1
|
Pietrzak M, Chaszczewska-Markowska M, Zemelka-Wiacek M. Porcine Peripheral Blood Mononuclear Cells (PBMCs): Methods of Isolation, Cryopreservation, and Translational Applications in Human Studies. J Clin Med 2025; 14:3432. [PMID: 40429425 PMCID: PMC12112510 DOI: 10.3390/jcm14103432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Porcine peripheral blood mononuclear cells (pPBMCs) are increasingly recognized as a valuable model in biomedical and translational research, particularly in contexts directly related to human health and disease. Their immunological features, such as the presence of CD4+CD8+ double-positive T cells and cytokine expression patterns, exhibit a notable degree of similarity to human immune cells, making them an attractive tool for studying human-relevant immune responses. This review outlines current methodologies for isolating and cryopreserving pPBMCs, with a focus on maintaining high cell viability and functionality. Key technical considerations, including the optimal use of gradient media, appropriate anticoagulants, and standardized freezing/thawing protocols, are discussed in detail. Furthermore, the article highlights the applications of pPBMCs in various research contexts, including vaccine development, inflammation studies, infection models, and xenotransplantation. A comparative perspective is provided to identify similarities and differences between porcine and human PBMCs, supporting the validity of swine as a translational model. Evidence from pPBMC-based studies has shown predictive value for human outcomes, reinforcing their role as a surrogate system for preclinical investigations. Given their anatomical, physiological, and immunogenetic similarities to humans, porcine PBMCs represent a valuable bridge between basic science and clinical application, playing an increasingly important role in translational medicine.
Collapse
Affiliation(s)
- Magdalena Pietrzak
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Magdalena Zemelka-Wiacek
- Department of Clinical Immunology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| |
Collapse
|
2
|
Mei Y, Chen J, Chen Y, Hu C, Chen X, Guo A. Porcine Reproductive and Respiratory Syndrome Virus Prevalence and Pathogenicity of One NADC34-like Virus Isolate Circulating in China. Microorganisms 2025; 13:796. [PMID: 40284632 PMCID: PMC12029175 DOI: 10.3390/microorganisms13040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is one of the most significant infectious agents threatening the global pig industry. Due to its high mutation and recombination rates, the prevalence of PRRSV in domestic pig populations is complex. To better understand the epidemiology of PRRSV, we conducted a large-scale investigation in eastern China, focusing on pig farms with a history of high abortion rates. A total of 14,934 pig samples were collected from 11 sow farms and 53 fattening farms across three provinces. Among these, 13.0% of the collected samples tested positive for PRRSV, with specific prevalence rates of 19.7% in sows and 12.4% in piglets. Genetic evolution analysis of the GP5 gene from 43 PRRSV strains identified in this study revealed that NADC30-like, NADC34-like, and HP-PRRSV were the predominant lineages in domestic pig farms. The NADC30-like genotype was the most dominant and had evolved into three subgenotypes, while the NADC34-like strains had diverged into two subgenotypes. Further analysis of the Nsp2 gene from 18 strains indicated that the NSP2 gene of multiple NADC34-like strains was closely related to that of the NADC30-like, suggesting that the NADC34-like strains are primarily recombinant viruses. Sequence comparison of the Nsp2 gene showed that both NADC30-like and NADC34-like viruses share 111 amino acid deletions at positions 322-433 and 21 amino acid deletions at positions 539-558 in the Nsp2 gene coding region. For the first time, the pathogenicity of a representative NADC34-like virus isolated in China was evaluated in pregnant sow. The results showed that infected sows exhibited an increased body temperature, ear cyanosis, and typical edema and cyanosis of the external genitalia. Moreover, all infected sows experienced miscarriage, with 100% of the aborted piglets being stillbirths exhibiting a high virus load. These findings indicate that this NADC34-like virus is highly virulent to sows.
