1
|
Yue T, Guo Y, Qi X, Zheng W, Zhang H, Wang B, Liu K, Zhou B, Zeng X, Ouzhuluobu, He Y, Su B. Sex-biased regulatory changes in the placenta of native highlanders contribute to adaptive fetal development. eLife 2024; 12:RP89004. [PMID: 38869160 PMCID: PMC11175615 DOI: 10.7554/elife.89004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Compared with lowlander migrants, native Tibetans have a higher reproductive success at high altitude though the underlying mechanism remains unclear. Here, we compared the transcriptome and histology of full-term placentas between native Tibetans and Han migrants. We found that the placental trophoblast shows the largest expression divergence between Tibetans and Han, and Tibetans show decreased immune response and endoplasmic reticulum stress. Remarkably, we detected a sex-biased expression divergence, where the male-infant placentas show a greater between-population difference than the female-infant placentas. The umbilical cord plays a key role in the sex-biased expression divergence, which is associated with the higher birth weight of the male newborns of Tibetans. We also identified adaptive histological changes in the male-infant placentas of Tibetans, including larger umbilical artery wall and umbilical artery intima and media, and fewer syncytial knots. These findings provide valuable insights into the sex-biased adaptation of human populations, with significant implications for medical and genetic studies of human reproduction.
Collapse
Affiliation(s)
- Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesBeijingChina
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang HospitalKunmingChina
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
2
|
Jayalekshmi VS, Jagannath RS, Sreelekshmi S, Rafeekha P, Vidyalekshmy R, Ramachandran S. Maternal hypercholesterolemia during gestation is associated with elevated lipid levels of two-day-old neonates. Mol Cell Biochem 2024; 479:363-371. [PMID: 37074503 DOI: 10.1007/s11010-023-04739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Maternal hypercholesterolemia (MHC) during pregnancy is associated with the risk of developing aortic lesions in fetuses. There is also a possibility of faster progression of atherosclerosis in offspring born to hypercholesterolemic mothers (HCM) during their adulthood. We investigated whether elevated maternal cholesterol levels during pregnancy influence the lipid levels in offspring. We analyzed the lipid profile of mothers during the three trimesters, cord blood (CB) at birth, and neonatal blood (NB) on Day 2 postpartum in the offspring. Cholesterol levels of HCM significantly increased throughout gestation when compared to normocholesterolemic mothers (NCM). CB lipid levels of newborns of HCM were similar to the newborns of NCM. While NB of offspring of HCM had elevated levels of triglycerides (TG) (p < 0.01) and very low-density lipoprotein (VLDL) (p < 0.01) when compared to the offspring of NCM. MHC also resulted in low newborn birthweight (p < 0.05) and low placental efficiency (ratio of newborn birth weight to placental weight) (p < 0.01) but no change was observed in umbilical cord length or placental weight. Immunohistochemical analysis revealed no significant changes in the protein expression of genes involved in TG metabolisms such as LDLR, VLDLR, CETP, and PPARG. We report that MHC in mothers decreases placental efficiency and newborn birthweight while increasing lipid levels in neonates on the second postpartum day. Given that TG levels modulate the circulating Low-Density lipoproteins, the increase in these levels in neonates gains importance. Whether these consistently high levels cause atherosclerosis in early adulthood warrants further investigation.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - R S Jagannath
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - S Sreelekshmi
- Kerala Institute of Medical Sciences (KIMS), Thiruvananthapuram, Kerala, India
| | - P Rafeekha
- Kerala Institute of Medical Sciences (KIMS), Thiruvananthapuram, Kerala, India
| | - R Vidyalekshmy
- Kerala Institute of Medical Sciences (KIMS), Thiruvananthapuram, Kerala, India
| | - Surya Ramachandran
- Medical Biotechnology, Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Cantin C, Morales A, Serra R, Illanes SE, Leiva A. Maternal Supraphysiological Hypercholesterolemia Is Accompanied by Shifts in the Composition and Anti-Atherogenic Functions of Maternal HDL along with Maternal Cardiovascular Risk Markers at Term of Pregnancy. Antioxidants (Basel) 2023; 12:1804. [PMID: 37891883 PMCID: PMC10604113 DOI: 10.3390/antiox12101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Maternal physiological hypercholesterolemia (MPH) occurs in pregnancy for a proper fetal development. When cholesterol increases over the physiological range, maternal supraphysiological hypercholesterolemia (MSPH) is described, a condition underdiagnosed by a lack of evidence showing its biological and clinical relevance. AIM To determine if MSPH associates with maternal vascular dysfunction, along with changes in the composition and function of maternal HDL leading to increased cardiovascular risk. METHODS This study included 57 women at term of pregnancy in which a lipid profile was determined. RESULTS Maternal total cholesterol (TC) and LDL but not HDL were increased in MSPH women. The isolated HDL from a subgroup of MSPH women had a lower protein abundance and a reduced activity of the antioxidant enzyme PON1; however, an increased antioxidant capacity compared to MPH was observed, along with higher serum levels of α-tocopherol. Moreover, HDL from a subgroup of MSPH women had a lower capacity to induce NO synthesis in endothelial cells compared to MPH. In the circulation, we observed a reduced total antioxidant capacity and augmented levels of soluble VCAM, ApoB, ApoCII, ApoCIII, IL-10, and IL-12p70, as well as the cardiovascular risk ratio ApoB/ApoAI, compared to MPH women. CONCLUSION MSPH women present dysfunctional HDL and increased atherogenic cardiovascular risk factors.
