1
|
Chartres N, Aung MT, Norris SL, Cooper C, Bero LA, Chou R, Payne-Sturges DC, Wagner WE, Reyes JW, Askie LM, Axelrad DA, Vigo DF, Johnston JE, Lam J, Nachman KE, Rehfuess E, Rothschild R, Sutton P, Zeise L, Woodruff TJ. Development of the Navigation Guide Evidence-to-Decision Framework for Environmental Health: Version 1.0. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4230-4244. [PMID: 40012089 PMCID: PMC11912317 DOI: 10.1021/acs.est.4c08063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Environmental exposures, including widespread industrial pollution, impact human health and are amplified in more highly exposed communities. Policy and regulatory frameworks for making decisions and recommendations on interventions to mitigate or prevent exposures tend to narrowly focus on exposure and some health-related data related to risks. Typically, such frameworks do not consider other factors, including essentiality, health equity, and distribution of benefits and costs. Further, decisions and recommendations lack transparency regarding how they were developed. We developed the Navigation Guide Evidence-to-Decision Framework for Environmental Health (E2DFEH) to provide a structured and transparent framework incorporating a range of scientific information and factors for decision-making. We reviewed current evidence-to-decision frameworks and engaged in an iterative consensus-based process involving 30 experts from 25 organizations in the academic, government, and nonprofit sectors. The E2DFEH framework includes three Foundations that are structural factors considered as part of recommendation development: 1) Essentiality, 2) Human Rights, and 3) Quality of the Evidence. It also includes three core Criteria that guide the development of a specific recommendation, informed by an evaluation of relevant evidence: 1) Environmental Justice, 2) Maximizing Benefits and Reducing Harm, and 3) Sociocultural Acceptability and Feasibility. The framework's goal is to make the decision process transparent and comprehensive through explicit consideration of core factors important for decisions, leading to more equitable and health-protective interventions.
Collapse
Affiliation(s)
- Nicholas Chartres
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
- School
of Pharmacy, Faculty of Medicine & Health, The University of Sydney, Sydney 2006, Australia
| | - Max T. Aung
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Susan L. Norris
- Department
of Family Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Courtney Cooper
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
| | - Lisa A. Bero
- Center
for Bioethics and Humanities, University
of Colorado Anschutz Medical Campus, School of Medicine and Colorado
School of Public Health, Aurora, Colorado 80045, United States
| | - Roger Chou
- Department
of Medicine, School of Medicine, Oregon
Health & Science University, Portland, Oregon 97239, United States
| | - Devon C. Payne-Sturges
- Department
of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland 20742, United States
| | - Wendy E. Wagner
- The
University of Texas at Austin School of Law, Austin, Texas 78705, United States
| | - Jessica W. Reyes
- Department
of Economics, Amherst College, Amherst, Massachusetts 01002, United States
| | - Lisa M. Askie
- NHMRC
Clinical Trials Centre, The University of
Sydney, Sydney 2006, Australia
| | - Daniel A. Axelrad
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
- School
of Pharmacy, Faculty of Medicine & Health, The University of Sydney, Sydney 2006, Australia
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department
of Family Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- Center
for Bioethics and Humanities, University
of Colorado Anschutz Medical Campus, School of Medicine and Colorado
School of Public Health, Aurora, Colorado 80045, United States
- Department
of Medicine, School of Medicine, Oregon
Health & Science University, Portland, Oregon 97239, United States
- Department
of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland 20742, United States
- The
University of Texas at Austin School of Law, Austin, Texas 78705, United States
- Department
of Economics, Amherst College, Amherst, Massachusetts 01002, United States
- NHMRC
Clinical Trials Centre, The University of
Sydney, Sydney 2006, Australia
- Make the Road New York, Brooklyn, New York 11237, United States
- Department
of Public Health, California State University, East Bay, California 94542, United States
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School
of Public Health, Johns Hopkins Risk Sciences
and Public Policy Institute, Baltimore, Maryland 21205, United States
- Institute
for Medical information Processing, Biometry and Epidemiology, Faculty
of Medicine, LMU; Pettenkofer School of
Public Health, Munich 3608, Germany
- University
of Michigan Law School, Ann Arbor, Michigan 48109, United States
