1
|
Ding Z, Guo T, Tang Q, Hong Y, Lv Z, Lu L, Zhuang W. DEmiRNA-mRNA regulatory network reveals miR-122-5p as a regulatory factor of arginine metabolism in necrotizing enterocolitis. Front Genet 2025; 15:1480431. [PMID: 39911307 PMCID: PMC11794208 DOI: 10.3389/fgene.2024.1480431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a gastrointestinal emergency with relatively high morbidity and mortality in neonates. The role of microRNAs (miRNAs) in NEC is not yet entirely clear. This study aimed to explore the mechanism of miR-122-5p in NEC. Methods Differentially expressed (DE) miRNAs were sequenced in control and NEC mice. The DEmiRNA-mRNA regulatory network was constructed and the bioinformatics analysis was performed to identify the target mRNAs and potential roles of the DEmiRNAs. The miR-122-5p activation was explored in vitro in the human intestinal epithelial cell (FHs74Int) and rat intestinal epithelial cell (IEC-6). In vivo, mice were transinfected with miR-122-5p inhibitor before the NEC occurred. Mass spectrometry was used to qualify the concentrations of amino acids, and the viability of intestinal stem cell (ISC) was accessed to verify the biological function. Results Preliminarily, 15 miRNAs were found to be differentially expressed between NEC group and control group. Subsequent bioinformatics analysis revealed that miR-122-5p significantly contributes to the arginine metabolism in NEC through the DEmiRNA-mRNA regulatory network, with PRODH2 and ALDH18A1 being identified as its target genes. In vitro, miR-122-5p mimic inhibited the expression of PRODH2 and ALDH18A1 in the FHs74Int cells and IEC-6 cells. In vivo, inhibition of miR-122-5p led to increased expression of PRODH2 and ALDH18A1, along with elevated arginine levels. Following transfection with a miR-122-5p inhibiting adenovirus, the survival rate of NEC mice improved, and intestinal injury was alleviated. Conclusion MiR-122-5p inhibition could impact arginine metabolism by targeting PRODH2 and ALDH18A1, thereby mitigating intestinal injury in NEC.
Collapse
Affiliation(s)
- Zhili Ding
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Ting Guo
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Tang
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yaqiang Hong
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Zhuang
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Liu G, Fang Y, Zhang Y, Zhu M. Dihydroquercetin improves the proliferation of porcine intestinal epithelial cells via the Wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 734:150460. [PMID: 39083968 DOI: 10.1016/j.bbrc.2024.150460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/β-catenin pathway-associated β-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of β-catenin and TCF4. To confirm the involvement of the Wnt/β-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets β-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/β-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.
Collapse
Affiliation(s)
- Guowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Yang HW, Hu T, Ait-Ali T. Lawsonia intracellularis regulates nuclear factor-κB signalling pathway during infection. PLoS One 2024; 19:e0310804. [PMID: 39325775 PMCID: PMC11426430 DOI: 10.1371/journal.pone.0310804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Lawsonia intracellularis is the etiological agent of proliferative enteropathy (PE) in pigs, horses and wide range of mammals. Little is known about the role of innate immune response during L. intracellularis infection. In this study, we investigated the nuclear factor-κB (NF-κB)-regulated immune response against infection of a clinical strain Dkp23 and a live-attenuated Enterisol vaccine strain in PK-15 cells. We found that expression of NF-κB target genes TNF-α, IFN-γ, IL-6 and IL-8 were modulated during the course of infection. At 5 dpi, there was a significant increase in p65 NF-κB activation, including protein nuclear translocation and phosphorylation, synchronous with the induction of IL-6, IFN-γ and IL-8 expression in L. intracellularis infected cells, especially for Enterisol vaccine strain-infected cells. This result suggests that NF-κB signalling level is induced when L. intracellularis bacterial load peaks at 5 dpi. The induction of pro-inflammatory cytokines expression is consistent with the decreased viability of L. intracellularis-infected cells especially that of the vaccine strain. There were no significant changes in NF-κB signalling between vaccine and Dkp23 infection in PK-15 cells, except for moderate levels of differences in NF-κB target genes expression which might be a reflection of differences in intracellular bacterial load. Overall, the data presented here indicate a correlation between the induction of NF-κB signalling and the L. intracellularis bacterial load in PK-15 cells.
Collapse
Affiliation(s)
- Huan W Yang
- Department of Biochemistry, The University of Illinois Champaign-Urbana, Champaign, IL, United States of America
| | - Tuanjun Hu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | |
Collapse
|
4
|
Yan J, Racaud-Sultan C, Pezier T, Edir A, Rolland C, Claverie C, Burlaud-Gaillard J, Olivier M, Velge P, Lacroix-Lamandé S, Vergnolle N, Wiedemann A. Intestinal organoids to model Salmonella infection and its impact on progenitors. Sci Rep 2024; 14:15160. [PMID: 38956132 PMCID: PMC11219929 DOI: 10.1038/s41598-024-65485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
In order to survive and replicate, Salmonella has evolved mechanisms to gain access to intestinal epithelial cells of the crypt. However, the impact of Salmonella Typhimurium on stem cells and progenitors, which are responsible for the ability of the intestinal epithelium to renew and protect itself, remains unclear. Given that intestinal organoids growth is sustained by stem cells and progenitors activity, we have used this model to document the effects of Salmonella Typhimurium infection on epithelial proliferation and differentiation, and compared it to an in vivo model of Salmonella infection in mice. Among gut segments, the caecum was preferentially targeted by Salmonella. Analysis of infected crypts and organoids demonstrated increased length and size, respectively. mRNA transcription profiles of infected crypts and organoids pointed to upregulated EGFR-dependent signals, associated with a decrease in secretory cell lineage differentiation. To conclude, we show that organoids are suited to mimic the impact of Salmonella on stem cells and progenitors cells, carrying a great potential to drastically reduce the use of animals for scientific studies on that topic. In both models, the EGFR pathway, crucial to stem cells and progenitors proliferation and differentiation, is dysregulated by Salmonella, suggesting that repeated infections might have consequences on crypt integrity and further oncogenesis.