Collapse
Affiliation(s)
- Claudette Cantin
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| | - Andrea Morales
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| | - Ramón Serra
- Hospital Naval, Punta Arenas 6200000, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago 111711, Chile;
| | - Sebastián E. Illanes
- Faculty of Medicine, Universidad de los Andes, Santiago 111711, Chile;
- Laboratory of Reproductive Biology, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago 111711, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 8331150, Chile
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7500000, Chile
| |
Collapse
|
4
|
Contreras S, Escalona R, Cantin C, Valdivia P, Zapata D, Carvajal L, Brito R, Cerda Á, Illanes S, Gutiérrez J, Leiva A. Small extracellular vesicles from pregnant women with maternal supraphysiological hypercholesterolemia impair endothelial cell function in vitro. Vascul Pharmacol 2023; 150:107174. [PMID: 37105374 DOI: 10.1016/j.vph.2023.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Maternal physiological hypercholesterolemia (MPH, maternal total cholesterol (TC) levels at term of pregnancy ≤280 mg/dl) occurs to assure fetal development. Maternal supraphysiological hypercholesterolemia (MSPH, TC levels >280 mg/dl) is a pathological condition associated with maternal, placental, and fetal endothelial dysfunction and early neonatal atherosclerosis development. Small extracellular vesicles (sEVs) are delivered to the extracellular space by different cells, where they modulate cell functions by transporting active signaling molecules, including proteins and miRNA. AIM To determine whether sEVs from MSPH women could alter the function of endothelial cells (angiogenesis, endothelial activation and nitric oxide synthesis capacity). METHODS This study included 24 Chilean women (12 MPH and 12 MSPH). sEVs were isolated from maternal plasma and characterized by sEV markers (CD9, Alix and HSP70), nanoparticle tracking analysis, transmission electron microscopy, and protein and cholesterol content. The endothelial cell line HMEC-1 was used to determine the uptake of labeled sEVs and the effects of sEVs on cell viability, endothelial tube formation, endothelial cell activation, and endothelial nitric oxide expression and function. RESULTS In MSPH women, the plasma concentration of sEVs was increased compared to that in MPH women. MSPH-sEVs were highly taken up by HMEC-1 cells and reduced angiogenic capacity and the expression and activity of eNOS without changing cell viability or endothelial activation. CONCLUSION sEVs from MSPH women impair angiogenesis and nitric oxide synthesis in endothelial cells, which could contribute to MSPH-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Susana Contreras
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Escalona
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudette Cantin
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Pascuala Valdivia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David Zapata
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Carvajal
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Brito
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile
| | - Álvaro Cerda
- Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco, Chile; Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | | | - Jaime Gutiérrez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Leiva
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
5
|
Chen J, Hua L, Luo F, Chen J. Maternal Hypercholesterolemia May Involve in Preterm Birth. Front Cardiovasc Med 2022; 9:818202. [PMID: 35898280 PMCID: PMC9309366 DOI: 10.3389/fcvm.2022.818202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
Maternal hypercholesterolemia during pregnancy is associated with an increased risk of preterm birth which is defined as <37 weeks of complete gestation. However, the underlying mechanism for the association between hypercholesterolemia and preterm birth is not fully understood. Macrophage, as one of the largest cell types in the placenta, plays a very critical role in mediating inflammation and triggers labor initiation. Here, we hypothesize that macrophages can uptake maternal excessive cholesterol leading to its accumulation, resulting in a breach of the immune tolerance and precipitating labor.
Collapse
Affiliation(s)
- Jingfei Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lan Hua
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianlin Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Increased Circulating Levels of PCSK9 and Pro-Atherogenic Lipoprotein Profile in Pregnant Women with Maternal Supraphysiological Hypercholesterolemia. Antioxidants (Basel) 2022; 11:antiox11050869. [PMID: 35624732 PMCID: PMC9137759 DOI: 10.3390/antiox11050869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal physiological hypercholesterolemia (MPH) occurs during pregnancy to assure fetal development. Some pregnant women develop maternal supraphysiological hypercholesterolemia (MSPH) characterized by increased levels of low-density lipoprotein (LDL). We aim to determine if proprotein convertase subtilisin/kexin type 9 (PCSK9) levels (a protein that regulate the availability of LDL receptor in the cells surface), as well as the composition and function of LDL, are modulated in MSPH women. This study included 122 pregnant women. Maternal total cholesterol (TC), LDL, triglycerides and PCSK9 increased from first (T1) to third trimester (T3) in MPH women. At T3, maternal TC, LDL, PCSK9 and placental abundances of PCSK9 were significantly higher in MPSH compared to MPH. Circulating PCSK9 levels were correlated with LDL at T3. In MSPH women, the levels of lipid peroxidation and oxidized LDL were significantly higher compared to MPH. LDL isolated from MSPH women presented significantly higher triglycerides and ApoB but lower levels of ApoAI compared to MPH. The formation of conjugated dienes was earlier in LDL from MSPH and in endothelial cells incubated with these LDLs; the levels of reactive oxygen species were significantly higher compared to LDL from MPH. We conclude that increased maternal PCSK9 would contribute to the maternal elevated levels of pro-atherogenic LDL in MSPH, which could eventually be related to maternal vascular dysfunction.