| | | | - Jill E. Johnston
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Juleen Lam
- Department
of Public Health, California State University, East Bay, California 94542, United States
| | - Keeve E. Nachman
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School
of Public Health, Johns Hopkins Risk Sciences
and Public Policy Institute, Baltimore, Maryland 21205, United States
| | - Eva Rehfuess
- Institute
for Medical information Processing, Biometry and Epidemiology, Faculty
of Medicine, LMU; Pettenkofer School of
Public Health, Munich 3608, Germany
| | - Rachel Rothschild
- University
of Michigan Law School, Ann Arbor, Michigan 48109, United States
| | - Patrice Sutton
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
| | - Lauren Zeise
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
- School
of Pharmacy, Faculty of Medicine & Health, The University of Sydney, Sydney 2006, Australia
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Department
of Family Medicine, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
- Center
for Bioethics and Humanities, University
of Colorado Anschutz Medical Campus, School of Medicine and Colorado
School of Public Health, Aurora, Colorado 80045, United States
- Department
of Medicine, School of Medicine, Oregon
Health & Science University, Portland, Oregon 97239, United States
- Department
of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland 20742, United States
- The
University of Texas at Austin School of Law, Austin, Texas 78705, United States
- Department
of Economics, Amherst College, Amherst, Massachusetts 01002, United States
- NHMRC
Clinical Trials Centre, The University of
Sydney, Sydney 2006, Australia
- Make the Road New York, Brooklyn, New York 11237, United States
- Department
of Public Health, California State University, East Bay, California 94542, United States
- Department
of Environmental Health and Engineering, Johns Hopkins Bloomberg School
of Public Health, Johns Hopkins Risk Sciences
and Public Policy Institute, Baltimore, Maryland 21205, United States
- Institute
for Medical information Processing, Biometry and Epidemiology, Faculty
of Medicine, LMU; Pettenkofer School of
Public Health, Munich 3608, Germany
- University
of Michigan Law School, Ann Arbor, Michigan 48109, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology, and Reproductive Sciences, University
of California, San Francisco, California 94143, United States
| |
Collapse
|
2
|
Chartres N, Cooper CB, Bland G, Pelch KE, Gandhi SA, BakenRa A, Woodruff TJ. Effects of Microplastic Exposure on Human Digestive, Reproductive, and Respiratory Health: A Rapid Systematic Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22843-22864. [PMID: 39692326 PMCID: PMC11697325 DOI: 10.1021/acs.est.3c09524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Microplastics are ubiquitous environmental contaminants for which there are documented human exposures, but there is a paucity of research evaluating their impacts on human health. We conducted a rapid systematic review using the "Navigation Guide" systematic review method. We searched four databases in July 2022 and April 2024 with no restriction on the date. We included studies using predefined eligibility criteria that quantitatively examined the association of microplastic exposure with any health outcomes. We amended the eligibility criteria after screening studies and prioritized digestive, reproductive, and respiratory outcomes for further evaluation. We included three human observational studies examining reproductive (n = 2) and respiratory (n = 1) outcomes and 28 animal studies examining reproductive (n = 11), respiratory (n = 7), and digestive (n = 10) outcomes. For reproductive outcomes (sperm quality) and digestive outcomes (immunosuppresion) we rated overall body evidence as "high" quality and concluded microplastic exposure is "suspected" to adversely impact them. For reproductive outcomes (female follicles and reproductive hormones), digestive outcomes (gross or microanatomic colon/small intestine effects, alters cell proliferation and cell death, and chronic inflammation), and respiratory outcomes (pulmonary function, lung injury, chronic inflammation, and oxidative stress) we rated the overall body of evidence as "moderate" quality and concluded microplastic exposure is "suspected" to adversely impact them. We concluded that exposure to microplastics is "unclassifiable" for birth outcomes and gestational age in humans on the basis of the "low" and "very low" quality of the evidence. We concluded that microplastics are "suspected" to harm human reproductive, digestive, and respiratory health, with a suggested link to colon and lung cancer. Future research on microplastics should investigate additional health outcomes impacted by microplastic exposure and identify strategies to reduce exposure.
