to increase the potential value of FMT in treating chronic disorders. FMT is being explored in a variety of clinical settings affecting different organ systems outside CDI, with positive preliminary signals, in treatment of functional constipation, immunotherapy-induced colitis, neurodegenerative disease, as well as prevention of cancer-related disorders like graft versus host disease and decolonization of patients with recurrent urinary tract infection due to antibiotic-resistant bacteria. Currently, intense research is underway to see how the microbiome products like FMT can be harnessed for health benefits.
Collapse
Affiliation(s)
- Herbert L DuPont
- Kelsey Research Foundation, Houston, TX, USA. .,University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA. .,University of Texas McGovern Medical School, Houston, USA. .,Baylor College of Medicine, Houston, USA. .,MD Anderson Cancer Center, Houston, USA.
| | - Zhi-Dong Jiang
- University of Texas School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA
| | | | - Netanya S Utay
- Kelsey Research Foundation, Houston, TX, USA.,University of Texas McGovern Medical School, Houston, USA
| |
Collapse
|
43
|
Carlson PE. Regulatory Considerations for Fecal Microbiota Transplantation Products. Cell Host Microbe 2020; 27:173-175. [DOI: 10.1016/j.chom.2020.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Insights into the Role of Human Gut Microbiota in Clostridioides difficile Infection. Microorganisms 2020; 8:microorganisms8020200. [PMID: 32023967 PMCID: PMC7074861 DOI: 10.3390/microorganisms8020200] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile infection (CDI) has emerged as a major health problem worldwide. A major risk factor for disease development is prior antibiotic use, which disrupts the normal gut microbiota by altering its composition and the gut’s metabolic functions, leading to the loss of colonization resistance and subsequent CDI. Data from human studies have shown that the presence of C. difficile, either as a colonizer or as a pathogen, is associated with a decreased level of gut microbiota diversity. The investigation of the gut’s microbial communities, in both healthy subjects and patients with CDI, elucidate the role of microbiota and improve the current biotherapeutics for patients with CDI. Fecal microbiota transplantation has a major role in managing CDI, aiming at re-establishing colonization resistance in the host gastrointestinal tract by replenishing the gut microbiota. New techniques, such as post-genomics, proteomics and metabolomics analyses, can possibly determine in the future the way in which C. difficile eradicates colonization resistance, paving the way for the development of new, more successful treatments and prevention. The aim of the present review is to present recent data concerning the human gut microbiota with a focus on its important role in health and disease.
Collapse
|
45
|
Ng SC, Kamm MA, Yeoh YK, Chan PKS, Zuo T, Tang W, Sood A, Andoh A, Ohmiya N, Zhou Y, Ooi CJ, Mahachai V, Wu CY, Zhang F, Sugano K, Chan FKL. Scientific frontiers in faecal microbiota transplantation: joint document of Asia-Pacific Association of Gastroenterology (APAGE) and Asia-Pacific Society for Digestive Endoscopy (APSDE). Gut 2020; 69:83-91. [PMID: 31611298 PMCID: PMC6943253 DOI: 10.1136/gutjnl-2019-319407] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The underlying microbial basis, predictors of therapeutic outcome and active constituent(s) of faecal microbiota transplantation (FMT) mediating benefit remain unknown. An international panel of experts presented key elements that will shape forthcoming FMT research and practice. DESIGN Systematic search was performed, FMT literature was critically appraised and a 1-day round-table discussion was conducted to derive expert consensus on key issues in FMT research. RESULTS 16 experts convened and discussed five questions regarding (1) the role of donor and recipient microbial (bacteria, viruses, fungi) parameters in FMT; (2) methods to assess microbiota alterations; (3) concept of keystone species and microbial predictors of FMT, (4) influence of recipient profile and antibiotics pretreatment on FMT engraftment and maintenance and (5) new developments in FMT formulations and delivery. The panel considered that variable outcomes of FMT relate to compositional and functional differences in recipient's microbiota, and likely donor-associated and recipient-associated physiological and genetic factors. Taxonomic composition of donor intestinal microbiota may influence the efficacy of FMT in recurrent Clostridioides difficile infections and UC. FMT not only alters bacteria composition but also establishes trans-kingdom equilibrium between gut fungi, viruses and bacteria to promote the recovery of microbial homeostasis. FMT is not a one size fits all and studies are required to identify microbial components that have specific effects in patients with different diseases. CONCLUSION FMT requires optimisation before their therapeutic promise can be evaluated for different diseases. This summary will guide future directions and priorities in advancement of the science and practice of FMT.