Collapse
|
7
|
Wu Y, Shi J, Su Q, Yang Z, Qin L. Correlation Between Circulating PCSK9 Levels and Gestational Diabetes Mellitus in a Chinese Population. Front Endocrinol (Lausanne) 2022; 13:826757. [PMID: 35498417 PMCID: PMC9043651 DOI: 10.3389/fendo.2022.826757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous studies reported that proprotein convertase subtilisin/kexin type 9 (PCSK9) was a key player in the regulations of lipid metabolism and glucose homeostasis. The current study aimed to detect the expression of PCSK9 in pregnant women with gestational diabetes mellitus (GDM) and investigate the possible relationships between PCSK9 and related metabolic phenotypes in GDM. Methods Circulating PCSK9 levels were determined by ELISA kit in a cohort of subjects with GDM (n = 170) and normal glucose tolerance (NGT; n = 130). We collected blood samples from all participants for the biochemical index determinations. Diagnosis of GDM was made according to the International Association of the Diabetes and Pregnancy Study Groups Consensus Panel. Correlation analysis and logistic regression analysis were used to study the potential associations between PCSK9 and GDM. Results GDM women presented significantly higher circulating PCSK9 levels than those in NGT pregnant subjects (268.07 ± 77.17 vs. 254.24 ± 74.22 ng/ml, P < 0.05). In the GDM group, serum PCSK9 levels were positively correlated with fasting plasma glucose (FPG) (R = 0.251, P = 0.015), glycated hemoglobin (HbA1c) (R = 0.275, P = 0.009), total cholesterol (TC) (R = 0.273, P = 0.010), and low-density lipoprotein cholesterol (LDL-C) (R = 0.326, P = 0.002) after adjustment of age and gestational age. Logistic regression found that age [odds ratio (OR) = 5.412, P = 0.02] and serum PCSK9 levels (OR = 4.696, P = 0.03) were independently associated with GDM. Compared with the lowest serum PCSK9 level quartile group, the prevalence of GDM was significantly higher in the highest quartile group, the ORs of GDM were 3.485 (95% CI 1.408-8.627, P < 0.05 for the trend), after adjusting for potential confounders. Conclusions Circulating PCSK9 levels were associated with dyslipidemia, pathoglycemia, and the risk of incident GDM, indicating a potential link between PCSK9 and GDM.
Collapse
Affiliation(s)
- Yiming Wu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
9
|
Ouidir M, Chatterjee S, Mendola P, Zhang C, Grantz KL, Tekola-Ayele F. Placental Gene Co-expression Network for Maternal Plasma Lipids Revealed Enrichment of Inflammatory Response Pathways. Front Genet 2021; 12:681095. [PMID: 34745199 PMCID: PMC8567461 DOI: 10.3389/fgene.2021.681095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal dyslipidemia during pregnancy has been associated with suboptimal fetal growth and increased cardiometabolic diseasse risk in offspring. Altered placental function driven by placental gene expression is a hypothesized mechanism underlying these associations. We tested the relationship between maternal plasma lipid concentrations and placental gene expression. Among 64 pregnant women from the NICHD Fetal Growth Studies–Singleton cohort with maternal first trimester plasma lipids we extracted RNA-Seq on placental samples obtained at birth. Placental gene co-expression networks were validated by regulatory network analysis that integrated transcription factors and gene expression, and genome-wide transcriptome analysis. Network analysis detected 24 gene co-expression modules in placenta, of which one module was correlated with total cholesterol (r = 0.27, P-value = 0.03) and LDL-C (r = 0.31, P-value = 0.01). Genes in the module (n = 39 genes) were enriched in inflammatory response pathways. Out of the 39 genes in the module, three known lipid-related genes (MPO, PGLYRP1 and LTF) and MAGEC2 were validated by the regulatory network analysis, and one known lipid-related gene (ALX4) and two germ-cell development-related genes (MAGEC2 and LUZP4) were validated by genome-wide transcriptome analysis. Placental gene expression signatures associated with unfavorable maternal lipid concentrations may be potential pathways underlying later life offspring cardiometabolic traits. Clinical Trial Registration:ClinicalTrials.gov, identifier NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Suvo Chatterjee
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.,Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Katherine L Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Espinoza C, Fuenzalida B, Leiva A. Increased Fetal Cardiovascular Disease Risk: Potential Synergy Between Gestational Diabetes Mellitus and Maternal Hypercholesterolemia. Curr Vasc Pharmacol 2021; 19:601-623. [PMID: 33902412 DOI: 10.2174/1570161119666210423085407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) remain a major cause of death worldwide. Evidence suggests that the risk for CVD can increase at the fetal stages due to maternal metabolic diseases, such as gestational diabetes mellitus (GDM) and maternal supraphysiological hypercholesterolemia (MSPH). GDM is a hyperglycemic, inflammatory, and insulin-resistant state that increases plasma levels of free fatty acids and triglycerides, impairs endothelial vascular tone regulation, and due to the increased nutrient transport, exposes the fetus to the altered metabolic conditions of the mother. MSPH involves increased levels of cholesterol (mainly as low-density lipoprotein cholesterol) which also causes endothelial dysfunction and alters nutrient transport to the fetus. Despite that an association has already been established between MSPH and increased CVD risk, however, little is known about the cellular processes underlying this relationship. Our knowledge is further obscured when the simultaneous presentation of MSPH and GDM takes place. In this context, GDM and MSPH may substantially increase fetal CVD risk due to synergistic impairment of placental nutrient transport and endothelial dysfunction. More studies on the separate and/or cumulative role of both processes are warranted to suggest specific treatment options.
