1
|
Kelsh RN. Myron Gordon Award Lecture 2023: Painting the neural crest: How studying pigment cells illuminates neural crest cell biology. Pigment Cell Melanoma Res 2024; 37:555-561. [PMID: 38010612 DOI: 10.1111/pcmr.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023]
Abstract
It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of colourless, shady, parade and choker mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world-it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
2
|
Iyer S, Dhiman N, Zade SP, Mukherjee S, Singla N, Kumar M. Exposure to Tetrabutylammonium Bromide Impairs Cranial Neural Crest Specification, Neurogenic Program, and Brain Morphogenesis. ACS Chem Neurosci 2023; 14:1785-1798. [PMID: 37125651 DOI: 10.1021/acschemneuro.2c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Tetrabutylammonium bromide (TBAB) is a widely used industrial reagent and is commonly found in our aquatic ecosystem as an industrial byproduct. In humans, the ingestion of TBAB causes severe neurological impairments and disorders such as vertigo, hallucinations, and delirium. Yet, the extent of environmental risk and TBAB toxicity to human health is poorly understood. In this study, we aim to determine the developmental toxicity of TBAB using zebrafish embryos as a model and provide novel insights into the mechanism of action of such chemicals on neurodevelopment and the overall embryonic program. Our results show that exposure to TBAB results in impaired development of the brain, inner ear, and pharyngeal skeletal elements in the zebrafish embryo. TBAB treatment resulted in aberrations in the specification of the neural crest precursors, hindbrain segmentation, and otic neurogenesis. TBAB treatment also induced a surge in apoptosis in the head, tail, and trunk regions of the developing embryo. Long-term TBAB exposure resulted in cardiac edema and craniofacial defects. Further, in silico molecular docking analysis indicated that TBAB binds to AMPA receptors and modulates neural developmental genes such as olfactomedin and acetylcholinesterase in the embryonic brain. To summarize, our study highlights the novel effects of TBAB on embryonic brain formation and segmentation, ear morphogenesis, and craniofacial skeletal development.
Collapse
Affiliation(s)
- Sharada Iyer
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Dhiman
- Department of Biochemistry, Panjab University, Chandigarh160014, India
| | - Suraj P Zade
- Global Product Compliance─India, 301, Samved Sankul, Near MLA Hostel, Civil Lines, Nagpur 440001, India
| | - Sulagna Mukherjee
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh160014, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Habsiguda, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
4
|
Tsunogai Y, Miyadai M, Nagao Y, Sugiwaka K, Kelsh RN, Hibi M, Hashimoto H. Contribution of sox9b to pigment cell formation in medaka fish. Dev Growth Differ 2021; 63:516-522. [PMID: 34807452 DOI: 10.1111/dgd.12760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
SoxE-type transcription factors, Sox10 and Sox9, are key regulators of the development of neural crest cells. Sox10 specifies pigment cell, glial, and neuronal lineages, whereas Sox9 is reportedly closely associated with skeletogenic lineages in the head, but its involvement in pigment cell formation has not been investigated genetically. Thus, it is not fully understood whether or how distinctly these genes as well as their paralogs in teleosts are subfunctionalized. We have previously shown using the medaka fish Oryzias latipes that pigment cell formation is severely affected by the loss of sox10a, yet unaffected by the loss of sox10b. Here we aimed to determine whether Sox9 is involved in the specification of pigment cell lineage. The sox9b homozygous mutation did not affect pigment cell formation, despite lethality at the early larval stages. By using sox10a, sox10b, and sox9b mutations, compound mutants were established for the sox9b and sox10 genes and pigment cell phenotypes were analyzed. Simultaneous loss of sox9b and sox10a resulted in the complete absence of melanophores and xanthophores from hatchlings and severely defective iridophore formation, as has been previously shown for sox10a-/- ; sox10b-/- double mutants, indicating that Sox9b as well as Sox10b functions redundantly with Sox10a in pigment cell development. Notably, leucophores were present in sox9b-/- ; sox10a-/- and sox10a-/- ; sox10b-/- double mutants, but their numbers were significantly reduced in the sox9b-/- ; sox10a-/- mutants. These findings highlight that Sox9b is involved in pigment cell formation, and plays a more critical role in leucophore development than Sox10b.