Collapse
Affiliation(s)
- Yongjie Mei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.M.); (J.C.); (Y.C.); (C.H.); (X.C.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Wuhan 430070, China
- Ministry of Agriculture and Rural Affair, Key Laboratory of Development of Veterinary Diagnostic Products, Wuhan 430070, China
| |
Collapse
|
3
|
Arjin C, Hnokaew P, Tasuksai P, Thongkham M, Pringproa K, Arunorat J, Yano T, Seel-audom M, Rachtanapun P, Sringarm K, Chuammitri P. Transcriptome Analysis of Porcine Immune Cells Stimulated by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Caesalpinia sappan Extract. Int J Mol Sci 2024; 25:12285. [PMID: 39596350 PMCID: PMC11595159 DOI: 10.3390/ijms252212285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The current level of knowledge on transcriptome responses triggered by Caesalpinia sappan (CS) extract in porcine peripheral blood mononuclear cells (PBMCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection is limited. Therefore, in the present study, we aimed to detect significant genes and pathways involved in CS extract supplementation responsiveness of PBMCs after PRRSV infection. RNA sequencing was conducted on PBMCs, which were isolated from six weaned piglets. The resultant transcriptional responses were examined by mRNA sequencing. Differential expression analysis identified 263 and 274 differentially expressed genes (DEGs) between the PRRSV and CTRL groups, and the PRRSV+CS and CTRL groups, respectively. Among these, ZNF646 and KAT5 emerged as the most promising candidate genes, potentially influencing the interaction between PRRSV-infected PBMCs and CS extract supplementation through the regulation of gene networks and cellular homeostasis during stress. Two pathways were detected to be associated with CS extract supplementation responsiveness: the cellular response to stress pathway and the NF-kB signaling pathway. Consequently, our study reveals a novel mechanism underlying cellular stress response and the NF-κB signaling pathway in PRRSV-infected PBMCs, and identifies a potential application of CS extract for activating the NF-κB signaling pathway. In conclusion, by supplementing CS extract in PBMC cells infected with PRRSV, we found that CS extract modulates PRRSV infection by inducing cellular stress, which is regulated by the NF-κB signaling pathway. This induced stress creates an adverse environment for PRRSV survival. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. Importantly, our results demonstrate that CS extract has the potential to be a candidate for modulating PRRSV infection.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Patipan Hnokaew
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Tasuksai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Kidsadagon Pringproa
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Jirapat Arunorat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Terdsak Yano
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| |
Collapse
|
4
|
Yang J, Chen S, Ma F, Ding N, Mi S, Zhao Q, Xing Y, Yang T, Xing K, Yu Y, Wang C. Pathogen stimulations and immune cells synergistically affect the gene expression profile characteristics of porcine peripheral blood mononuclear cells. BMC Genomics 2024; 25:719. [PMID: 39054472 PMCID: PMC11270792 DOI: 10.1186/s12864-024-10603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.