Collapse
Affiliation(s)
- Cristian Espinoza
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Providencia 7510157, Chile
| |
Collapse
|
11
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
12
|
Bimpong S, Abaidoo CS, Tetteh J, Okwan D. Maternal first antenatal care visit biometric indices as potential predictors of umbilical cord morphometric parameters. J Neonatal Perinatal Med 2021; 15:129-136. [PMID: 34151869 DOI: 10.3233/npm-210734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND One key factor proven to increase quality of pregnancy outcome has been antenatal care (ANC) service. The perinatal triad of mother, placenta and fetus becomes functionally complete with a functional umbilical cord. The objective of the study was to establish mathematical models to predict the outcome of umbilical cord morphometric parameters using maternal first antenatal care visit biometric indices. METHOD This analytical descriptive cross-sectional study was conducted on 240 pregnant women who attended antenatal care for the first time in their first trimester at the Victory Maternity Home and Clinic in the Kumasi Metropolis, between April 2016 and October 2019. Umbilical cord length, diameter, area, volume and weight were measured after delivery. Maternal first antenatal care visit blood pressure was taken and their non-fasting blood samples were collected and lipid profile done. RESULTS Mean values for umbilical cord measurements were; cord length, 38.10±7.86 cm; diameter, 1.04±0.17 cm; area, 66.10±24.49 cm2 and volume was 34.02±11.16 cm3 respectively while mean cord weight was 65.01±21.35 g. The study found that a unit increase in total cholesterol led to an increase of 2.33 units in umbilical cord length, high-density lipoprotein also resulted in 0.06 units increase in cord diameter while low-density lipoprotein decreases cord length by 3.31 units. Also, a unit increase in maternal booking total cholesterol resulted in 2.33 units increase in umbilical cord length. CONCLUSION Maternal first antenatal care visit total cholesterol, high-density lipoprotein and low-density lipoprotein could influence the outcome of umbilical cord length, diameter and area.
Collapse
Affiliation(s)
- S Bimpong
- Department of Anatomy, School of Medicine. University for Development Studies, Tamale, Ghana
| | - C S Abaidoo
- Department of Anatomy School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - J Tetteh
- Department of Anatomy School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - D Okwan
- Department of Anatomy School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Effects of lipoproteins on endothelial cells and macrophages function and its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy. Placenta 2021; 106:79-87. [PMID: 33706211 DOI: 10.1016/j.placenta.2021.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022]
Abstract
Hypercholesterolemia is one of the main risk factors associated with atherosclerosis and cardiovascular disease, the leading cause of death worldwide. During pregnancy, maternal hypercholesterolemia develops, and it can occur in a physiological (MPH) or supraphysiological (MSPH) manner, where MSPH is associated with endothelial dysfunction and early atherosclerotic lesions in the fetoplacental vasculature. In the pathogenesis of atherosclerosis, endothelial activation and endothelial dysfunction, characterized by an imbalance in the bioavailability of nitric oxide, contribute to the early stages of this disease. Macrophages conversion to foam cells, cholesterol efflux from these cells and its differentiation into a pro- or anti-inflammatory phenotype are also important processes that contribute to atherosclerosis. In adults it has been reported that native and modified HDL and LDL play an important role in endothelial and macrophage function. In this review it is proposed that fetal lipoproteins could be also relevant factors involved in the detrimental vascular effects described in MSPH. Changes in the composition and function of neonatal lipoproteins compared to adults has been reported and, although in MSPH pregnancies the fetal lipid profile does not differ from MPH, differences in the lipidomic profiles of umbilical venous blood have been reported, which could have implications in the vascular function. In this review we summarize the available information regarding the effects of lipoproteins on endothelial and macrophage function, emphasizing its possible implications on fetal adverse outcomes associated to maternal hypercholesterolemia during pregnancy.