Collapse
Affiliation(s)
- Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Claire Racaud-Sultan
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Tiffany Pezier
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Anissa Edir
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Coralie Claverie
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Julien Burlaud-Gaillard
- Plateforme IBISA de Microscopie Electronique, Université de Tours, CHRU de Tours, Tours, France
| | - Michel Olivier
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | - Philippe Velge
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France
| | | | - Nathalie Vergnolle
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
- ISP, INRAE, Université de Tours, 37380, Nouzilly, France.
| |
Collapse
|
5
|
Strekalova T, Moskvin O, Jain AY, Gorbunov N, Gorlova A, Sadovnik D, Umriukhin A, Cespuglio R, Yu WS, Tse ACK, Kalueff AV, Lesch KP, Lim LW. Molecular signature of excessive female aggression: study of stressed mice with genetic inactivation of neuronal serotonin synthesis. J Neural Transm (Vienna) 2023; 130:1113-1132. [PMID: 37542675 PMCID: PMC10460733 DOI: 10.1007/s00702-023-02677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Abstract
Aggression is a complex social behavior, critically involving brain serotonin (5-HT) function. The neurobiology of female aggression remains elusive, while the incidence of its manifestations has been increasing. Yet, animal models of female aggression are scarce. We previously proposed a paradigm of female aggression in the context of gene x environment interaction where mice with partial genetic inactivation of tryptophan hydroxylase-2 (Tph2+/- mice), a key enzyme of neuronal 5-HT synthesis, are subjected to predation stress resulting in pathological aggression. Using deep sequencing and the EBSeq method, we studied the transcriptomic signature of excessive aggression in the prefrontal cortex of female Tph2+/- mice subjected to rat exposure stress and food deprivation. Challenged mutants, but not other groups, displayed marked aggressive behaviors. We found 26 genes with altered expression in the opposite direction between stressed groups of both Tph2 genotypes. We identified several molecular markers, including Dgkh, Arfgef3, Kcnh7, Grin2a, Tenm1 and Epha6, implicated in neurodevelopmental deficits and psychiatric conditions featuring impaired cognition and emotional dysregulation. Moreover, while 17 regulons, including several relevant to neural plasticity and function, were significantly altered in stressed mutants, no alteration in regulons was detected in stressed wildtype mice. An interplay of the uncovered pathways likely mediates partial Tph2 inactivation in interaction with severe stress experience, thus resulting in excessive female aggression.
Collapse
Affiliation(s)
- Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Singapore Medical School, BluMaiden Biosciences, Singapore, Singapore
| | - Aayushi Y Jain
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Daria Sadovnik
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov Moscow State Medical University, Moscow, Russia
- Neuroscience Research Center of Lyon, Beliv Plateau, Claude-Bernard Lyon-1 University, Bron, France
| | - Wing Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Chung Kwan Tse
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany.
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| |
Collapse
|
6
|
Medida RL, Sharma AK, Guo Y, Johnston LJ, Urriola PE, Gomez A, Saqui-Salces M. Dietary Zinc Supplemented in Organic Form Affects the Expression of Inflammatory Molecules in Swine Intestine. Animals (Basel) 2023; 13:2519. [PMID: 37570327 PMCID: PMC10417787 DOI: 10.3390/ani13152519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Animals receiving Zinc (Zn) dietary supplementation with organic sources respond better to stress than inorganic Zn sources supplementation. The study aimed to identify the effect of different Zn sources on intestinal epithelial gene expression. In total, 45 pigs (9 per treatment) (77.5 ± 2.5 kg weight) were fed for 32 days, a corn-soybean meal diet without supplemented Zn (ZnR) or supplemented with 50 and 100 ppm of inorganic ZnCl2 (Zn50 and Zn100), and amino acid-bound organic Zn sources (LQ50 and LQ100). Gene expression changes form RNA-seq in ileum tissues of ZnR revealed changes associated with Zn insufficiency. Comparing organic with inorganic Zn sources by one-way ANOVA, pro-inflammatory cytokine interleukin 18 (IL18) was downregulated (p = 0.03) and Toll-like receptor 2 (TLR2) upregulated (p = 0.02). To determine the role of epithelial cells in response to dietary Zn, swine intestinal organoids (enteroids) were exposed to Zn restriction, ZnCl2 or LQ-Zn. In enteroids, ZIP4 expression decreased with added Zn compared with Zn-restriction (p = 0.006) but Zn sources did not affect (p > 0.05) IL18 or TLR2 expression. These results suggest that organic Zn may stimulate TLR2 signaling possibly affecting immune response, while decreasing the proinflammatory cytokine IL18 expression in non-epithelial cells of intestinal mucosa.