Collapse
Affiliation(s)
- Yuri Tsunogai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Motohiro Miyadai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yusuke Nagao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Keisuke Sugiwaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
6
|
Quinn RK, Drury HR, Lim R, Callister RJ, Tadros MA. Differentiation of Sensory Neuron Lineage During the Late First and Early Second Trimesters of Human Foetal Development. Neuroscience 2021; 467:28-38. [PMID: 34033872 DOI: 10.1016/j.neuroscience.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/06/2021] [Accepted: 05/15/2021] [Indexed: 09/30/2022]
Abstract
Sensory neurons within DRGs are broadly divided into three types that transmit nociceptive, mechanical, and proprioceptive signals. These subtypes are established during in utero development when sensory neurons differentiate into distinct categories according to a complex developmental plan. Most of what we know about this developmental plan comes from studies in rodents and little is known about this process in humans. The present study documents the expression of key genes involved in human sensory neuron development during the late first and early second trimesters (9-16WG). We observed a decrease in the expression of SOX10 and BRN3A, factors associated with migration and proliferation of sensory neurons, towards the end of the first trimester. Small and large sensory neuron populations also emerged at the end of the first trimester, as well as the transcription factors responsible for defining distinct sensory neuron types. NTRK1, which is expressed in nociceptive neurons, emerged first at ~11 WG followed by NTRK2 in mechanoreceptors at ~12 WG, with NTRK3 for proprioceptors peaking at ~14 WG. These peaks were followed by increased expression of their respective neurotrophic factors. Our results show significant differences in the expression of key signalling molecules for human DRG development versus that of rodents, most notably the expression of neurotrophins that promote the survival of sensory neuron types. This highlights the importance of examining molecular changes in humans to better inform the application of data collected in pre-clinical models.
Collapse
Affiliation(s)
- Rikki K Quinn
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Hannah R Drury
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Rebecca Lim
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW 2308, Australia.
| |
Collapse
|
7
|
Tao T, Shi H, Wang M, Perez-Atayde AR, London WB, Gutierrez A, Lemos B, Durbin AD, Look AT. Ganglioneuromas are driven by activated AKT and can be therapeutically targeted with mTOR inhibitors. J Exp Med 2021; 217:151986. [PMID: 32728700 PMCID: PMC7537400 DOI: 10.1084/jem.20191871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/01/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral sympathetic nervous system tumors are the most common extracranial solid tumors of childhood and include neuroblastoma, ganglioneuroblastoma, and ganglioneuroma. Surgery is the only effective therapy for ganglioneuroma, which may be challenging due to the location of the tumor and involvement of surrounding structures. Thus, there is a need for well-tolerated presurgical therapies that could reduce the size and extent of ganglioneuroma and therefore limit surgical morbidity. Here, we found that an AKT–mTOR–S6 pathway was active in human ganglioneuroma but not neuroblastoma samples. Zebrafish transgenic for constitutively activated myr-Akt2 in the sympathetic nervous system were found to develop ganglioneuroma without progression to neuroblastoma. Inhibition of the downstream AKT target, mTOR, in zebrafish with ganglioneuroma effectively reduced the tumor burden. Our results implicate activated AKT as a tumorigenic driver in ganglioneuroma. We propose a clinical trial of mTOR inhibitors as a means to shrink large ganglioneuromas before resection in order to reduce surgical morbidity.