Collapse
|
14
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
15
|
Ouidir M, Zeng X, Workalemahu T, Shrestha D, Grantz KL, Mendola P, Zhang C, Tekola-Ayele F. Early pregnancy dyslipidemia is associated with placental DNA methylation at loci relevant for cardiometabolic diseases. Epigenomics 2020; 12:921-934. [PMID: 32677467 PMCID: PMC7466909 DOI: 10.2217/epi-2019-0293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Aim: To identify placental DNA methylation changes that are associated with early pregnancy maternal dyslipidemia. Materials & methods: We analyzed placental genome-wide DNA methylation (n = 262). Genes annotating differentially methylated CpGs were evaluated for gene expression in placenta (n = 64). Results: We found 11 novel significant differentially methylated CpGs associated with high total cholesterol, low-density lipoprotein cholesterol and triglycerides, and low high-density lipoprotein cholesterol. High triglycerides were associated with decreased methylation of cg02785814 (ALX4) and decreased expression of ALX4 in placenta. Genes annotating the differentially methylated CpGs play key roles in lipid metabolism and were enriched in dyslipidemia pathways. Functional annotation found cis-methylation quantitative trait loci for genetic loci in ALX4 and EXT2. Conclusion: Our findings lend novel insights into potential placental epigenetic mechanisms linked with maternal dyslipidemia. Trial Registration: ClinicalTrials.gov, NCT00912132.
Collapse
Affiliation(s)
- Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-7004, USA
| |
Collapse
|
16
|
Excessive early-life cholesterol exposure may have later-life consequences for nonalcoholic fatty liver disease. J Dev Orig Health Dis 2020; 12:229-236. [PMID: 32290895 DOI: 10.1017/s2040174420000239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The in utero and immediate postnatal environments are recognized as critical windows of developmental plasticity where offspring are highly susceptible to changes in the maternal metabolic milieu. Maternal hypercholesterolemia (MHC) is a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy which can program metabolic dysfunction in offspring, including dysregulation of hepatic lipid metabolism. Although there is currently no established reference range MHC, a loosely defined cutoff point for total cholesterol >280 mg/dL in the third trimester has been suggested. There are several unanswered questions regarding this condition particularly with regard to how the timing of cholesterol exposure influences hepatic lipid dysfunction and the mechanisms through which these adaptations manifest in adulthood. Gestational hypercholesterolemia increased fetal hepatic lipid concentrations and altered lipid regulatory mRNA and protein content. These early changes in hepatic lipid metabolism are evident in the postweaning environment and persist into adulthood. Further, changes to hepatic epigenetic signatures including microRNA (miR) and DNA methylation are observed in utero, at weaning, and are evident in adult offspring. In conclusion, early exposure to cholesterol during critical developmental periods can predispose offspring to the early development of nonalcoholic fatty liver disease (NAFLD) which is characterized by altered regulatory function beginning in utero and persisting throughout the life cycle.
Collapse
|
17
|
Cholesterol uptake and efflux are impaired in human trophoblast cells from pregnancies with maternal supraphysiological hypercholesterolemia. Sci Rep 2020; 10:5264. [PMID: 32210256 PMCID: PMC7093446 DOI: 10.1038/s41598-020-61629-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal physiological (MPH) or supraphysiological hypercholesterolaemia (MSPH) occurs during pregnancy. Cholesterol trafficking from maternal to foetal circulation requires the uptake of maternal LDL and HDL by syncytiotrophoblast and cholesterol efflux from this multinucleated tissue to ApoA-I and HDL. We aimed to determine the effects of MSPH on placental cholesterol trafficking. Placental tissue and primary human trophoblast (PHT) were isolated from pregnant women with total cholesterol <280 md/dL (MPH, n = 27) or ≥280 md/dL (MSPH, n = 28). The lipid profile in umbilical cord blood from MPH and MSPH neonates was similar. The abundance of LDL receptor (LDLR) and HDL receptor (SR-BI) was comparable between MSPH and MPH placentas. However, LDLR was localized mainly in the syncytiotrophoblast surface and was associated with reduced placental levels of its ligand ApoB. In PHT from MSPH, the uptake of LDL and HDL was lower compared to MPH, without changes in LDLR and reduced levels of SR-BI. Regarding cholesterol efflux, in MSPH placentas, the abundance of cholesterol transporter ABCA1 was increased, while ABCG1 and SR-BI were reduced. In PHT from MSPH, the cholesterol efflux to ApoA-I was increased and to HDL was reduced, along with reduced levels of ABCG1, compared to MPH. Inhibition of SR-BI did not change cholesterol efflux in PHT. The TC content in PHT was comparable in MPH and MSPH cells. However, free cholesterol was increased in MSPH cells. We conclude that MSPH alters the trafficking and content of cholesterol in placental trophoblasts, which could be associated with changes in the placenta-mediated maternal-to-foetal cholesterol trafficking.