Collapse
Affiliation(s)
- Ramya Lekha Medida
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| | - Ashok Kumar Sharma
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| | - Yue Guo
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| | - Lee J. Johnston
- West Central Research and Outreach Center (WCROC), University of Minnesota, Morris, MN 56267, USA;
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| | - Milena Saqui-Salces
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA; (R.L.M.); (A.K.S.); (Y.G.); (P.E.U.); (A.G.)
| |
Collapse
|
7
|
Xu T, Guo Y, Zhang Y, Cao K, Zhou X, Qian M, Han X. Alleviative Effect of Probiotic Ferment on Lawsonia intracellularis Infection in Piglets. BIOLOGY 2023; 12:879. [PMID: 37372164 DOI: 10.3390/biology12060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
(1) Background: Lawsonia intracellularis (LI) is an obligate intracellular Gram-negative bacterium that causes porcine ileitis. Pigs infected with LI have severe ileal lesions and show symptoms of diarrhea, indigestion, and growth retardation. Previous studies found that probiotic ferment (FAM) improved the growth performance, gut barrier, and function in piglets. Therefore, we aimed to reveal the mechanism that FAM alleviates negative performance in LI-challenged piglets by characterizing the changes in intestinal integrity, function, and gut microbiota following FAM supplementation. (2) Methods: Twenty-four healthy piglets were randomly allotted to four treatments. Three groups were challenged with LI; both FAM addition and vaccination were performed to explore their positive effects on LI-infected piglets. (3) Results: Piglets infected with LI showed lower growth performance and typical pathological symptoms. Moreover, microscopic images showed that observed intestinal morphological damage could be repaired by FAM and vaccine. To explore the digestion of nutrients in piglets, both digestive enzyme activity and ileal transporter expression were performed to reveal the promoting effect of additives. Reduction of LI colonization intervention by FAM could also ameliorate abnormal differentiation and function of intestinal epithelial cells and alleviate severe inflammatory responses in piglets. Regarding the gut microbiota, both the structure and function of the ileal and colonic microbiota were altered following FAM supplementation. (4) Conclusions: In conclusion, probiotic ferment can reduce the colonization of LI in the ileum, improve intestinal damage, barrier function and microbiota structure, and enhance digestive enzyme activity and nutrient transport proteins expression, thereby improving piglet growth performance, which has the effect of preventing ileitis in pigs.
Collapse
Affiliation(s)
- Tingting Xu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Guo
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, College of Animal Science and Technology, Hangzhou 310022, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Cao
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchen Zhou
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyan Han
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Temporal changes of genes associated with intestinal homeostasis in broiler chickens following a single infection with Eimeria acervulina. Poult Sci 2023; 102:102537. [PMID: 36867919 PMCID: PMC10011500 DOI: 10.1016/j.psj.2023.102537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Infection with the protozoan parasite Eimeria can cause the economically devastating disease coccidiosis, which is characterized by gross tissue damage and inflammation resulting in blunted villi and altered intestinal homeostasis. Male broiler chickens at 21 d of age were given a single challenge with Eimeria acervulina. Temporal changes in intestinal morphology and gene expression were investigated at 0, 3, 5, 7, 10, and 14 d postinfection (dpi). There were increased crypt depths for chickens infected with E. acervulina starting at 3 dpi and continuing to 14 dpi. At 5 and 7 dpi, infected chickens had decreased Mucin2 (Muc2), and Avian beta defensin (AvBD) 6 mRNA at 5 and 7 dpi and decreased AvBD10 mRNA at 7 dpi compared to uninfected chickens. Liver-enriched antimicrobial peptide 2 (LEAP2) mRNA was decreased at 3, 5, 7, and 14 dpi compared to uninfected chickens. After 7 dpi, there was increased Collagen 3a1 and Notch 1 mRNA compared to uninfected chickens. Marker of proliferation Ki67 mRNA was increased in infected chickens from 3 to 10 dpi. In addition, the presence of E. acervulina was visualized by in situ hybridization (ISH) with an E. acervulina sporozoite surface antigen (Ea-SAG) probe. In E. acervulina infected chickens, Ea-SAG mRNA was only detectable on 5 and 7 dpi by both ISH and qPCR. To further investigate the site of E. acervulina infection, Ea-SAG and Muc2 probes were examined on serial sections. The Muc2 ISH signal was decreased in regions where the Ea-SAG ISH signal was present, suggesting that the decrease in Muc2 by qPCR may be caused by the loss of Muc2 in the localized regions where the E. acervulina had invaded the tissue. Eimeria acervulina appears to manipulate host cells by decreasing their defensive capabilities and thereby allows the infection to propagate freely. Following infection, the intestinal cells upregulate genes that may support regeneration of damaged intestinal tissue.
Collapse
|
10
|
Däullary T, Imdahl F, Dietrich O, Hepp L, Krammer T, Fey C, Neuhaus W, Metzger M, Vogel J, Westermann AJ, Saliba AE, Zdzieblo D. A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection. Gut Microbes 2023; 15:2186109. [PMID: 36939013 PMCID: PMC10038062 DOI: 10.1080/19490976.2023.2186109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.
Collapse
Affiliation(s)
- Thomas Däullary
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Faculty of Biology, Biocenter, Chair of Microbiology, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Oliver Dietrich
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Hepp
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
| | - Tobias Krammer
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Winfried Neuhaus
- Austrian Institute of Technology (AIT), Vienna, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University (DPU), Krems, Austria
| | - Marco Metzger
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
- Fraunhofer Institute for Silicate Research, Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniela Zdzieblo
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
- Fraunhofer Institute for Silicate Research, Project Center for Stem Cell Process Engineering, Würzburg, Germany
| |
Collapse
|
11
|
Karuppannan AK. Editorial: Lawsonia intracellularis: a problem well understood is a problem half solved. Front Vet Sci 2023; 10:1203702. [PMID: 37205227 PMCID: PMC10185883 DOI: 10.3389/fvets.2023.1203702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
|
12
|
Dietary zinc restriction affects the expression of genes related to immunity and stress response in the small intestine of pigs. J Nutr Sci 2022; 11:e104. [PMID: 36452400 PMCID: PMC9705703 DOI: 10.1017/jns.2022.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Zinc (Zn) is an essential mineral and its deficiency manifests in non-specific clinical signs that require long time to develop. The response of swine intestine to Zn restriction was evaluated to identify early changes that can be indicative of Zn deficiency. Twenty-seven pigs (body weight = 77⋅5 ± 2⋅5 kg) were assigned to one of three diets: diet without added Zn (Zn-restricted diet, ZnR), and ZnR-supplemented with either 50 (Zn50) or 100 mg of Zn/kg of diet (Zn100) of Zn supplied by ZnCl2. After 32 d consuming the diets, serum Zn concentration in ZnR pigs was below the range of 0⋅59-1⋅37 μg/ml considered sufficient, thereby confirming subclinical Zn deficiency. Pigs showed no obvious health or growth changes. RNA-seq analysis followed by qPCR showed decreased expression of metallothionein-1 (MT1) (P < 0⋅05) and increased expression of Zn transporter ZIP4 (P < 0⋅05) in jejunum and ileum of ZnR pigs compared with Zn-supplemented pigs. Ingenuity pathway analysis revealed that Zn50 and Zn100 induced changes in genes related to nucleotide excision repair and integrin signalling pathways. The top gene network in the ZnR group compared with Zn100 was related to lipid and drug metabolism; and compared with Zn50, was related to cellular proliferation, assembly and organisation. Dietary Zn concentrations resulted in differences in genes related to immune pathways. Our analysis showed that small intestine presents changes associated with Zn deficiency after 32 d of Zn restriction, suggesting that the intestine could be a sentinel organ for Zn deficiency.