Collapse
Affiliation(s)
- Nicholas Chartres
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
- School
of Pharmacy, Faculty of Medicine & Health, The University of Sydney, Sydney 2006, Australia
| | - Courtney B. Cooper
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Garret Bland
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine E. Pelch
- Natural
Resources Defense Council, San
Francisco, California 94104, United States
| | - Sheiphali A. Gandhi
- Division
of Occupational, Environmental, and Climate Medicine, Department of
Medicine, University of California, San
Francisco, San Francisco, California 94117, United States
- Division
of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department
of Medicine, University of California, San
Francisco, San Francisco, California 94117, United States
| | - Abena BakenRa
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, Department of Obstetrics,
Gynecology and Reproductive Sciences, University
of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
3
|
Nyadanu SD, Tessema GA, Mullins B, Chai K, Yitshak-Sade M, Pereira G. Critical Windows of Maternal Exposure to Biothermal Stress and Birth Weight for Gestational Age in Western Australia. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127017. [PMID: 38149876 PMCID: PMC10752220 DOI: 10.1289/ehp12660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND There is limited and inconsistent evidence on the risk of ambient temperature on small for gestational age (SGA) and there are no known related studies for large for gestational age (LGA). In addition, previous studies used temperature rather than a biothermal metric. OBJECTIVES Our aim was to examine the associations and critical susceptible windows of maternal exposure to a biothermal metric [Universal Thermal Climate Index (UTCI)] and the hazards of SGA and LGA. METHODS We linked 385,337 singleton term births between 1 January 2000 and 31 December 2015 in Western Australia to daily spatiotemporal UTCI. Distributed lag nonlinear models with Cox regression and multiple models were used to investigate maternal exposure to UTCI from 12 weeks preconception to birth and the adjusted hazard ratios (HRs) of SGA and LGA. RESULTS Relative to the median exposure, weekly and monthly specific exposures showed potential critical windows of susceptibility for SGA and LGA at extreme exposures, especially during late gestational periods. Monthly exposure showed strong positive associations from the 6th to the 10th gestational months with the highest hazard of 13% for SGA (HR = 1.13 ; 95% CI: 1.10, 1.14) and 7% for LGA (HR = 1.07 ; 95% CI: 1.03, 1.11) at the 10th month for the 1st UTCI centile. Entire pregnancy exposures showed the strongest hazards of 11% for SGA (HR = 1.11 ; 95% CI: 1.04, 1.18) and 3% for LGA (HR = 1.03 ; 95% CI: 0.95, 1.11) at the 99th UTCI centile. By trimesters, the highest hazards were found during the second and first trimesters for SGA and LGA, respectively, at the 99th UTCI centile. Based on estimated interaction effects, male births, mothers who were non-Caucasian, smokers, ≥ 35 years of age, and rural residents were most vulnerable. CONCLUSIONS Both weekly and monthly specific extreme biothermal stress exposures showed potential critical susceptible windows of SGA and LGA during late gestational periods with disproportionate sociodemographic vulnerabilities. https://doi.org/10.1289/EHP12660.
Collapse
Affiliation(s)
- Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- Education, Culture, and Health Opportunities (ECHO) Ghana, ECHO Research Group International, Aflao, Ghana
| | - Gizachew A. Tessema
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
- enAble Institute, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Ben Mullins
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Kevin Chai
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Bentley, Western Australia, Australia
- enAble Institute, Curtin University, Perth, Bentley, Western Australia, Australia
- World Health Organization Collaborating Centre for Environmental Health Impact Assessment, Faculty of Health Science, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
4
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
5
|
Rescinito R, Ratti M, Payedimarri AB, Panella M. Prediction Models for Intrauterine Growth Restriction Using Artificial Intelligence and Machine Learning: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:healthcare11111617. [PMID: 37297757 DOI: 10.3390/healthcare11111617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND IntraUterine Growth Restriction (IUGR) is a global public health concern and has major implications for neonatal health. The early diagnosis of this condition is crucial for obtaining positive outcomes for the newborn. In recent years Artificial intelligence (AI) and machine learning (ML) techniques are being used to identify risk factors and provide early prediction of IUGR. We performed a systematic review (SR) and meta-analysis (MA) aimed to evaluate the use and performance of AI/ML models in detecting fetuses at risk of IUGR. METHODS We conducted a systematic review according to the PRISMA checklist. We searched for studies in all the principal medical databases (MEDLINE, EMBASE, CINAHL, Scopus, Web of Science, and Cochrane). To assess the quality of the studies we used the JBI and CASP tools. We performed a meta-analysis of the diagnostic test accuracy, along with the calculation of the pooled principal measures. RESULTS We included 20 studies reporting the use of AI/ML models for the prediction of IUGR. Out of these, 10 studies were used for the quantitative meta-analysis. The most common input variable to predict IUGR was the fetal heart rate variability (n = 8, 40%), followed by the biochemical or biological markers (n = 5, 25%), DNA profiling data (n = 2, 10%), Doppler indices (n = 3, 15%), MRI data (n = 1, 5%), and physiological, clinical, or socioeconomic data (n = 1, 5%). Overall, we found that AI/ML techniques could be effective in predicting and identifying fetuses at risk for IUGR during pregnancy with the following pooled overall diagnostic performance: sensitivity = 0.84 (95% CI 0.80-0.88), specificity = 0.87 (95% CI 0.83-0.90), positive predictive value = 0.78 (95% CI 0.68-0.86), negative predictive value = 0.91 (95% CI 0.86-0.94) and diagnostic odds ratio = 30.97 (95% CI 19.34-49.59). In detail, the RF-SVM (Random Forest-Support Vector Machine) model (with 97% accuracy) showed the best results in predicting IUGR from FHR parameters derived from CTG. CONCLUSIONS our findings showed that AI/ML could be part of a more accurate and cost-effective screening method for IUGR and be of help in optimizing pregnancy outcomes. However, before the introduction into clinical daily practice, an appropriate algorithmic improvement and refinement is needed, and the importance of quality assessment and uniform diagnostic criteria should be further emphasized.