Collapse
|
18
|
Blay RM, Arko-Boham B, Addai FK. Natural cocoa improves birth weight and viability of rabbit pups born to hypercholesterolemic mothers. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Contreras-Duarte S, Carvajal L, Garchitorena MJ, Subiabre M, Fuenzalida B, Cantin C, Farías M, Leiva A. Gestational Diabetes Mellitus Treatment Schemes Modify Maternal Plasma Cholesterol Levels Dependent to Women´s Weight: Possible Impact on Feto-Placental Vascular Function. Nutrients 2020; 12:E506. [PMID: 32079298 PMCID: PMC7071311 DOI: 10.3390/nu12020506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
: Gestational diabetes mellitus (GDM) associates with fetal endothelial dysfunction (ED), which occurs independently of adequate glycemic control. Scarce information exists about the impact of different GDM therapeutic schemes on maternal dyslipidemia and obesity and their contribution to the development of fetal-ED. The aim of this study was to evaluate the effect of GDM-treatments on lipid levels in nonobese (N) and obese (O) pregnant women and the effect of maternal cholesterol levels in GDM-associated ED in the umbilical vein (UV). O-GDM women treated with diet showed decreased total cholesterol (TC) and low-density lipoproteins (LDL) levels with respect to N-GDM ones. Moreover, O-GDM women treated with diet in addition to insulin showed higher TC and LDL levels than N-GDM women. The maximum relaxation to calcitonin gene-related peptide of the UV rings was lower in the N-GDM group compared to the N one, and increased maternal levels of TC were associated with even lower dilation in the N-GDM group. We conclude that GDM-treatments modulate the TC and LDL levels depending on maternal weight. Additionally, increased TC levels worsen the GDM-associated ED of UV rings. This study suggests that it could be relevant to consider a specific GDM-treatment according to weight in order to prevent fetal-ED, as well as to consider the possible effects of maternal lipids during pregnancy.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Lorena Carvajal
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - María Jesús Garchitorena
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Mario Subiabre
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Bárbara Fuenzalida
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Claudette Cantin
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Marcelo Farías
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
| | - Andrea Leiva
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (L.C.); (M.J.G.); (M.S.); (B.F.); (C.C.); (M.F.)
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago 8330024, Chile
| |
Collapse
|
20
|
Perrone S, Perrone G, Brunelli R, Di Giacomo S, Galoppi P, Flammini G, Morozzi C, Stefanutti C. A complicated pregnancy in homozygous familial hypercholesterolaemia treated with lipoprotein apheresis: A case report. ATHEROSCLEROSIS SUPP 2019; 40:113-116. [PMID: 31818440 DOI: 10.1016/j.atherosclerosissup.2019.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS During pregnancy total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels increase significantly and lipoprotein apheresis (LA) is considered the most effective therapy in homozygous familial hypercholesterolaemia (HoFH) for modulating lipid and lipoprotein levels and reducing maternal and foetal complications. CLINICAL CASE A primigravida 28 years old Caucasian female patient, previously diagnosed as to be HoFH, was admitted at our outpatient service at the beginning of pregnancy. METHODS The patient was continuously submitted to LA every two weeks without foetal complication. During pregnancy two methods have been utilised: selective apheresis, and later plasma exchange. At 33 weeks gestational age the patient developed progressively hypertension, associated to LDL-C levels increase. Weekly LA was favoured. RESULTS At 34 weeks +5 days patient suddenly experienced acute chest pain and abnormal electrocardiogram heart tracing and cardiac enzymes increase. An emergency caesarean section was performed without complications and the foetus was healthy. The patient was immediately transferred to Coronary Intensive Care Unit, where she was diagnosed non-ST elevation myocardial infarction (NSTEMI). Notwithstanding the patient improved in few days and was quickly discharged in fair clinical condition. CONCLUSIONS LA is a safe and effective tool in HoFH subjects even in pregnancy. Evidence based guidelines for the management of these patients during pregnancy are still lacking.
Collapse
Affiliation(s)
- Seila Perrone
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Giuseppina Perrone
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy.
| | - Roberto Brunelli
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Serafina Di Giacomo
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Paola Galoppi
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Guendalina Flammini
- Department of Gynaecological, Obstetrical and Urological Sciences, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Claudia Morozzi
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| | - Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohaematology and Transfusion Medicine, Department of Molecular Medicine, "Sapienza" University of Rome, "Umberto I" Hospital, Rome, Italy
| |
Collapse
|
21
|
Dumolt JH, Ma M, Mathew J, Patel MS, Rideout TC. Gestational hypercholesterolemia alters fetal hepatic lipid metabolism and microRNA expression in Apo-E-deficient mice. Am J Physiol Endocrinol Metab 2019; 317:E831-E838. [PMID: 31453710 PMCID: PMC6879864 DOI: 10.1152/ajpendo.00138.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maternal hypercholesterolemia (MHC) is a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during gestation, which can alter offspring hepatic lipid metabolism. However, the extent that these maladaptations occur during gestation and the molecular mechanisms involved remain unknown. MicoRNAs (miRNA) are small, noncoding RNAs that contribute to the development and progression of nonalcoholic fatty liver disease. Therefore, we sought to determine the degree to which in utero exposure to excessive cholesterol affects fetal hepatic lipid metabolism and miRNA expression. Twelve female apoE-/- mice were randomly assigned to two different chow-based diets throughout gestation: control (CON) or the CON diet with cholesterol (0.15%). MHC reduced maternal fecundity and reduced litter size and weight. On gestational day 18, fetuses from MHC dams possessed increased placental cholesterol and hepatic triglycerides (TG), which were accompanied by a downregulation in the expression of hepatic lipogenic and TG synthesis and transport genes. Furthermore, fetal livers from MHC mothers showed increased miRNA-27a and reduced miRNA-200c expression. In summary, in utero exposure to MHC alters fetal lipid metabolism and lends mechanistic insight that implicates early changes in miRNA expression that may link to later-life programming of disease risk.