Collapse
|
13
|
Briceño MP, Cariaco Y, Almeida MPO, Miranda NC, Araujo ECB, Santos SN, Bernardes ES, Silva NM. Effects of Notch signaling pathway inhibition by dibenzazepine in acute experimental toxoplasmosis. Tissue Cell 2022; 79:101952. [DOI: 10.1016/j.tice.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
|
14
|
Elfadil D, Elkhatib WF, El-Sayyad GS. Promising advances in nanobiotic-based formulations for drug specific targeting against multidrug-resistant microbes and biofilm-associated infections. Microb Pathog 2022; 170:105721. [PMID: 35970290 DOI: 10.1016/j.micpath.2022.105721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Antimicrobial agents and alternative strategies to combat bacterial infections have become urgent due to the rapid development of multidrug-resistant bacteria caused by the misuse and overuse of antibiotics, as well as the ineffectiveness of antibiotics against difficult-to-treat infectious diseases. Nanobiotics is one of the strategies being explored to counter the increase in antibiotic-resistant bacteria. Nanobiotics are antibiotic molecules encapsulated in nanoparticles or artificially engineered pure antibiotics that are ≤ 100 nm in size in at least one dimension. Formulation scientists recognize nanobiotic delivery systems as an effective strategy to overcome the limitations associated with conventional antibiotic therapy. This review highlights the general mechanisms by which nanobiotics can be used to target resistant microbes and biofilm-associated infections. We focus on the design elements, properties, characterization, and toxicity assessment of organic nanoparticles, inorganic nanoparticle and molecularly imprinted polymer-based nano-formulations that can be designed to improve the efficacy of nanobiotic formulation.
Collapse
Affiliation(s)
- Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Morocco
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Galala University, New Galala City, Suez, Egypt; Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
15
|
Kirthika P, Park S, Jawalagatti V, Lee JH. Evaluation of host and bacterial gene modulation during Lawsonia intracellularis infection in immunocompetent C57BL/6 mouse model. J Vet Sci 2022; 23:e41. [PMID: 35332712 PMCID: PMC9149498 DOI: 10.4142/jvs.21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Proliferative enteritis caused by Lawsonia intracellularis undermines the economic stability of the swine industry worldwide. The development of cost-effective animal models to study the pathophysiology of the disease will help develop strategies to counter this bacterium. OBJECTIVES This study focused on establishing a model of gastrointestinal (GI) infection of L. intracellularis in C57BL/6 mice to evaluate the disease progression and lesions of proliferative enteropathy (PE) in murine GI tissue. METHODS We assessed the murine mucosal and cell-mediated immune responses generated in response to inoculation with L. intracellularis. RESULTS The mice developed characteristic lesions of the disease and shed L. intracellularis in the feces following oral inoculation with 5 × l07 bacteria. An increase in L. intracellularis 16s rRNA and groEL copies in the intestine of infected mice indicated intestinal dissemination of the bacteria. The C57BL/6 mice appeared capable of modulating humoral and cell-mediated immune responses to L. intracellularis infection. Notably, the expression of genes for the vitamin B12 receptor and for secreted and membrane-bound mucins were downregulated in L. intracellularis -infected mice. Furthermore, L. intracellularis colonization of the mouse intestine was confirmed by the immunohistochemistry and western blot analyses. CONCLUSIONS This is the first study demonstrating the contributions of bacterial chaperonin and host nutrient genes to PE using an immunocompetent mouse model. This mouse infection model may serve as a platform from which to study L. intracellularis infection and develop potential vaccination and therapeutic strategies to treat PE.
Collapse
Affiliation(s)
| | - Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea.
