1
|
Zhan H, Li CZ, Kang Y, Yu XZ. The Role of Metal Tolerance Proteins (MTPs) Associated with the Homeostasis of Divalent Mineral Elements in Ga-Treated Rice Plants. TOXICS 2024; 12:831. [PMID: 39591009 PMCID: PMC11598383 DOI: 10.3390/toxics12110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Mineral elements typically act as transported substrates for metal tolerance proteins (MTPs). The chelation of MTPs with heavy metal ions is a suggestive detoxification pathway in plants; therefore, the trade-off between transporting mineral elements and chelating excess toxic metal ions is inevitable. Gallium (Ga) is an emerging pollutant associated with high-tech industries. This study investigated the impact of Ga stress on MTPs, subsequently altering the transport and distribution of mineral elements. Gallium exposure reduced rice seedling biomass, with roots accumulating more Ga than shoots. Ga stress also changed the rice plants' subcellular mineral element distribution. PCR assays showed that Ga stress negatively affected all genes belonging to the Mn group, except OsMTP9. While Mn accumulation in the rice cellular compartments did not respond positively to Ga stress, OsMTP8, OsMTP8.1, OsMTP11, and OsMTP11.1 were found to be intimately connected to Mn transport and repressed by increased Ga accumulation in roots. Mg and Cu accumulated in the cytosol and organelles of Ga-treated rice plants, while OsMTP9 expression increased, demonstrating its importance in transporting Mg and Cu. A positive link between Ga stress and Zn accumulation in the cytosol and organelles was found, and OsMTP7 and OsMTP12 expression was positive, suggesting that Ga stress did not impair their Zn transport. Notably, Ga exposure down-regulated Fe-transporting OsMTP1 and OsMTP6, wherein the subcellular concentrations of Fe showed negative responses to Ga accumulation. These findings provide valuable insights into elucidating the roles of OsMTPs in Ga tolerance and the transport of these mineral elements.
Collapse
Affiliation(s)
| | | | | | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin 541004, China; (H.Z.); (C.-Z.L.); (Y.K.)
| |
Collapse
|
2
|
Liu P, Sun L, Zhang Y, Tan Y, Zhu Y, Peng C, Wang J, Yan H, Mao D, Liang G, Liang G, Li X, Liang Y, Wang F, He Z, Tang W, Huang D, Chen C. The metal tolerance protein OsMTP11 facilitates cadmium sequestration in the vacuoles of leaf vascular cells for restricting its translocation into rice grains. MOLECULAR PLANT 2024; 17:1733-1752. [PMID: 39354718 DOI: 10.1016/j.molp.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024]
Abstract
Rice (Oryza sativa) provides >20% of the consumed calories in the human diet. However, rice is also a leading source of dietary cadmium (Cd) that seriously threatens human health. Deciphering the genetic network that underlies the grain-Cd accumulation will benefit the development of low-Cd rice and mitigate the effects of Cd accumulation in the rice grain. In this study, we identified a QTL gene, OsCS1, which is allelic to OsMTP11 and encodes a protein sequestering Cd in the leaf during vegetative growth and preventing Cd from being translocated to the grain after heading in rice. OsCS1 is predominantly expressed in leaf vascular parenchyma cells, where it binds to a vacuole-sorting receptor protein OsVSR2 and is translocated intracellularly from the trans-Golgi network to pre-vacuolar compartments and then to the vacuole. In this trafficking process, OsCS1 actively transports Cd into the endomembrane system and sequesters it in the vacuoles. There are natural variations in the promoter of OsCS1 between the indica and japonica rice subspecies. Duplication of a G-box-like motif in the promoter region of the superior allele of OsCS1 from indica rice enhances the binding of the transcription factor OsIRO2 to the OsCS1 promoter, thereby promoting OsCS1 expression. Introgression of this allele into commercial rice varieties could significantly lower grain-Cd levels compared to the inferior allele present in japonica rice. Collectively, our findings offer new insights into the genetic control of leaf-to-grain Cd translocation and provide a novel gene and its superior allele for the genetic improvement of low-Cd variety in rice.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yongjun Tan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yuxing Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Can Peng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jiurong Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Huili Yan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Donghai Mao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaoxiang Li
- Hunan Rice Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy ofAgricultural Sciences, Nanning 530007, China
| | - Feng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhenyan He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Daoyou Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Caiyan Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Jiang M, Wang M, Zhang X, Zhang Z, Sha J, Wan J, Wei L, Wang R, Wang W, Wang W, Hu Z, Leng P, He X. Genome-wide identification of metal tolerance protein genes in Quercus dentata and their roles in response to various heavy metal stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116942. [PMID: 39216217 DOI: 10.1016/j.ecoenv.2024.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Metal tolerance protein (MTP) is a cation transporter that plays an important role in tolerance to heavy metal stress. However, thus far, there has been no genome-wide investigation of the MTP gene family in Quercus plants. Quercus dentata is one of the main constructive species of forest in northern China. It has strong tolerance to a variety of heavy metal stresses. In this study, 25 MTPs were identified from the Q. dentata genome and classified into three subfamilies and seven groups according to their sequence characteristics and phylogenetic relationships. Both tandem and segmental duplication events contributed to the expansion of the QdMTP gene family. Interestingly, all 10 tandem duplication events contributed to the expansion of the Mn-CDF subfamily. The expression of Mn-CDF subfamily members in different organs and tissues of Q. dentata was different, and they responded differently to manganese, iron, zinc and cadmium stress treatments. QdMTP10.7, a member of the Mn-CDF subfamily, enhanced yeast growth under manganese, zinc and iron stresses. The subcellular localization in tobacco leaf epidermis cells showed that QdMTP10.7 was located in vacuoles. These data generated from this study provide an important foundation to elucidate the biological roles of QdMTP genes related to heavy metal tolerance in Q. dentata.
Collapse
Affiliation(s)
- Meng Jiang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Meijia Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Xuejiao Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Zhen Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Jingjing Sha
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Junyi Wan
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Liyi Wei
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Wenbo Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Zenghui Hu
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China.
| | - Pingsheng Leng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| | - Xiangfeng He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
4
|
Palusińska M, Barabasz A, Antosiewicz DM. NtZIP5A/B is involved in the regulation of Zn/Cu/Fe/Mn/Cd homeostasis in tobacco. Metallomics 2024; 16:mfae035. [PMID: 39085042 DOI: 10.1093/mtomcs/mfae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Plants grow in soils with varying concentrations of microelements, often in the presence of toxic metals e.g. Cd. To cope, they developed molecular mechanisms to regulate metal cross-homeostasis. Understanding underlying complex relationships is key to improving crop productivity. Recent research suggests that the Zn and Cd uptake protein NtZIP5A/B [Zinc-regulated, Iron-regulated transporter-like Proteins (ZIPs)] from tobacco (Nicotiana tabacum L. v. Xanthi) is involved in the regulation of a cross-talk between the two metals. Here, we support this conclusion by showing that RNAi-mediated silencing of NtZIP5A/B resulted in a reduction of Zn accumulation and that this effect was significantly enhanced by the presence of Cd. Our data also point to involvement of NtZIP5B in regulating a cross-talk between Cu, Fe, and Mn. Using yeast growth assays, Cu (but not Fe or Mn) was identified as a substrate for NtZIP5B. Furthermore, GUS-based analysis showed that the tissue-specific activity of the NtZIP5B promoter was different in each of the Zn-/Cu-/Fe-/Mn deficiencies applied with/without Cd. The results indicate that NtZIP5B is involved in maintaining multi-metal homeostasis under conditions of Zn, Cu, Fe, and Mn deficiency, and also in the presence of Cd. It was concluded that the protein regulates the delivery of Zn and Cu specifically to targeted different root cells depending on the Zn/Cu/Fe/Mn status. Importantly, in the presence of Cd, the activity of the NtZIP5B promoter is lost in meristematic cells and increased in mature root cortex cells, which can be considered a manifestation of a defense mechanism against its toxic effects.
Collapse
Affiliation(s)
- Małgorzata Palusińska
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Barabasz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| | - Danuta Maria Antosiewicz
- U niversity of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, 1 Miecznikowa Str.,02-096 Warszawa, Poland
| |
Collapse
|
5
|
Zhao C, Cui X, Yu X, Ning X, Yu H, Li J, Yang B, Pan Y, Jiang L. Molecular evolution and functional diversification of metal tolerance protein families in cereals plants and function of maize MTP protein. Int J Biol Macromol 2024; 274:133071. [PMID: 38871096 DOI: 10.1016/j.ijbiomac.2024.133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Plants employ metal tolerance proteins (MTPs) to confer tolerance by sequestering excess ions into vacuoles. MTPs belong to the cation diffusion facilitator (CDF) family, which facilitates the transport of divalent transition metal cations. In this study, we conducted a comprehensive analysis of the MTP gene families across 21 plant species, including maize (Zea mays). A total of 247 MTP genes were identified within these plant genomes and categorized into distinct subgroups, namely Zn-CDF, Mn-CDF, and Fe/Zn-CDF, based on phylogenetic analyses. This investigation encompassed the characterization of genomic distribution, gene structures, cis-regulatory elements, collinearity relationships, and gene ontology functions associated with MTPs. Transcriptomic analyses unveiled stress-specific expression patterns of MTP genes under various abiotic stresses. Moreover, quantitative RT-PCR assays were employed to assess maize MTP gene responses to diverse heavy metal stress conditions. Functional validation of metal tolerance roles was achieved through heterologous expression in yeast. This integrated evolutionary scrutiny of MTP families in cereals furnishes a valuable framework for the elucidation of MTP functions in subsequent studies. Notably, the prioritized MTP gene ZmMTP6 emerged as a positive regulator of plant Cd tolerance, thereby offering a pivotal genetic asset for the development of Cd-tolerant crops, particularly maize cultivars.