Collapse
Affiliation(s)
- Jerad H Dumolt
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Min Ma
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Joyce Mathew
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
22
|
Paquette AG, Brockway HM, Price ND, Muglia LJ. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod 2019; 98:89-101. [PMID: 29228154 PMCID: PMC5803773 DOI: 10.1093/biolre/iox163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-value <0.05). Significant changes in gene expression in molecular networks related to Tumor Protein 53 and phosphatidylinositol signaling were identified using DIRAC. We have aggregated a uniformly normalized transcriptomic dataset and have identified novel and established genes and pathways associated with developmental regulation of the placenta and potential preterm birth pathology. These analyses provide a community resource to integrate with other high-dimensional datasets for additional insights in normal placental development and its disruption.
Collapse
Affiliation(s)
| | - Heather M Brockway
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Contreras-Duarte S, Carvajal L, Fuenzalida B, Cantin C, Sobrevia L, Leiva A. Maternal Dyslipidaemia in Pregnancy with Gestational Diabetes Mellitus: Possible Impact on Foetoplacental Vascular Function and Lipoproteins in the Neonatal Circulation. Curr Vasc Pharmacol 2018; 17:52-71. [DOI: 10.2174/1570161115666171116154247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/06/2023]
Abstract
Dyslipidaemia occurs in pregnancy to secure foetal development. The mother shows a physiological
increase in plasma total cholesterol and Triglycerides (TG) as pregnancy progresses (i.e. maternal
physiological dyslipidaemia in pregnancy). However, in some women pregnancy-associated dyslipidaemia
exceeds this physiological adaptation. The consequences of this condition on the developing
fetus include endothelial dysfunction of the foetoplacental vasculature and development of foetal aortic
atherosclerosis. Gestational Diabetes Mellitus (GDM) associates with abnormal function of the foetoplacental
vasculature due to foetal hyperglycaemia and hyperinsulinaemia, and associates with development
of cardiovascular disease in adulthood. Supraphysiological dyslipidaemia is also detected in
GDM pregnancies. Although there are several studies showing the alteration in the maternal and neonatal
lipid profile in GDM pregnancies, there are no studies addressing the effect of dyslipidaemia in the
maternal and foetal vasculature. The literature reviewed suggests that dyslipidaemia in GDM pregnancy
should be an additional factor contributing to worsen GDM-associated endothelial dysfunction by altering
signalling pathways involving nitric oxide bioavailability and neonatal lipoproteins.
Collapse
Affiliation(s)
- Susana Contreras-Duarte
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Lorena Carvajal
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Claudette Cantin
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| |
Collapse
|
24
|
Copenhagen Baby Heart Study: a population study of newborns with prenatal inclusion. Eur J Epidemiol 2018; 34:79-90. [PMID: 30306423 DOI: 10.1007/s10654-018-0448-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Congenital heart diseases (CHDs) are reported in 0.8% of newborns. Numerous factors influence cardiovascular development and CHD prevalence, and possibly also development of cardiovascular disease later in life. However, known factors explain the probable etiology in only a fraction of patients. Past large-scale population-based studies have made invaluable contributions to the understanding of cardiac disease, but none recruited participants prenatally and focused on the neonatal period. The Copenhagen Baby Heart Study (CBHS) is a population-based study of the prevalence, spectrum, and prognosis of structural and functional cardiac abnormalities. The CBHS will also establish normal values for neonatal cardiac parameters and biomarkers, and study prenatal and early childhood factors potentially affecting later cardiovascular disease risk. The CBHS is an ongoing multicenter, prospective study recruiting from second trimester pregnancy (gestational weeks 18-20) (expected n = 25,000). Information on parents, pregnancy, and delivery are collected. After birth, umbilical cord blood is collected for biochemical analysis, DNA purification, and biobank storage. An echocardiographic examination, electrocardiography, and post-ductal pulse oximetry are performed shortly after birth. Infants diagnosed with significant CHD are referred to a specialist or admitted to hospital, depending on CHD severity. CBHS participants will be followed prospectively as part of specific research projects or regular clinical follow-up for CHD. CBHS design and methodology are described. The CBHS aims to identify new mechanisms underlying cardiovascular disease development and new targets for prevention, early detection, and management of CHD and other cardiac diseases presenting at birth or developing later in life.
Collapse
|
25
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Kallol S, Huang X, Müller S, Ontsouka CE, Albrecht C. Novel Insights into Concepts and Directionality of Maternal⁻Fetal Cholesterol Transfer across the Human Placenta. Int J Mol Sci 2018; 19:ijms19082334. [PMID: 30096856 PMCID: PMC6121295 DOI: 10.3390/ijms19082334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Cholesterol is indispensable for cellular membrane composition and function. It is also a precursor for the synthesis of steroid hormones, which promote, among others, the maturation of fetal organs. A role of the ATP-binding-cassette-transporter-A1 (ABCA1) in the transport of maternal cholesterol to the fetus was suggested by transferring cholesterol to apolipoprotein-A-1 (apo-A1), but the directionality of the apoA-1/ABCA1-dependent cholesterol transport remains unclear. We isolated primary trophoblasts from term placentae to test the hypotheses that (1) apoA-1/ABCA1 dispatches cholesterol mainly towards the fetus to support fetal developmental maturation at term, and (2) differentiated syncytiotrophoblasts (STB) exert higher cholesterol transport activity than undifferentiated cytotrophoblasts (CTB). As experimental models, we used (1) trophoblast monolayers grown on Transwell® system consisting of apical (maternal-like) and basal (fetal-like) compartments, and (2) trophoblasts grown on conventional culture plates at CTB and STB stages. Surprisingly, apoA-1-mediated cholesterol efflux operated almost exclusively at the apical-maternal side, where ABCA1 was also localized by immunofluorescence. We found greater cholesterol efflux capacity in STB, which was increased by liver-X-receptor agonist treatment and decreased by ABCA1 inhibition. We conclude that at term the apoA-1/ABCA1 pathway is rather involved in cholesterol transport to the mother than in transfer to the fully developed fetus.
