1
|
An Y, Garcia SL, Hambäck PA. Microbial transfer through fecal strings on eggs affects leaf beetle microbiome dynamics. mSystems 2025:e0172324. [PMID: 40358205 DOI: 10.1128/msystems.01723-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Gut microbiomes of holometabolous insects can be strongly affected by metamorphosis. Previous studies suggest that microbiome colonization and community development often rely on specialized transmission routes between host life stages. However, there is a lack of comparative studies of microbial community dynamics from different transmission mechanisms. We compared the gut microbial community dynamics across life stages in five Galerucella species that differ in their potential microbial transfer mechanism by sequencing amplicons of the 16S rRNA gene. Females of three of the studied species place a fecal string on top of the egg, which may enhance the transfer of gut microbes, whereas females of the two other species do not. We found that the α-diversity was more stable between life stages in fecal string-placer species compared with the non-fecal string-placer species. Moreover, there were consistent microbiome differences between species, with multiple taxa in each species consistently appearing in all life stages. Fecal strings placed on eggs seem to play an important role in the diversity and dynamics of gut bacteria in Galerucella species, facilitating the vertical transfer of gut bacteria between host insect generations. Alternative, but less efficient, transmission routes appear to occur in non-fecal string-placer species. IMPORTANCE We explore the consequences of having different mechanisms for transferring and establishing the gut microbiome between generations on gut microbial community dynamics. This process is often problematic in holometabolous insects, which have a complete metamorphosis between larval and adult stages. In our previous research, we found that females of some species within the genus Galerucella (Chrysomelidae) place a fecal string on the eggs, which is later consumed by the hatching larvae, whereas other species in the same genus do not have this behavior. In this paper, we therefore quantify the microbial community dynamics across all life stages in five Galerucella beetles (three with and two without fecal strings). Our results also indicate that the dynamics are much more stable in the species with fecal strings, particularly in the early life stages.
Collapse
Affiliation(s)
- Yueqing An
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Stockholm County, Sweden
| |
Collapse
|
2
|
Enciso JS, Corretto E, Borruso L, Schuler H. Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages. INSECTS 2024; 15:830. [PMID: 39590429 PMCID: PMC11595099 DOI: 10.3390/insects15110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The Nearctic leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae) is the primary vector of 'Candidatus Phytoplasma vitis', the causative agent of Flavescence doreé in Europe. Although microorganisms play an important role in the ecology and behavior of insects, knowledge about the interaction between S. titanus and microbes is limited. In this study, we employed an amplicon metabarcoding approach for profiling the V4 region of the 16S rRNA gene to characterize the bacterial communities of S. titanus across several populations from four European localities. Additionally, we investigated changes in bacterial communities between nymphal and adult stages. In total, we identified 7,472 amplicon sequence variants (ASVs) in adults from the European populations. At the genus level, 'Candidatus Karelsulcia' and 'Candidatus Cardinium' were the most abundant genera, with both being present in every individual. While we found significant changes in the microbial composition of S. titanus across different European populations, no significant differences were observed between nymphal and adult stages. Our study reveals new insights into the microbial composition of S. titanus and highlights the role of geography in influencing its bacterial community.
Collapse
Affiliation(s)
- Juan Sebastian Enciso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
| | - Erika Corretto
- Competence Center for Plant Health, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy; (J.S.E.); (L.B.)
- Competence Center for Plant Health, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| |
Collapse
|
3
|
Khara A, Chakraborty A, Modlinger R, Synek J, Roy A. Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 2024; 15:1400894. [PMID: 39444680 PMCID: PMC11496174 DOI: 10.3389/fmicb.2024.1400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. Results Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. Conclusion Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
Collapse
Affiliation(s)
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
4
|
Msango K, Gouda MNR, Ramakrishnan B, Kumar A, Subramanian S. Variation and functional profile of gut bacteria in the scarab beetle, Anomala dimidiata, under a cellulose-enriched microenvironment. Sci Rep 2024; 14:22400. [PMID: 39333778 PMCID: PMC11437086 DOI: 10.1038/s41598-024-73417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study utilized cultivable methods and 16 S amplicon sequencing to compare taxonomic profiles and functional potential of gut bacteria in the scarab beetle, Anomola dimidiata, under cellulose-enriched conditions. Eight culturable cellulolytic gut bacteria were isolated from the midgut and hindgut of the scarab larvae, respectively. 16 S amplicon sequencing evinced that the most represented taxonomic profiles at phylum level in the fermentation chamber and midgut were Bacillota (71.62 and 56.76%), Pseudomonadota (22.66 and 36.89%) and Bacteroidota (2.7 and 2.81%). Bacillota (56.74 and 91.39%) were significantly enriched in the midgut with the addition of cellulose. In contrast, Bacillota and Psedomonadota were significantly enriched in the fermentation chamber. Carbohydrate metabolism was up-regulated in the midgut, while nitrogen and phosphorus metabolism were up-regulated in the fermentation chamber, suggesting these symbionts' possible metabolic roles to the host. An analysis of total cellulases as well as amplicon sequence variants indicated that the gut bacteria belonging to Acinetobacter, Bacillus, Brucella, Brevibacillus, Enterobacter, Lysinibacillus and Paenibacillus are involved in nutrition provisioning. These results have provided additional insights into the gut bacteria associated with cellulose digestion in A. dimidiata and created a platform for bioprospecting novel isolates to produce biomolecules for biotechnological use, besides identifying eco-friendly targets for its management.
Collapse
Affiliation(s)
- Kondwani Msango
- Insect Physiology, Molecular Biology and Microbiology Agricultural Research and Extension Trust, Private Bag 9, Lilongwe, Malawi.
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - B Ramakrishnan
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
5
|
Yang J, Chen YZ, Zhang GC. The impact of carvacrol on the larval gut bacterial structure and function of Lymantria dispar. Front Microbiol 2024; 15:1417598. [PMID: 39360327 PMCID: PMC11446217 DOI: 10.3389/fmicb.2024.1417598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction The gut bacteria of insects play an important role in regulating their metabolism, immune system and metabolizing pesticides. Our previous results indicate that carvacrol has certain gastric toxic activity on Lymantria dispar larvae and affects their detoxification metabolism at the mRNA level. However, the impact of carvacrol on the gut bacteria of L. dispar larvae has been unclear. Methods In this study, the 16S rRNA sequencing technology was used to sequence and analyze the gut bacteria of the larvae which were exposed with sublethal concentration (0.297 mg/mL) and median lethal concentration (1.120 mg/mL), respectively. Results A total of 10 phyla, 16 classes, 47 orders, 72 families, 103 genera, and 135 species were obtained by using a 97% similarity cutoff level. The dominant bacterial phyla in the gut of the L. dispar larvae are Firmicutes and Proteobacteria. The treatment with carvacrol can significantly affect the structure of gut bacteria in the larvae of the L. dispar. At both doses, carvacrol can shift the dominant gut bacteria of the larvae from Proteobacteria to Firmicutes. At the genus level, two doses of carvacrol can significantly enhance the relative abundance of probiotic Lactobacillus in the gut of L. dispar larvae (p ≤ 0.01). Additionally, significant differences were observed among the five bacterial genera Burkholderia-Caballeronia-Paraburkholderia, Anoxybacillus, Pelomonas, Mesorhizobium (p ≤ 0.05). The analysis of α-diversity and β-diversity indicates that the treatment with carvacrol at two doses significantly affect the bacterial richness and diversity in the larvae. However, the results of functional classification prediction (PICRUSt) indicate that carvacrol significantly down-regulate 7 functions, including Energy metabolism, Cell growth and death, and up-regulate 2 functions, including Carbohydrate metabolism and Membrane transport. The network analysis indicates that the correlation between gut bacteria also has been changed. In addition, the insecticidal activity results of carvacrol against L. dispar larvae with gut bacteria elimination showed that gut bacteria can reduce the insecticidal activity of carvacrol against L. dispar larvae. Discussion This study provides a theoretical foundation for understanding the role of gut bacteria in detoxifying plant toxins and conferring pesticide resistance.
Collapse
Affiliation(s)
- Jing Yang
- College of Forestry, Guizhou University, Guiyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Yun-Ze Chen
- College of Biological Sciences, Guizhou Education University, Guiyang, China
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Guo-Cai Zhang
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
6
|
Wang G, Wang G, Ma Y, Lv Z, You Y, Ma P, Yu Y. Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae). Microorganisms 2024; 12:1709. [PMID: 39203551 PMCID: PMC11357660 DOI: 10.3390/microorganisms12081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Osmia excavata is an excellent pollinator in nature and plays a vital role in the conservation of agro-ecosystems and food security. Given the important role of the gut bacterial community in host health and regulation of host growth and development, using 16S rRNA gene sequencing data, the present study explored the composition of the gut bacterial community and its diversity at different life stages (eggs, young larvae, old larvae, young pupae, old pupae, and 1-day-old adults in cocoons) of the solitary bee Osmia excavata. The results showed that the core phyla in the gut of O. excavata at different life stages were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota, and the core genera were Sodalis, Tyzzerella, and Ralstonia. The highest intestinal bacterial diversity was found in the Egg period, and the lowest bacterial alpha diversity was found in the 1-day-old Adult period; the bacterial diversity of O. excavata showed a process of decreasing, as it was growing from the Egg period to the 1-day-old Adult period. Our study found that O. excavata undergoes a significant change in the structure of the gut flora when it grows from the young pupae to old pupae stage, a period of growth that coincides with the process of cocooning and isolation from the external environment after food depletion. This suggests that food and environmental factors are key contributors to the structure of the bacterial community in the gut of solitary bees.