Collapse
Affiliation(s)
- Chao Zhao
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China; Beidahuang Kenfeng Seed Co., Ltd, Harbin 150000, Heilongjiang Province, PR China.
| | - Xueyu Cui
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, Guangxi Zhuang Autonomous Region Province, PR China
| | - Xiaoming Yu
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Xilin Ning
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Haiyan Yu
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Jianming Li
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Baiming Yang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Yexing Pan
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Long Jiang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| |
Collapse
|
6
|
Lu J, Xing G, Zhang Y, Zhang H, Wu T, Tian Z, Qu L. Genome-wide identification, expression and function analysis of the MTP gene family in tulip ( Tulipa gesneriana). FRONTIERS IN PLANT SCIENCE 2024; 15:1346255. [PMID: 38439986 PMCID: PMC10910078 DOI: 10.3389/fpls.2024.1346255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Currently, soil heavy metal contamination is a severe issue, particularly with Cd pollution. The metal tolerance protein (MTP) proteins, as plant divalent cation transporters, play a crucial role in the transport and tolerance of heavy metals in plants. This study conducted comprehensive identification and characterization of the MTP gene family in the tulip. A total of 11 TgMTP genes were identified and phylogenetically classified into three subfamilies. Conserved motif and gene structure analyses unveiled commonalities and variations among subfamily members. Expression profiling demonstrated several TgMTPs were markedly upregulated under Cd exposure, including the TgMTP7.1. Heterologous expression in yeast validated that TgMTP7.1 could ameliorate Cd sensitivity and enhance its tolerance. These results provide primary insights into the MTP gene family in tulip. Phylogenetic relationships and functional analyses establish a framework for elucidating the transporters and molecular mechanisms governing Cd accumulation and distribution in tulip. Key TgMTPs identified, exemplified by TgMTP7.1, may illuminate molecular breeding efforts aimed at developing Cd-tolerant cultivars for the remediation of soil Cd contamination.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| | - Guimei Xing
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| | - Yanqiu Zhang
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Huihua Zhang
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Tianyu Wu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Zengzhi Tian
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Lianwei Qu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Zhou Y, Liu H, Feng C, Lu Z, Liu J, Huang Y, Tang H, Xu Z, Pu Y, Zhang H. Genetic adaptations of sea anemone to hydrothermal environment. SCIENCE ADVANCES 2023; 9:eadh0474. [PMID: 37862424 PMCID: PMC10588955 DOI: 10.1126/sciadv.adh0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
Hydrothermal vent habitats are characterized by high hydrostatic pressure, darkness, and the continuous release of toxic metal ions into the surrounding environment where sea anemones and other invertebrates thrive. Nevertheless, the understanding of metazoan metal ion tolerances and environmental adaptations remains limited. We assembled a chromosome-level genome for the vent sea anemone, Alvinactis idsseensis sp. nov. Comparative genomic analyses revealed gene family expansions and gene innovations in A. idsseensis sp. nov. as a response to high concentrations of metal ions. Impressively, the metal tolerance proteins MTPs is a unique evolutionary response to the high concentrations of Fe2+ and Mn2+ present in the environments of these anemones. We also found genes associated with high concentrations of polyunsaturated fatty acids that may respond to high hydrostatic pressure and found sensory and circadian rhythm-regulated genes that were essential for adaptations to darkness. Overall, our results provide insights into metazoan adaptation to metal ions, high pressure, and darkness in hydrothermal vents.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chenguang Feng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Zaiqing Lu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yanan Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, China
| | - Zehui Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujin Pu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
8
|
Yilmaz H, Özer G, Baloch FS, Çiftçi V, Chung YS, Sun HJ. Genome-Wide Identification and Expression Analysis of MTP (Metal Ion Transport Proteins) Genes in the Common Bean. PLANTS (BASEL, SWITZERLAND) 2023; 12:3218. [PMID: 37765382 PMCID: PMC10535811 DOI: 10.3390/plants12183218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
MTP/CDF carriers, called metal ion transport proteins, act as substrates for the transmission of micronutrients such as iron (Fe), zinc (Zn), and manganese (Mn) to membrane carriers in plants. In this study, genome-wide analysis of the MTP gene family in the common bean genome, expression analysis of the PvMTP4, PvMTP5, and PvMTP12 genes after Fe and Zn treatments, and the effects of Fe and Zn applications on iron and zinc content were investigated. This study used common bean genotypes assumed to have high or low Fe and Zn accumulation ability. PvMTP genes were defined as containing conserved catalytic domains with molecular weights and protein lengths ranging from 41.35 to 91.05 kDa and from 369 to 813 amino acids (aa), respectively. As a result of the phylogenetic analysis, three main clusters containing seven subgroups were formed. In this study, the first characterization of the MTP gene family of beans was performed, and the responses of three different PvMTP genes in the Zn-CDF group to Fe and Zn applications were revealed. The obtained findings are thought to constitute pioneering resources for future research on common bean biofortification studies, plant breeding related to Fe and Zn, and the functional characterization of the MTP gene family.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Plant and Animal Production Program, Izmit Vocational School, Kocaeli University, Kocaeli 41285, Türkiye;
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye;
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
9
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
10
|
Liu Y, Pan Y, Li J, Chen J, Yang S, Zhao M, Xue Y. Transcriptome Sequencing Analysis of Root in Soybean Responding to Mn Poisoning. Int J Mol Sci 2023; 24:12727. [PMID: 37628908 PMCID: PMC10454639 DOI: 10.3390/ijms241612727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Manganese (Mn) is among one of the essential trace elements for normal plant development; however, excessive Mn can cause plant growth and development to be hindered. Nevertheless, the regulatory mechanisms of plant root response to Mn poisoning remain unclear. In the present study, results revealed that the root growth was inhibited when exposed to Mn poisoning. Physiological results showed that the antioxidase enzyme activities (peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase) and the proline, malondialdehyde, and soluble sugar contents increased significantly under Mn toxicity stress (100 μM Mn), whereas the soluble protein and four hormones' (indolebutyric acid, abscisic acid, indoleacetic acid, and gibberellic acid 3) contents decreased significantly. In addition, the Mn, Fe, Na, Al, and Se contents in the roots increased significantly, whereas those of Mg, Zn, and K decreased significantly. Furthermore, RNA sequencing (RNA-seq) analysis was used to test the differentially expressed genes (DEGs) of soybean root under Mn poisoning. The results found 45,274 genes in soybean root and 1430 DEGs under Mn concentrations of 5 (normal) and 100 (toxicity) μM. Among these DEGs, 572 were upregulated and 858 were downregulated, indicating that soybean roots may initiate complex molecular regulatory mechanisms on Mn poisoning stress. The results of quantitative RT-PCR indicated that many DEGs were upregulated or downregulated markedly in the roots, suggesting that the regulation of DEGs may be complex. Therefore, the regulatory mechanism of soybean root on Mn toxicity stress is complicated. Present results lay the foundation for further study on the molecular regulation mechanism of function genes involved in regulating Mn tolerance traits in soybean roots.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuhu Pan
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyu Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jingye Chen
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
11
|
Pehlivan N, Gedik K, Wang JJ. Tea-based biochar-mediated changes in cation diffusion homeostasis in rice grown in heavy metal (loid) contaminated mining soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107889. [PMID: 37453142 DOI: 10.1016/j.plaphy.2023.107889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Foreseeable future scenarios highlight the urgency of applying eco-safe avoidance methods or tolerance to heavy metal(loid) (HM) stress in agricultural production areas of contamination. The analyses show that the Ni, Mn, As, and Cr concentrations detected in the soils of the paddy fields in the Black Sea region vary between 123.60 and 263.30; 687-1271; 8.90-14.50; 162.00-340.00 mg kg-1 proving high accumulation of Ni, Mn, As, Cr in rice. Overconsumption of rice farmed extensively on these soils might also lead to human HM-related health problems. Therefore, in the current study, the approach of using tea-based biochar (BC) proven to have one of the most significant potentials as a soil amendment to reduce HM transmission to in-vitro-grown rice plants was investigated in the soil medium naturally contaminated with HMs. The tea-BC was produced from readily available local black tea waste of a conventional fermentation process and applied in the in-vitro experiments. Among the tested doses examined, 1% tea-BC showed a more positive effect on rice plant growth and development characterized by a better relative growth rate (59.7 and 84 mg g-1 d-1 for root and shoot tissues), photosynthetic pigment intactness (62.48 μg mL-1), cellular membrane integrity (93%), and relative water (96%) than the other rates (0% BC, 3%BC, 5%BC). The mRNA expression data highlights the probability of a cation diffusion facilitator (CDF) (OsMTP11) in concert with catalase isozyme (CATa) and dehydration-responsive element binding protein (DREB1a) linking the HM detoxification, oxidative defense, and dehydration pathways with the help of tea-BC. At the optimum concentration (1%BC), this approach might reduce HM accumulation levels of crops planted in HM-contaminated farmlands.
Collapse
Affiliation(s)
- Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, 53100, Türkiye.
| | - Kenan Gedik
- The Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Türkiye
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, LA, 70803, USA
| |
Collapse
|
12
|
Feng S, Hou K, Zhang H, Chen C, Huang J, Wu Q, Zhang Z, Gao Y, Wu X, Wang H, Shen C. Investigation of the role of TmMYB16/123 and their targets (TmMTP1/11) in the tolerance of Taxus media to cadmium. TREE PHYSIOLOGY 2023; 43:1009-1022. [PMID: 36808461 DOI: 10.1093/treephys/tpad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 06/11/2023]
Abstract
The toxicity and stress caused by heavy metal contamination has become an important constraint to the growth and flourishing of trees. In particular, species belonging to the genus Taxus, which are the only natural source for the anti-tumor medicine paclitaxel, are known to be highly sensitive to environmental changes. To investigate the response of Taxus spp. to heavy metal stress, we analyzed the transcriptomic profiles of Taxus media trees exposed to cadmium (Cd2+). In total, six putative genes from the metal tolerance protein (MTP) family were identified in T. media, including two Cd2+ stress inducible TMP genes (TmMTP1, TmMTP11 and Taxus media). Secondary structure analyses predicted that TmMTP1 and TmMTP11, which are members of the Zn-CDF and Mn-CDF subfamily proteins, respectively, contained six and four classic transmembrane domains, respectively. The introduction of TmMTP1/11 into the ∆ycf1 yeast cadmium-sensitive mutant strain showed that TmMTP1/11 might regulate the accumulation of Cd2+ to yeast cells. To screen the upstream regulators, partial promoter sequences of the TmMTP1/11 genes were isolated using the chromosome walking method. Several myeloblastosis (MYB) recognition elements were identified in the promoters of these genes. Furthermore, two Cd2+-induced R2R3-MYB TFs, TmMYB16 and TmMYB123, were identified. Both in vitro and in vivo assays confirmed that TmMTB16/123 play a role in Cd2+ tolerance by activating and repressing the expression of TmMTP1/11 genes. The present study elucidated new regulatory mechanisms underlying the response to Cd stress and can contribute to the breeding of Taxus species with high environmental adaptability.