Collapse
Affiliation(s)
- Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Meng Wang
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Wendy B London
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alejandro Gutierrez
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Adam D Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,The Broad Institute of MIT and Harvard, Cambridge, MA
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Howard AGA, Baker PA, Ibarra-García-Padilla R, Moore JA, Rivas LJ, Tallman JJ, Singleton EW, Westheimer JL, Corteguera JA, Uribe RA. An atlas of neural crest lineages along the posterior developing zebrafish at single-cell resolution. eLife 2021; 10:e60005. [PMID: 33591267 PMCID: PMC7886338 DOI: 10.7554/elife.60005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Neural crest cells (NCCs) are vertebrate stem cells that give rise to various cell types throughout the developing body in early life. Here, we utilized single-cell transcriptomic analyses to delineate NCC-derivatives along the posterior developing vertebrate, zebrafish, during the late embryonic to early larval stage, a period when NCCs are actively differentiating into distinct cellular lineages. We identified several major NCC/NCC-derived cell-types including mesenchyme, neural crest, neural, neuronal, glial, and pigment, from which we resolved over three dozen cellular subtypes. We dissected gene expression signatures of pigment progenitors delineating into chromatophore lineages, mesenchyme cells, and enteric NCCs transforming into enteric neurons. Global analysis of NCC derivatives revealed they were demarcated by combinatorial hox gene codes, with distinct profiles within neuronal cells. From these analyses, we present a comprehensive cell-type atlas that can be utilized as a valuable resource for further mechanistic and evolutionary investigations of NCC differentiation.
Collapse
Affiliation(s)
| | - Phillip A Baker
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | - Joshua A Moore
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - Lucia J Rivas
- Department of BioSciences, Rice UniversityHoustonUnited States
| | - James J Tallman
- Department of BioSciences, Rice UniversityHoustonUnited States
| | | | | | | | - Rosa A Uribe
- Department of BioSciences, Rice UniversityHoustonUnited States
| |
Collapse
|
9
|
Petratou K, Spencer SA, Kelsh RN, Lister JA. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS One 2021; 16:e0244794. [PMID: 33439865 PMCID: PMC7806166 DOI: 10.1371/journal.pone.0244794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later. We show that Mitfa represses tfec expression, revealing a likely mechanism contributing to the decision between melanocyte and iridophore fate. Our data are consistent with the long-standing proposal of a tripotent progenitor restricted to pigment cell fates. Moreover, we investigate activation, maintenance and function of tfec in multipotent NCSCs, demonstrating for the first time its role in the gene regulatory network forming and maintaining early neural crest cells. In summary, we build on our previous work to characterise the gene regulatory network governing iridophore development, establishing Tfec as the master regulator driving iridophore specification from multipotent progenitors, while shedding light on possible cellular mechanisms of progressive fate restriction.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Samantha A. Spencer
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
Yu L, Peng F, Dong X, Chen Y, Sun D, Jiang S, Deng C. Sex-Determining Region Y Chromosome-Related High-Mobility-Group Box 10 in Cancer: A Potential Therapeutic Target. Front Cell Dev Biol 2020; 8:564740. [PMID: 33344444 PMCID: PMC7744619 DOI: 10.3389/fcell.2020.564740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023] Open
Abstract
Sex-determining region Y-related high mobility group-box 10 (SOX10), a member of the SOX family, has recently been highlighted as an essential transcriptional factor involved in developmental biology. Recently, the functionality of SOX 10 has been increasingly revealed by researchers worldwide. It has been reported that SOX10 significantly regulates the proliferation, migration, and apoptosis of tumors and is closely associated with the progression of cancer. In this review, we first introduce the basic background of the SOX family and SOX10 and then discuss the pathophysiological roles of SOX10 in cancer. Besides, we enumerate the application of SOX10 in the pathological diagnosis and therapeutic potential of cancer. Eventually, we summarize the potential directions and perspectives of SOX10 in neoplastic theranostics. The information compiled herein may assist in additional studies and increase the potential of SOX10 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Liming Yu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Fan Peng