Collapse
Affiliation(s)
- Siew C Ng
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael A Kamm
- St Vincent's Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Zuo
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Whitney Tang
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ajit Sood
- Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Choon Jin Ooi
- Gleneagles Medical Centre and Duke-NUS Medical School, Singapore, Singapore
| | - Varocha Mahachai
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- National Gastric Cancer and Gastrointestinal Diseases Research Center, Pathumthani, Thailand
| | - Chun-Ying Wu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Gastroenterology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Division of Microbiotherapy, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, China
| | - Kentaro Sugano
- Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Francis K L Chan
- Center for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Li Q, Chen H, Zhang M, Wu T, Liu R, Zhang Z. Potential Correlation between Dietary Fiber-Suppressed Microbial Conversion of Choline to Trimethylamine and Formation of Methylglyoxal. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13247-13257. [PMID: 31707781 DOI: 10.1021/acs.jafc.9b04860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dietary interventions alter the formation of the disease-associated metabolite, trimethylamine (TMA), via intestinal microbial TMA lyase activity. Nevertheless, the mechanisms regulating microbial enzyme production are still unclear. Sequencing of the gut bacteria 16S rDNA demonstrated that dietary intervention changed the composition of the gut microbiota and the functional metagenome involved in the choline utilization pathway. Characterization of the functional profile of the metagenomes and metabonomics analysis revealed that a series of Kyoto Encyclopedia of Genes and Genomes orthologous groups and enzyme groups related to accumulation of methylglyoxal (MG) and glycine were enriched in red meat diet-fed animals, whereas fiber-rich diet suppressed glycine formation via the MG-dependent pathway. Our observations suggest associations between choline-TMA lyase expression and MG formation, which are indicative of a novel role of the gut microbiota in choline metabolism and highlight it as a potential target for inhibiting TMA production.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , PR China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
- Tianjin Agricultural University , Tianjin 300384 , PR China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| | - Zesheng Zhang
- State Key Laboratory of Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , PR China
| |
Collapse
|
47
|
Cammarota G, Ianiro G, Kelly CR, Mullish BH, Allegretti JR, Kassam Z, Putignani L, Fischer M, Keller JJ, Costello SP, Sokol H, Kump P, Satokari R, Kahn SA, Kao D, Arkkila P, Kuijper EJ, Vehreschild MJG, Pintus C, Lopetuso L, Masucci L, Scaldaferri F, Terveer EM, Nieuwdorp M, López-Sanromán A, Kupcinskas J, Hart A, Tilg H, Gasbarrini A. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut 2019; 68:2111-2121. [PMID: 31563878 PMCID: PMC6872442 DOI: 10.1136/gutjnl-2019-319548] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
Although faecal microbiota transplantation (FMT) has a well-established role in the treatment of recurrent Clostridioides difficile infection (CDI), its widespread dissemination is limited by several obstacles, including lack of dedicated centres, difficulties with donor recruitment and complexities related to regulation and safety monitoring. Given the considerable burden of CDI on global healthcare systems, FMT should be widely available to most centres.Stool banks may guarantee reliable, timely and equitable access to FMT for patients and a traceable workflow that ensures safety and quality of procedures. In this consensus project, FMT experts from Europe, North America and Australia gathered and released statements on the following issues related to the stool banking: general principles, objectives and organisation of the stool bank; selection and screening of donors; collection, preparation and storage of faeces; services and clients; registries, monitoring of outcomes and ethical issues; and the evolving role of FMT in clinical practice,Consensus on each statement was achieved through a Delphi process and then in a plenary face-to-face meeting. For each key issue, the best available evidence was assessed, with the aim of providing guidance for the development of stool banks in order to promote accessibility to FMT in clinical practice.