Collapse
Affiliation(s)
- Jinyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Fuping Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ning Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Qingyao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Yue Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ting Yang
- Dabei-Nong Science and Technology Group Co., Ltd, Beijing, 100080, China
| | - Kai Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technologyn, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front Vet Sci 2023; 10:1289570. [PMID: 37929286 PMCID: PMC10623566 DOI: 10.3389/fvets.2023.1289570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and economically significant virus that causes respiratory and reproductive diseases in pigs. It results in reduced productivity and increased mortality in pigs, causing substantial economic losses in the industry. Understanding the factors affecting pig responses to PRRSV is crucial to develop effective control strategies. Genetic background has emerged as a significant determinant of susceptibility and resistance to PRRSV in pigs. This review provides an overview of the basic infection process of PRRSV in pigs, associated symptoms, underlying immune mechanisms, and roles of noncoding RNA and alternative splicing in PRRSV infection. Moreover, it emphasized breed-specific variations in these aspects that may have implications for individual treatment options.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Agidigbi TS, Kwon HK, Knight JR, Zhao D, Lee FY, Oh I. Transcriptomic identification of genes expressed in invasive S. aureus diabetic foot ulcer infection. Front Cell Infect Microbiol 2023; 13:1198115. [PMID: 37434783 PMCID: PMC10332306 DOI: 10.3389/fcimb.2023.1198115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Infection in diabetic foot ulcers (DFUs) is one of the major complications associated with patients with diabetes. Staphylococcus aureus is the most common offending pathogen in patients with infected DFU. Previous studies have suggested the application of species-specific antibodies against S. aureus for diagnosis and monitoring treatment response. Early and accurate identification of the main pathogen is critical for management of DFU infection. Understanding the host immune response against species-specific infection may facilitate diagnosis and may suggest potential intervention options to promote healing infected DFUs. We sought to investigate evolving host transcriptome associated with surgical treatment of S. aureus- infected DFU. Methods This study compared the transcriptome profile of 21 patients with S. aureus- infected DFU who underwent initial foot salvage therapy with irrigation and debridement followed by intravenous antibiotic therapy. Blood samples were collected at the recruitment (0 weeks) and 8 weeks after therapy to isolate peripheral blood mononuclear cells (PBMCs). We analyzed the PBMC expression of transcriptomes at two different time points (0 versus 8 weeks). Subjects were further divided into two groups at 8 weeks: healed (n = 17, 80.95%) versus non-healed (n = 4, 19.05%) based on the wound healing status. DESeq2 differential gene analysis was performed. Results and discussion An increased expression of IGHG1, IGHG2, IGHG3, IGLV3-21, and IGLV6-57 was noted during active infection at 0 weeks compared with that at 8 weeks. Lysine- and arginine-rich histones (HIST1H2AJ, HIST1H2AL, HIST1H2BM, HIST1H3B, and HIST1H3G) were upregulated at the initial phase of active infection at 0 weeks. CD177 and RRM2 were also upregulated at the initial phase of active infection (0 weeks) compared with that at 8 weeks of follow-up. Genes of heat shock protein members (HSPA1A, HSPE1, and HSP90B1) were high in not healed patients compared with that in healed patients 8 weeks after therapy. The outcome of our study suggests that the identification of genes evolution based on a transcriptomic profiling could be a useful tool for diagnosing infection and assessing severity and host immune response to therapies.
Collapse
Affiliation(s)
- Taiwo Samuel Agidigbi
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Hyuk-Kwon Kwon
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - James R. Knight
- Yale Center for Genome Analysis, Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Dejian Zhao
- Yale Center for Genome Analysis, Department of Genetics, Yale School of Medicine, New Haven, CT, United States
| | - Francis Y. Lee
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| | - Irvin Oh
- Department of Orthopedics and Rehabilitation, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Genome-wide CRISPR/Cas9 screen identifies host factors important for porcine reproductive and respiratory syndrome virus replication. Virus Res 2022; 314:198738. [DOI: 10.1016/j.virusres.2022.198738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
8
|
Liang W, Meng X, Zhen Y, Zhang Y, Hu X, Zhang Q, Zhou X, Liu B. Integration of Transcriptome and Proteome in Lymph Nodes Reveal the Different Immune Responses to PRRSV Between PRRSV-Resistant Tongcheng Pigs and PRRSV-Susceptible Large White Pigs. Front Genet 2022; 13:800178. [PMID: 35154273 PMCID: PMC8829461 DOI: 10.3389/fgene.2022.800178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that seriously affects the swine industry worldwide. Understanding the interaction between the host immune response and PRRS virus (PRRSV) can provide insight into the PRRSV pathogenesis, as well as potential clues to control PRRSV infection. Here, we examined the transcriptome and proteome differences of lymph nodes between PRRSV-resistant Tongcheng (TC) pigs and PRRSV-susceptible Large White (LW) pigs in response to PRRSV infection. 2245 and 1839 differentially expressed genes (DEGs) were detected in TC and LW pigs upon PRRSV infection, respectively. Transcriptome analysis revealed genetic differences in antigen presentation and metabolism between TC pigs and LW pigs, which may lead to different immune responses to PRRSV infection. Furthermore, 678 and 1000 differentially expressed proteins (DEPs) were identified in TC and LW pigs, and DEPs were mainly enriched in the metabolism pathways. Integrated analysis of transcriptome and proteome datasets revealed antigen recognition capacity, immune activation, cell cycles, and cell metabolism are important for PRRSV clearance. In conclusion, this study provides important resources on transcriptomic and proteomic levels in lymph nodes for further revealing the interaction between the host immune response and PRRSV, which would give us new insight into molecular mechanisms related to genetic complexity against PRRSV.