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Xue Dong
- Outpatient Department of Liaoning Military Region, General Hospital of Northern Theater Command, Shenyang, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Cardiology, Xijing Hopspital, The Airforce Military Medical University, Xi'an, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Liu JA, Tai A, Hong J, Cheung MPL, Sham MH, Cheah KSE, Cheung CW, Cheung M. Fbxo9 functions downstream of Sox10 to determine neuron-glial fate choice in the dorsal root ganglia through Neurog2 destabilization. Proc Natl Acad Sci U S A 2020; 117:4199-4210. [PMID: 32029586 PMCID: PMC7049171 DOI: 10.1073/pnas.1916164117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The transcription factor Sox10 is a key regulator in the fate determination of a subpopulation of multipotent trunk neural crest (NC) progenitors toward glial cells instead of sensory neurons in the dorsal root ganglia (DRG). However, the mechanism by which Sox10 regulates glial cell fate commitment during lineage segregation remains poorly understood. In our study, we showed that the neurogenic determinant Neurogenin 2 (Neurog2) exhibited transient overlapping expression with Sox10 in avian trunk NC progenitors, which progressively underwent lineage segregation during migration toward the forming DRG. Gain- and loss-of-function studies revealed that the temporary expression of Neurog2 was due to Sox10 regulation of its protein stability. Transcriptional profiling identified Sox10-regulated F-box only protein (Fbxo9), which is an SCF (Skp1-Cul-F-box)-type ubiquitin ligase for Neurog2. Consistently, overexpression of Fbxo9 in NC progenitors down-regulated Neurog2 protein expression through ubiquitination and promoted the glial lineage at the expense of neuronal differentiation, whereas Fbxo9 knockdown resulted in the opposite phenomenon. Mechanistically, we found that Fbxo9 interacted with Neurog2 to promote its destabilization through the F-box motif. Finally, epistasis analysis further demonstrated that Fbxo9 and probably other F-box members mediated the role of Sox10 in destabilizing Neurog2 protein and directing the lineage of NC progenitors toward glial cells rather than sensory neurons. Altogether, these findings unravel a Sox10-Fbxo9 regulatory axis in promoting the glial fate of NC progenitors through Neurog2 destabilization.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Andrew Tai
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jialin Hong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mai Har Sham
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Department of Anaesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Yang W, Chen SC, Lai JY, Ming YC, Chen JC, Chen PL. Distinctive genetic variation of long-segment Hirschsprung's disease in Taiwan. Neurogastroenterol Motil 2019; 31:e13665. [PMID: 31240788 DOI: 10.1111/nmo.13665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital disorder with the absence of myenteric and submucosal ganglion cells within distal gut. Due to multigenic inheritance and interactions, we employed next-generation sequencing (NGS) to investigate genetic backgrounds of long-segment HSCR (L-HSCR) in Taiwan. METHODS Genomic DNA extracted from peripheral blood of L-HSCR patients was subjected to capture-based NGS, based on a 31-gene panel. The variants with allele frequency <0.05 and predicted by computational methods as deleterious were further validated by Sanger sequencing in patients and their family as well to tell de novo from inherited variants. RESULTS Between 2015/04 and 2018/05, this study enrolled 23 L-HSCR patients, including 15 (65.2%) sporadic cases and 8 (34.8%) familial patients in 4 different families. Six sporadic and seven familial cases showed possible harmful variants across eight different genes, accounting for an overall detection rate of 56.5%. These variants mainly resided in SEMA3C, followed by RET, NRG1, and NTRK1. Three sporadic and 2 familial cases exhibited strong pathogenic variants as a deletional frameshift or stop codon in RET, L1CAM or NRG1. In a HSCR family, the father passed on a pathogenic RET frameshift to two daughters; however, only one developed HSCR. CONCLUSION Using NGS, we disclosed deleterious mutations such as a frameshift or stop codon in either familial or sporadic patients. Our cases with isolated L-HSCR or even total colonic aganglionosis appeared to exhibit complex patterns of inheritance and incomplete penetrance even in families with the same genetic variants, reflecting the possible effects of environmental factors and genetic modifiers.