| |
Collapse
|
16
|
Liu W, Rodgers GP. Olfactomedin 4 Is a Biomarker for the Severity of Infectious Diseases. Open Forum Infect Dis 2022; 9:ofac061. [PMID: 35291445 PMCID: PMC8918383 DOI: 10.1093/ofid/ofac061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/07/2022] [Indexed: 09/05/2023] Open
Abstract
Biomarkers of infectious diseases are essential tools for patient monitoring, diagnostics, and prognostics. Here we review recent advances in our understanding of olfactomedin 4 (OLFM4) in neutrophil biology and of OLFM4 as a new biomarker for certain infectious diseases. OLFM4 is a neutrophil-specific granule protein that is expressed in a subset of human and mouse neutrophils. OLFM4 expression is upregulated in many viral and bacterial infections, as well as in malaria. OLFM4 appears to play an important role in regulating host innate immunity against bacterial infection. Further, higher expression of OLFM4 is associated with severity of disease for dengue virus, respiratory syncytial virus, and malaria infections. In addition, higher expression of OLFM4 or a higher percentage of OLFM4 + neutrophils is associated with poorer outcomes in septic patients. OLFM4 is a promising biomarker and potential therapeutic target in certain infectious diseases.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Cloft SE, Kinstler SR, Reno KE, Sellers HS, Franca M, Ecco R, Lee MD, Maurer JJ, Wong EA. Runting Stunting Syndrome in Broiler Chickens Is Associated with Altered Intestinal Stem Cell Morphology and Gene Expression. Avian Dis 2022; 66:85-94. [DOI: 10.1637/21-00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Sara E. Cloft
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Sydney R. Kinstler
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Kaitlyn E. Reno
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Holly S. Sellers
- Department of Population Health, Poultry Diagnostic Research Center, University of Georgia, Athens, GA 30601
| | - Monique Franca
- Department of Population Health, Poultry Diagnostic Research Center, University of Georgia, Athens, GA 30601
| | - Roselene Ecco
- Department of Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Margie D. Lee
- Department of Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA 24061
| | - John J. Maurer
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Eric A. Wong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
18
|
Characterisation of autophagy disruption in the ileum of pigs infected with Lawsonia intracellularis. Vet Res Commun 2021; 46:585-592. [PMID: 34669106 PMCID: PMC9165227 DOI: 10.1007/s11259-021-09847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
Abstract
Lawsonia intracellularis is the aetiological agent of proliferative enteropathy, an enteric disease endemic in swine. Survival in its intracellular niche of the ileum epithelial lining requires the capacity to subvert, repress or exploit the host immune response to create an environment conducive to bacterial propagation. To better understand how L. intracellularis survives in its intracellular niche, we have performed an investigation into the dynamic relationship between infection and the host autophagy response by immunohistochemistry in experimentally infected porcine ileum samples. Beclin1, a protein required early in the autophagy pathway was observed to be distributed with a basal to apical concentration gradient in the crypts of healthy piglets, whilst infected piglets were observed to have no gradient of distribution and an increase in the presence of Beclin1 in crypts with histological characteristics of L. intracellularis residence. Detecting microtubule-associated protein light chain 3 (LC3) is used as a method for monitoring autophagy progression as it associates with mature autophagosomes. For LC3 there was no notable change in signal intensity between crypts with characteristic L. intracellularis infection and healthy crypts of uninfected pigs. Finally, as p62 is degraded with the internal substrate of an autophagosome it was used to measure autophagic flux. There was no observed reduction or redistribution of p62. These preliminary results of the autophagy response in the ileum suggest that L. intracellularis affects autophagy. This disruption to host ileum homeostasis may provide a mechanism that assists in bacterial propagation and contributes to pathogenesis.
Collapse
|
19
|
Leite FL, Winfield B, Miller EA, Weber BP, Johnson TJ, Sylvia F, Vasquez E, Vannucci F, Beckler D, Isaacson RE. Oral Vaccination Reduces the Effects of Lawsonia intracellularis Challenge on the Swine Small and Large Intestine Microbiome. Front Vet Sci 2021; 8:692521. [PMID: 34336979 PMCID: PMC8322526 DOI: 10.3389/fvets.2021.692521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Porcine proliferative enteropathy remains one of the most prevalent diseases in swine herds worldwide. This disease is caused by Lawsonia intracellularis, an intracellular bacterial pathogen that primarily colonizes the ileum. In this study, we evaluated changes to the microbiome of the ileal mucosa, ileal digesta, cecal digesta, and feces subsequent to challenge with L. intracellularis and to an oral live vaccine against L. intracellularis. Given that gut homogenates have been used since 1931 to study this disease, we also characterized the microbial composition of a gut homogenate from swine infected with L. intracellularis that was used as challenge material. The L. intracellularis challenge led to a dysbiosis of the microbiome of both the small and large intestine marked by an increase of pathobionts including Collinsella, Campylobacter, Chlamydia, and Fusobacterium. This microbiome response could play a role in favoring L. intracellularis colonization and disease as well as potentially predisposing to other diseases. Vaccination altered both small and large intestine microbiome community structure and led to a significant 3.03 log10 reduction in the amount of L. intracellularis shed by the challenged pigs. Vaccination also led to a significant decrease in the abundance of Collinsella, Fusobacterium, and Campylobacter among other microbial changes compared with non-vaccinated and challenged animals. These results indicate that L. intracellularis infection is associated with broad changes to microbiome composition in both the large and small intestine, many of which can be mitigated by vaccination.