Collapse
Affiliation(s)
- Wan Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueran Zhen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingde Zhang
- Laboratory Animal Center, College of Animal Science and Technology and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Transcriptome sequencing analysis of porcine alveolar macrophages infected with PRRSV strains to elucidate virus pathogenicity and immune evasion strategies. Virusdisease 2021; 32:559-567. [PMID: 34631980 DOI: 10.1007/s13337-021-00724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 06/29/2021] [Indexed: 10/20/2022] Open
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) causes a serious disease to the swine industry worldwide. To understand the mechanisms of HP-PRRSV infection, RNA-seq-based transcriptome analyses were performed on porcine alveolar macrophages (PAMs) infected with a HP-PRRSV strain (TJ), a less virulent strain of a classical lineage (CH-1a), and a vaccine strain TJM-F92. Gene ontology, Kyoto Encyclopedia of Genes and Genomes analyses indicate that TJM-F92 led to significant up-regulation of gene expression for proteins associated with membrane-bound organelles. The differentially expressed genes of HP-PRRSV TJ-infected PAM cells were up-regulated in the special G-protein coupled receptor. The six cytokines were tested by real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). The relative expression levels showed the same trend of expression difference. Significant up-regulation of TMEM173 plays an important role in the cytosolic DNA-sensing pathway and the RIG-I-like receptor signaling pathway in TJM-F92 infected PAM cells. These data provide new insight into PRRSV pathogenicity and immune evasion strategies.
Collapse
|
10
|
Comprehensive Transcriptomic Comparison between Porcine CD8 - and CD8 + Gamma Delta T Cells Revealed Distinct Immune Phenotype. Animals (Basel) 2021; 11:ani11082165. [PMID: 34438623 PMCID: PMC8388496 DOI: 10.3390/ani11082165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study was conducted to comprehensively understand the functional mechanisms of CD8+/− porcine gamma delta (γδ) T cells related to the immune system using RNA-sequencing technology. In total, 646 upregulated and 561 downregulated differentially expressed genes (DEGs) for CD8+ were identified and functional annotation was performed. A cytokine–cytokine receptor interaction and T cell receptor (TCR) signaling pathway were enriched in the upregulated DEG group, whereas the B cell receptor signaling pathway was enriched in the downregulated DEG group. Chemokine-related genes (CXCR3, CCR5, CCL4, CCL5), interferon gamma (IFNG), and CD40 ligand (CD40LG) identified in the cytokine–cytokine receptor interaction and TCR signaling pathway may affect the inter-regulation of immune signaling. Our results are expected to contribute to the understanding of mechanisms of porcine γδ T cells. Abstract We aimed to comprehensively understand the functional mechanisms of immunity, especially of the CD8+/− subsets of gamma delta (γδ) T cells, using an RNA-sequencing analysis. Herein, γδ T cells were obtained from bronchial lymph node tissues of 38-day-old (after weaning 10-day: D10) and 56-day-old (after weaning 28-day: D28) weaned pigs and sorted into CD8+ and CD8− groups. Differentially expressed genes (DEGs) were identified based on the CD8 groups at D10 and D28 time points. We confirmed 1699 DEGs between D10 CD8+ versus D10 CD8− groups and 1784 DEGs between D28 CD8+ versus D28 CD8− groups; 646 upregulated and 561 downregulated DEGs were common. The common upregulated DEGs were enriched in the cytokine–cytokine receptor interaction and T cell receptor (TCR) signaling pathway, and the common downregulated DEGs were enriched in the B cell receptor signaling pathway. Further, chemokine-related genes, interferon gamma, and CD40 ligand were involved in the cytokine–cytokine receptor interaction and TCR signaling pathway, which are associated with inter-regulation in immunity. We expect our results to form the basic data required for understanding the mechanisms of γδ T cells in pigs; however, further studies are required in order to reveal the dynamic changes in γδ T cells under pathogenic infections, such as those by viruses.