Collapse
Affiliation(s)
- Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiefang Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Qicong Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhao Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yadi Gao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
13
|
Comparative Transcriptome Analysis Reveals Complex Physiological Response and Gene Regulation in Peanut Roots and Leaves under Manganese Toxicity Stress. Int J Mol Sci 2023; 24:ijms24021161. [PMID: 36674676 PMCID: PMC9867376 DOI: 10.3390/ijms24021161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Excess Manganese (Mn) is toxic to plants and reduces crop production. Although physiological and molecular pathways may drive plant responses to Mn toxicity, few studies have evaluated Mn tolerance capacity in roots and leaves. As a result, the processes behind Mn tolerance in various plant tissue or organ are unclear. The reactivity of peanut (Arachis hypogaea) to Mn toxicity stress was examined in this study. Mn oxidation spots developed on peanut leaves, and the root growth was inhibited under Mn toxicity stress. The physiological results revealed that under Mn toxicity stress, the activities of antioxidases and the content of proline in roots and leaves were greatly elevated, whereas the content of soluble protein decreased. In addition, manganese and iron ion content in roots and leaves increased significantly, but magnesium ion content decreased drastically. The differentially expressed genes (DEGs) in peanut roots and leaves in response to Mn toxicity were subsequently identified using genome-wide transcriptome analysis. Transcriptomic profiling results showed that 731 and 4589 DEGs were discovered individually in roots and leaves, respectively. Furthermore, only 310 DEGs were frequently adjusted and controlled in peanut roots and leaves, indicating peanut roots and leaves exhibited various toxicity responses to Mn. The results of qRT-PCR suggested that the gene expression of many DEGs in roots and leaves was inconsistent, indicating a more complex regulation of DEGs. Therefore, different regulatory mechanisms are present in peanut roots and leaves in response to Mn toxicity stress. The findings of this study can serve as a starting point for further research into the molecular mechanism of important functional genes in peanut roots and leaves that regulate peanut tolerance to Mn poisoning.
Collapse
|
14
|
A Golgi-Located Transmembrane Nine Protein Gene TMN11 Functions in Manganese/Cadmium Homeostasis and Regulates Growth and Seed Development in Rice. Int J Mol Sci 2022; 23:ijms232415883. [PMID: 36555524 PMCID: PMC9779671 DOI: 10.3390/ijms232415883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Metal transporters play crucial roles in plant nutrition, development, and metal homeostasis. To date, several multi-proteins have been identified for metal transport across the plasma membrane and tonoplast. Nevertheless, Golgi endomembrane metal carriers and their mechanisms are less documented. In this study, we identified a new transmembrane nine (TMN) family gene, TMN11, which encodes a Mn transport protein that was localized to the cis-Golgi endomembrane in rice. OsTMN11 contains a typically conserved long luminal N-terminal domain and nine transmembrane domains. OsTMN11 was ubiquitously expressed over the lifespan of rice and strongly upregulated in young rice under excess Mn(II)/Cd(II) stress. Ectopic expression of OsTMN11 in an Mn-sensitive pmr1 mutant (PMR1 is a Golgi-resident Mn exporter) yeast (Saccharomyces cerevisiae) restored the defective phenotype and transported excess Mn out of the cells. As ScPMR1 mediates cellular Mn efflux via a vesicle-secretory pathway, the results suggest that OsTMN11 functions in a similar manner. OsTMN11 knockdown (by RNAi) compromised the growth of young rice, manifested as shorter plant height, reduced biomass, and chlorosis under excessive Mn and Cd conditions. Two lifelong field trials with rice cropped in either normal Mn supply conditions or in Cd-contaminated farmland demonstrated that knockdown of OsTMN11 impaired the capacity of seed development (including panicle, spikelet fertility, seed length, grain weight, etc.). The mature RNAi plants contained less Mn but accumulated Cd in grains and rice straw, confirming that OsTMN11 plays a fundamental role in metal homeostasis associated with rice growth and development even under normal Mn supply conditions.
Collapse
|
15
|
Maharajan T, Krishna TPA, Rakkammal K, Ceasar SA, Ramesh M. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. PLANTA 2022; 256:106. [PMID: 36326904 DOI: 10.1007/s00425-022-04023-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Application of the recently developed CRISPR/Cas tools might help enhance cereals' growth and yield under biotic and abiotic stresses. Cereals are the most important food crops for human life and an essential source of nutrients for people in developed and developing countries. The growth and yield of all major cereals are affected by both biotic and abiotic stresses. To date, molecular breeding and functional genomic studies have contributed to the understanding and improving cereals' growth and yield under biotic and abiotic stresses. Clustered, regularly inter-spaced, short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been predicted to play a major role in precision plant breeding and developing non-transgenic cereals that can tolerate adverse effects of climate change. Variants of next-generation CRISPR/Cas tools, such as prime editor, base editor, CRISPR activator and repressor, chromatin imager, Cas12a, and Cas12b, are currently used in various fields, including plant science. However, few studies have been reported on applying the CRISPR/Cas system to understand the mechanism of biotic and abiotic stress tolerance in cereals. Rice is the only plant used frequently for such studies. Genes responsible for biotic and abiotic stress tolerance have not yet been studied by CRISPR/Cas system in other major cereals (sorghum, barley, maize and small millets). Examining the role of genes that respond to biotic and abiotic stresses using the CRISPR/Cas system may help enhance cereals' growth and yield under biotic and abiotic stresses. It will help to develop new and improved cultivars with biotic- and abiotic-tolerant traits for better yields to strengthen food security. This review provides information for cereal researchers on the current status of the CRISPR/Cas system for improving biotic and abiotic stress tolerance in cereals.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India
| | - Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683104, India.
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
16
|
Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Int J Mol Sci 2022; 23:ijms23169335. [PMID: 36012598 PMCID: PMC9409101 DOI: 10.3390/ijms23169335] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
The main mechanism of plant tolerance is the avoidance of metal uptake, whereas the main mechanism of hyperaccumulation is the uptake and neutralization of metals through specific plant processes. These include the formation of symbioses with rhizosphere microorganisms, the secretion of substances into the soil and metal immobilization, cell wall modification, changes in the expression of genes encoding heavy metal transporters, heavy metal ion chelation, and sequestration, and regenerative heat-shock protein production. The aim of this work was to review the natural plant mechanisms that contribute towards increased heavy metal accumulation and tolerance, as well as a review of the hyperaccumulator phytoremediation capacity. Phytoremediation is a strategy for purifying heavy-metal-contaminated soils using higher plants species as hyperaccumulators.
Collapse
|
17
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
18
|
Anani OA, Abel I, Olomukoro JO, Onyeachu IB. Insights to proteomics and metabolomics metal chelation in food crops. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:159-173. [PMID: 35754947 PMCID: PMC9208750 DOI: 10.1007/s42485-022-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State Nigeria
| | - Inobeme Abel
- Department of Chemistry, Faculty of Science, Edo State University, Uzairue, Auchi, Edo State Nigeria
| | - John Ovie Olomukoro
- Department of Animal and Environmental Biology, University of Benin, Benin City, Edo State Nigeria
| | - Ikenna Benedict Onyeachu
- Department of Chemistry, Faculty of Science, Edo State University, Uzairue, Auchi, Edo State Nigeria
| |
Collapse
|
19
|
Haque AFMM, Rahman MA, Das U, Rahman MM, Elseehy MM, El-Shehawi AM, Parvez MS, Kabir AH. Changes in physiological responses and MTP (metal tolerance protein) transcripts in soybean (Glycine max) exposed to differential iron availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:1-9. [PMID: 35303501 DOI: 10.1016/j.plaphy.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Members of MTP (metal tolerance protein) family are potential metal ion transporters, but little is known about how their responses and expression are altered in response to the deficiency and excess of Fe in soybean. In this study, root and shoot length and biomass in addition to leaf chlorophyll score, PSII efficiency and photosynthetic performance index were adversely affected by Fe-deficiency and excess Fe. Fe and S concentrations in the root and shoot, as well as the increased root FCR activity, consistently decreased and increased, respectively, accompanied by elevated Zn levels under Fe deficiency and Fe toxicity. This implies that Fe-uptake of plants subjected to differential Fe availability are likely determined by S and Zn nutritional status. In qPCR analysis, GmMTP5, GmMTP7, GmMTP8, and GmMTP10 genes showed downregulation under Fe shortage, whereas GmMTP6 and GmMTP11 were significantly upregulated due to Fe-toxicity. Further, GmMTP1, GmMTP3, GmMTP6, GmMTP7, and GmMTP10 were significantly induced in response to Fe toxicity, indicating their potential role in metal tolerance. Bioinformatics analysis showed that soybean MTP genes possessed a close relationship with certain Arabidopsis genes (i.e. ZAT, MTPB1) involved in solute transport and metal sequestration. Furthermore, top five motifs of soybean MTP protein correspond to the cation efflux family exhibited strong amino acid and evolutionary similarities with Arabidopsisthaliana. These findings shed light on Fe homeostasis mechanisms in soybean and could be used to regulate Fe uptake through breeding or transgenic manipulations of MTP genes.