Collapse
Affiliation(s)
- Guangzhao Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Guiping Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Yixiang Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Zhaoyun Lv
- Shandong Institute of Sericulture, Yantai 264000, China;
| | - Yinwei You
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| |
Collapse
|
7
|
Magura T, Mizser S, Horváth R, Tóth M, Kozma FS, Kádas J, Lövei GL. Gut Bacterial Communities in the Ground Beetle Carabus convexus. INSECTS 2024; 15:612. [PMID: 39194817 DOI: 10.3390/insects15080612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
Biological interactions, including symbiotic ones, have vital roles in ecological and evolutionary processes. Microbial symbionts in the intestinal tracts, known as the gut microbiome, are especially important because they can fundamentally influence the life history, fitness, and competitiveness of their hosts. Studies on the gut-resident microorganisms of wild animals focus mainly on vertebrates, and studies on species-rich invertebrate taxa, such as ground beetles, are sparse. In fact, even among the species-rich genus Carabus, only the gut microbiome of two Asian species was studied, while results on European species are completely missing. Here, we investigated the gut bacterial microbiome of a widespread European Carabus species, targeting the V3 and V4 regions of the 16S ribosomal RNA genes by next-generation high-throughput sequencing. We identified 1138 different operational taxonomic units assigned to 21 bacterial phyla, 90 families, and 197 genera. Members of the carbohydrate-degrading Prevotellaceae family, previously not detected in ground beetles, were the most abundant in the gut microbiome of the carnivorous C. convexus. Presumably, individuals from the studied wild populations also consume plant materials, especially fruits, and these carbohydrate-degrading bacterial symbionts can facilitate both the consumption and the digestion of these supplementary foods.
Collapse
Affiliation(s)
- Tibor Magura
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
| | - Szabolcs Mizser
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
| | - Roland Horváth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
| | - Mária Tóth
- Department of Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
- HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
| | - Ferenc Sándor Kozma
- HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
| | - János Kádas
- UD-GenoMed Medical Genomic Technologies Ltd., Clinical Centre, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor L Lövei
- HUN-REN-UD Anthropocene Ecology Research Group, University of Debrecen, Egyetem Sq. 1, H-4032 Debrecen, Hungary
- Flakkebjerg Research Centre, Department of Agroecology, Aarhus University, DK-4200 Slagelse, Denmark
| |
Collapse
|
8
|
Pineda-Mendoza RM, Gutiérrez-Ávila JL, Salazar KF, Rivera-Orduña FN, Davis TS, Zúñiga G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front Microbiol 2024; 15:1360488. [PMID: 38525076 PMCID: PMC10959539 DOI: 10.3389/fmicb.2024.1360488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of β-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Luis Gutiérrez-Ávila
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Baños-Quintana AP, Gershenzon J, Kaltenpoth M. The Eurasian spruce bark beetle Ips typographus shapes the microbial communities of its offspring and the gallery environment. Front Microbiol 2024; 15:1367127. [PMID: 38435688 PMCID: PMC10904642 DOI: 10.3389/fmicb.2024.1367127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The Eurasian spruce bark beetle (Ips typographus) is currently the most economically relevant pest of Norway spruce (Picea abies). Ips typographus associates with filamentous fungi that may help it overcome the tree's chemical defenses. However, the involvement of other microbial partners in this pest's ecological success is unclear. To understand the dynamics of the bark beetle-associated microbiota, we characterized the bacterial and fungal communities of wild-collected and lab-reared beetles throughout their development by culture-dependent approaches, meta-barcoding, and quantitative PCR. Gammaproteobacteria dominated the bacterial communities, while the fungal communities were mainly composed of yeasts of the Saccharomycetales order. A stable core of microbes is shared by all life stages, and is distinct from those associated with the surrounding bark, indicating that Ips typographus influences the microbial communities of its environment and offspring. These findings coupled with our observations of maternal behavior, suggest that Ips typographus transfers part of its microbiota to eggs via deposition of an egg plug treated with maternal secretions, and by inducing an increase in abundance of a subset of taxa from the adjacent bark.
Collapse
Affiliation(s)
- Ana Patricia Baños-Quintana
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
10
|
Gu Y, Ge S, Li J, Ren L, Wang C, Luo Y. Composition and Diversity of the Endobacteria and Ectobacteria of the Invasive Bark Beetle Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) in Newly Colonized Areas. INSECTS 2023; 15:12. [PMID: 38249018 PMCID: PMC10815997 DOI: 10.3390/insects15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Hylurgus ligniperda (Fabricius) (Curculionidae: Scolytinae) is a new invasive pest beetle in China, which colonized the Shandong province, causing devastating damage. Originating in Europe, it has spread to Oceania, Asia, North and South America. Bacterial associates have been frequently reported to play a vital role in strengthening the ecological adaptations of bark and ambrosia beetles. The environmental adaptability of H. ligniperda may be supported by their associated bacteria. Bacterial communities colonizing different body parts of insects may have different functions. However, little is known about the bacteria associated with H. ligniperda and their potential involvement in facilitating the adaptation and invasion of the beetles into new environments. In this study, we employed high-throughput sequencing technology to analyze the bacterial communities associated with male and female adults of H. ligniperda by comparing those colonizing the elytra, prothorax, and gut. Results showed that the bacterial communities of male and female adults were similar, and the elytra samples had the highest bacterial diversity and richness, followed by the gut, while the prothorax had the lowest. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteriota, while the dominant genera were Serratia, Lactococcus, Rhodococcus, unclassified Enterobacteriaceae, and Gordonia. Among these, Rhodococcus and Gordonia were the specific genera of endobacteria and ectobacteria, respectively. Differences in the distribution of associated bacteria may suggest that they have different ecological functions for H. ligniperda. The results of functional prediction showed that bacteria were enriched in terpenoid backbone biosynthesis, degradation of aromatic compounds, limonene and pinene degradation, neomycin, kanamycin and gentamicin biosynthesis, indicating that they may assist their beetles in synthesizing pheromones, degrading toxic secondary metabolites of host trees, and antagonizing pathogenic fungi. These results help us understand the interaction between H. ligniperda and bacteria and highlight possible contributions to the invasion process.
Collapse
Affiliation(s)
- Ying Gu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Sixun Ge
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Jiale Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
| | - Lili Ren
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| | - Chuanzhen Wang
- Yantai Forest Resources Monitoring and Protection Service Center, Yantai 264000, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China; (Y.G.); (S.G.)