Collapse
|
11
|
Fasciola gigantica tegumental calcium-binding EF-hand protein 4 exerts immunomodulatory effects on goat monocytes. Parasit Vectors 2021; 14:276. [PMID: 34022913 PMCID: PMC8141160 DOI: 10.1186/s13071-021-04784-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. Methods The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. Results The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-β. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. Conclusions These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04784-5.
Collapse
|
12
|
Zhou L, Ge X, Yang H. Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky" Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 2021; 9:vaccines9040362. [PMID: 33918580 PMCID: PMC8069561 DOI: 10.3390/vaccines9040362] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most economically important diseases, that has significantly impacted the global pork industry for over three decades, since it was first recognized in the United States in the late 1980s. Attributed to the PRRSV extensive genetic and antigenic variation and rapid mutability and evolution, nearly worldwide epidemics have been sustained by a set of emerging and re-emerging virus strains. Since the first modified live virus (MLV) vaccine was commercially available, it has been widely used for more than 20 years, for preventing and controlling PRRS. On the one hand, MLV can induce a protective immune response against homologous viruses by lightening the clinical signs of pigs and reducing the virus transmission in the affected herd, as well as helping to cost-effectively increase the production performance on pig farms affected by heterologous viruses. On the other hand, MLV can still replicate in the host, inducing viremia and virus shedding, and it fails to confer sterilizing immunity against PRRSV infection, that may accelerate viral mutation or recombination to adapt the host and to escape from the immune response, raising the risk of reversion to virulence. The unsatisfied heterologous cross-protection and safety issue of MLV are two debatable characterizations, which raise the concerns that whether it is necessary or valuable to use this leaky vaccine to protect the field viruses with a high probability of being heterologous. To provide better insights into the immune protection and safety related to MLV, recent advances and opinions on PRRSV attenuation, protection efficacy, immunosuppression, recombination, and reversion to virulence are reviewed here, hoping to give a more comprehensive recognition on MLV and to motivate scientific inspiration on novel strategies and approaches of developing the next generation of PRRS vaccine.
Collapse
|
13
|
Guo L, Sun H, Zhao Q, Xu Z, Zhang Z, Liu D, Qadri QR, Ma P, Wang Q, Pan Y. Positive selection signatures in Anqing six-end-white pig population based on reduced-representation genome sequencing data. Anim Genet 2021; 52:143-154. [PMID: 33458851 DOI: 10.1111/age.13034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/26/2022]
Abstract
Anqing six-end-white (AQ) pig performs well on resistance to coarse fodder and disease, reproduction and meat quality, offering high potential for exploitation. Environmental conditions and strict selections from local farmers have cultivated the AQ pig to be an outstanding and unique local pig breed. Thus we aim to detect genetic positive selection signatures within the AQ pig population to explore underlying genetic mechanisms. A relative extended haplotype homozygosity (REHH) test was performed in the population of 79 AQ pigs to seek evidence demonstrating that selective actions have left an imprint on the whole genome. In total, 430 500 REHH tests were performed on 53 067 core regions with average REHH tests of 8.11, average lengths of 11.50 kb and an overall length of 610.38 Mb which accounted for 26.94% of the whole genome. Finally, a total of 1819 core haplotypes (P < 0.01) and 586 candidate genes were obtained. These genes were mainly related to meat quality (MYOG, SNX19), resistance to disease (CRISPLD2, CD14) and reproduction traits (ERBB2, NRP2). A panel of genes within the 30 top significant REHH tests was mainly categorized to traits of meat quality and disease resistance. Among 13 KEGG pathways, MAPK, GnRH and Oxytocin signaling pathways, associated with the biological processes of crucial economic traits, were noteworthy. The excellent characteristics of the AQ pig benefited from the combination of natural and human factors. We provide a sketch map that shows the distribution of selection footprints on the whole genome of AQ pig and found potential genes for future studies.