Collapse
Affiliation(s)
- Riccardo Rescinito
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Matteo Ratti
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Anil Babu Payedimarri
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine (DiMeT), University of Eastern Piedmont/Piemonte Orientale (UPO), 28100 Novara, Italy
| |
Collapse
|
6
|
Sheffield PE. Mental health and climate change: The critical window of pregnancy. Int J Gynaecol Obstet 2023; 160:383-384. [PMID: 36271702 DOI: 10.1002/ijgo.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Perry E Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Herbstman JB, Romano ME, Li X, Jacobson LP, Margolis AE, Hamra GB, Bennett DH, Braun JM, Buckley JP, Colburn T, Deoni S, Hoepner LA, Morello-Frosch R, Riley KW, Sathyanarayana S, Schantz SL, Trasande L, Woodruff TJ, Perera FP, Karagas MR, on behalf of program collaborators for Environmental influences on Child Health Outcomes. Characterizing changes in behaviors associated with chemical exposures during the COVID-19 pandemic. PLoS One 2023; 18:e0277679. [PMID: 36638141 PMCID: PMC9838870 DOI: 10.1371/journal.pone.0277679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
The COVID-19 pandemic-and its associated restrictions-have changed many behaviors that can influence environmental exposures including chemicals found in commercial products, packaging and those resulting from pollution. The pandemic also constitutes a stressful life event, leading to symptoms of acute traumatic stress. Data indicate that the combination of environmental exposure and psychological stress jointly contribute to adverse child health outcomes. Within the Environmental influences on Child Health Outcomes (ECHO)-wide Cohort, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether there were pandemic-related changes in behavior that may be associated with environmental exposures. A total of 1535 participants from nine cohorts completed a survey via RedCap from December 2020 through May 2021. The questionnaire identified behavioral changes associated with the COVID-19 pandemic in expected directions, providing evidence of construct validity. Behavior changes reported by at least a quarter of the respondents include eating less fast food and using fewer ultra-processed foods, hair products, and cosmetics. At least a quarter of respondents reported eating more home cooked meals and using more antibacterial soaps, liquid soaps, hand sanitizers, antibacterial and bleach cleaners. Most frequent predictors of behavior change included Hispanic ethnicity and older age (35 years and older). Respondents experiencing greater COVID-related stress altered their behaviors more than those not reporting stress. These findings highlight that behavior change associated with the pandemic, and pandemic-related psychological stress often co-occur. Thus, prevention strategies and campaigns that limit environmental exposures, support stress reduction, and facilitate behavioral change may lead to the largest health benefits in the context of a pandemic. Analyzing biomarker data in these participants will be helpful to determine if behavior changes reported associate with measured changes in exposure.
Collapse
Affiliation(s)
- Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, United States of America
| | - Xiuhong Li
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California—Davis, Davis, CA, United States of America
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States of America
| | - Jessie P. Buckley
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Trina Colburn
- Department of Child Health, Behavior, and Development, Seattle Children’s Hospital, Seattle, WA, United States of America
| | - Sean Deoni
- Department of Pediatrics, Rhode Island Hospital, Providence, RI, United States of America
| | - Lori A. Hoepner
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health and Department of Environmental and Occupational Health Sciences, SUNY Downstate Health Sciences University School of Public Health, New York, NY, United States of America
| | - Rachel Morello-Frosch
- Department of Environmental Health Sciences, University of California—Berkeley, Berkeley, CA, United States of America
| | - Kylie Wheelock Riley
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, Health, New York, NY, United States of America
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA, United States of America
| | - Susan L. Schantz
- Department of Comparative Biosciences, University of Illinois—Urbana-Champaign, Champaign, IL, United States of America
| | - Leonardo Trasande
- Departments of Pediatrics and Population Health, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Tracey J. Woodruff
- Department of Obstetrics and Gynecology, University of California San Francisco School of Medicine, San Francisco, CA, United States of America
| | - Frederica P. Perera
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States of America
| | - Margaret R. Karagas
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, NH, United States of America
| | | |
Collapse
|
8
|
Woodruff TJ, Rayasam SDG, Axelrad DA, Koman PD, Chartres N, Bennett DH, Birnbaum LS, Brown P, Carignan CC, Cooper C, Cranor CF, Diamond ML, Franjevic S, Gartner EC, Hattis D, Hauser R, Heiger-Bernays W, Joglekar R, Lam J, Levy JI, MacRoy PM, Maffini MV, Marquez EC, Morello-Frosch R, Nachman KE, Nielsen GH, Oksas C, Abrahamsson DP, Patisaul HB, Patton S, Robinson JF, Rodgers KM, Rossi MS, Rudel RA, Sass JB, Sathyanarayana S, Schettler T, Shaffer RM, Shamasunder B, Shepard PM, Shrader-Frechette K, Solomon GM, Subra WA, Vandenberg LN, Varshavsky JR, White RF, Zarker K, Zeise L. A science-based agenda for health-protective chemical assessments and decisions: overview and consensus statement. Environ Health 2023; 21:132. [PMID: 36635734 PMCID: PMC9835243 DOI: 10.1186/s12940-022-00930-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.