Collapse
Affiliation(s)
- A F M Mohabubul Haque
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Urmi Das
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58105, United States
| | - Md Mostafizur Rahman
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, University of Alexandria, Alexandria, 21545, Egypt
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Md Sarwar Parvez
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi, 6205, Bangladesh; Department of Genetics, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
20
|
Amini S, Arsova B, Hanikenne M. The molecular basis of zinc homeostasis in cereals. PLANT, CELL & ENVIRONMENT 2022; 45:1339-1361. [PMID: 35037265 DOI: 10.1111/pce.14257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Plants require zinc (Zn) as an essential cofactor for diverse molecular, cellular and physiological functions. Zn is crucial for crop yield, but is one of the most limiting micronutrients in soils. Grasses like rice, wheat, maize and barley are crucial sources of food and nutrients for humans. Zn deficiency in these species therefore not only reduces annual yield but also directly results in Zn malnutrition of more than two billion people in the world. There has been good progress in understanding Zn homeostasis and Zn deficiency mechanisms in plants. However, our current knowledge of monocots, including grasses, remains insufficient. In this review, we provide a summary of our knowledge of molecular Zn homeostasis mechanisms in monocots, with a focus on important cereal crops. We additionally highlight divergences in Zn homeostasis of monocots and the dicot model Arabidopsis thaliana, as well as important gaps in our knowledge that need to be addressed in future research on Zn homeostasis in cereal monocots.
Collapse
Affiliation(s)
- Sahand Amini
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| | - Borjana Arsova
- Root Dynamics Group, IBG-2 - Plant Sciences, Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum, Jülich, Germany
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| |
Collapse
|
21
|
Han L, Wu X, Zhang X, Hou K, Zhang H, Shen C. Identification and functional analysis of cation-efflux transporter 1 from Brassica juncea L. BMC PLANT BIOLOGY 2022; 22:174. [PMID: 35387616 PMCID: PMC8985314 DOI: 10.1186/s12870-022-03569-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Brassica juncea behaves as a moderate-level accumulator of various heavy metal ions and is frequently used for remediation. To investigate the roles of metal ion transporters in B. juncea, a cation-efflux family gene, BjCET1, was cloned and functionally characterized. RESULTS BjCET1 contains 382 amino acid residues, including a signature motif of the cation diffusion facilitator protein family, six classic trans-membrane-spanning structures and a cation-efflux domain. A phylogenetic analysis showed that BjCET1 has a high similarity level with metal tolerance proteins from other Brassica plants, indicating that this protein family is highly conserved in Brassica. BjCET1 expression significantly increased at very early stages during both cadmium and zinc treatments. Green fluorescence detection in transgenic tobacco leaves revealed that BjCET1 is a plasma membrane-localized protein. The heterologous expression of BjCET1 in a yeast mutant increased the heavy-metal tolerance and decreased the cadmium or zinc accumulations in yeast cells, suggesting that BjCET1 is a metal ion transporter. The constitutive expression of BjCET1 rescued the heavy-metal tolerance capability of transgenic tobacco plants. CONCLUSIONS The data suggest that BjCET1 is a membrane-localized efflux transporter that plays essential roles in heavy metal ion homeostasis and hyper-accumulation.
Collapse
Affiliation(s)
- Lu Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang China
| | - Xiaohua Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang China
| | - Xinyu Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 Zhejiang China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
22
|
Jiang X, Yin J, Wang L, Xi K, Zhu X, Li G, Zhu Y, Liu Y. Identification and evolutionary analysis of the metal-tolerance protein family in eight Cucurbitaceae species. THE PLANT GENOME 2022; 15:e20167. [PMID: 34741493 DOI: 10.1002/tpg2.20167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Metal-tolerance proteins (MTPs) are divalent cation transporters and play fundamental roles in plant metal tolerance and ion homeostasis. Despite that, a systematic investigation of MTPs in Cucurbitacea is still lacking. In this study, 142 MTPs were identified from 11 released genomes of 8 Cucurbitaceae species. They were phylogenetically separated into three clusters (Zn-cation diffusion facilitator proteins [CDFs], Fe/Zn-CDFs, and Mn-CDFs) and further subdivided into seven groups (G1, G5, G6, G7, G8, G9, and G12). Characterization analysis revealed that most MTPs were plasma membrane-located hydrophobic proteins. Motif and exon/intron analysis showed that members in the same group contained similar conserved motifs and gene structures. Moreover, 98 pairs of segmental-like duplication events were found. The nonsynonymous/synonymous substitution ratios between each pair were less than 1, implying that Cucurbitaceae MTPs were under purification selection. Expression profiling suggested that several MTP genes, such as CsCLMTP1, CmeMTP3, LsMTP3, and Cl97103MTP3, were constitutively expressed in corresponding Cucurbitaceae species, and their expression levels were not significantly altered by NaCl, drought, or pathogen infection. The expression patterns of cucumber MTP genes under Zn2+ , Cu2+ , Mn2+ , and Cd2+ stress were studied by quantitative real-time polymerase chain reaction and the results showed that these MTPs were induced by at least one metal ion, suggesting their involvement in metal tolerance or transportation. The identification and comprehensive investigation of MTP family members will provide a basis for the analysis of ion transport functions and ion tolerance mechanisms of Cucurbitaceae MTPs.
Collapse
Affiliation(s)
- Xinchen Jiang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural Univ., Baoding, Hebei, 071001, China
| | - Keyong Xi
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Xiongmeng Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Gang Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| | - Yiqing Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/College of Horticulture and Gardening, Yangtze Univ., Jingzhou, Hubei, 434000, China
| |
Collapse
|
23
|
Shariatipour N, Heidari B, Tahmasebi A, Richards C. Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:709817. [PMID: 34712248 PMCID: PMC8546302 DOI: 10.3389/fpls.2021.709817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
Comparative genomics and meta-quantitative trait loci (MQTLs) analysis are important tools for the identification of reliable and stable QTLs and functional genes controlling quantitative traits. We conducted a meta-analysis to identify the most stable QTLs for grain yield (GY), grain quality traits, and micronutrient contents in wheat. A total of 735 QTLs retrieved from 27 independent mapping populations reported in the last 13 years were used for the meta-analysis. The results showed that 449 QTLs were successfully projected onto the genetic consensus map which condensed to 100 MQTLs distributed on wheat chromosomes. This consolidation of MQTLs resulted in a three-fold reduction in the confidence interval (CI) compared with the CI for the initial QTLs. Projection of QTLs revealed that the majority of QTLs and MQTLs were in the non-telomeric regions of chromosomes. The majority of micronutrient MQTLs were located on the A and D genomes. The QTLs of thousand kernel weight (TKW) were frequently associated with QTLs for GY and grain protein content (GPC) with co-localization occurring at 55 and 63%, respectively. The co- localization of QTLs for GY and grain Fe was found to be 52% and for QTLs of grain Fe and Zn, it was found to be 66%. The genomic collinearity within Poaceae allowed us to identify 16 orthologous MQTLs (OrMQTLs) in wheat, rice, and maize. Annotation of promising candidate genes (CGs) located in the genomic intervals of the stable MQTLs indicated that several CGs (e.g., TraesCS2A02G141400, TraesCS3B02G040900, TraesCS4D02G323700, TraesCS3B02G077100, and TraesCS4D02G290900) had effects on micronutrients contents, yield, and yield-related traits. The mapping refinements leading to the identification of these CGs provide an opportunity to understand the genetic mechanisms driving quantitative variation for these traits and apply this information for crop improvement programs.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ahmad Tahmasebi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
24
|
Kaur R, Das S, Bansal S, Singh G, Sardar S, Dhar H, Ram H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. PHYSIOLOGIA PLANTARUM 2021; 173:430-448. [PMID: 34227684 DOI: 10.1111/ppl.13491] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination of agricultural fields has become a global concern as it causes a direct impact on human health. Rice is the major food crop for almost half of the world population and is grown under diverse environmental conditions, including heavy metal-contaminated soil. In recent years, the impact of heavy metal contamination on rice yield and grain quality has been shown through multiple approaches. In this review article, different aspects of heavy metal stress, that is uptake, transport, signaling and tolerance mechanisms, are comprehensively discussed with special emphasis on rice. For uptake, some of the transporters have specificity to one or two metal ions, whereas many other transporters are able to transport many different ions. After uptake, the intercellular signaling is mediated through different signaling pathways involving the regulation of various hormones, alteration of calcium levels, and the activation of mitogen-activated protein kinases. Heavy metal stress signals from various intermediate molecules activate various transcription factors, which triggers the expression of various antioxidant enzymes. Activated antioxidant enzymes then scavenge various reactive oxygen species, which eventually leads to stress tolerance in plants. Non-enzymatic antioxidants, such as ascorbate, metalloids, and even metal-binding peptides (metallothionein and phytochelatin) can also help to reduce metal toxicity in plants. Genetic engineering has been successfully used in rice and many other crops to increase metal tolerance and reduce heavy metals accumulation. A comprehensive understanding of uptake, transport, signaling, and tolerance mechanisms will help to grow rice plants in agricultural fields with less heavy metal accumulation in grains.