Collapse
Affiliation(s)
- L Guo
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - H Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - Q Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - Z Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - Z Zhang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - D Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - Q R Qadri
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - P Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, East, 200240, China
| | - Q Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Yuhangtang Road, Hangzhou, East, 310058, China
| | - Y Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Yuhangtang Road, Hangzhou, East, 310058, China
| |
Collapse
|
14
|
Islam MA, Rony SA, Rahman MB, Cinar MU, Villena J, Uddin MJ, Kitazawa H. Improvement of Disease Resistance in Livestock: Application of Immunogenomics and CRISPR/Cas9 Technology. Animals (Basel) 2020; 10:E2236. [PMID: 33260762 PMCID: PMC7761152 DOI: 10.3390/ani10122236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Disease occurrence adversely affects livestock production and animal welfare, and have an impact on both human health and public perception of food-animals production. Combined efforts from farmers, animal scientists, and veterinarians have been continuing to explore the effective disease control approaches for the production of safe animal-originated food. Implementing the immunogenomics, along with genome editing technology, has been considering as the key approach for safe food-animal production through the improvement of the host genetic resistance. Next-generation sequencing, as a cutting-edge technique, enables the production of high throughput transcriptomic and genomic profiles resulted from host-pathogen interactions. Immunogenomics combine the transcriptomic and genomic data that links to host resistance to disease, and predict the potential candidate genes and their genomic locations. Genome editing, which involves insertion, deletion, or modification of one or more genes in the DNA sequence, is advancing rapidly and may be poised to become a commercial reality faster than it has thought. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9] system has recently emerged as a powerful tool for genome editing in agricultural food production including livestock disease management. CRISPR/Cas9 mediated insertion of NRAMP1 gene for producing tuberculosis resistant cattle, and deletion of CD163 gene for producing porcine reproductive and respiratory syndrome (PRRS) resistant pigs are two groundbreaking applications of genome editing in livestock. In this review, we have highlighted the technological advances of livestock immunogenomics and the principles and scopes of application of CRISPR/Cas9-mediated targeted genome editing in animal breeding for disease resistance.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mohammad Bozlur Rahman
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA), Tucuman 4000, Argentina
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Science, Gatton Campus, The University of Queensland, Brisbane 4072, Australia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
15
|
Islam MA, Neuhoff C, Aqter Rony S, Große-Brinkhaus C, Uddin MJ, Hölker M, Tesfaye D, Tholen E, Schellander K, Pröll-Cornelissen MJ. PBMCs transcriptome profiles identified breed-specific transcriptome signatures for PRRSV vaccination in German Landrace and Pietrain pigs. PLoS One 2019; 14:e0222513. [PMID: 31536525 PMCID: PMC6752781 DOI: 10.1371/journal.pone.0222513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting the swine industry worldwide. Genetic variation in host immunity has been considered as one of the potential determinants to improve the immunocompetence, thereby resistance to PRRS. Therefore, the present study aimed to investigate the breed difference in innate immune response to PRRSV vaccination between German Landrace (DL) and Pietrain (Pi) pigs. We analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells (PBMCs) collected before (0 h) and 24 h after PRRSV vaccination from purebred DL and Pi pigs with three biological replicates. In total 4,269 transcripts were identified to be differentially expressed in PBMCs in at least any of four tested contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h). The number of vaccine-induced differentially expressed genes (DEGs) was much higher (2,459) in DL pigs than that of Pi pigs (291). After 24 h of