Collapse
Affiliation(s)
- Wendy Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Jin-Yao Lai
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Ching Ming
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Departments of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Wiszniak S, Schwarz Q. Notch signalling defines dorsal root ganglia neuroglial fate choice during early neural crest cell migration. BMC Neurosci 2019; 20:21. [PMID: 31036074 PMCID: PMC6489353 DOI: 10.1186/s12868-019-0501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Background The dorsal root ganglia (DRG) are a critical component of the peripheral nervous system, and function to relay somatosensory information from the body’s periphery to sensory perception centres within the brain. The DRG are primarily comprised of two cell types, sensory neurons and glia, both of which are neural crest-derived. Notch signalling is known to play an essential role in defining the neuronal or glial fate of bipotent neural crest progenitors that migrate from the dorsal ridge of the neural tube to the sites of the DRG. However, the involvement of Notch ligands in this process and the timing at which neuronal versus glial fate is acquired has remained uncertain. Results We have used tissue specific knockout of the E3 ubiquitin ligase mindbomb1 (Mib1) to remove the function of all Notch ligands in neural crest cells. Wnt1-Cre; Mib1fl/fl mice exhibit severe DRG defects, including a reduction in glial cells, and neuronal cell death later in development. By comparing formation of sensory neurons and glia with the expression and activation of Notch signalling in these mice, we define a critical period during embryonic development in which early migrating neural crest cells become biased toward neuronal and glial phenotypes. Conclusions We demonstrate active Notch signalling between neural crest progenitors as soon as trunk neural crest cells delaminate from the neural tube and during their early migration toward the site of the DRG. This data brings into question the timing of neuroglial fate specification in the DRG and suggest that it may occur much earlier than originally considered. Electronic supplementary material The online version of this article (10.1186/s12868-019-0501-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5001, Australia.
| |
Collapse
|
16
|
Nichols EL, Green LA, Smith CJ. Ensheathing cells utilize dynamic tiling of neuronal somas in development and injury as early as neuronal differentiation. Neural Dev 2018; 13:19. [PMID: 30121077 PMCID: PMC6098834 DOI: 10.1186/s13064-018-0115-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glial cell ensheathment of specific components of neuronal circuits is essential for nervous system function. Although ensheathment of axonal segments of differentiated neurons has been investigated, ensheathment of neuronal cell somas, especially during early development when neurons are extending processes and progenitor populations are expanding, is still largely unknown. Methods To address this, we used time-lapse imaging in zebrafish during the initial formation of the dorsal root ganglia (DRG). Results Our results show that DRG neurons are ensheathed throughout their entire lifespan by a progenitor population. These ensheathing cells dynamically remodel during development to ensure axons can extend away from the neuronal cell soma into the CNS and out to the skin. As a population, ensheathing cells tile each DRG neuron to ensure neurons are tightly encased. In development and in experimental cell ablation paradigms, the oval shape of DRG neurons dynamically changes during partial unensheathment. During longer extended unensheathment neuronal soma shifting is observed. We further show the intimate relationship of these ensheathing cells with the neurons leads to immediate and choreographed responses to distal axonal damage to the neuron. Conclusion We propose that the ensheathing cells dynamically contribute to the shape and position of neurons in the DRG by their remodeling activity during development and are primed to dynamically respond to injury of the neuron. Electronic supplementary material The online version of this article (10.1186/s13064-018-0115-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Lauren A Green
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
17
|
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 2018; 14:e1007260. [PMID: 29621239 PMCID: PMC5886393 DOI: 10.1371/journal.pgen.1007260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. How individual cell fates become specified from multipotent progenitors is a fundamental question in developmental and stem cell biology. Body pigment cells derive from a multipotent progenitor, but while in zebrafish there are three types of pigment cells (melanocytes, iridophores and xanthophores), in medaka these progenitors form four (as zebrafish, plus leucophores). Here, we address whether mechanisms generating each cell-type are conserved between the two species. We focus on two key regulatory proteins, Sox5 and Sox10, which we previously showed were involved in pigment cell development in medaka and zebrafish, respectively. We compare experimentally how the two proteins interact in regulating development of each of the pigment cell lineages in these fish. We show that development of all pigment cells, except leucophores, is dependent on Sox10, and that Sox5 modulates Sox10 activity antagonistically in all pigment cells in zebrafish, and melanocytes and iridophores in medaka. Surprisingly, in medaka, Sox5 acts co-operatively with Sox10 to promote xanthophore fate and to repress leucophore fate. Our findings reveal surprising diversity how Sox5 and Sox10 interact to govern pigment cell development in medaka and zebrafish, and suggest that this likely relates to the evolution of the novel leucophore pigment cell type in medaka.