Collapse
Affiliation(s)
- Ravneet Kaur
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Susmita Das
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Sakshi Bansal
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Gurbir Singh
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shaswati Sardar
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Hena Dhar
- Agricultural Biotechnology division, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Hasthi Ram
- Lab 202, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
25
|
The Rice Cation/H + Exchanger Family Involved in Cd Tolerance and Transport. Int J Mol Sci 2021; 22:ijms22158186. [PMID: 34360953 PMCID: PMC8348036 DOI: 10.3390/ijms22158186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd), a heavy metal toxic to humans, easily accumulates in rice grains. Rice with unacceptable Cd content has become a serious food safety problem in many rice production regions due to contaminations by industrialization and inappropriate waste management. The development of rice varieties with low grain Cd content is seen as an economic and long-term solution of this problem. The cation/H+ exchanger (CAX) family has been shown to play important roles in Cd uptake, transport and accumulation in plants. Here, we report the characterization of the rice CAX family. The six rice CAX genes all have homologous genes in Arabidopsis thaliana. Phylogenetic analysis identified two subfamilies with three rice and three Arabidopsis thaliana genes in both of them. All rice CAX genes have trans-member structures. OsCAX1a and OsCAX1c were localized in the vacuolar while OsCAX4 were localized in the plasma membrane in rice cell. The consequences of qRT-PCR analysis showed that all the six genes strongly expressed in the leaves under the different Cd treatments. Their expression in roots increased in a Cd dose-dependent manner. GUS staining assay showed that all the six rice CAX genes strongly expressed in roots, whereas OsCAX1c and OsCAX4 also strongly expressed in rice leaves. The yeast (Saccharomyces cerevisiae) cells expressing OsCAX1a, OsCAX1c and OsCAX4 grew better than those expressing the vector control on SD-Gal medium containing CdCl2. OsCAX1a and OsCAX1c enhanced while OsCAX4 reduced Cd accumulation in yeast. No auto-inhibition was found for all the rice CAX genes. Therefore, OsCAX1a, OsCAX1c and OsCAX4 are likely to involve in Cd uptake and translocation in rice, which need to be further validated.
Collapse
|
26
|
Wu D, Tanaka R, Li X, Ramstein GP, Cu S, Hamilton JP, Buell CR, Stangoulis J, Rocheford T, Gore MA. High-resolution genome-wide association study pinpoints metal transporter and chelator genes involved in the genetic control of element levels in maize grain. G3-GENES GENOMES GENETICS 2021; 11:6156830. [PMID: 33677522 PMCID: PMC8759812 DOI: 10.1093/g3journal/jkab059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Despite its importance to plant function and human health, the genetics underpinning element levels in maize grain remain largely unknown. Through a genome-wide association study in the maize Ames panel of nearly 2,000 inbred lines that was imputed with ∼7.7 million SNP markers, we investigated the genetic basis of natural variation for the concentration of 11 elements in grain. Novel associations were detected for the metal transporter genes rte2 (rotten ear2) and irt1 (iron-regulated transporter1) with boron and nickel, respectively. We also further resolved loci that were previously found to be associated with one or more of five elements (copper, iron, manganese, molybdenum, and/or zinc), with two metal chelator and five metal transporter candidate causal genes identified. The nas5 (nicotianamine synthase5) gene involved in the synthesis of nicotianamine, a metal chelator, was found associated with both zinc and iron and suggests a common genetic basis controlling the accumulation of these two metals in the grain. Furthermore, moderate predictive abilities were obtained for the 11 elemental grain phenotypes with two whole-genome prediction models: Bayesian Ridge Regression (0.33–0.51) and BayesB (0.33–0.53). Of the two models, BayesB, with its greater emphasis on large-effect loci, showed ∼4–10% higher predictive abilities for nickel, molybdenum, and copper. Altogether, our findings contribute to an improved genotype-phenotype map for grain element accumulation in maize.
Collapse
Affiliation(s)
- Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Suong Cu
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Genome-Wide Identification, Structure Characterization, Expression Pattern Profiling, and Substrate Specificity of the Metal Tolerance Protein Family in Canavalia rosea (Sw.) DC. PLANTS 2021; 10:plants10071340. [PMID: 34209283 PMCID: PMC8309081 DOI: 10.3390/plants10071340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Plant metal tolerance proteins (MTPs) play key roles in heavy metal absorption and homeostasis in plants. By using genome-wide and phylogenetic approaches, the origin and diversification of MTPs from Canavalia rosea (Sw.) DC. was explored. Canavalia rosea (bay bean) is an extremophile halophyte with strong adaptability to seawater and drought and thereby shows specific metal tolerance with a potential phytoremediation ability. However, MTP genes in leguminous plants remain poorly understood. In our study, a total of 12 MTP genes were identified in C. rosea. Multiple sequence alignments showed that all CrMTP proteins possessed the conserved transmembrane domains (TM1 to TM6) and could be classified into three subfamilies: Zn-CDFs (five members), Fe/Zn-CDFs (five members), and Mn-CDFs (two members). Promoter cis-acting element analyses revealed that a distinct number and composition of heavy metal regulated elements and other stress-responsive elements existed in different promoter regions of CrMTPs. Analysis of transcriptome data revealed organ-specific expression of CrMTP genes and the involvement of this family in heavy metal stress responses and adaptation of C. rosea to extreme coral reef environments. Furthermore, the metal-specific activity of several functionally unknown CrMTPs was investigated in yeast. These results will contribute to uncovering the potential functions and molecular mechanisms of heavy metal absorption, translocation, and accumulation in C. rosea plants.
Collapse
|
28
|
Shalmani A, Ullah U, Muhammad I, Zhang D, Sharif R, Jia P, Saleem N, Gul N, Rakhmanova A, Tahir MM, Chen KM, An N. The TAZ domain-containing proteins play important role in the heavy metals stress biology in plants. ENVIRONMENTAL RESEARCH 2021; 197:111030. [PMID: 33774015 DOI: 10.1016/j.envres.2021.111030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
TAZ (transcriptional coactivator with PDZ-binding) zinc finger domains, also known as transcription adaptor putative zinc finger domains, that control diverse function in plant growth and development. Here, in the present study, we evaluated the role of the TAZ domain-containing gene in response to various heavy metals. Initially, we found a total of 3, 7, 8, 9, 9, 9, 7, 14, 6, 10, and 6 proteins containing TAZ domain in stiff brome, millet, sorghum, potato, pepper, maize, rice, apple, peach, pear, and tomato genome that could trigger the plant resistance against various heavy metals, respectively. Various in-silico approaches were applied such as duplication, phylogenetic analysis, and gene structure, to understand the basic features of the TAZ domain-containing genes in plants. Gene expression analyses were also performed under heavy metals (Cr, Zn, Ni, Cd, Co, Fe, Mn, and Pb). The results of quantitative real-time PCR analysis indicated that the TAZ gene family members were differentially expressed under different heavy metals. We further characterized the functions of the TAZ domain-containing gene under the heavy metal stresses by overexpressing the OsTAZ4 gene in Arabidopsis. The TAZ genes could promote plant resistance against various heavy metals by interacting with OsMYB34 and OsFHA9 transcription factors. The results will contribute to elucidate the relationship of TAZ proteins with heavy metals stresses and also ascertain the biological function in plant growth and development.
Collapse
Affiliation(s)
- Abdullah Shalmani
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Uzair Ullah
- Department of Genetics, Hazara University, Manshera, KPK, Pakistan.
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China; College of Agronomy, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Peng Jia
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Noor Saleem
- College of Agronomy, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Nazish Gul
- Department of Genetics, Hazara University, Manshera, KPK, Pakistan.
| | - Aizhan Rakhmanova
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi Province, 712100, China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Na An
- College of Horticulture, Northwest A and F University, Yangling, Shaanxi Province, 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
29
|
Das U, Haque AM, Bari MA, Mandal A, Kabir AH. Computational characterization and expression profile of MTP1 gene associated with zinc homeostasis across dicot plant species. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Bashir K, Ahmad Z, Kobayashi T, Seki M, Nishizawa NK. Roles of subcellular metal homeostasis in crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2083-2098. [PMID: 33502492 DOI: 10.1093/jxb/erab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Improvement of crop production in response to rapidly changing environmental conditions is a serious challenge facing plant breeders and biotechnologists. Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrients for plant growth and reproduction. These minerals are critical to several cellular processes including metabolism, photosynthesis, and cellular respiration. Regulating the uptake and distribution of these minerals could significantly improve plant growth and development, ultimately leading to increased crop production. Plant growth is limited by mineral deficiency, but on the other hand, excess Fe, Mn, Cu, and Zn can be toxic to plants; therefore, their uptake and distribution must be strictly regulated. Moreover, the distribution of these metals among subcellular organelles is extremely important for maintaining optimal cellular metabolism. Understanding the mechanisms controlling subcellular metal distribution and availability would enable development of crop plants that are better adapted to challenging and rapidly changing environmental conditions. Here, we describe advances in understanding of subcellular metal homeostasis, with a particular emphasis on cellular Fe homeostasis in Arabidopsis and rice, and discuss strategies for regulating cellular metabolism to improve plant production.
Collapse
Affiliation(s)
- Khurram Bashir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore, Pakistan
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Zarnab Ahmad
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
| | - Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Motoaki Seki
- Plant Genomics Network Research Team, Center for Sustainable Resource Science, Suehiro, Tsurumi Ku, Yokohama, Kanagawa, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
31
|
Ruang-Areerate P, Travis AJ, Pinson SRM, Tarpley L, Eizenga GC, Guerinot ML, Salt DE, Douglas A, Price AH, Norton GJ. Genome-wide association mapping for grain manganese in rice (Oryza sativa L.) using a multi-experiment approach. Heredity (Edinb) 2021; 126:505-520. [PMID: 33235293 PMCID: PMC8026592 DOI: 10.1038/s41437-020-00390-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Manganese (Mn) is an essential trace element for plants and commonly contributes to human health; however, the understanding of the genes controlling natural variation in Mn in crop plants is limited. Here, the integration of two of genome-wide association study approaches was used to increase the identification of valuable quantitative trait loci (QTL) and candidate genes responsible for the concentration of grain Mn across 389 diverse rice cultivars grown in Arkansas and Texas, USA, in multiple years. Single-trait analysis was initially performed using three different SNP datasets. As a result, significant loci could be detected using the high-density SNP dataset. Based on the 5.2 M SNP dataset, major QTLs were located on chromosomes 3 and 7 for Mn containing six candidate genes. In addition, the phenotypic data of grain Mn concentration were combined from three flooded-field experiments from the two sites and 3 years using multi-experiment analysis based on the 5.2 M SNP dataset. Two previous QTLs on chromosome 3 were identified across experiments, whereas new Mn QTLs were identified that were not found in individual experiments, on chromosomes 3, 4, 9 and 11. OsMTP8.1 was identified in both approaches and is a good candidate gene that could be controlling grain Mn concentration. This work demonstrates the utilisation of multi-experiment analysis to identify constitutive QTLs and candidate genes associated with the grain Mn concentration. Hence, the approach should be advantageous to facilitate genomic breeding programmes in rice and other crops considering QTLs and genes associated with complex traits in natural populations.