PRRSV vaccination, 1,046 genes were differentially expressed in PMBCs of DL pigs compared to that of Pi (DL-24h vs. Pi-24h), indicating the breed differences in vaccine responsiveness. The top biological pathways significantly affected by DEGs of both breeds were linked to immune response functions. The network enrichment analysis identified ADAM17, STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV vaccine response specific for DL; while FOXO3, IRF2, ADRBK1, FHL3, PPP2CB and NCOA6 were found to be the most potential hubs of Pi specific transcriptome network. In conclusion, our data provided insights of breed-specific host transcriptome responses to PRRSV vaccination which might contribute in better understanding of PPRS resistance in pigs.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Sharmin Aqter Rony
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Christine Große-Brinkhaus
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
- School of Veterinary Science, The University of Queensland, Gatton campus, Brisbane, QLD, Australia
| | - Michael Hölker
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Ernst Tholen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- Teaching and Research Station on Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Maren Julia Pröll-Cornelissen
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher Allee 15, Bonn, Germany
- * E-mail:
| |
Collapse
|
16
|
Zhang K, Ge L, Dong S, Liu Y, Wang D, Zhou C, Ma C, Wang Y, Su F, Jiang Y. Global miRNA, lncRNA, and mRNA Transcriptome Profiling of Endometrial Epithelial Cells Reveals Genes Related to Porcine Reproductive Failure Caused by Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:1221. [PMID: 31231376 PMCID: PMC6559286 DOI: 10.3389/fimmu.2019.01221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can cause respiratory disease and reproductive failure in pregnant pigs. Previous transcriptome analyses in susceptive cells have mainly concentrated on pulmonary alveolar macrophages (PAM) and Marc-145 cells, and on the respiratory system. Some studies reported that apoptosis of placental cells and pig endometrial epithelial cells (PECs) is an obvious sign linked to reproductive failure in pregnant sows, but the mechanism is still unknown. In this study, Sn-positive PECs were isolated and apoptosis rates were assessed by flow cytometry. PRRSV-infected PECs exhibited apoptosis, indicative of their susceptibility to PRRSV. Subsequently, the whole transcriptome was compared between mock- and PRRSV-infected PECs and 54 differentially expressed microRNAs (DEmiRNAs), 104 differentially expressed genes (DEGs), 22 differentially expressed lncRNAs (DElncRNAs), and 109 isoforms were obtained, which were mainly enriched in apoptosis, necroptosis, and p53 signal pathways. Integration analysis of DEmiRNA and DEG profiles revealed two microRNAs (ssc-miR-339-5p and ssc-miR-181d-5p) and five genes (SLA-DQB1, THBS1, SLC3A1, ZFP37, and LOC100517161) participating in the apoptosis signal, of which THBS1 and SLC3A1 were mainly linked to the p53 pathway. Integration analysis of DEGs with DElncRNA profiles identified genes involved in apoptosis signal pathway are regulated by LTCONS_00010766 and LTCONS_00045988. Pathway enrichment revealed that the phagosome and p53 pathways are the two main signals causing apoptosis of PECs, and functional analysis revealed a role of miR-339-5p in regulating apoptosis of PECs after PRRSV inoculation.
Collapse
Affiliation(s)
- Kang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shasha Dong
- Department of Cardiology, Shandong First Medical University and Shandong Academy of Medical Science, Taian, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chunyan Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
17
|
Nedumpun T, Techakriengkrai N, Thanawongnuwech R, Suradhat S. Negative Immunomodulatory Effects of Type 2 Porcine Reproductive and Respiratory Syndrome Virus-Induced Interleukin-1 Receptor Antagonist on Porcine Innate and Adaptive Immune Functions. Front Immunol 2019; 10:579. [PMID: 30972072 PMCID: PMC6443931 DOI: 10.3389/fimmu.2019.00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
18
|
Azizi A. Protective Efficacy of Candidate Vaccines Prior to Human Clinical Trials. J Pharm Sci 2018; 107:2992-2994. [PMID: 30121314 DOI: 10.1016/j.xphs.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ali Azizi
- Sanofi Pasteur, Analytical Research and Development North America, Toronto, Ontario M2R 3T4, Canada.