Collapse
Affiliation(s)
- Fernando L. Leite
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, United States
| | - Brittanie Winfield
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Elizabeth A. Miller
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Bonnie P. Weber
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Timothy J. Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Fred Sylvia
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA, United States
| | - Erika Vasquez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Fabio Vannucci
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Richard E. Isaacson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
20
|
Helm ET, Burrough ER, Leite FL, Gabler NK. Lawsonia intracellularis infected enterocytes lack sucrase-isomaltase which contributes to reduced pig digestive capacity. Vet Res 2021; 52:90. [PMID: 34147126 PMCID: PMC8214296 DOI: 10.1186/s13567-021-00958-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Lawsonia intracellularis is endemic to swine herds worldwide, however much is still unknown regarding its impact on intestinal function. Thus, this study aimed to characterize the impact of L. intracellularis on digestive function, and how vaccination mitigates these impacts. Thirty-six L. intracellularis negative barrows were assigned to treatment groups (n = 12/trt): (1) nonvaccinated, L. intracellularis negative (NC); (2) nonvaccinated, L intracellularis challenged (PC); and (3) L. intracellularis challenged, vaccinated (Enterisol® Ileitis, Boehringer Ingelheim) 7 weeks pre-challenge (VAC). On days post-inoculation (dpi) 0 PC and VAC pigs were inoculated with L. intracellularis. From dpi 19–21 fecal samples were collected for apparent total tract digestibility (ATTD) and at dpi 21, pigs were euthanized for sample collection. Post-inoculation, ADG was reduced in PC pigs compared with NC (41%, P < 0.001) and VAC (25%, P < 0.001) pigs. Ileal gross lesion severity was greater in PC pigs compared with NC (P = 0.003) and VAC (P = 0.018) pigs. Dry matter, organic matter, nitrogen, and energy ATTD were reduced in PC pigs compared with NC pigs (P ≤ 0.001 for all). RNAscope in situ hybridization revealed abolition of sucrase-isomaltase transcript in the ileum of PC pigs compared with NC and VAC pigs (P < 0.01). Conversely, abundance of stem cell signaling markers Wnt3, Hes1, and p27Kip1 were increased in PC pigs compared with NC pigs (P ≤ 0.085). Taken together, these data demonstrate that reduced digestibility during L. intracellularis challenge is partially driven by abolition of digestive machinery in lesioned tissue. Further, vaccination mitigated several of these effects, likely from lower bacterial burden and reduced disease severity.
Collapse
Affiliation(s)
- Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Fernando L Leite
- Boehringer Ingelheim Animal Health USA Inc, Duluth, GA, 30096, USA
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
21
|
Huang J, Zhou C, Zhou G, Li H, Ye K. Effect of Listeria monocytogenes on intestinal stem cells in the co-culture model of small intestinal organoids. Microb Pathog 2021; 153:104776. [PMID: 33548482 DOI: 10.1016/j.micpath.2021.104776] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen that causes systemic infections by crossing the intestinal barrier. However, in vitro analysis of the interaction of L. monocytogenes and small intestinal epithelium has yet to be fully elucidated. To study host responses from intestinal epithelium during L. monocytogenes infection, we used the co-culture model of small intestinal organoids and L. monocytogenes. Results showed that L. monocytogenes mediated damage to intestinal epithelium, especially intestinal stem cells. L. monocytogenes was found to reduce budding rate and increase mortality of organoids. Moreover, it affected the proliferation of epithelial cells and numbers of secretory cells. In addition, it was demonstrated that L. monocytogenes stimulated a reduction in the number of Lgr5+ stem cells. Furthermore, L. monocytogenes affected the expression of Hes1, Math1 and Sox9 to interfere with the differentiation of intestinal stem cells. Collectively, our findings reveal the effects of L. monocytogenes infection on intestinal stem cells and demonstrate that small intestinal organoid is a suitable experimental model for studying intestinal epithelium-pathogen interactions.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Cong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haokun Li
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Keping Ye
- Key Laboratory of Meat Processing and Quality Control, MOE, China-US Joint Research Center for Food Safety and Quality, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology; Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
22
|
Zhang L, Tai Y, Tang S, Zhao C, Tong H, Gao J, Tang C. Compromised Ileal Mucus Barrier Due to Impaired Epithelial Homeostasis Caused by Notch1 Signaling in Cirrhotic Rats. Dig Dis Sci 2021; 66:131-142. [PMID: 32144600 DOI: 10.1007/s10620-020-06178-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND In liver cirrhosis, intestinal mucus barrier is rarely studied. AIMS This study aimed to investigate whether mucus barrier in ileum is altered in cirrhotic rats and its underlying mechanisms. METHODS Thioacetamide was injected to induce liver cirrhosis in rats. Serum from portal vein blood, and ileum and liver tissues were obtained for further analysis. Goblet cell-like Ls174T cells were cultured for in vitro experiments. RESULTS The ileal mucus was thin, loose, and porous with small bubbles in cirrhotic rats. mRNA expressions of Muc2 and TFF3 were also down-regulated in cirrhotic rats. Bacteria located near to crypts and LPS were increased in the serum from portal vein in cirrhotic rats. Smaller theca area and few goblet cells were found in cirrhotic rats compared with control. Increased proliferation of ileal epithelia was observed in cirrhotic rats. Notch1, Dll1, and Hes1 expressions were enhanced, and KLF4 expression was suppressed in ileum of cirrhotic rats. In Ls174T cells, EDTA and NICD plasmid induced NICD and Hes1 expression and suppressed KLF4 concomitantly, and mucus expression almost vanished in these cells. NICD plasmid induced more proliferation in Ls174T cells. Oppositely, after DBZ treatment, NICD and Hes1 were inhibited along with augmentation of KLF4 and increased mucous expression in Ls174T cells, while proliferation of the cells was suppressed. CONCLUSIONS In cirrhotic rats, mucus barrier was impaired. This might be attributed to increased proliferation and decreased differentiation of epithelia, which might be mediated by Notch1-Hes1-KLF4 signaling.
Collapse
Affiliation(s)
- Linhao Zhang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China
| | - Yang Tai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China
| | - Shihang Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Guo Xue Lane 37#, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
23
|
Obradovic MR, Wilson HL. Immune response and protection against Lawsonia intracellularis infections in pigs. Vet Immunol Immunopathol 2019; 219:109959. [PMID: 31710909 DOI: 10.1016/j.vetimm.2019.109959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
Abstract
Lawsonia intracellularis are Gram-negative, obligate intracellular bacteria that cause proliferative enteropathy (PE), an economically important disease for the pig industry. Numerous reviews have been published on the characteristics and pathogenesis of this bacterium since its isolation and taxonomic characterization, with most reviews only partially covering how the host immune response develops during infection and the immune correlates of protection. With the development of increasingly more sophisticated immunological assays and tools for the pig, the immune response against L. intracellularis at distinct stages of pathogenesis has been published. In this review, we discuss current knowledge of the pig immune response against L. intracellularis and strategies to achieve immune protection. The immune response is presented in relation to chronological progression of pathological lesions and clinical symptoms, with emphasis on innate immunity and the adaptive humoral and cell-mediated immune response. The aim is to achieve a comprehensive understanding of the host immune response with respect to the stage-dependent cellular and biochemical processes important during PE development. Also, strategies for development of immune protection and new vaccination technologies are discussed in the light of new discoveries in the field.