Collapse
Affiliation(s)
- Panthita Ruang-Areerate
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK.
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Anthony J Travis
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Shannon R M Pinson
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Lee Tarpley
- Texas A&M System AgriLife Research Center, Beaumont, TX, 77713, USA
| | - Georgia C Eizenga
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR, 72160, USA
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Adam H Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Gareth J Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| |
Collapse
|
32
|
Szopiński M, Sitko K, Rusinowski S, Zieleźnik-Rusinowska P, Corso M, Rostański A, Rojek-Jelonek M, Verbruggen N, Małkowski E. Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa. PLANT, CELL & ENVIRONMENT 2020; 43:3002-3019. [PMID: 32890409 DOI: 10.1111/pce.13883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Pseudometallophytes are commonly used to study the evolution of metal tolerance and accumulation traits in plants. Within the Arabidopsis genus, the adaptation of Arabidopsis halleri to metalliferous soils has been widely studied, which is not the case for the closely related species Arabidopsis arenosa. We performed an in-depth physiological comparison between the A. halleri and A. arenosa populations from the same polluted site, together with the geographically close non-metallicolous (NM) populations of both species. The ionomes, growth, photosynthetic parameters and pigment content were characterized in the plants that were growing on their native site and in a hydroponic culture under Cd treatments. In situ, the metallicolous (M) populations of both species hyperaccumulated Cd and Zn. The NM population of A. halleri hyperaccumulated Cd and Zn while the NM A. arenosa did not. In the hydroponic experiments, the NM populations of both species accumulated more Cd in their shoots than the M populations. Our research suggests that the two Arabidopsis species evolved different strategies of adaptation to extreme metallic environments that involve fine regulation of metal homeostasis, adjustment of the photosynthetic apparatus and accumulation of flavonols and anthocyanins.
Collapse
Affiliation(s)
- Michał Szopiński
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | | | - Paulina Zieleźnik-Rusinowska
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Adam Rostański
- Botany and Nature Protection Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
33
|
Ben Saad R, Ben Romdhane W, Zouari N, Ben Hsouna A, Harbaoui M, Brini F, Ghneim-Herrera T. Characterization of a novel LmSAP gene promoter from Lobularia maritima: Tissue specificity and environmental stress responsiveness. PLoS One 2020; 15:e0236943. [PMID: 32735612 PMCID: PMC7394455 DOI: 10.1371/journal.pone.0236943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/03/2022] Open
Abstract
Halophyte Lobularia maritima LmSAP encodes an A20AN1 zinc-finger stress-associated protein which expression is up-regulated by abiotic stresses and heavy metals in transgenic tobacco. To deepen our understanding of LmSAP function, we isolated a 1,147 bp genomic fragment upstream of LmSAP coding sequence designated as PrLmSAP. In silico analyses of PrLmSAP revealed the presence of consensus CAAT and TATA boxes and cis-regulatory elements required for abiotic stress, phytohormones, pathogen, and wound responses, and also for tissue-specific expression. The PrLmSAP sequence was fused to the β-glucuronidase (gusA) reporter gene and transferred to rice. Histochemical GUS staining showed a pattern of tissue-specific expression in transgenic rice, with staining observed in roots, coleoptiles, leaves, stems and floral organs but not in seeds or in the root elongation zone. Wounding strongly stimulated GUS accumulation in leaves and stems. Interestingly, we observed a high stimulation of the promoter activity when rice seedlings were exposed to NaCl, PEG, ABA, MeJA, GA, cold, and heavy metals (Al3+, Cd2+, Cu2+ and Zn2+). These results suggest that the LmSAP promoter can be a convenient tool for stress-inducible gene expression and is a potential candidate for crop genetic engineering.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nabil Zouari
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Departments of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | |
Collapse
|
34
|
Alejandro S, Höller S, Meier B, Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. FRONTIERS IN PLANT SCIENCE 2020; 11:300. [PMID: 32273877 PMCID: PMC7113377 DOI: 10.3389/fpls.2020.00300] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 05/02/2023]
Abstract
Manganese (Mn) is an important micronutrient for plant growth and development and sustains metabolic roles within different plant cell compartments. The metal is an essential cofactor for the oxygen-evolving complex (OEC) of the photosynthetic machinery, catalyzing the water-splitting reaction in photosystem II (PSII). Despite the importance of Mn for photosynthesis and other processes, the physiological relevance of Mn uptake and compartmentation in plants has been underrated. The subcellular Mn homeostasis to maintain compartmented Mn-dependent metabolic processes like glycosylation, ROS scavenging, and photosynthesis is mediated by a multitude of transport proteins from diverse gene families. However, Mn homeostasis may be disturbed under suboptimal or excessive Mn availability. Mn deficiency is a serious, widespread plant nutritional disorder in dry, well-aerated and calcareous soils, as well as in soils containing high amounts of organic matter, where bio-availability of Mn can decrease far below the level that is required for normal plant growth. By contrast, Mn toxicity occurs on poorly drained and acidic soils in which high amounts of Mn are rendered available. Consequently, plants have evolved mechanisms to tightly regulate Mn uptake, trafficking, and storage. This review provides a comprehensive overview, with a focus on recent advances, on the multiple functions of transporters involved in Mn homeostasis, as well as their regulatory mechanisms in the plant's response to different conditions of Mn availability.
Collapse
Affiliation(s)
- Santiago Alejandro
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | | | | | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| |
Collapse
|
35
|
Belykh ES, Maystrenko TA, Velegzhaninov IO. Recent Trends in Enhancing the Resistance of Cultivated Plants to Heavy Metal Stress by Transgenesis and Transcriptional Programming. Mol Biotechnol 2019; 61:725-741. [DOI: 10.1007/s12033-019-00202-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Ram H, Kaur A, Gandass N, Singh S, Deshmukh R, Sonah H, Sharma TR. Molecular characterization and expression dynamics of MTP genes under various spatio-temporal stages and metal stress conditions in rice. PLoS One 2019; 14:e0217360. [PMID: 31136613 PMCID: PMC6538162 DOI: 10.1371/journal.pone.0217360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/09/2019] [Indexed: 11/23/2022] Open
Abstract
Metal Tolerance Proteins (MTPs) are the class of membrane proteins involved in the transport of metals, mainly Zn, Mn, Fe, Cd, Co and Ni, and confer metal tolerance in plants. In the present study, a comprehensive molecular analysis of rice MTP genes was performed to understand the evolution, distribution and expression dynamics of MTP genes. Exploration of the whole genome re-sequencing information available for three thousand rice genotypes highlighted the evolution and allelic diversity of MTP genes. Based on the presence of non-synonymous single nucleotide polymorphism (SNP), MTP1, MTP6, MTP8 and MTP9 were found to be the most conserved genes. Furthermore, results showed localization of MTP1, MTP8.1 and MTP9, and MTP11, respectively with QTLs/m-QTLs for Zn and Cd accumulation, making these genes promising candidates to understand the QTL regulation. Expression profiling of the entire set of 10 MTP genes revealed root and shoot specific expressions of MTP9 and MTP8.1, respectively, under all tested vegetative stages. Expression of seed-specific MTPs increased as seed maturation progressed, which revealed their potential role in transporting metals during seed filling. Upon exposure to harmful heavy metals, expression of most MTP genes decreased in root and increased in shoot, suggests that different mechanisms are being employed by MTPs in different tissues. Contrastingly, only a few MTPs were found to be responsive to Fe and/or Zn starvation conditions. The extensive analysis of MTPs presented here will be helpful in identifying candidate MTP genes for crop biofortification and bioremediation purposes.
Collapse
Affiliation(s)
- Hasthi Ram
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Amandeep Kaur
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Nishu Gandass
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Shweta Singh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Humira Sonah
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| | - Tilak Raj Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar(Mohali), Punjab, India
| |
Collapse
|
37
|
Chen Q, Wu W, Zhao T, Tan W, Tian J, Liang C. Complex Gene Regulation Underlying Mineral Nutrient Homeostasis in Soybean Root Response to Acidity Stress. Genes (Basel) 2019; 10:E402. [PMID: 31137896 PMCID: PMC6563148 DOI: 10.3390/genes10050402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/17/2022] Open
Abstract
Proton toxicity is one of the major environmental stresses limiting crop production and becomes increasingly serious because of anthropogenic activities. To understand acid tolerance mechanisms, the plant growth, mineral nutrients accumulation, and global transcriptome changes in soybean (Glycine max) in response to long-term acidity stress were investigated. Results showed that acidity stress significantly inhibited soybean root growth but exhibited slight effects on the shoot growth. Moreover, concentrations of essential mineral nutrients were significantly affected by acidity stress, mainly differing among soybean organs and mineral nutrient types. Concentrations of phosphorus (P) and molybdenum (Mo) in both leaves and roots, nitrogen (N), and potassium (K) in roots and magnesium (Mg) in leaves were significantly decreased by acidity stress, respectively. Whereas, concentrations of calcium (Ca), sulfate (S), and iron (Fe) were increased in both leaves and roots. Transcriptome analyses in soybean roots resulted in identification of 419 up-regulated and 555 down-regulated genes under acid conditions. A total of 38 differentially expressed genes (DEGs) were involved in mineral nutrients transportation. Among them, all the detected five GmPTs, four GmZIPs, two GmAMTs, and GmKUPs, together with GmIRT1, GmNramp5, GmVIT2.1, GmSKOR, GmTPK5, and GmHKT1, were significantly down-regulated by acidity stress. Moreover, the transcription of genes encoding transcription factors (e.g., GmSTOP2s) and associated with pH stat metabolic pathways was significantly up-regulated by acidity stress. Taken together, it strongly suggests that maintaining pH stat and mineral nutrient homeostasis are adaptive strategies of soybean responses to acidity stress, which might be regulated by a complex signaling network.