Collapse
Affiliation(s)
- Giovanni Cammarota
- Internal Medicine and Gastroenterology, Day Hospital of Gastroenterology and Intestinal Microbiota Transplantation, Fondazione Policlinico A Gemelli IRCCS, Catholic University of Medicine, Roma, Italy
| | - Gianluca Ianiro
- Internal Medicine and Gastroenterology, Day Hospital of Gastroenterology and Intestinal Microbiota Transplantation, Fondazione Policlinico A Gemelli IRCCS, Roma, Italy
| | - Colleen R Kelly
- Division of Gastroenterology, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Benjamin H Mullish
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jessica R Allegretti
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zain Kassam
- Microbiome Informatics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- OpenBiome, Somerville, Massachusetts, United States of America
| | - Lorenza Putignani
- Parasitology Unit and Human Microbiome Unit, Bambino Gesù Pediatric Hospital, Roma, Italy
| | - Monika Fischer
- Department of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Josbert J Keller
- Department of Gastroenterologyand Hepatology, Haaglanden Medical Center, 2597 AX, The Hague, Netherlands
- National Donor Feces Bank, LUMC, Leiden, the Netherlands
| | - Samuel Paul Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia
| | - Harry Sokol
- Service de Gastroenterologie, Hôpital Saint Antoine, Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, Paris, France
- French Group of Fecal Microbiota Transplantation, Paris, France
- INRA, UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stacy A Kahn
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, Uunited States of America
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Perttu Arkkila
- Department of Clinic of Gastroenterology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maria J Gt Vehreschild
- Department I of Internal Medicine; German Centre for Infection Research, Partner site Bonn-Cologne, University Hospital of Cologne, Cologne, Germany
| | - Cristina Pintus
- Tissues and Cells Area, Italian National Transplant Center, Rome, Italy
| | - Loris Lopetuso
- Internal Medicine and Gastroenterology, Fondazione Policlinico A Gemelli IRCCS, Roma, Italy
| | - Luca Masucci
- Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Medicine, Roma, Italy
| | - Franco Scaldaferri
- Internal Medicine and Gastroenterology, Fondazione Policlinico A Gemelli IRCCS, Roma, Italy
| | - E M Terveer
- National Donor Feces Bank, LUMC, Leiden, the Netherlands
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, location AMC and VuMC, Amsterdam, Netherlands
| | - Antonio López-Sanromán
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Juozas Kupcinskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ailsa Hart
- Department of Gastroenterology, St Mark's Hospital, London, United Kingdom
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Innsbruck Medical University, Innsbruck, Austria
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico A Gemelli IRCCS, Catholic University of Medicine, Roma, Italy
| |
Collapse
|
48
|
Zhang Z, Mocanu V, Cai C, Dang J, Slater L, Deehan EC, Walter J, Madsen KL. Impact of Fecal Microbiota Transplantation on Obesity and Metabolic Syndrome-A Systematic Review. Nutrients 2019; 11:nu11102291. [PMID: 31557953 PMCID: PMC6835402 DOI: 10.3390/nu11102291] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a gut microbial-modulation strategy that has been investigated for the treatment of a variety of human diseases, including obesity-associated metabolic disorders. This study appraises current literature and provides an overview of the effectiveness and limitations of FMT as a potential therapeutic strategy for obesity and metabolic syndrome (MS). Five electronic databases and two gray literature sources were searched up to 10 December 2018. All interventional and observational studies that contained information on the relevant population (adult patients with obesity and MS), intervention (receiving allogeneic FMT) and outcomes (metabolic parameters) were eligible. From 1096 unique citations, three randomized placebo-controlled studies (76 patients with obesity and MS, body mass index = 34.8 ± 4.1 kg/m2, fasting plasma glucose = 5.8 ± 0.7 mmol/L) were included for review. Studies reported mixed results with regards to improvement in metabolic parameters. Two studies reported improved peripheral insulin sensitivity (rate of glucose disappearance, RD) at 6 weeks in patients receiving donor FMT versus patients receiving the placebo control. In addition, one study observed lower HbA1c levels in FMT patients at 6 weeks. No differences in fasting plasma glucose, hepatic insulin sensitivity, body mass index (BMI), or cholesterol markers were observed between two groups across all included studies. While promising, the influence of FMT on long-term clinical endpoints needs to be further explored. Future studies are also required to better understand the mechanisms through which changes in gut microbial ecology and engraftment of microbiota affect metabolic outcomes for patients with obesity and MS. In addition, further research is needed to better define the optimal fecal microbial preparation, dosing, and method of delivery.
Collapse
Affiliation(s)
- Zhengxiao Zhang
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton T6G 2E1 AB, Canada.
| | - Valentin Mocanu
- Division of General Surgery, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Chenxi Cai
- Program for Pregnancy and Postpartum Health, Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2E1 AB, Canada.
| | - Jerry Dang
- Division of General Surgery, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Linda Slater
- John W. Scott Health Sciences Library, University of Alberta, Edmonton T6G 2E1, ON, Canada.