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Khan KA, Ganeshprasad DN, Sachin HR, Shouche YS, Ghramh HA, Sneharani AH. Gut microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Front Vet Sci 2023; 10:1149876. [PMID: 37252382 PMCID: PMC10213700 DOI: 10.3389/fvets.2023.1149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Honey bee gut microbiota have an important role in host health, nutrition, host-symbiont interaction, and interaction behavior with the surrounding environment. Recent discoveries of strain-level variation, characteristics of protective and nutritional capabilities, and reports of eco-physiological significance to the microbial community have emphasized the importance of honey bee gut microbiota. Many regions of Asia and Africa are inhabited by the dwarf honey bee, Apis florea. Studying its microflora and potential for pollination is therefore of foremost importance. Methods In the present investigation, we aimed to explore the gut bacteriobiome composition of two distinct honey bee species, Apis florea and Apis cerana indica using high throughput sequencing. Functional predictions of bee gut bacterial communities using PICRUSt2 was carried out. Results and discussion The phylum Proteobacteria dominated the bacterial community in both A. cerana indica (50.1%) and A. florea (86.7%), followed by Firmicutes (26.29 and 12.81%), Bacteroidetes (23.19 and 0.04%) and Actinobacteria (0.4 and 0.02%) respectively. The gut bacteria of A. cerana indica was more diverse than that of A. florea. The observed variations in bacterial genomic diversity among these critical pollinator species may have been influenced by the apiary management techniques, ecological adaptation factors or habitat size. These variations can have a significant effect in understanding host-symbiont interactions and functioning of gut microbiota highlighting the importance of metagenomic survey in understanding microbial community ecology and evolution. This is the first comparative study on variation in bacterial diversity between two Asian honey bees.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Applied College, Mahala Campus, King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - D. N. Ganeshprasad
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - H. R. Sachin
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - A. H. Sneharani
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| |
Collapse
|
12
|
Rivera-Orduña FN, Pineda-Mendoza RM, Vega-Correa B, López MF, Cano-Ramírez C, Zhang XX, Chen WF, Zúñiga G. A polyphasic taxonomy analysis reveals the presence of an ecotype of Rahnella contaminans associated with the gut of Dendroctonus-bark beetles. Front Microbiol 2023; 14:1171164. [PMID: 37180241 PMCID: PMC10174453 DOI: 10.3389/fmicb.2023.1171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Species belonging to the genus Rahnella are dominant members of the core gut bacteriome of Dendroctonus-bark beetles, a group of insects that includes the most destructive agents of pine forest in North and Central America, and Eurasia. From 300 isolates recovered from the gut of these beetles, 10 were selected to describe an ecotype of Rahnella contaminans. The polyphasic approach conducted with these isolates included phenotypic characteristics, fatty acid analysis, 16S rRNA gene, multilocus sequence analyses (gyrB, rpoB, infB, and atpD genes), and complete genome sequencing of two isolates, ChDrAdgB13 and JaDmexAd06, representative of the studied set. Phenotypic characterization, chemotaxonomic analysis, phylogenetic analyses of the 16S rRNA gene, and multilocus sequence analysis showed that these isolates belonged to Rahnella contaminans. The G + C content of the genome of ChDrAdgB13 (52.8%) and JaDmexAd06 (52.9%) was similar to those from other Rahnella species. The ANI between ChdrAdgB13 and JaDmexAd06 and Rahnella species including R. contaminans, varied from 84.02 to 99.18%. The phylogenomic analysis showed that both strains integrated a consistent and well-defined cluster, together with R. contaminans. A noteworthy observation is the presence of peritrichous flagella and fimbriae in the strains ChDrAdgB13 and JaDmexAd06. The in silico analysis of genes encoding the flagellar system of these strains and Rahnella species showed the presence of flag-1 primary system encoding peritrichous flagella, as well as fimbriae genes from the families type 1, α, β and σ mainly encoding chaperone/usher fimbriae and other uncharacterized families. All this evidence indicates that isolates from the gut of Dendroctonus-bark beetles are an ecotype of R. contaminans, which is dominant and persistent in all developmental stages of these bark beetles and one of the main members of their core gut bacteriome.
Collapse
Affiliation(s)
- Flor N. Rivera-Orduña
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Pineda-Mendoza
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Brenda Vega-Correa
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Fernanda López
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Claudia Cano-Ramírez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Xiao Xia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gerardo Zúñiga
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Gerardo Zúñiga,
| |
Collapse
|
13
|
Vazquez-Ortiz K, Pineda-Mendoza RM, González-Escobedo R, Davis TS, Salazar KF, Rivera-Orduña FN, Zúñiga G. Metabarcoding of mycetangia from the Dendroctonus frontalis species complex (Curculionidae: Scolytinae) reveals diverse and functionally redundant fungal assemblages. Front Microbiol 2022; 13:969230. [PMID: 36187976 PMCID: PMC9524821 DOI: 10.3389/fmicb.2022.969230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendroctonus-bark beetles are associated with microbes that can detoxify terpenes, degrade complex molecules, supplement and recycle nutrients, fix nitrogen, produce semiochemicals, and regulate ecological interactions between microbes. Females of some Dendroctonus species harbor microbes in specialized organs called mycetangia; yet little is known about the microbial diversity contained in these structures. Here, we use metabarcoding to characterize mycetangial fungi from beetle species in the Dendroctonus frontalis complex, and analyze variation in biodiversity of microbial assemblages between beetle species. Overall fungal diversity was represented by 4 phyla, 13 classes, 25 orders, 39 families, and 48 genera, including 33 filamentous fungi, and 15 yeasts. The most abundant genera were Entomocorticium, Candida, Ophiostoma-Sporothrix, Ogataea, Nakazawaea, Yamadazyma, Ceratocystiopsis, Grosmannia-Leptographium, Absidia, and Cyberlindnera. Analysis of α-diversity indicated that fungal assemblages of D. vitei showed the highest richness and diversity, whereas those associated with D. brevicomis and D. barberi had the lowest richness and diversity, respectively. Analysis of β-diversity showed clear differentiation in the assemblages associated with D. adjunctus, D. barberi, and D. brevicomis, but not between closely related species, including D. frontalis and D. mesoamericanus and D. mexicanus and D. vitei. A core mycobiome was not statistically identified; however, the genus Ceratocystiopsis was shared among seven beetle species. Interpretation of a tanglegram suggests evolutionary congruence between fungal assemblages and species of the D. frontalis complex. The presence of different amplicon sequence variants (ASVs) of the same genus in assemblages from species of the D. frontalis complex outlines the complexity of molecular networks, with the most complex assemblages identified from D. vitei, D. mesoamericanus, D. adjunctus, and D. frontalis. Analysis of functional variation of fungal assemblages indicated multiple trophic groupings, symbiotroph/saprotroph guilds represented with the highest frequency (∼31% of identified genera). These findings improve our knowledge about the diversity of mycetangial communities in species of the D. frontalis complex and suggest that minimal apparently specific assemblages are maintained and regulated within mycetangia.
Collapse
Affiliation(s)
- Karina Vazquez-Ortiz
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Román González-Escobedo
- Laboratorio de Microbiología, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Flor N. Rivera-Orduña,
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Gerardo Zúñiga,
| |
Collapse
|
14
|
Ganeshprasad DN, Lone JK, Jani K, Shouche YS, Khan KA, Sayed S, Shukry M, Dar SA, Mushtaq M, Sneharani AH. Gut Bacterial Flora of Open Nested Honeybee, Apis florea. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.837381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Honeybees are eusocial insects with close interaction with their surrounding environment. Gut microbiota in honeybees play a significant role in host health, biology, and interaction behavior with the surrounding environment. Apis florea, a wild bee, is the most primitive among all honeybees and is indigenous to the Indian subcontinent. Previous reports on reared honeybee species provide information on the gut microbiome. No such studies are reported on the gut microbiota of the wild honeybee species. This study aimed at studying the gut microbiome of the wild honeybee species, A. florea. The study reports the analysis and the identification of gut bacteria in the wild honeybee species, A. florea, employing culture-based and culture-independent methods. Cultured bacteria were identified and characterized by MALDI-TOF MS and 16S rRNA sequencing. A comprehensive analysis and identification of non-culturable bacteria were performed by 16S rRNA amplicon next-generation sequencing. This approach splits gut bacteria into four bacterial phyla, four families, and 10 genera in major. The dominant taxa identified in A. florea belonged to the family Enterobacteriaceae (79.47%), Lactobacillaceae (12.75%), Oxalobacteraceae (7.45%), and Nocardiaceae (0.13%). The prevailing bacteria belonged to Enterobacter, Lactobacillus, Escherichia-Shigella, Massilia, Klebsiella, Citrobacter, Pantoea, Serratia, Rhodococcus, and Morganella genera, belonging to phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. This study observed the occurrence of a few bacteria that are not previously reported for their occurrence in other species of the Apis genus, making this investigation highly relevant with regard to the bee microbiome.
Collapse
|
15
|
Ni’matuzahroh, Affandi M, Fatimah, Trikurniadewi N, Khiftiyah AM, Sari SK, Abidin AZ, Ibrahim SNMM. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol 2022; 204:210. [DOI: 10.1007/s00203-022-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
16
|
Huang Z, Zhu L, Lv J, Pu Z, Zhang L, Chen G, Hu X, Zhang Z, Zhang H. Dietary Effects on Biological Parameters and Gut Microbiota of Harmonia axyridis. Front Microbiol 2022; 12:818787. [PMID: 35154044 PMCID: PMC8828657 DOI: 10.3389/fmicb.2021.818787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
The multicolored Asian lady beetle (Harmonia axyridis, H. axyridis, Coleoptera, and Coccinellidae) is an effective biocontrol agent against agricultural pests. Previous studies have suggested that amount, type, and the quality of food can directly affect the biological aspects of H. axyridis. In this study, we investigated the influence of the food sources (Acyrthosiphon pisum Harris, Diaphorina citri Kuwayama, and artificial diets) on the gut microbiota diversity and the biology, reproductive variables, and population growth indicators of H. axyridis. Three kinds of diets were considered in this study: (1) HY: the adult of A. pisum Harris (HY group); (2) HM: the adult of D. citri Kuwayama (HM group); (3) HR: artificial diets prepared by blending a portion of fresh homogenized pork liver (15 g), honey (3 g), distilled water (35 ml) (HR group). We found that gut microbiota composition and diversity and the biological parameters differed when H. axyridis was fed with different diets. The abundance of Enterobacteriaceae was the highest in the HM group, followed by HY group, and was the lowest in the HR group. The abundance of Staphylococcaceae was highest in the HR group. Among the gut fungi, Davidiellaceae and Wallemiaceae were the highest and lowest in the HY group; Incertae_sedis were the major gut fungi in the HR group. Meanwhile, the changes of biological parameters may be correlated with the changes of Streptococcaceae abundance, Micrococcaceae abundance, Staphylococcaceae abundance, and Enterobacteriaceae abundance in responds to diet changes. To sum up, these data suggest that different diets can influence the changes in adult H. axyridis gut microbiota, consequently affecting the biological parameters.