Collapse
Affiliation(s)
- Tracey J Woodruff
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA.
| | - Swati D G Rayasam
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA
| | | | - Patricia D Koman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Chartres
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | - Linda S Birnbaum
- National Institutes of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, NC, USA
- Duke University, Durham, NC, USA
| | - Phil Brown
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Courtney Cooper
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA
| | - Carl F Cranor
- Department of Philosophy, University of California, Riverside, Riverside, CA, USA
- Environmental Toxicology Graduate Program, College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, CA, USA
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | | | | | - Dale Hattis
- The George Perkins Marsh Institute, Clark University, Worcester, MA, USA
| | - Russ Hauser
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | - Juleen Lam
- Department of Public Health, California State University, East Bay, Hayward, CA, USA
| | - Jonathan I Levy
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | | | | | | | - Rachel Morello-Frosch
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Keeve E Nachman
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Johns Hopkins Risk Sciences and Public Policy Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Greylin H Nielsen
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Catherine Oksas
- School of Medicine, University of California, San Francisco, CA, USA
| | - Dimitri Panagopoulos Abrahamsson
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | | - Joshua F Robinson
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 490 Illinois Street, Floor 10, Box 0132, San Francisco, CA, 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ted Schettler
- Science and Environmental Health Network, Ames, IA, USA
| | - Rachel M Shaffer
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, USA
| | - Bhavna Shamasunder
- Department of Urban & Environmental Policy and Public Health, Occidental College, Los Angeles, CA, USA
| | | | - Kristin Shrader-Frechette
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Philosophy, University of Notre Dame, Notre Dame, IN, USA
| | - Gina M Solomon
- School of Medicine, University of California, San Francisco, CA, USA
- Public Health Institute, Oakland, CA, USA
| | - Wilma A Subra
- Louisiana Environmental Action Network, Baton Rouge, LA, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Julia R Varshavsky
- Department of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Roberta F White
- Department of Environmental Health, School of Public Health, Boston University, Boston, MA, USA
| | - Ken Zarker
- Washington State Department of Ecology, Olympia, WA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
9
|
Zheng J, Wang Y, Mao B, Li Y, Li J, Yang J, Meng Z, Luo B. The psychological status mediates the effect of indoor air pollution on recurrent spontaneous abortion. ENVIRONMENTAL RESEARCH 2022; 215:114220. [PMID: 36049508 DOI: 10.1016/j.envres.2022.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Indoor air pollution (IAP) exposure and psychological status have been recognized as important risk factors for adverse pregnancy outcomes, but their mediating effects on recurrent spontaneous abortion (RSA) have not been analyzed. Therefore, the purpose of this study is to explore the association between IAP and RSA and to examine the mediating effect of psychological status on their association. METHODS This study included 830 RSA cases and 2156 controls in Gansu province, China. The Self-Rating Anxiety Scale (SAS) and Self-Rating Depression Scale (SDS) questionnaires were used to collect information on participants' psychological status. The IAP exposure was collected by the survey on cooking fuel use, kitchen ventilation characteristics, cooking styles, and indoor smoking, etc. Multivariable logistic regression was used to examine the associations between IAP exposure and RSA. The mediation analysis was used to evaluate the mediation effects of IAP and psychological status on RSA while controlling for confounding. RESULTS Among these cases, 16.87% cooked with unclean cooking fuel (UCF) and 37.00% lacked cooking ventilation, which was much higher than the controls. Active smoking and the use of UCF were associated with RSA, with an odds ratio (OR) of 3.374 [95% confidence interval (CI): 1.510-7.541] and 1.822 (95% CI: 1.328-2.500), respectively. We found that the use of a range hood was a protective factor for RSA, with an OR of 0.590 (95% CI: 0.463-0.752). There was a significant mediation effect of depression on the association between IAP and RSA, which accounted for 5.61%-9.22% of the total effect of IAP on RSA. CONCLUSION The IAP may be an important risk factor for RSA, which may be intensified by the poor psychological status, and the use of ventilation equipment when cooking is a protective factor for RSA.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Yanxia Wang
- Department of Scientific Research Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Baohong Mao
- Department of Scientific Research Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Yamei Li
- Department of Scientific Research Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Jing Li
- Department of Scientific Research Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Jie Yang
- Department of Reproductive Medicine Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China
| | - Zhaoyan Meng
- Department of Reproductive Medicine Center of Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730030, PR China.