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Karen L Madsen
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton T6G 2E1 AB, Canada.
| |
Collapse
|
49
|
Establishing a donor stool bank for faecal microbiota transplantation: methods and feasibility. Eur J Clin Microbiol Infect Dis 2019; 38:1837-1847. [PMID: 31273647 DOI: 10.1007/s10096-019-03615-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) is a promising treatment, but donor selection and implementation in clinical practice are difficult. Here, we describe the establishment of a donor stool bank based on the Tissue Act. Stool donors were recruited among blood donors and asked to donate five times in a month. A screening questionnaire, a medical interview and testing of blood and stool were conducted before and after donations. Donations were made at home and transported to the lab, where 50 g of stool was suspended and filtered in saline and 20-mL glycerol (final concentration of 10%) to a volume of 170 mL. The processed stool was assigned a batch number, frozen within 2 h after defecation and stored at - 80 °C for up to 1 year. All steps were documented and cross-checked before donor stool were released for clinical use. Thirteen donors were eligible at the first interview and started donations. Two donors were excluded due to a positive Helicobacter pylori test, two withdrew consent and one was lost to follow-up. One donor took a single dose of NSAIDs 2 days prior to a donation, which was discarded. There were no other excluding findings at the second interview or testing. Eight of the 13 donors were approved as stool donors. All donated five times with each donation yielding 1-6 portions. Eighty-four portions were released for clinical use. Recruiting stool donors among blood donors is safe and effective. The Tissue Act yields an appropriate regulative framework for FMT.
Collapse
|
50
|
Ding X, Li Q, Li P, Zhang T, Cui B, Ji G, Lu X, Zhang F. Long-Term Safety and Efficacy of Fecal Microbiota Transplant in Active Ulcerative Colitis. Drug Saf 2019; 42:869-880. [PMID: 30972640 DOI: 10.1007/s40264-019-00809-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION AND OBJECTIVE The therapeutic role of fecal microbiota transplantation in ulcerative colitis varies across different reports. This study aims to evaluate the long-term safety and efficacy of a strategy called step-up fecal microbiota transplantation for ulcerative colitis. METHODS Two clinical trials (NCT01790061, NCT02560727) for moderate-to-severe ulcerative colitis (Mayo score range 6-12) were performed from November 2012 to July 2017. Both studies were pooled for analysis on the safety and efficacy of fecal microbiota transplantation in patients with ulcerative colitis over a 1-year follow-up. The step-up fecal microbiota transplantation strategy included step 1: single fecal microbiota transplantation; step 2: two or more fecal microbiota transplantations; and step 3: fecal microbiota transplantations followed by immunosuppressants. Long-term clinical efficacy and adverse events were assessed, and multiple factors related to fecal microbiota transplantation were evaluated. RESULTS Of 134 eligible patients in this real-word study, 81.3% (109/134) were included for analysis. The follow-up ranged from 1 to 5 years. Fecal microbiota transplantation-related adverse events were observed in 17.4% (43/247) of fecal microbiota transplantation procedures including one serious adverse event (myasthenia gravis) and 56 non-serious adverse events. Multivariable logistic regression analysis showed that both the method of preparation of microbiota from stool using the automatic system and the delivery method of colonic transendoscopic enteral tubing were associated with a lower rate of fecal microbiota transplantation-related adverse events (p = 0.023, p = 0.017, respectively). In total, 74.3% (81/109) and 51.4% (56/109) of patients achieved clinical response at 1 month and 3 months after step-up fecal microbiota transplantation, respectively. CONCLUSIONS Fecal microbiota transplantation should be a safe and promising therapy for ulcerative colitis. The improved fecal microbiota preparation and colonic transendoscopic enteral tubing might reduce the rate of adverse events in ulcerative colitis. TRIAL REGISTRATION ClinicalTrials.gov NCT01790061, NCT02560727.
Collapse
Affiliation(s)
- Xiao Ding
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Ave, Nanjing, 211166, China
| | - Qianqian Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
| | - Pan Li
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Ting Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
| | - Bota Cui
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Ave, Nanjing, 211166, China.
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing, 210011, China.
- Key Laboratory of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|