Collapse
Affiliation(s)
- Zhendong Huang
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Zhendong Huang,
| | - Li Zhu
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Jia Lv
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Zhanxu Pu
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Lipin Zhang
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Guoqing Chen
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Xiurong Hu
- The Citrus Research Institute of Zhejiang Province, Taizhou, China
| | - Zhenyu Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Liu ZH, Yang ZW, Zhang J, Luo JY, Men Y, Wang YH, Xie Q. Stage correlation of symbiotic bacterial community and function in the development of litchi bugs (Hemiptera: Tessaratomidae). Antonie van Leeuwenhoek 2021; 115:125-139. [PMID: 34843017 DOI: 10.1007/s10482-021-01685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Bacterial symbionts of insects have been shown to play important roles in host fitness. However, little is known about the bacterial community of Tessaratoma papillosa which is one of the most destructive pests of the well-known fruits Litchi chinensis Sonn and Dimocarpus longan Lour in Oriental Region, especially in South-east Asia and adjacent areas. In this study, we surveyed the bacterial community diversity and dynamics of T. papillosa in all developmental stages with both culture-dependent and culture-independent methods by the third-generation sequencing technology. Five bacterial phyla were identified in seven developmental stages of T. papillosa. Proteobacteria was the dominant phylum and Pantoea was the dominant genus of T. papillosa. The results of alpha and beta diversity analyses showed that egg stage had the most complex bacterial community. Some of different developmental stages showed similarities, which were clustered into three phases: (1) egg stage, (2) early nymph stages (instars 1-3), and (3) late nymph stages (instars 4-5) and adult stage. Functional prediction indicated that the bacterial community played different roles in these three phases. Furthermore, 109 different bacterial strains were isolated and identified from various developmental stages. This study revealed the relationship between the symbiotic bacteria and the development of T. papillosa, and may thus contribute to the biological control techniques of T. papillosa in the future.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jing Zhang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yu Men
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
18
|
Malacrinò A. Host species identity shapes the diversity and structure of insect microbiota. Mol Ecol 2021; 31:723-735. [PMID: 34837439 DOI: 10.1111/mec.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
As for most of the life that inhabits our planet, microorganisms play an essential role in insect nutrition, reproduction, defence, and support their host in many other functions. More recently, we assisted to an exponential growth of studies describing the taxonomical composition of bacterial communities across insects' phylogeny. However, there is still an outstanding question that needs to be answered: Which factors contribute most to shape insects' microbiomes? This study tries to find an answer to this question by taking advantage of publicly available sequencing data and reanalysing over 4000 samples of insect-associated bacterial communities under a common framework. Results suggest that insect taxonomy has a wider impact on the structure and diversity of their associated microbial communities than the other factors considered (diet, sex, life stage, sample origin and treatment). However, when specifically testing for signatures of codiversification of insect species and their microbiota, analyses found weak support for this, suggesting that while insect species strongly drive the structure and diversity of insect microbiota, the diversification of those microbial communities did not follow their host's phylogeny. Furthermore, a parallel survey of the literature highlights several methodological limitations that need to be considered in the future research endeavours.
Collapse
Affiliation(s)
- Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
19
|
Bacteriophage: A Useful Tool for Studying Gut Bacteria Function of Housefly Larvae, Musca domestica. Microbiol Spectr 2021; 9:e0059921. [PMID: 34378967 PMCID: PMC8552782 DOI: 10.1128/spectrum.00599-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Beneficial symbiotic bacteria have positive effects on some insects’ (such as mosquitoes, cockroaches, and flies) biological activities. However, the effects of a lack of one specific symbiotic bacterium on the life activities of some insects and their natural gut microbiota composition remain unclear. Bacteriophages are viruses that specifically target and kill bacteria and have the potential to shape gut bacterial communities. In previous work, Pseudomonas aeruginosa that naturally colonized the intestines of housefly larvae was shown to be essential to protect housefly larvae from entomopathogenic fungal infections, leading us to test whether a deficiency in Pseudomonasaeruginosa strains in housefly larvae that was specifically caused using bacteriophages could remold the composition of the intestinal bacteria and affect the development of housefly larvae. Our research revealed that the phage, with a titer of 108 PFU/ml, can remove 90% of Pseudomonasaeruginosa in the gut. A single feeding of low-dose phage had no effect on the health of housefly larvae. However, the health of housefly larvae was affected by treatment with phage every 24 h. Additionally, treating housefly larvae with bacteriophages every 24 h led to bacterial composition changes in the gut. Collectively, the results revealed that deficiency in one symbiotic gut bacteria mediated by precise targeting using bacteriophages indirectly influences the intestinal microbial composition of housefly larvae and has negative effects on the development of the host insect. Our results indicated the important role of symbiotic gut bacteria in shaping the normal gut microbiota composition in insects. IMPORTANCE The well-balanced gut microbiota ensures appropriate development of the host insect, such as mosquitoes, cockroaches, and flies. Various intestinal symbiotic bacteria have different influences on the host gut community structure and thus exert different effects on host health. Therefore, it is of great importance to understand the contributions of one specific bacterial symbiont to the gut microbiota community structure and insect health. Bacteriophages that target certain bacteria are effective tools that can be used to analyze gut bacterial symbionts. However, experimental evidence for phage efficacy in regulating insect intestinal bacteria has been little reported. In this study, we used phages as precision tools to regulate a bacterial community and analyzed the influence on host health after certain bacteria were inhibited by bacteriophage. The ability of phages to target intestinal-specific bacteria in housefly larvae and reduce the levels of target bacteria makes them an effective tool for studying the function of gut bacteria.
Collapse
|
20
|
Tyagi K, Tyagi I, Kumar V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far. PLoS One 2021; 16:e0251790. [PMID: 34288947 PMCID: PMC8294503 DOI: 10.1371/journal.pone.0251790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Spiders being one of the most diverse group in phylum arthropod are of great importance due to their role as predators, silk producer, and in medicinal applications. Spiders in prey-predator relationships play a crucial role in balancing the food-chain of any ecosystem; therefore it is essential to characterize the gut microbiota of spiders collected from natural environments. In the present work, the largest effort so far has been made to characterize the gut microbiota of 35 spider species belonging to four different families using 16S amplicon targeting sequencing. Further, we compared the gut microbiota composition including endosymbiont abundance in spider species collected from different geographical locations. The results obtained revealed the presence of genera like Acinetobacter (15%), V7clade (9%), Wolbachia (8%), Pseudomonas (5%), Bacillus (6%). Although comparative analysis revealed that the gut bacterial composition in all the spider families has a similar pattern, in terms of community richness and evenness. The bacterial diversity in the spider family, Lycosidae are more diverse than in Salticidae, Tetragnathidae and Araneidae. Furthermore, it was observed that the abundance of endosymbiont genera, i.e. Wolbachia and Rickettsia, leads to shift in the abundance of other bacterial taxa and may cause sexual alterations in spider species. Moreover, predicted functional analysis based on PICRUSt2 reveals that gut microbiota of spider species were involved in functions like metabolism of carbohydrates, cofactors and vitamins, amino acids; biosynthesis of organic compounds, fatty acids, lipids etc. Based on the results obtained, it can be said that different locations do not correlate with community composition of gut microbiota in spider species collected from natural environments.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
21
|
Song Y, Shi J, Xiong Z, Shentu X, Yu X. Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stål. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104806. [PMID: 33838707 DOI: 10.1016/j.pestbp.2021.104806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The symbionts in the gut of brown planthopper play an important role in the nutrition utilization and growth of their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Controlling the BPH infection on rice by inhibiting the symbionts using antimicrobials is feasible. However, the impact of antimicrobials on the microbiome in the gut has not been fully elucidated. In this study, we found the mortality reached 35.5%, 33.1% and 19.4%, when BPHs were exposed to toyocamycin, tebuconazole, and zhongshengmycin, respectively. Significant differences were found between the structures of gut microbial communities in adult BPHs treated with different antimicrobials and water. The antimicrobials reduced the fungal diversity by reducing the non-dominant fungi abundance, and increased bacterial diversity by inhibiting the dominant bacteria Acinetobacter in the gut. The diversification of taxonomic groups in gut depended on the different selective stress of antimicrobials. For the microbial absolute abundance, the total microbial gut community abundance decreased under antimicrobial exposure, but the absolute abundance of Serratia significantly increased in the antimicrobial treatment group. Overall, our study enriched the knowledge of microbiomes in the gut of BPH under the antimicrobial treatment and provided guidelines to enhance the pest management effect of BPH by using antimicrobials.