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, PR China.
| |
Collapse
|
10
|
Amolegbe SM, Lopez AR, Velasco ML, Carlin DJ, Heacock ML, Henry HF, Trottier BA, Suk WA. Adapting to Climate Change: Leveraging Systems-Focused Multidisciplinary Research to Promote Resilience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14674. [PMID: 36429393 PMCID: PMC9690097 DOI: 10.3390/ijerph192214674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Approximately 2000 official and potential Superfund sites are located within 25 miles of the East or Gulf coasts, many of which will be at risk of flooding as sea levels rise. More than 60 million people across the United States live within 3 miles of a Superfund site. Disentangling multifaceted environmental health problems compounded by climate change requires a multidisciplinary systems approach to inform better strategies to prevent or reduce exposures and protect human health. The purpose of this minireview is to present the National Institute of Environmental Health Sciences Superfund Research Program (SRP) as a useful model of how this systems approach can help overcome the challenges of climate change while providing flexibility to pivot to additional needs as they arise. It also highlights broad-ranging SRP-funded research and tools that can be used to promote health and resilience to climate change in diverse contexts.
Collapse
Affiliation(s)
- Sara M. Amolegbe
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | | | | | - Danielle J. Carlin
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Michelle L. Heacock
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Heather F. Henry
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - Brittany A. Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| | - William A. Suk
- Superfund Research Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Durham, NC 27709, USA
| |
Collapse
|
11
|
Hlisníková H, Nagyová M, Kolena B, Mlynček M, Trnovec T, Petrovičová I. The Joint Effect of Perceived Psychosocial Stress and Phthalate Exposure on Hormonal Concentrations during the Early Stage of Pregnancy: A Cross-Sectional Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9101561. [PMID: 36291497 PMCID: PMC9601203 DOI: 10.3390/children9101561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
Phthalates alter the hormonal balance in humans during pregnancy, potentially affecting embryonic and fetal development. We studied the joint effect of exposure to phthalates, quantified by urinary phthalate metabolite concentration, and perceived psychological stress on the concentration of hormones in pregnant women (n = 90) from the Nitra region, Slovakia, up to the 15th week of pregnancy. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to determine urinary concentrations of phthalates and serum concentrations of hormones, respectively. We used Cohen perceived stress scale (PSS) to evaluate the human perception of stressful situations. Our results showed that mono(carboxy-methyl-heptyl) phthalate (cx-MiNP) and a molar sum of di-iso-nonyl phthalate metabolites (ΣDiNP) were negatively associated with luteinizing hormone (LH) (p ≤ 0.05). Mono(hydroxy-methyl-octyl) phthalate (OH-MiNP) and the molar sum of high-molecular-weight phthalate metabolites (ΣHMWP) were positively associated with estradiol (p ≤ 0.05). PSS score was not significantly associated with hormonal concentrations. When the interaction effects of PSS score and monoethyl phthalate (MEP), cx-MiNP, ΣDiNP, and ΣHMWP on LH were analyzed, the associations were positive (p ≤ 0.05). Our cross-sectional study highlights that joint psychosocial stress and xenobiotic-induced stress caused by phthalates are associated with modulated concentrations of reproductive hormones in pregnant women.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
- Correspondence: ; Tel.: +421-37-6408-716
| | - Miroslava Nagyová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Miloš Mlynček
- Department of Nursing, Faculty of Social Sciences and Health Care, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 83101 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94974 Nitra-Chrenová, Slovakia
| |
Collapse
|
12
|
Peterson AK, Eckel SP, Habre R, Yang T, Faham D, Amin M, Grubbs BH, Farzan SF, Kannan K, Robinson M, Lerner D, Al-Marayati LA, Walker DK, Grant EG, Breton CV, Bastain TM. Detected prenatal perfluorooctanoic acid (PFOA) exposure is associated with decreased fetal head biometric parameters in participants experiencing higher perceived stress during pregnancy in the MADRES cohort. ENVIRONMENTAL ADVANCES 2022; 9:100286. [PMID: 36507367 PMCID: PMC9731234 DOI: 10.1016/j.envadv.2022.100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Perfluoroalkyl substances (PFAS) are ubiquitous synthetic chemicals with long half-lives and are known to cross the placenta during pregnancy. We examined the influence of maternal PFAS levels on in utero fetal growth trajectories and assessed whether maternal stress modified these associations. Methods Blood serum concentrations of five PFAS (PFOS, PFHxS, PFNA, PFOA, PFDA) were measured in 335 prenatal specimens (mean gestational age (GA): 21±9 weeks) in the MADRES cohort. Fetal growth outcomes (head circumference (HC), abdominal circumference (AC), biparietal diameter (BPD), femur length (FL), and estimated fetal weight (EFW)) were abstracted from ultrasound medical records and measured at the 3rd trimester study visit (N = 833 scans, GA range 10-42 weeks, mean 2.4 scans/participant). Adjusted linear mixed models with a GA quadratic growth curve were used for each PFAS exposure and growth outcome. PFOS and PFHxS were modeled continuously (100% sample detection), while PFOA, PFNA, and PFDA were modeled categorically (57-70% sample detection). Scores on the Perceived Stress Scale (PSS) measured in pregnancy were dichotomized at the median (<13 vs. ≥ 13) in stratified models. Results Participants were on average 29±6 years old and predominately Hispanic (76%). Median serum concentrations of PFOS, PFHxS, PFNA, PFOA and PFDA were 1.34, 1.10, 0.07, 0.12, and 0.04 ng/mL, respectively. Participants with detected PFOA concentrations had fetuses with -2.5 mm (95% CI -4.2, -0.8) smaller HC and-0.7 mm (95% CI -1.3, -0.2) smaller BPD on average for a fixed GA than those without detected PFOA concentrations. In models stratified by PSS level, the effects of PFOA on fetal growth parameters were stronger and only significant in participants with higher stress levels (HC: β= -3.5, 95% CI -5.8, -1.4; BPD: β = -0.8, 95% CI -1.6, -1.1). Conclusions Prenatal PFOA exposure adversely impacted fetal head biometric parameters in participants experiencing higher stress during pregnancy.