| |
Collapse
|
19
|
Tian AL, Lu M, Zhang FK, Calderón-Mantilla G, Petsalaki E, Tian X, Wang W, Huang SY, Li X, Elsheikha HM, Zhu XQ. The pervasive effects of recombinant Fasciola gigantica Ras-related protein Rab10 on the functions of goat peripheral blood mononuclear cells. Parasit Vectors 2018; 11:579. [PMID: 30400957 PMCID: PMC6219056 DOI: 10.1186/s13071-018-3148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/14/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Fasciola gigantica-induced immunomodulation is a major hurdle faced by the host for controlling infection. Here, we elucidated the role of F. gigantica Ras-related protein Rab10 (FgRab10) in the modulation of key functions of peripheral blood mononuclear cells (PBMCs) of goats. METHODS We cloned and expressed recombinant FgRab10 (rFgRab10) protein and examined its effects on several functions of goat PBMCs. Protein interactors of rFgRab10 were predicted in silico by querying the databases Intact, String, BioPlex and BioGrid. In addition, a total energy analysis of each of the identified interactions was also conducted. Gene Ontology (GO) enrichment analysis was carried out using FuncAssociate 3.0. RESULTS The FgRab10 gene (618 bp), encodes 205-amino-acid residues with a molecular mass of ~23 kDa, had complete nucleotide sequence homology with F. hepatica Ras family protein gene (PIS87503.1). The rFgRab10 protein specifically cross-reacted with anti-Fasciola antibodies as shown by Western blot and immunofluorescence analysis. This protein exhibited multiple effects on goat PBMCs, including increased production of cytokines [interleukin-2 (IL-2), IL-4, IL-10, transforming growth factor beta (TGF-β) and interferon gamma (IFN-γ)] and total nitric oxide (NO), enhancing apoptosis and migration of PBMCs, and promoting the phagocytic ability of monocytes. However, it significantly inhibited cell proliferation. Homology modelling revealed 63% identity between rFgRab10 and human Rab10 protein (Uniprot ID: P61026). Protein interaction network analysis revealed more stabilizing interactions between Rab proteins geranylgeranyltransferase component A 1 (CHM) and Rab proteins geranylgeranyltransferase component A 2 (CHML) and rFgRab10 protein. Gene Ontology analysis identified RabGTPase mediated signaling as the most represented pathway. CONCLUSIONS rFgRab10 protein exerts profound influences on various functions of goat PBMCs. This finding may help explain why F. gigantica is capable of provoking recognition by host immune cells, less capable of destroying this successful parasite.
Collapse
Affiliation(s)
- Ai-Ling Tian
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 People’s Republic of China
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 People’s Republic of China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD UK
| | - XiaoWei Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - WenJuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Si-Yang Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009 People’s Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046 People’s Republic of China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225009 People’s Republic of China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province 225009 People’s Republic of China
| |
Collapse
|
20
|
Terenina E, Sautron V, Ydier C, Bazovkina D, Sevin-Pujol A, Gress L, Lippi Y, Naylies C, Billon Y, Liaubet L, Mormede P, Villa-Vialaneix N. Time course study of the response to LPS targeting the pig immune gene networks. BMC Genomics 2017; 18:988. [PMID: 29273011 PMCID: PMC5741867 DOI: 10.1186/s12864-017-4363-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
Background Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. Results Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. Conclusions The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4363-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Terenina
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France.
| | - Valérie Sautron
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Caroline Ydier
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Darya Bazovkina
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Amélie Sevin-Pujol
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Laure Gress
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Yvon Billon
- INRA, UE 1372 GenESI, Surgeres, F-17700, France
| | - Laurence Liaubet
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Pierre Mormede
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | | |
Collapse
|