Collapse
Affiliation(s)
- Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jiateng Shi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Zhenze Xiong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
22
|
Shi J, Song Y, Shentu X, Yu X. Antimicrobials Affect the Fat Body Microbiome and Increase the Brown Planthopper Mortality. Front Physiol 2021; 12:644897. [PMID: 33790805 PMCID: PMC8005595 DOI: 10.3389/fphys.2021.644897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Symbionts in the abdomen fat body of brown planthopper (BPH) play an important role in the growth and reproduction of their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Thus, controlling BPH infection on rice by inhibiting symbionts with antimicrobials is feasible. However, the effect of antimicrobials on the microbiome in the fat body and the relationship between microbial community and mortality have not been fully elucidated. A decrease in the total number of yeast-like symbiotes in the fat body and elevated mortality were observed after exposure to toyocamycin, tebuconazole, and zhongshengmycin. Additionally, we found that the antimicrobials reduced bacterial diversity and increased fungal diversity in the fat body and altered the bacterial and fungal community structure. Although the total absolute abundance of bacteria and fungi decreased after antimicrobial exposure, the absolute abundance of Serratia increased, indicating that Serratia, which was the most dominant in the fat body, is an important symbiont involved in resistance to antimicrobials. After antimicrobial exposure, seven genera, which probably participated in the nutrition and development function of the host, were totally eliminated from the fat body. Overall, our study enriches the knowledge of microbiomes in the fat body of BPH under antimicrobial treatment and the disturbance of symbionts would be further used to help other pesticides to control pests.
Collapse
Affiliation(s)
- Jiateng Shi
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
23
|
Saati-Santamaría Z, Rivas R, Kolařik M, García-Fraile P. A New Perspective of Pseudomonas-Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont. BIOLOGY 2021; 10:biology10020164. [PMID: 33669823 PMCID: PMC7922261 DOI: 10.3390/biology10020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| | - Raúl Rivas
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
| | - Miroslav Kolařik
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic;
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain;
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, 37185 Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008 Salamanca, Spain
- Correspondence: (Z.S.-S.); (P.G.-F.)
| |
Collapse
|
24
|
Soto-Robles LV, López MF, Torres-Banda V, Cano-Ramírez C, Obregón-Molina G, Zúñiga G. The Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) Has Digestive Capacity to Degrade Complex Substrates: Functional Characterization and Heterologous Expression of an α-Amylase. Int J Mol Sci 2020; 22:ijms22010036. [PMID: 33375157 PMCID: PMC7792934 DOI: 10.3390/ijms22010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Dendroctonus-bark beetles are natural agents contributing to vital processes in coniferous forests, such as regeneration, succession, and material recycling, as they colonize and kill damaged, stressed, or old pine trees. These beetles spend most of their life cycle under stem and roots bark where they breed, develop, and feed on phloem. This tissue is rich in essential nutrients and complex molecules such as starch, cellulose, hemicellulose, and lignin, which apparently are not available for these beetles. We evaluated the digestive capacity of Dendroctonusrhizophagus to hydrolyze starch. Our aim was to identify α-amylases and characterize them both molecularly and biochemically. The findings showed that D. rhizophagus has an α-amylase gene (AmyDr) with a single isoform, and ORF of 1452 bp encoding a 483-amino acid protein (53.15 kDa) with a predicted signal peptide of 16 amino acids. AmyDr has a mutation in the chlorine-binding site, present in other phytophagous insects and in a marine bacterium. Docking analysis showed that AmyDr presents a higher binding affinity to amylopectin compared to amylose, and an affinity binding equally stable to calcium, chlorine, and nitrate ions. AmyDr native protein showed amylolytic activity in the head-pronotum and gut, and its recombinant protein, a polypeptide of ~53 kDa, showed conformational stability, and its activity is maintained both in the presence and absence of chlorine and nitrate ions. The AmyDr gene showed a differential expression significantly higher in the gut than the head-pronotum, indicating that starch hydrolysis occurs mainly in the midgut. An overview of the AmyDr gene expression suggests that the amylolytic activity is regulated through the developmental stages of this bark beetle and associated with starch availability in the host tree.
Collapse
|
25
|
Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Sci Rep 2020; 10:18572. [PMID: 33122700 PMCID: PMC7596566 DOI: 10.1038/s41598-020-75203-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bark beetles often serve as forest damaging agents, causing landscape-level mortality. Understanding the biology and ecology of beetles are important for both, gathering knowledge about important forest insects and forest protection. Knowledge about the bark beetle gut-associated bacteria is one of the crucial yet surprisingly neglected areas of research with European tree-killing bark beetles. Hence, in this study, we survey the gut bacteriome from five Ips and one non-Ips bark beetles from Scolytinae. Results reveal 69 core bacterial genera among five Ips beetles that may perform conserved functions within the bark beetle holobiont. The most abundant bacterial genera from different bark beetle gut include Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella, Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas. Notable differences in gut-associated bacterial community richness and diversity among the beetle species are observed. Furthermore, the impact of sampling location on the overall bark beetle gut bacterial community assemblage is also documented, which warrants further investigations. Nevertheless, our data expanded the current knowledge about core gut bacterial communities in Ips bark beetles and their putative function such as cellulose degradation, nitrogen fixation, detoxification of defensive plant compounds, and inhibition of pathogens, which could serve as a basis for further metatranscriptomics and metaproteomics investigations.
Collapse
|
26
|
Kumar V, Tyagi I, Tyagi K, Chandra K. Diversity and Structure of Bacterial Communities in the Gut of Spider: Thomisidae and Oxyopidae. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.588102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleoptera: Lucanidae). INSECTS 2020; 11:insects11100719. [PMID: 33096611 PMCID: PMC7589407 DOI: 10.3390/insects11100719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/16/2022]
Abstract
Although stag beetles are popular saprophytic insects, there are few studies about their gut bacterial community. This study focused on the gut bacterial community structure of the rainbow stag beetle (i.e., Phalacrognathus muelleri) in its larvae (three instars) and adult stages, using high throughput sequencing (Illumina Miseq). Our aim was to compare the gut bacterial community structure among different life stages. The results revealed that bacterial alpha diversity increased from the 1st instar to the 3rd instar larvae. Adults showed the lowest gut bacterial alpha diversity. Bacterial community composition was significantly different between larvae and adults (p = 0.001), and 1st instar larvae (early instar) had significant differences with the 2nd (p= 0.007) and 3rd (p = 0.001) instar larvae (final instar). However, there was little difference in the bacterial community composition between the 2nd and 3rd instar larvae (p = 0.059). Our study demonstrated dramatic shifts in gut bacterial community structure between larvae and adults. Larvae fed on decaying wood and adults fed on beetle jelly, suggesting that diet is a crucial factor shaping the gut bacterial community structure. There were significant differences in bacterial community structure between early instar and final instars larvae, suggesting that certain life stages are associated with a defined gut bacterial community.
Collapse
|
28
|
Fang JX, Zhang SF, Liu F, Zhang X, Zhang FB, Guo XB, Zhang Z, Zhang QH, Kong XB. Differences in Gut Bacterial Communities of Ips typographus (Coleoptera: Curculionidae) Induced by Enantiomer-Specific α-Pinene. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1198-1205. [PMID: 32860052 DOI: 10.1093/ee/nvaa098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The spruce bark beetle (Ips typographus L.) is a destructive pest of Eurasian spruce forests. Although the gut bacteria of this insect are considered to play important roles in its lifecycle, the relationship between I. typographus and its gut bacterial community is poorly characterized. In this study, 16S rRNA gene sequencing was used to determine gut bacterial community composition across successive I. typographus life stages. Responses of the gut bacteria to α-pinene enantiomers were also explored. Ips typographus gut bacterial populations were dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, and the relative abundance of these phyla varied across different developmental stages of the beetle. Bacterial species diversity and richness indices increased with developmental stage progression. Relative abundances of the dominant genera, Erwinia (Enterobacteriales: Enterobacteriaceae), Pseudoxanthomonas (Xanthomonadales: Xanthomonadaceae), Serratia (Enterobacteriales: Enterobacteriaceae), and Romboutsia (Clostridiales: Peptostreptococcaceae), also varied across successive I. typographus life stages. Large disparities in the gut bacterial community of male adults were observed when the beetles were treated with S-(-)-α-pinene and R-(+)-α-pinene. The relative abundances of Lactococcus (Lactobacillales: Streptococcaceae) and Lelliottia (Enterobacteriales: Enterobacteriaceae) increased drastically with R-(+)-α-pinene and S-(-)-α-pinene treatment, respectively. This indicated a distinct enantiomer-specific effect of α-pinene on the I. typographus gut bacteria. This study demonstrated the plasticity of gut bacteria during I. typographus development, when α-pinene host monoterpenes are encountered. This study provides new insights into the relationship between 'I. typographus-gut bacteria' symbionts and host trees.