Collapse
Affiliation(s)
- Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhao
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Wenqi Tan
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
38
|
Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape ( Vitis vinifera L.). 3 Biotech 2019; 9:199. [PMID: 31065499 DOI: 10.1007/s13205-019-1728-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Metal tolerance proteins (MTPs) play an important role in the transport of metals at the cellular, tissue and whole plant levels. In the present study, 11 MTP genes were identified and these clustered in three major sub-families Fe/Zn-MTP, Zn-MTP, and Mn-MTP, and seven groups, which are similar to the grouping of MTP genes in both Arabidopsis and rice. Vitis vinifera metal tolerance proteins (VvMTP) ranged from 366 to 1092 amino acids, were predicted to be located in the cell vacuole, and had four to six putative TMDs, except for VvtMTP12 and VvMTP1. The VvMTPs had putative cation diffusion facilitator (CDF) domains and the putative Mn-MTPs also had zinc transporter dimerization domains (ZD-domains). V. vinifera Mn-MTPs had gene structures and motif distributions similar to those of the Fe/Zn-MTP and Zn-MTP sub-families. The upstream regions of VvMTP genes had variable frequencies of cis-regulatory elements that could indicate regulation at different developmental stages and/or differential regulation in response to stress. Comparison of the VvMTP coding sequences with known miRNAs found in various plant species indicated the presence of 13 putative miRNAs, with 7 of these associated with VvMTPs. Temporal and spatial expression profiling indicates a potential role for VvMTP genes during growth and development in grape plants, as well as the involvement of these genes in plant responses to environmental stress, especially osmotic stress. The data generated from this study provides a basis for further investigation of the roles of MTP genes in grapes.
Collapse
|
39
|
Liu J, Gao Y, Tang Y, Wang D, Chen X, Yao Y, Guo Y. Genome-Wide Identification, Comprehensive Gene Feature, Evolution, and Expression Analysis of Plant Metal Tolerance Proteins in Tobacco Under Heavy Metal Toxicity. Front Genet 2019; 10:345. [PMID: 31105736 PMCID: PMC6491887 DOI: 10.3389/fgene.2019.00345] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Plant metal tolerance proteins (MTPs) comprise a family of membrane divalent cation transporters that play essential roles in plant mineral nutrition maintenance and heavy metal stresses resistance. However, the evolutionary relationships and biological functions of MTP family in tobacco remain unclear. In the present study, 26, 13, and 12 MTPs in three main Nicotiana species (N. tabacum, N. sylvestris, and N. tomentosiformis) were identified and designated, respectively. The phylogenetic relationships, gene structures, chromosome distributions, conserved motifs, and domains of NtMTPs were systematic analyzed. According to the phylogenetic features, 26 NtMTPs were classified into three major substrate-specific groups that were Zn-cation diffusion facilitators (CDFs), Zn/Fe-CDFs, and Mn-CDFs, and seven primary groups (1, 5, 6, 7, 8, 9, and 12). All of the NtMTPs contained a modified signature sequence and the cation_efflux domain, whereas some of them also harbored the ZT_dimer. Evolutionary analysis showed that NtMTP family of N. tabacum originated from its parental genome of N. sylvestris and N. tomentosiformis, and further underwent gene loss and expanded via one segmental duplication event. Moreover, the prediction of cis-acting elements (CREs) and the microRNA target sites of NtMTP genes suggested the diverse and complex regulatory mechanisms that control NtMTPs gene expression. Expression profile analysis derived from transcriptome data and quantitative real-time reverse transcription-PCR (qRT-PCR) analysis showed that the tissue expression patterns of NtMTPs in the same group were similar but varied among groups. Besides, under heavy metal toxicity, NtMTP genes exhibited various responses in either tobacco leaves or roots. 19 and 15 NtMTPs were found to response to at least one metal ion treatment in leaves and roots, respectively. In addition, NtMTP8.1, NtMTP8.4, and NtMTP11.1 exhibited Mn transport abilities in yeast cells. These results provided a perspective on the evolution of MTP genes in tobacco and were helpful for further functional characterization of NtMTP genes.
Collapse
Affiliation(s)
- Jikai Liu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, China
| | - Yongfeng Gao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yunlai Tang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, China
| | - Dan Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, China
| | - XiaoMing Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.,State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, China
| | - Yinan Yao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yaoling Guo
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
40
|
Shalmani A, Jing XQ, Shi Y, Muhammad I, Zhou MR, Wei XY, Chen QQ, Li WQ, Liu WT, Chen KM. Characterization of B-BOX gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plants. BMC Genomics 2019; 20:27. [PMID: 30626335 PMCID: PMC6327500 DOI: 10.1186/s12864-018-5336-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
Background B-box (BBX) proteins play important roles in plant growth regulation and development including photomorphogenesis, photoperiodic regulation of flowering, and responses to biotic and abiotic stresses. Results In the present study we retrieved total 131 BBX members from five Poaceae species including 36 from maize, 30 from rice, 24 from sorghum, 22 from stiff brome, and 19 from Millet. All the BBX genes were grouped into five subfamilies on the basis of their phylogenetic relationships and structural features. The expression profiles of 12 OsBBX genes in different tissues were evaluated through qRT-PCR, and we found that most rice BBX members showed high expression level in the heading stage compared to seedling and booting stages. The expression of OsBBX1, OsBBX2, OsBBX8, OsBBX19, and OsBBX24 was strongly induced by abiotic stresses such as drought, cold and salt stresses. Furthermore, the expression of OsBBX2, OsBBX7, OsBBX17, OsBBX19, and OsBBX24 genes was up-regulated under GA, SA and MeJA hormones at different time points. Similarly, the transcripts level of OsBBX1, OsBBX7, OsBBX8, OsBBX17, and OsBBX19 genes were significantly affected by heavy metals such as Fe, Ni, Cr and Cd. Conclusion Change in the expression pattern of BBX members in response to abiotic, hormone and heavy metal stresses signifies their potential roles in plant growth and development and in response to multivariate stresses. The findings suggest that BBX genes could be used as potential genetic markers for the plants, particularly in functional analysis and determining their roles under multivariate stresses. Electronic supplementary material The online version of this article (10.1186/s12864-018-5336-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yi Shi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng-Ru Zhou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Yong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Qiong-Qiong Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
41
|
Zhang W, Liao X, Cui Y, Ma W, Zhang X, Du H, Ma Y, Ning L, Wang H, Huang F, Yang H, Kan G, Yu D. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genet 2019; 15:e1007798. [PMID: 30615606 PMCID: PMC6336350 DOI: 10.1371/journal.pgen.1007798] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 01/17/2019] [Accepted: 10/30/2018] [Indexed: 01/26/2023] Open
Abstract
Salt stress is one of the major abiotic factors that affect the metabolism, growth and development of plants, and soybean [Glycine max (L.) Merr.] germination is sensitive to salt stress. Thus, to ensure the successful establishment and productivity of soybeans in saline soil, the genetic mechanisms of salt tolerance at the soybean germination stage need to be explored. In this study, a population of 184 recombinant inbred lines (RILs) was utilized to map quantitative trait loci (QTLs) related to salt tolerance. A major QTL related to salt tolerance at the soybean germination stage named qST-8 was closely linked with the marker Sat_162 and detected on chromosome 8. Interestingly, a genome-wide association study (GWAS) identified several single nucleotide polymorphisms (SNPs) significantly associated with salt tolerance in the same genetic region on chromosome 8. Resequencing, bioinformatics and gene expression analyses were implemented to identify the candidate gene Glyma.08g102000, which belongs to the cation diffusion facilitator (CDF) family and was named GmCDF1. Overexpression and RNA interference of GmCDF1 in soybean hairy roots resulted in increased sensitivity and tolerance to salt stress, respectively. This report provides the first demonstration that GmCDF1 negatively regulates salt tolerance by maintaining K+-Na+ homeostasis in soybean. In addition, GmCDF1 affected the expression of two ion homeostasis-associated genes, salt overly sensitive 1 (GmSOS1) and Na+/H+ exchanger 1 (GmNHX1), in transgenic hairy roots. Moreover, a haplotype analysis detected ten haplotypes of GmCDF1 in 31 soybean genotypes. A candidate-gene association analysis showed that two SNPs in GmCDF1 were significantly associated with salt tolerance and that Hap1 was more sensitive to salt stress than Hap2. The results demonstrated that the expression level of GmCDF1 was negatively correlated with salt tolerance in the 31 soybean accessions (r = -0.56, P < 0.01). Taken together, these results not only indicate that GmCDF1 plays a negative role in soybean salt tolerance but also help elucidate the molecular mechanisms of salt tolerance and accelerate the breeding of salt-tolerant soybean.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiliang Liao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanmei Cui
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Weiyu Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xinnan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hongyang Du
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yujie Ma
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Hui Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hui Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Guizhen Kan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
42
|
Ma G, Li J, Li J, Li Y, Gu D, Chen C, Cui J, Chen X, Zhang W. OsMTP11, a trans-Golgi network localized transporter, is involved in manganese tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:59-69. [PMID: 30080641 DOI: 10.1016/j.plantsci.2018.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 05/05/2023]
Abstract
Metal tolerance proteins (MTPs) belong to the cation diffusion facilitator family (CDF) and have been implicated in metal transport and homeostasis in different plant species. Here we report on the rice gene OsMTP11 that encodes a putative CDF transporter that is homologous to members of the Mn-CDF cluster. The expression of OsMTP11 was found to enhance Mn tolerance in the Mn-sensitive yeast mutant pmr1. Knockdown of OsMTP11 resulted in growth inhibition in the presence of high concentrations of Mn, and also led to increased accumulation of Mn in the shoots and roots. The overexpression of OsMTP11 was found to enhance Mn tolerance in rice, and under supplementation with a toxic level of Mn, decreased Mn concentration was observed in the shoots and roots. Subcellular localization in rice protoplasts and tobacco epidermal cells revealed that OsMTP11 localizes to the trans-Golgi network (TGN), and a significant relocalization to the plasma membrane can be triggered by high extracellular Mn in tobacco epidermal cells. These findings suggest that OsMTP11 is a TGN-localized Mn transporter that is required for Mn homeostasis and contributes towards Mn tolerance in rice.