Collapse
Affiliation(s)
- Yusuke Nagao
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroyuki Takada
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motohiro Miyadai
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail: (HH); (RNK)
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail: (HH); (RNK)
| |
Collapse
|
18
|
Ciarlo C, Kaufman CK, Kinikoglu B, Michael J, Yang S, D′Amato C, Blokzijl-Franke S, den Hertog J, Schlaeger TM, Zhou Y, Liao E, Zon LI. A chemical screen in zebrafish embryonic cells establishes that Akt activation is required for neural crest development. eLife 2017; 6:e29145. [PMID: 28832322 PMCID: PMC5599238 DOI: 10.7554/elife.29145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
The neural crest is a dynamic progenitor cell population that arises at the border of neural and non-neural ectoderm. The inductive roles of FGF, Wnt, and BMP at the neural plate border are well established, but the signals required for subsequent neural crest development remain poorly characterized. Here, we conducted a screen in primary zebrafish embryo cultures for chemicals that disrupt neural crest development, as read out by crestin:EGFP expression. We found that the natural product caffeic acid phenethyl ester (CAPE) disrupts neural crest gene expression, migration, and melanocytic differentiation by reducing Sox10 activity. CAPE inhibits FGF-stimulated PI3K/Akt signaling, and neural crest defects in CAPE-treated embryos are suppressed by constitutively active Akt1. Inhibition of Akt activity by constitutively active PTEN similarly decreases crestin expression and Sox10 activity. Our study has identified Akt as a novel intracellular pathway required for neural crest differentiation.
Collapse
Affiliation(s)
- Christie Ciarlo
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Charles K Kaufman
- Division of Oncology, Department of MedicineWashington University School of MedicineSt. LouisUnited States
- Department of Developmental BiologyWashington University School of MedicineSt. LouisUnited States
| | - Beste Kinikoglu
- Center for Regenerative MedicineMassachusetts General HospitalBostonUnited States
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonUnited States
| | - Jonathan Michael
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
| | - Song Yang
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
| | - Christopher D′Amato
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
| | - Sasja Blokzijl-Franke
- Hubrecht Institute, Koninklijke Nederlandse Akademie van WetenschappenUniversity Medical Center UtrechtUtrechtNetherlands
| | - Jeroen den Hertog
- Hubrecht Institute, Koninklijke Nederlandse Akademie van WetenschappenUniversity Medical Center UtrechtUtrechtNetherlands
| | - Thorsten M Schlaeger
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
| | - Yi Zhou
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
| | - Eric Liao
- Harvard Medical SchoolBostonUnited States
- Center for Regenerative MedicineMassachusetts General HospitalBostonUnited States
- Division of Plastic and Reconstructive SurgeryMassachusetts General HospitalBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| | - Leonard I Zon
- Stem Cell Program and Hematology/OncologyChildren’s Hospital Boston, Howard Hughes Medical InstituteBostonUnited States
- Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|