Collapse
Affiliation(s)
- Jia-Xing Fang
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Su-Fang Zhang
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Fu Liu
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Xun Zhang
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Feng-Bin Zhang
- Forest Pest Control and Quarantine Station, Shangluo Forestry Bureau, Shangluo, Shaanxi Province, China
| | - Xiao-Bin Guo
- Forest Pest Control and Quarantine Station, Shangluo Forestry Bureau, Shangluo, Shaanxi Province, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | | | - Xiang-Bo Kong
- Key Laboratory of Forest Protection of the National Forestry and Grassland Administration of China, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
29
|
Ibarra-Juarez LA, Burton MAJ, Biedermann PHW, Cruz L, Desgarennes D, Ibarra-Laclette E, Latorre A, Alonso-Sánchez A, Villafan E, Hanako-Rosas G, López L, Vázquez-Rosas-Landa M, Carrion G, Carrillo D, Moya A, Lamelas A. Evidence for Succession and Putative Metabolic Roles of Fungi and Bacteria in the Farming Mutualism of the Ambrosia Beetle Xyleborus affinis. mSystems 2020; 5:e00541-20. [PMID: 32934115 PMCID: PMC7498683 DOI: 10.1128/msystems.00541-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial and fungal community involved in ambrosia beetle fungiculture remains poorly studied compared to the famous fungus-farming ants and termites. Here we studied microbial community dynamics of laboratory nests, adults, and brood during the life cycle of the sugarcane shot hole borer, Xyleborus affinis We identified a total of 40 fungal and 428 bacterial operational taxonomic units (OTUs), from which only five fungi (a Raffaelea fungus and four ascomycete yeasts) and four bacterial genera (Stenotrophomonas, Enterobacter, Burkholderia, and Ochrobactrum) can be considered the core community playing the most relevant symbiotic role. Both the fungal and bacterial populations varied significantly during the beetle's life cycle. While the ascomycete yeasts were the main colonizers of the gallery early on, the Raffaelea and other filamentous fungi appeared after day 10, at the time when larval hatching happened. Regarding bacteria, Stenotrophomonas and Enterobacter dominated overall but decreased in foundresses and brood with age. Finally, inferred analyses of the putative metabolic capabilities of the bacterial microbiome revealed that they are involved in (i) degradation of fungal and plant polymers, (ii) fixation of atmospheric nitrogen, and (iii) essential amino acid, cofactor, and vitamin provisioning. Overall, our results suggest that yeasts and bacteria are more strongly involved in supporting the beetle-fungus farming symbiosis than previously thought.IMPORTANCE Ambrosia beetles farm their own food fungi within tunnel systems in wood and are among the three insect lineages performing agriculture (the others are fungus-farming ants and termites). In ambrosia beetles, primary ambrosia fungus cultivars have been regarded essential, whereas other microbes have been more or less ignored. Our KEGG analyses suggest so far unknown roles of yeasts and bacterial symbionts, by preparing the tunnel walls for the primary ambrosia fungi. This preparation includes enzymatic degradation of wood, essential amino acid production, and nitrogen fixation. The latter is especially exciting because if it turns out to be present in vivo in ambrosia beetles, all farming animals (including humans) are dependent on atmospheric nitrogen fertilization of their crops. As previous internal transcribed spacer (ITS) metabarcoding approaches failed on covering the primary ambrosia fungi, our 18S metabarcoding approach can also serve as a template for future studies on the ambrosia beetle-fungus symbiosis.
Collapse
Affiliation(s)
- L A Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - M A J Burton
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - P H W Biedermann
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg, Germany
| | - L Cruz
- Tropical Research and Education Center, University of Florida, Homestead, Florida, USA
| | - D Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - E Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - A Latorre
- Institute for Integrative Systems Biology (Universitat de València and CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Community (FISABIO), València, Spain
| | - A Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - E Villafan
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - G Hanako-Rosas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | - L López
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| | | | - G Carrion
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - D Carrillo
- Red de Biodiversidad y Sistemática, Instituto de Ecología A. C., Xalapa, México
| | - A Moya
- Institute for Integrative Systems Biology (Universitat de València and CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research in the Valencian Community (FISABIO), València, Spain
| | - A Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Xalapa, México
| |
Collapse
|
30
|
Kozlova EV, Hegde S, Roundy CM, Golovko G, Saldaña MA, Hart CE, Anderson ER, Hornett EA, Khanipov K, Popov VL, Pimenova M, Zhou Y, Fovanov Y, Weaver SC, Routh AL, Heinz E, Hughes GL. Microbial interactions in the mosquito gut determine Serratia colonization and blood-feeding propensity. ISME JOURNAL 2020; 15:93-108. [PMID: 32895494 PMCID: PMC7852612 DOI: 10.1038/s41396-020-00763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christopher M Roundy
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Paediatrics and Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles E Hart
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA.,Institute for Global Health and Translational Science and SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Enyia R Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vsevolod L Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fovanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
31
|
Suárez-Moo P, Cruz-Rosales M, Ibarra-Laclette E, Desgarennes D, Huerta C, Lamelas A. Diversity and Composition of the Gut Microbiota in the Developmental Stages of the Dung Beetle Copris incertus Say (Coleoptera, Scarabaeidae). Front Microbiol 2020; 11:1698. [PMID: 32793162 PMCID: PMC7393143 DOI: 10.3389/fmicb.2020.01698] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Dung beetles are holometabolous insects that feed on herbivorous mammal dung and provide services to the ecosystem including nutrient cycling and soil fertilization. It has been suggested that organisms developing on incomplete diets such as dungs require the association with microorganisms for the synthesis and utilization of nutrients. We describe the diversity and composition of the gut-microbiota during the life cycle of the dung beetle Copris incertus using 16S rRNA gene sequencing. We found that C. incertus gut contained a broad diversity of bacterial groups (1,699 OTUs and 302 genera). The taxonomic composition varied during the beetle life cycle, with the predominance of some bacterial genera in a specific developmental stage (Mothers: Enterobacter and Serratia; Eggs: Nocardioides and Hydrogenophaga; Larval and pupal stages: Dysgonomonas and Parabacteroides; offspring: Ochrobactrum). The beta diversity evidenced similarities among developmental stages, clustering (i) the adult stages (mother, male and female offsprings), (ii) intermediate developmental (larvae and pupa), and (iii) initial stage (egg). Microbiota differences could be attributed to dietary specialization or/and morpho-physiological factors involved in the transition from a developmental stage to the next. The predicted functional profile (PICRUSt2 analysis) for the development bacterial core of the level 3 categories, indicated grouping by developmental stage. Only 36 categories were significant in the SIMPER analysis, including the metabolic categories of amino acids and antibiotic synthesis, which were enriched in the larval and pupal stages; both categories are involved in the metamorphosis process. At the gene level, we found significant differences only in the KOs encoding functions related to nitrogen fixation, uric acid metabolism, and plant cell wall degradation for all developmental stages. Nitrogen fixation and plant cell wall degradation were enriched in the intermediate stages and uric acid metabolism was enriched in mothers. The data reported here suggested the influence of the maternal microbiota in the composition and diversity of the gut microbiota of the offspring.
Collapse
Affiliation(s)
- Pablo Suárez-Moo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Mexico
| | | | | | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología A.C., Xalapa, Mexico
| | - Carmen Huerta
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Mexico
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, Mexico
| |
Collapse
|
32
|
Ceriani-Nakamurakare E, Mc Cargo P, Gonzalez-Audino P, Ramos S, Carmarán C. New insights into fungal diversity associated with Megaplatypus mutatus: gut mycobiota. Symbiosis 2020. [DOI: 10.1007/s13199-020-00687-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
34
|
Meng F, Bar-Shmuel N, Shavit R, Behar A, Segoli M. Gut bacteria of weevils developing on plant roots under extreme desert conditions. BMC Microbiol 2019; 19:311. [PMID: 31888482 PMCID: PMC6937996 DOI: 10.1186/s12866-019-1690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many phytophagous insects, whose diet is generally nitrogen-poor, rely on gut bacteria to compensate for nutritional deficits. Accordingly, we hypothesized that insects in desert environments may evolve associations with gut bacteria to adapt to the extremely low nutrient availability. For this, we conducted a systematic survey of bacterial communities in the guts of weevils developing inside mud chambers affixed to plant roots in the Negev Desert of Israel, based on 16S rRNA gene amplicon sequencing. RESULTS Our analyses revealed that gut bacterial communities in weevil larvae were similar across a wide geographical range, but differed significantly from those of the mud chambers and of the surrounding soils. Nevertheless, a high proportion of bacteria (including all of the core bacteria) found in the weevils were also detected in the mud chambers and soils at low relative abundances. The genus Citrobacter (of the Enterobacteriaceae family) was the predominant group in the guts of all individual weevils. The relative abundance of Citrobacter significantly decreased at the pupal and adult stages, while bacterial diversity increased. A mini literature survey revealed that members of the genus Citrobacter are associated with nitrogen fixation, recycling of uric acid nitrogen, and cellulose degradation in different insects. CONCLUSIONS The results suggest that although weevils could potentially acquire their gut bacteria from the soil, weevil host internal factors, rather than external environmental factors, were more important in shaping their gut bacterial communities, and suggest a major role for Citrobacter in weevil nutrition in this challenging environment. This study highlights the potential involvement of gut bacteria in the adaptation of insects to nutritional deficiencies under extreme desert conditions.