Collapse
Affiliation(s)
- Milan R Obradovic
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada; School of Public Health, Vaccinology, and Immunotherapeutics, Saskatchewan, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada; School of Public Health, Vaccinology, and Immunotherapeutics, Saskatchewan, Canada.
| |
Collapse
|
24
|
Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic Bacteria. Front Immunol 2019; 10:2135. [PMID: 31611869 PMCID: PMC6776594 DOI: 10.3389/fimmu.2019.02135] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is crucial to regulate cell proliferation and polarity, cell determination, and tissue homeostasis. The activation of Wnt/β-catenin signaling is based on the interaction between Wnt glycoproteins and seven transmembrane receptors-Frizzled (Fzd). This binding promotes recruitment of the scaffolding protein Disheveled (Dvl), which results in the phosphorylation of the co-receptor LRP5/6. The resultant molecular complex Wnt-Fzd-LRP5/6-Dvl forms a structural region for Axin interaction that disrupts Axin-mediated phosphorylation/degradation of the transcriptional co-activator β-catenin, thereby allowing it to stabilize and accumulate in the nucleus where it activates the expression of Wnt-dependent genes. Due to the prominent physiological function, the Wnt/β-catenin signaling must be strictly controlled because its dysregulation, which is caused by different stimuli, may lead to alterations in cell proliferation, apoptosis, and inflammation-associated cancer. The virulence factors from pathogenic bacteria such as Salmonella enterica sv Typhimurium, Helicobacter pylori, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Citrobacter rodentium, Clostridium difficile, Bacteroides fragilis, Escherichia coli, Haemophilus parasuis, Lawsonia intracellularis, Shigella dysenteriae, and Staphylococcus epidermidis employ a variety of molecular strategies to alter the appropriate functioning of diverse signaling pathways. Among these, Wnt/β-catenin has recently emerged as an important target of several virulence factors produced by bacteria. The mechanisms used by these factors to interfere with the activity of Wnt/β-catenin is diverse and include the repression of Wnt inhibitors' expression by the epigenetic modification of histones, blocking Wnt-Fzd ligand binding, activation or inhibition of β-catenin nuclear translocation, down- or up-regulation of Wnt family members, and inhibition of Axin-1 expression that promotes β-catenin activity. Such a variety of mechanisms illustrate an evolutionary co-adaptation of eukaryotic molecular signaling to a battery of soluble or structural components synthesized by pathogenic bacteria. This review gathers the recent efforts to elucidate the mechanistic details through which bacterial virulence factors modulate Wnt/β-catenin signaling and its physiological consequences concerning the inflammatory response and cancer.
Collapse
Affiliation(s)
| | - Juan J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
25
|
Mukherjee T, Balaji KN. The WNT Framework in Shaping Immune Cell Responses During Bacterial Infections. Front Immunol 2019; 10:1985. [PMID: 31497020 PMCID: PMC6712069 DOI: 10.3389/fimmu.2019.01985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
A large proportion of the world is inflicted with health concerns arising from infectious diseases. Moreover, there is a widespread emergence of antibiotic resistance among major infectious agents, partially stemming from their continuous dialog with the host, and their enormous capacity to remodel the latter toward a secure niche. Among the several infection-driven events, moderation of WNT signaling pathway has been identified to be strategically tuned during infections to govern host-pathogen interactions. Primarily known for its role in arbitrating early embryonic developmental events; aberrant activation of the WNT pathway has also been associated with immunological consequences during diverse patho-physiological conditions. Here, we review the different mechanisms by which components of WNT signaling pathways are exploited by discrete bacterial agents for their pathogenesis. Furthermore, recent advances on the cross-talk of WNT with other signaling pathways, the varied modes of WNT-mediated alteration of gene expression, and WNT-dependent post-transcriptional and post-translational regulation of the immune landscape during distinct bacterial infections would be highlighted.
Collapse
Affiliation(s)
- Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
26
|
Qiu Y, Yang S, Pan T, Yu L, Liu J, Zhu Y, Wang H. ANKRD22 is involved in the progression of prostate cancer. Oncol Lett 2019; 18:4106-4113. [PMID: 31516611 PMCID: PMC6732940 DOI: 10.3892/ol.2019.10738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common malignant tumor in elderly men. As a novel metabolic-reprogramming molecule, the role of ankyrin repeat domain 22 (ANKRD22) in the tumorigenesis and progression of prostate cancer remains unknown. In the present study, mouse monoclonal antibodies against human ANKRD22 were prepared using recombinant ANKRD22 from prokaryotic expression and validated. Subsequently, these antibodies were used to evaluate ANKRD22 levels via immunohistochemical staining in prostate cancer tissues. Finally, the association between ANKRD22 levels and prostate cancer progression was analyzed in 636 samples of prostate cancer using The Cancer Genome Atlas (TCGA) database. A total of four anti-ANKRD22 monoclonal antibodies were generated and validated, which could be effectively blocked by recombinant ANKRD22 protein. Using these antibodies for immunohistochemical staining, ANKRD22 was detected in prostate cancer cells in both the cytoplasm and nucleus. Bioinformatics analysis demonstrated that the mRNA level of ANKRD22 was inversely associated with prostate cancer stage (P<0.05) and Gleason score (P<0.01) in TCGA database. Patients with higher ANKRD22 mRNA levels exhibited longer disease-free survival following radical prostatectomy. These findings suggest that ANKRD22 may negatively regulate the progression of prostate cancer. The prepared ANKRD22 antibodies with high specificity provide a powerful tool in ANKRD22 research.