Collapse
Affiliation(s)
- Alicia K. Peterson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Sandrah P. Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Dema Faham
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Monica Amin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Brendan H. Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, 2020 Zonal Ave, Los Angeles, CA 90033, USA
| | - Shohreh F. Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, New York, NY 10016, USA
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, 145 East 32 Street, New York, NY 10016, USA
| | - Deborah Lerner
- Eisner Health, 1530 S Olive St, Los Angeles, CA 90015, USA
| | - Laila A. Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, 2020 Zonal Ave, Los Angeles, CA 90033, USA
| | - Daphne K. Walker
- Department of Radiology, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| | - Edward G. Grant
- Department of Radiology, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave # 2315, Los Angeles, CA 90089, USA
| | - Carrie V. Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| | - Theresa M. Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 North Soto Street Suite 102, Los Angeles, CA 90032, USA
| |
Collapse
|
13
|
Martenies SE, Zhang M, Corrigan AE, Kvit A, Shields T, Wheaton W, Bastain TM, Breton CV, Dabelea D, Habre R, Magzamen S, Padula AM, Him DA, Camargo CA, Cowell W, Croen LA, Deoni S, Everson TM, Hartert TV, Hipwell AE, McEvoy CT, Morello-Frosch R, O'Connor TG, Petriello M, Sathyanarayana S, Stanford JB, Woodruff TJ, Wright RJ, Kress AM. Associations between combined exposure to environmental hazards and social stressors at the neighborhood level and individual perinatal outcomes in the ECHO-wide cohort. Health Place 2022; 76:102858. [PMID: 35872389 PMCID: PMC9661655 DOI: 10.1016/j.healthplace.2022.102858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
Limited studies examine how prenatal environmental and social exposures jointly impact perinatal health. Here we investigated relationships between a neighborhood-level combined exposure (CE) index assessed during pregnancy and perinatal outcomes, including birthweight, gestational age, and preterm birth. Across all participants, higher CE index scores were associated with small decreases in birthweight and gestational age. We also observed effect modification by race; infants born to Black pregnant people had a greater risk of preterm birth for higher CE values compared to White infants. Overall, our results suggest that neighborhood social and environmental exposures have a small but measurable joint effect on neonatal indicators of health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dana Dabelea
- University of Colorado Anschutz Medical Campus, USA
| | | | | | | | | | | | | | - Lisa A Croen
- Kaiser Permanente Northern California Division of Research, USA
| | | | - Todd M Everson
- Rollins School of Public Health at Emory University, USA
| | | | | | | | | | | | - Michael Petriello
- Wayne State University, Institute of Environmental Health Sciences, USA
| | | | - Joseph B Stanford
- University of Utah, Departments of Family and Preventive Medicine and Pediatrics, USA
| | | | | | | |
Collapse
|
14
|
Eick SM, Enright EA, Padula AM, Aung M, Geiger SD, Cushing L, Trowbridge J, Keil AP, Gee Baek H, Smith S, Park JS, DeMicco E, Schantz SL, Woodruff TJ, Morello-Frosch R. Prenatal PFAS and psychosocial stress exposures in relation to fetal growth in two pregnancy cohorts: Applying environmental mixture methods to chemical and non-chemical stressors. ENVIRONMENT INTERNATIONAL 2022; 163:107238. [PMID: 35436721 PMCID: PMC9202828 DOI: 10.1016/j.envint.2022.107238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prenatal exposure to individual per‑ and poly‑fluoroalkyl substances (PFAS) and psychosocial stressors have been associated with reductions in fetal growth. Studies suggest cumulative or joint effects of chemical and non-chemical stressors on fetal growth. However, few studies have examined PFAS and non-chemical stressors together as a mixture, which better reflects real life exposure patterns. We examined joint associations between PFAS, perceived stress, and depression, and fetal growth using two approaches developed for exposure mixtures. METHODS Pregnant participants were enrolled in the Chemicals in Our Bodies cohort and Illinois Kids Development Study, which together make up the ECHO.CA.IL cohort. Seven PFAS were previously measured in 2nd trimester maternal serum samples and were natural log transformed for analyses. Perceived stress and depression were assessed using self-reported validated questionnaires, which were converted to t-scores using validated methods. Quantile g-computation and Bayesian kernel machine regression (BKMR) were used to assess joint associations between PFAS, perceived stress and depression t-scores and birthweight z-scores (N = 876). RESULTS Individual PFAS, depression and perceived stress t-scores were negatively correlated with birthweight z-scores. Using quantile g-computation, a simultaneous one quartile increase in all PFAS, perceived stress and depression t-scores was associated with a slight reduction in birthweight z-scores (mean change per quartile increase = -0.09, 95% confidence interval = -0.21,0.03). BKMR similarly indicated that cumulative PFAS and stress t-scores were modestly associated with lower birthweight z-scores. Across both methods, the joint association appeared to be distributed across multiple exposures rather than due to a single exposure. CONCLUSIONS Our study is one of the first to examine the joint effects of chemical and non-chemical stressors on fetal growth using mixture methods. We found that PFAS, perceived stress, and depression in combination were modestly associated were lower birthweight z-scores, which supports prior studies indicating that chemical and non-chemical stressors are jointly associated with adverse health outcomes.