Collapse
Affiliation(s)
- Fengqun Meng
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| | - Nitsan Bar-Shmuel
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
35
|
Abstract
Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members. Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis. We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.
Collapse
|
36
|
High-Resolution Profiling of Gut Bacterial Communities in an Invasive Beetle using PacBio SMRT Sequencing System. INSECTS 2019; 10:insects10080248. [PMID: 31416137 PMCID: PMC6722854 DOI: 10.3390/insects10080248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022]
Abstract
Dendroctonus valens, an invasive bark beetle, has caused severe damage to Chinese forests. Previous studies have highlighted the importance of the gut microbiota and its fundamental role in host fitness. Culture-dependent and culture-independent methods have been applied in analyzing beetles’ gut microbiota. The former method cannot present a whole picture of the community, and the latter mostly generates short read lengths that cannot be assigned to species. Here, the PacBio sequencing system was utilized to capture full-length 16S rRNA sequences in D. valens gut throughout its ontogeny. A total of eight phyla, 55 families, 102 genera, and 253 species were identified. Bacterial communities in colonized beetles have the greatest richness but the lowest evenness in all life stages, which is different from those in young larvae. Pseudomonas sp., Serratia liquefaciens possess high abundance throughout its ontogeny and may serve as members of the core bacteriome. A phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis predicted that gut microbiota in larvae are rich in genes involved in carbohydrate, energy metabolism. Gut microbiota in both larvae and colonized beetles are rich in xenobiotics and terpenoids biodegradation, which are decreased in dispersal beetles. Considering that the results are based mainly on the analysis of 16S rRNA sequencing and PICRUSt prediction, further confirmation is needed to improve the knowledge of the gut microbiota in D. valens and help to resolve taxonomic uncertainty at the species level.
Collapse
|
37
|
Gonzalez-Escobedo R, Briones-Roblero CI, López MF, Rivera-Orduña FN, Zúñiga G. Changes in the Microbial Community of Pinus arizonica Saplings After Being Colonized by the Bark Beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae). MICROBIAL ECOLOGY 2019; 78:102-112. [PMID: 30349964 DOI: 10.1007/s00248-018-1274-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
The death of trees is an ecological process that promotes regeneration, organic matter recycling, and the structure of communities. However, diverse biotic and abiotic factors can disturb this process. Dendroctonus bark beetles (Curculionidae: Scolytinae) are natural inhabitants of pine forests, some of which produce periodic outbreaks, killing thousands of trees in the process. These insects spend almost their entire life cycle under tree bark, where they reproduce and feed on phloem. Tunneling and feeding of the beetles result in the death of the tree and an alteration of the resident microbiota as well as the introduction of microbes that the beetles vector. To understand how microbial communities in subcortical tissues of pines change after they are colonized by the bark beetle Dendroctonus rhizophagus, we compare both the bacterial and fungal community structures in two colonization stages of Pinus arizonica (Arizona pine) employing Illumina MiSeq. Our findings showed significant differences in diversity and the dominance of bacterial community in the two colonization stages with Shannon (P = 0.004) and Simpson (P = 0.0006) indices, respectively, but not in species richness with Chao1 (P = 0.19). In contrast, fungal communities in both stages showed significant differences in species richness with Chao1 (P = 0.0003) and a diversity with Shannon index (P = 0.038), but not in the dominance with the Simpson index (P = 0.12). The β-diversity also showed significant changes in the structure of bacterial and fungal communities along the colonization stages, maintaining the dominant members in both cases. Our results suggest that microbial communities present in the Arizona pine at the tree early colonization stage by bark beetle change predictably over time.
Collapse
Affiliation(s)
- Roman Gonzalez-Escobedo
- Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Carlos I Briones-Roblero
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n. Delegación Miguel Hidalgo, CP 11340, Mexico City, Mexico.
| |
Collapse
|
38
|
Bozorov TA, Rasulov BA, Zhang D. Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria. Sci Rep 2019; 9:4923. [PMID: 30894631 PMCID: PMC6427011 DOI: 10.1038/s41598-019-41368-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/07/2019] [Indexed: 02/01/2023] Open
Abstract
The genus Agrilus comprises diverse exotic and agriculturally important wood-boring insects that have evolved efficient digestive systems. Agrilus mali Matsumara, an invasive insect, is causing extensive mortality to endangered wild apple trees in Tianshan. In this study, we present an in-depth characterization of the gut microbiota of A. mali based on high-throughput sequencing of the 16S rRNA gene and report the presence of lignocellulose-degrading bacteria. Thirty-nine operational taxonomic units (OTUs) were characterized from the larval gut. OTUs represented 6 phyla, 10 classes, 16 orders, 20 families, and 20 genera. The majority of bacterial OTUs belonged to the order Enterobacteriales which was the most abundant taxa in the larval gut. Cultivable bacteria revealed 9 OTUs that all belonged to Gammaproteobacteria. Subsequently, we examined the breakdown of plant cell-wall compounds by bacterial isolates. Among the isolates, the highest efficiency was observed in Pantoea sp., which was able to synthesize four out of the six enzymes (cellulase, cellobiase, β-xylanase, and β-gluconase) responsible for plant-cell wall degradation. One isolate identified as Pseudomonas orientalis exhibited lignin peroxidase activity. Our study provides the first characterization of the gut microbial diversity of A. mali larvae and shows that some cultivable bacteria play a significant role in the digestive tracts of larvae by providing nutritional needs.
Collapse
Affiliation(s)
- Tohir A Bozorov
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, China. .,Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray, Tashkent Region, Uzbekistan.
| | - Bakhtiyor A Rasulov
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, China.,Institute of Genetics and Plants Experimental Biology, Uzbek Academy of Sciences, Yukori-Yuz, 111226, Kibray, Tashkent Region, Uzbekistan
| | - Daoyuan Zhang
- Key Lab of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, China.
| |
Collapse
|
39
|
Gut Microbial Divergence between Two Populations of the Hadal Amphipod Hirondellea gigas. Appl Environ Microbiol 2018; 85:AEM.02032-18. [PMID: 30366990 DOI: 10.1128/aem.02032-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/16/2018] [Indexed: 11/20/2022] Open
Abstract
Hadal environments sustain diverse microorganisms. A few studies have investigated hadal microbial communities consisting of free-living or particle-associated bacteria and archaea. However, animal-associated microbial communities in hadal environments remain largely unexplored, and comparative analyses of animal gut microbiota between two isolated hadal environments have never been done so far. In the present study, 228 Gb of gut metagenomes of the giant amphipod Hirondellea gigas from two hadal trenches, the Mariana Trench and Japan Trench, were sequenced and analyzed. Taxonomic analysis identified 49 microbial genera commonly shared by the gut microbiota of the two H. gigas populations. However, the results of statistical analysis, in congruency with the alpha and beta diversity analyses, revealed significant differences in gut microbial composition across the two trenches. Abundance variation of Psychromonas, Propionibacterium, and Pseudoalteromonas species was observed. Microbial cooccurrence was demonstrated for microbes that were overrepresented in the Mariana trench. Comparison of functional potential showed that the percentage of carbohydrate metabolic genes among the total microbial genes was significantly higher in the guts of H. gigas specimens from the Mariana Trench. Integrating carbon input information and geological characters of the two hadal trenches, we propose that the differences in the community structure might be due to several selective factors, such as environmental variations and microbial interactions.IMPORTANCE The taxonomic composition and functional potential of animal gut microbiota in deep-sea environments remain largely unknown. Here, by performing comparative metagenomics, we suggest that the gut microbial compositions of two Hirondellea gigas populations from the Mariana Trench and the Japan Trench have undergone significant divergence. Through analyses of functional potentials and microbe-microbe correlations, our findings shed light on the contributions of animal gut microbiota to host adaptation to hadal environments.