Collapse
Affiliation(s)
- Gang Ma
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Jiyu Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Jingjun Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yun Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Dongfang Gu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Chen Chen
- Department of Plant sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Jin Cui
- Department of Plant sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
43
|
Tsunemitsu Y, Genga M, Okada T, Yamaji N, Ma JF, Miyazaki A, Kato SI, Iwasaki K, Ueno D. A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. PLANTA 2018; 248:231-241. [PMID: 29700611 DOI: 10.1007/s00425-018-2890-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 05/05/2023]
Abstract
Rice MTP11 is the trans-Golgi-localized transporter that is involved in Mn tolerance with MTP8.1, and it is required for normal fertility. Rice (Oryza sativa L.) is one of the most manganese (Mn)-tolerant species, and it is able to accumulate high levels of this metal in the leaves without showing toxic symptoms. The metal tolerance protein 8.1 (MTP8.1), a member of the Mn-cation diffusion facilitator (CDF) family, has been shown to play a central role in high Mn tolerance by sequestering Mn into vacuoles. Recently, rice MTP11 was identified as an Mn transporter that is localized to Golgi-associated compartments, but its exact role in Mn tolerance in planta has not yet been understood. Here, we investigated the role of MTP11 in rice Mn tolerance using knockout lines. Old leaves presented higher levels of constitutively expressed MTP11 than other tissues and MTP11 expression was also found in reproductive organs. Fused MTP11:green fluorescent protein was co-localized to trans-Golgi markers and differentiated from other Golgi-associated markers. Knockout of MTP11 in wild-type rice did not affect tolerance and accumulation of Mn and other heavy metals, but knockout in the mtp8.1 mutant showed exacerbated Mn sensitivity at the vegetative growth stage. Knockout of MTP11 alone resulted in decreased grain yield and fertility at the reproductive stage. Thus, MTP11 is a trans-Golgi localized transporter for Mn, which plays a role in Mn tolerance through intracellular Mn compartmentalization. It is also required for maintaining high fertility in rice.
Collapse
Affiliation(s)
- Yuta Tsunemitsu
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Mayuko Genga
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Tomoyuki Okada
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
- Kochi Agricultural Research Center, 1100, Hataeda, Nankoku, Kochi, 783-0023, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Akira Miyazaki
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Shin-Ichiro Kato
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kozo Iwasaki
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Daisei Ueno
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
44
|
Muhammad I, Jing XQ, Shalmani A, Ali M, Yi S, Gan PF, Li WQ, Liu WT, Chen KM. Comparative in Silico Analysis of Ferric Reduction Oxidase (FRO) Genes Expression Patterns in Response to Abiotic Stresses, Metal and Hormone Applications. Molecules 2018; 23:molecules23051163. [PMID: 29757203 PMCID: PMC6099960 DOI: 10.3390/molecules23051163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 02/01/2023] Open
Abstract
The ferric reduction oxidase (FRO) gene family is involved in various biological processes widely found in plants and may play an essential role in metal homeostasis, tolerance and intricate signaling networks in response to a number of abiotic stresses. Our study describes the identification, characterization and evolutionary relationships of FRO genes families. Here, total 50 FRO genes in Plantae and 15 ‘FRO like’ genes in non-Plantae were retrieved from 16 different species. The entire FRO genes have been divided into seven clades according to close similarity in biological and functional behavior. Three conserved domains were common in FRO genes while in two FROs sub genome have an extra NADPH-Ox domain, separating the function of plant FROs. OsFRO1 and OsFRO7 genes were expressed constitutively in rice plant. Real-time RT-PCR analysis demonstrated that the expression of OsFRO1 was high in flag leaf, and OsFRO7 gene expression was maximum in leaf blade and flag leaf. Both genes showed vigorous expressions level in response to different abiotic and hormones treatments. Moreover, the expression of both genes was also substantial under heavy metal stresses. OsFRO1 gene expression was triggered following 6 h under Zn, Pb, Co and Ni treatments, whereas OsFRO7 gene expression under Fe, Pb and Ni after 12 h, Zn and Cr after 6 h, and Mn and Co after 3 h treatments. These findings suggest the possible involvement of both the genes under abiotic and metal stress and the regulation of phytohormones. Therefore, our current work may provide the foundation for further functional characterization of rice FRO genes family.
Collapse
Affiliation(s)
- Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Shi Yi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
45
|
Khalid S, Shahid M, Natasha, Bibi I, Sarwar T, Shah AH, Niazi NK. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E895. [PMID: 29724015 PMCID: PMC5981934 DOI: 10.3390/ijerph15050895] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
Population densities and freshwater resources are not evenly distributed worldwide. This has forced farmers to use wastewater for the irrigation of food crops. This practice presents both positive and negative effects with respect to agricultural use, as well as in the context of environmental contamination and toxicology. Although wastewater is an important source of essential nutrients for plants, many environmental, sanitary, and health risks are also associated with the use of wastewater for crop irrigation due to the presence of toxic contaminants and microbes. This review highlights the harmful and beneficial impacts of wastewater irrigation on the physical, biological, and chemical properties of soil (pH, cations and anions, organic matter, microbial activity). We delineate the potentially toxic element (PTEs) build up in the soil and, as such, their transfer into plants and humans. The possible human health risks associated with the use of untreated wastewater for crop irrigation are also predicted and discussed. We compare the current condition of wastewater reuse in agriculture and the associated environmental and health issues between developing and developed countries. In addition, some integrated sustainable solutions and future perspectives are also proposed, keeping in view the regional and global context, as well as the grounded reality of wastewater use for crop production, sanitary and planning issues, remedial techniques, awareness among civil society, and the role of the government and the relevant stakeholders.
Collapse
Affiliation(s)
- Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan; (S.K.); (N.); (T.S.); (A.H.S.)
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan; (S.K.); (N.); (T.S.); (A.H.S.)
| | - Natasha
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan; (S.K.); (N.); (T.S.); (A.H.S.)
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
| | - Tania Sarwar
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan; (S.K.); (N.); (T.S.); (A.H.S.)
| | - Ali Haidar Shah
- Department of Environmental Sciences, COMSATS Institute of Information Technology, 61100 Vehari, Pakistan; (S.K.); (N.); (T.S.); (A.H.S.)
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- MARUM and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
46
|
Li X, Wu Y, Li B, He W, Yang Y, Yang Y. Genome-Wide Identification and Expression Analysis of the Cation Diffusion Facilitator Gene Family in Turnip Under Diverse Metal Ion Stresses. Front Genet 2018; 9:103. [PMID: 29670641 PMCID: PMC5893799 DOI: 10.3389/fgene.2018.00103] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
The cation diffusion facilitator (CDF) family is one of the gene families involved in metal ion uptake and transport in plants, but the understanding of the definite roles and mechanisms of most CDF genes remain limited. In the present study, we identified 18 candidate CDF genes from the turnip genome and named them BrrMTP1.1-BrrMTP12. Then, we performed a comparative genomic analysis on the phylogenetic relationships, gene structures and chromosome distributions, conserved domains, and motifs of turnip CDFs. The constructed phylogenetic tree indicated that the BrrMTPs were divided into seven groups (groups 1, 5, 6, 7, 8, 9, and 12) and formed three major clusters (Zn-CDFs, Fe/Zn-CDFs, and Mn-CDFs). Moreover, the structural characteristics of the BrrMTP members in the same group were similar but varied among groups. To investigate the potential roles of BrrMTPs in turnip, we conducted an expression analysis on all BrrMTP genes under Mg, Zn, Cu, Mn, Fe, Co, Na, and Cd stresses. Results showed that the expression levels of all BrrMTP members were induced by at least one metal ion, indicating that these genes may be related to the tolerance or transport of those metal ions. Based on the roles of different metal ions for plants, we hypothesized that BrrMTP genes are possibly involved in heavy metal accumulation and tolerance to salt stress apart from their roles in the maintenance of mineral nutrient homeostasis in turnip. These findings are helpful to understand the roles of MTPs in plants and provide preliminary information for the study of the functions of BrrMTP genes.
Collapse
Affiliation(s)
- Xiong Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuansheng Wu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Boqun Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wenqi He
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Yonghong Yang
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
47
|
OsMTP11 is localised at the Golgi and contributes to Mn tolerance. Sci Rep 2017; 7:15258. [PMID: 29127328 PMCID: PMC5681648 DOI: 10.1038/s41598-017-15324-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/20/2017] [Indexed: 11/22/2022] Open
Abstract
Membrane transporters play a key role in obtaining sufficient quantities of manganese (Mn) but also in protecting against Mn toxicity. We have characterized OsMTP11, a member of the Cation Diffusion Facilitator/Metal Tolerance Protein (CDF/MTP) family of metal cation transporters in Oryza sativa. We demonstrate that OsMTP11 functions in alleviating Mn toxicity as its expression can rescue the Mn-sensitive phenotype of the Arabidopsis mtp11-3 knockout mutant. When expressed stably in Arabidopsis and transiently in rice and tobacco, it localises to the Golgi. OsMTP11 partially rescues the Mn-hypersensitivity of the pmr1 yeast mutant but only slightly alleviates the Zn sensitivity of the zrc1 cot1 yeast mutant. Overall, these results suggest that OsMTP11 predominantly functions as a Mn-transporting CDF with lower affinity for Zn. Site-directed mutagenesis studies revealed four substitutions in OsMTP11 that appear to alter its transport activity. OsMTP11 harbouring a substitution of leucine 150 to a serine fully rescued pmr1 Mn-sensitivity at all concentrations tested. The other substitutions, including those at conserved DxxxD domains, reduced complementation of pmr1 to different levels. This indicates their importance for OsMTP11 function and is a starting point for refining transporter activity/specificity.
Collapse
|