Collapse
Affiliation(s)
- Yiqing Qiu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Saisai Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lin Yu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hongping Wang
- Department of Gerontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
27
|
Resende TP, Medida RL, Guo Y, Vannucci FA, Saqui-Salces M, Gebhart C. Evaluation of mouse enteroids as a model for Lawsonia intracellularis infection. Vet Res 2019; 50:57. [PMID: 31324204 PMCID: PMC6642515 DOI: 10.1186/s13567-019-0672-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022] Open
Abstract
Lawsonia intracellularis, an obligate intracellular bacterium, is an important enteric pathogen in pig herds and horse farms worldwide. The hallmark feature of L. intracellularis infection is the proliferation of epithelial cells in intestinal crypts. A major limitation to the study of L. intracellularis infection is the lack of an in vitro model that reproduces the changes observed in proliferative enteropathy. Here we investigated the suitability of mouse enteroids as a model to study L. intracellularis infection. Mouse enteroids were microinjected with L. intracellularis, filter-sterilized L. intracellularis culture supernatant, or sterile cell culture media (DMEM). L. intracellularis antigen was detected in mouse enteroids by immunohistochemistry and was located mostly in the basal region of the epithelium. There was no differential growth of enteroids among treatment groups, and cellular proliferation was not increased in L. intracellularis-infected enteroids in relation to non-infected enteroids based on immunofluorescence staining. L. intracellularis infection did not induce changes in gene expression of Ki-67 (proliferation marker), Sox9 (marker for transit amplifying cells) and Muc2 (marker for goblet cells). These results indicate that although L. intracellularis antigen is detectable in mouse enteroids, indicating susceptibility to infection, mouse enteroids fail to replicate the cellular proliferation and gene expression changes observed in proliferative enteropathy. Nevertheless, we have successfully demonstrated that mouse enteroids can be used to model days-long intracellular pathogen infection, serving as potential models for the study of other pathogens of interest in veterinary medicine.
Collapse
Affiliation(s)
- Talita Pilar Resende
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Ramya Lekha Medida
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yue Guo
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Fabio A Vannucci
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Milena Saqui-Salces
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Connie Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.,Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| |
Collapse
|
28
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Karuppannan AK, Opriessnig T. Lawsonia intracellularis: Revisiting the Disease Ecology and Control of This Fastidious Pathogen in Pigs. Front Vet Sci 2018; 5:181. [PMID: 30140680 PMCID: PMC6095029 DOI: 10.3389/fvets.2018.00181] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
Lawsonia intracellularis is an anaerobic obligate intracellular bacterium infecting the small intestine and infrequently also the large intestine of pigs and other animals including hamsters and horses. The infection is characterized by proliferation, hemorrhage, necrosis, or any combination commonly referred to as "ileitis," affecting the health and production efficacy of farmed pigs. Despite decades of research on this pathogen, the pathogenesis and virulence factors of this organism are not clearly known. In pigs, prophylaxis against L. intracellularis infection is achieved by either administration of subtherapeutic levels of in-feed antibiotic growth promoters or vaccination. While the former approach is considered to be effective in L. intracellularis control, potential regulations on subtherapeutic antibiotics in many countries in the near future may necessitate alternative approaches. The potential of manipulating the gut microbiome of pigs with feed ingredients or supplements to control L. intracellularis disease burden is promising based on the current understanding of the porcine gut microbiome in general, as well as preliminary insights into the disease ecology of L. intracellularis infection accrued over the last 30 years.
Collapse
Affiliation(s)
- Anbu K. Karuppannan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
30
|
Roerink F, Morgan CL, Knetter SM, Passat MH, Archibald AL, Ait-Ali T, Strait EL. A novel inactivated vaccine against Lawsonia intracellularis induces rapid induction of humoral immunity, reduction of bacterial shedding and provides robust gut barrier function. Vaccine 2018; 36:1500-1508. [PMID: 29336925 PMCID: PMC5846845 DOI: 10.1016/j.vaccine.2017.12.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022]
Abstract
Porcine proliferative ileitis is a major economic burden for the swine industry, affecting growing pigs and young adult pigs. In this study, the protective efficacy of an inactivated, injectable whole-cell bacteria vaccine against L. intracellularis – Porcilis® Ileitis was evaluated under field conditions. Eighty-five, three-week-old pigs on a commercial farrow-to-finish farm were vaccinated by the intramuscular route, either with a dose of injectable vaccine, or with saline. A subset of vaccinates and control pigs were necropsied at 21 days post-challenge. Incidence and severity of ileitis were evaluated by gross and microscopic observation of ileal tissues. Colonization of the gut after challenge was examined by L. intracellularis-specific immunohistochemistry, and qPCR of ileal scrapings. Integrity of the intestinal barrier was evaluated to quantify a range of intestinal markers including secreted mucin and intestinal alkaline phosphatase, and innate immune markers including Caspase-3 and Calprotectin. A second subset of pigs was monitored for fecal shedding of L. intracellularis, until resolution of shedding. Our investigation indicated that Porcilis Ileitis provided robust protection against ileitis, reduced bacterial shedding 15-fold (p < .05) and preserved normal gut barrier function in the face of an experimental challenge with virulent L. intracellularis.
Collapse
Affiliation(s)
- F Roerink
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA.
| | - C L Morgan
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA
| | - S M Knetter
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA
| | - M-H Passat
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - A L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - T Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK.
| | - E L Strait
- Merck Animal Health, 2 Giralda Farms, Madison, NJ 07940, USA
| |
Collapse
|