Collapse
|
40
|
Daudzai Z, Treesubsuntorn C, Thiravetyan P. Inoculated Clitoria ternatea with Bacillus cereus ERBP for enhancing gaseous ethylbenzene phytoremediation: Plant metabolites and expression of ethylbenzene degradation genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:50-60. [PMID: 30096603 DOI: 10.1016/j.ecoenv.2018.07.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 05/22/2023]
Abstract
Air pollutants especially polyaromatic hydrocarbons pose countless threats to the environment. This issue demands for an effective phytoremediation technology. In this study we report the beneficial interactions of Clitoria ternatea and its plant growth promoting endophytic bacteria Bacillus cereus ERBP by inoculating it for the remediation of 5 ppm airborne ethylbenzene (EB). The percentage efficiency for ethylbenzene removal among B. cereus ERBP inoculated and non-inoculated sterile and natural C. ternatea has also been determined. The inoculation of B. cereus ERBP has significantly increased EB removal efficiency of both sterile and natural C. ternatea. The inoculated natural C. ternatea seedlings showed 100% removal efficiency within 84 h for the aforementioned pollutant compared with the sterile inoculated C. ternatea seedlings (108 h). The degradation of EB by C. ternatea seedlings with and without B. cereus ERBP was assessed by measuring the intermediates of EB including 1-phenylethanol, acetophenon, benzaldehyde and benzoic acid. In addition, cytochrome P450s monooxygenase (CYP83D1) and dehydrogenases (LOC100783159) involved in the oxidation of hydrocarbons are well reported for their bio catalytic activities under xenobiotic stress conditions. Hence, the co-effect of the native endophyte B. cereus ERBP inoculation and EB exposure on the expression level of CYP83D1 and dehydrogenase were also determined. The targeted genes CYP83D1and dehydrogenases have shown an increased expression level under the 5 ppm of EB exposure enabling C. ternatea to withstand and remediate the pollutant.
Collapse
Affiliation(s)
- Zubaida Daudzai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand.
| |
Collapse
|
41
|
Zhang Z, Jiao S, Li X, Li M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci Rep 2018; 8:15634. [PMID: 30353073 PMCID: PMC6199299 DOI: 10.1038/s41598-018-34127-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Agrilus mali (Coleoptera: Buprestidae) is an invasive wood borer pest that has caused considerable damage to the Xinjiang wild fruit forest. In this study, we investigated the bacterial and fungal intestinal microbial communities of A. mali during different developmental stages, including larvae, pupae and newly eclosed adults or fed different diets (leaves of Malus halliana and Malus pumila) using Illumina MiSeq high-throughput sequencing technology. The results showed that microbial alpha diversity first increased and then decreased during the developmental stages, with the most dominant bacteria and fungi exhibiting the dynamic patterns "Decrease", "Increase" and "Fluctuation". With respect to the different diets, the bacterial communities were similar between the newly eclosed adults and adults fed M. pumila leaves, while the structure of the fungal communities showed great differences between newly eclosed adults and adults fed different diets. Through a co-correlation network analysis, we observed complex microbial interactions among bacterial and fungal taxa that were associated with potential diverse functions and intricate biological processes in the intestinal microbiota of A. mali. Overall, the results of this study demonstrated that the invasive insect A. mali harbours diverse, dynamic, and presumably multifunctional microbial communities, an understanding of which could improve our ability to develop more effective management approaches to control A. mali.
Collapse
Affiliation(s)
- Zhengqing Zhang
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaohui Li
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Menglou Li
- Laboratory of Forestry Pests Biological Control, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
42
|
Gut Bacterial Communities of Dendroctonus valens and D. mexicanus (Curculionidae: Scolytinae): A Metagenomic Analysis across Different Geographical Locations in Mexico. Int J Mol Sci 2018; 19:ijms19092578. [PMID: 30200218 PMCID: PMC6164411 DOI: 10.3390/ijms19092578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dendroctonus bark beetles are a worldwide significant pest of conifers. This genus comprises 20 species found in North and Central America, and Eurasia. Several studies have documented the microbiota associated with these bark beetles, but little is known regarding how the gut bacterial communities change across host range distribution. We use pyrosequencing to characterize the gut bacterial communities associated with six populations of Dendroctonus valens and D. mexicanus each across Mexico, determine the core bacteriome of both insects and infer the metabolic pathways of these communities with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) to evaluate whether these routes are conserved across geographical locations. Our results show that the β-diversity with UniFrac unweighted varies among locations of both bark beetles mainly due to absence/presence of some rare taxa. No association is found between the pairwise phylogenetic distance of bacterial communities and geographic distance. A strict intraspecific core bacteriome is determined for each bark beetle species, but these cores are different in composition and abundance. However, both bark beetles share the interspecific core bacteriome recorded previously for the Dendroctonus genus consisting of Enterobacter, Pantoea, Providencia, Pseudomonas, Rahnella, and Serratia. The predictions of metabolic pathways are the same in the different localities, suggesting that they are conserved through the geographical locations.
Collapse
|
43
|
Xu D, Xu L, Zhou F, Wang B, Wang S, Lu M, Sun J. Gut Bacterial Communities of Dendroctonus valens and Monoterpenes and Carbohydrates of Pinus tabuliformis at Different Attack Densities to Host Pines. Front Microbiol 2018; 9:1251. [PMID: 29963021 PMCID: PMC6011813 DOI: 10.3389/fmicb.2018.01251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023] Open
Abstract
Insects harbor a community of gut bacteria, ranging from pathogenic to obligate mutualistic organisms. Both biotic and abiotic factors can influence species composition and structure of the insect gut bacterial communities. Dendroctonus valens is a destructive forest pest in China. To overcome host pine defenses, beetles mass-attack the pine to a threshold density that can exhaust pine defenses. The intensity of pine chemical defenses and carbohydrate concentrations of pines can be influenced by beetle attack, both of which are known factors that modify beetle's gut microbiota. However, little is known to what extent variation exists in the beetle's gut communities, and host monoterpenes and carbohydrates at different attack densities. In this study, the gut bacterial microbiota of D. valens at low and high attack densities were analyzed, and monoterpenes and carbohydrates in host pine phloem were assayed in parallel. The results showed that no significant changes of gut bacterial communities of the beetles and concentrations of D-glucose, D-pinitol, and D-fructose in pine phloem were found between low and high attack densities. The concentrations of α-pinene, β-pinene, limonene at high attack densities were significantly higher than those at low attack densities. Our results suggested that different attack densities of D. valens influence monoterpenes concentration of host pines' phloem but have no significant impact on gut bacterial community structures of D. valens and carbohydrate concentration of host trees' phloem in early attack phase. Similar gut bacterial community structures of D. valens between low and high attack densities might be due to the quick adaptation of gut microbiota to high monoterpenes concentrations.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Letian Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Science, Hubei University, Wuhan, China
| | - Fangyuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Bo Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Shanshan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Health Sciences, Anhui University, Hefei, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Gonzalez-Escobedo R, Briones-Roblero CI, Pineda-Mendoza RM, Rivera-Orduña FN, Zúñiga G. Bacteriome from Pinus arizonica and P. durangensis: Diversity, Comparison of Assemblages, and Overlapping Degree with the Gut Bacterial Community of a Bark Beetle That Kills Pines. Front Microbiol 2018; 9:77. [PMID: 29441055 PMCID: PMC5797664 DOI: 10.3389/fmicb.2018.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/12/2018] [Indexed: 02/01/2023] Open
Abstract
Symbioses between plants and microorganims have been fundamental in the evolution of both groups. The endophytic bacteria associated with conifers have been poorly studied in terms of diversity, ecology, and function. Coniferous trees of the genera Larix, Pseudotsugae, Picea and mainly Pinus, are hosts of many insects, including bark beetles and especially the Dendroctonus species. These insects colonize and kill these trees during their life cycle. Several bacteria detected in the gut and cuticle of these insects have been identified as endophytes in conifers. In this study, we characterized and compared the endophytic bacterial diversity in roots, phloem and bark of non-attacked saplings of Pinus arizonica and P. durangensis using 16S rRNA gene pyrosequencing. In addition, we evaluated the degree of taxonomic relatedness, and the association of metabolic function profiles of communities of endophytic bacteria and previously reported gut bacterial communities of D. rhizophagus; a specialized bark beetle that colonizes and kills saplings of these pine species. Our results showed that both pine species share a similar endophytic community. A total of seven bacterial phyla, 14 classes, 26 orders, 43 families, and 51 genera were identified. Enterobacteriaceae was the most abundant family across all samples, followed by Acetobacteraceae and Acidobacteriaceae, which agree with previous studies performed in other pines and conifers. Endophytic communities and that of the insect gut were significantly different, however, the taxonomic relatedness of certain bacterial genera of pines and insect assemblages suggested that some bacteria from pine tissues might be the same as those in the insect gut. Lastly, the metabolic profile using PICRUSt showed there to be a positive association between communities of both pines and insect gut. This study represents the baseline into the knowledge of the endophytic bacterial communities of two of the major hosts affected by D. rhizophagus.
Collapse
Affiliation(s)
- Roman Gonzalez-Escobedo
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos I Briones-Roblero
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa M Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
45
|
Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns. Sci Rep 2017; 7:13864. [PMID: 29066751 PMCID: PMC5655642 DOI: 10.1038/s41598-017-14031-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/05/2017] [Indexed: 12/31/2022] Open
Abstract
Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in β-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.
Collapse
|