Collapse
Affiliation(s)
- Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Xiao Huang
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Stefan Müller
- Department of BioMedical Research, University of Bern, CH-3012 Bern, Switzerland.
| | - Corneille Edgar Ontsouka
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, CH-3012 Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
27
|
Maternal supraphysiological hypercholesterolemia associates with endothelial dysfunction of the placental microvasculature. Sci Rep 2018; 8:7690. [PMID: 29769708 PMCID: PMC5955926 DOI: 10.1038/s41598-018-25985-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/27/2018] [Indexed: 01/24/2023] Open
Abstract
Maternal physiological or supraphysiological hypercholesterolemia (MPH, MSPH) occurs during pregnancy. MSPH is associated with foetal endothelial dysfunction and atherosclerosis. However, the potential effects of MSPH on placental microvasculature are unknown. The aim of this study was to determine whether MSPH alters endothelial function in the placental microvasculature both ex vivo in venules and arterioles from the placental villi and in vitro in primary cultures of placental microvascular endothelial cells (hPMEC). Total cholesterol < 280 mg/dL indicated MPH, and total cholesterol ≥280 mg/dL indicated MSPH. The maximal relaxation to histamine, calcitonin gene-related peptide and adenosine was reduced in MSPH venule and arteriole rings. In hPMEC from MSPH placentas, nitric oxide synthase (NOS) activity and L-arginine transport were reduced without changes in arginase activity or the protein levels of endothelial NOS (eNOS), human cationic amino acid 1 (hCAT-1), hCAT-2A/B or arginase II compared with hPMEC from MPH placentas. In addition, it was shown that adenosine acts as a vasodilator of the placental microvasculature and that NOS is active in hPMEC. We conclude that MSPH alters placental microvascular endothelial function via a NOS/L-arginine imbalance. This work also reinforces the concept that placental endothelial cells from the macro- and microvasculature respond differentially to the same pathological condition.
Collapse
|
28
|
Kamper M, Mittermayer F, Cabuk R, Gelles K, Ellinger I, Hermann M. Estrogen-enhanced apical and basolateral secretion of apolipoprotein B-100 by polarized trophoblast-derived BeWo cells. Biochimie 2017; 138:116-123. [PMID: 28487135 DOI: 10.1016/j.biochi.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
Cholesterol is an important nutrient for fetal development and transplacental transport occurs at all stages of human pregnancy. Furthermore, cholesterol is required for membrane building as well as steroid hormone synthesis. Therefore, all placental cell types require cholesterol for proper function. In human term placenta, the syncytiotrophoblast (STB) faces the maternal circulation. Uptake of maternal-derived cholesterol at the apical membrane of the STB is well understood, but the route by which cholesterol exits at the basal side for subsequent transfer across the fetal endothelial cells (FEC) or to other placental cell types remains not well characterized. Our aim was to provide evidence for basal secretion of apolipoprotein B-100 (apoB) containing lipoproteins. Furthermore, we investigated the placental localization of apolipoprotein receptors (LRP2, LDLR and LRP1) to identify cell targets of lipoprotein particles secreted in a polarized fashion by the STB. In trophoblast-derived BeWo cells grown on permeable filter supports, we demonstrate by immunoprecipitation apical as well as basolateral apoB secretion, which was significantly upregulated by estrogen-treatment for 24 or 48 h. Furthermore, we showed by immunofluorescence microscopy apoB and microsomal triglyceride transfer protein subunits localization in the STB and placental stromal cells in situ. All investigated receptors were detected by RT-qPCR and western blot in BeWo cells, but only expression of LRP2 was estrogen-inducible. In situ, the multi-ligand receptor LRP2 was expressed exclusively in the cytotrophoblast (CTB), the STB precursor cell type. LDLR and LRP1 localized to trophoblasts as well as stromal cells in situ. In summary, basal apoB secretion by BeWo cells supports the concept of basal lipoprotein particle secretion by placental STB. These lipoprotein particles may serve as cholesterol source for STB precursor cells, the CTBs, as well as all stromal cells of the chorionic villi including FECs, which were herein demonstrated to express apoB receptors, LRP2 and LDLR, respectively.
Collapse
Affiliation(s)
- Miriam Kamper
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Florian Mittermayer
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Rosalinda Cabuk
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Marcela Hermann
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| |
Collapse
|