Collapse
Affiliation(s)
- Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Elizabeth A Enright
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Max Aung
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California
| | - Sarah D Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Lara Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jessica Trowbridge
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyoung Gee Baek
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL USA; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Ish J, Gimeno Ruiz de Porras D, Symanski E, Ballester F, Casas M, Delclos GL, Guxens M, Ibarluzea J, Iñiguez C, Santa-Marina L, Swartz MD, Whitworth KW. Maternal occupational exposures and fetal growth in a Spanish birth cohort. PLoS One 2022; 17:e0264530. [PMID: 35390005 PMCID: PMC8989310 DOI: 10.1371/journal.pone.0264530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 01/14/2023] Open
Abstract
While the epidemiologic literature suggests certain maternal occupational exposures may be associated with reduced measures of size at birth, the occupational literature employing fetal biometry data to assess fetal growth is sparse. The present study examines associations between maternal occupational exposures and ultrasound-measured fetal growth. We included 1,739 singleton pregnancies from the INfancia y Medio Ambiente (INMA) project (2003-2008). At 32 weeks of pregnancy, interviewers ascertained mothers' employment status and assessed job-related physical loads, work schedules, and job strain during pregnancy. Job titles were linked to a job-exposure matrix to estimate exposure to 10 endocrine disrupting chemical (EDC) groups. We calculated z-scores from longitudinal growth curves representing trajectories from 0-12, 12-20 and 20-34 gestational weeks for abdominal circumference (AC), biparietal diameter (BPD), femur length (FL), and estimated fetal weight (EFW). Linear mixed models clustered by IMNA region (i.e., Gipuzkoa, Sabadell, Valencia) were used to examine associations between occupational exposures and fetal growth. Effect estimates are presented as percentage change in fetal growth. There was limited evidence of associations between work-related non-chemical stressors and fetal growth. We observed associations of similar magnitude between multiple EDC groups and decreased EFW trajectories during 20-34 gestational weeks (phthalates: -1.4% [-3.5, 0.6%]; alkylphenolic compounds (APCs): -1.1% [-2.3, 0.1%]; miscellaneous chemicals: -1.5% [-3.7, 0.8%]), while miscellaneous chemicals were associated with increased BPD from 12-20 weeks (2.1% [0.8, 3.5%]). Notably, 67% of women exposed to phthalates were hairdressers; 68% of women exposed to APCs worked as domestic cleaners. In conclusion, we found limited evidence that maternal occupational exposures impact fetal growth. Further research should consider the combined impact of multiple workplace exposures.
Collapse
Affiliation(s)
- Jennifer Ish
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health in San Antonio, San Antonio, TX, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - David Gimeno Ruiz de Porras
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health in San Antonio, San Antonio, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Elaine Symanski
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| | - Ferran Ballester
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Nursing, Universitat de València, Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I Universitat de València, València, Spain
| | - Maribel Casas
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ISGlobal, Barcelona, Spain
| | - George L. Delclos
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Center for Research in Occupational Health (CiSAL), Universitat Pompeu Fabra, Barcelona, Spain
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, United States of America
| | - Mònica Guxens
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ISGlobal, Barcelona, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jesús Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia, San Sebastian, Spain
- Health Department of the Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Spain
- Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Carmen Iñiguez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO–Universitat Jaume I Universitat de València, València, Spain
- Department of Statistics and Operational Research, Universitat de València, València, Spain
| | - Loreto Santa-Marina
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Environmental Epidemiology and Child Development Group, Biodonostia, San Sebastian, Spain
- Health Department of the Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Michael D. Swartz
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX, United States of America
| | - Kristina W. Whitworth
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
16
|
Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. The Exposome and Toxicology: A Win-Win Collaboration. Toxicol Sci 2022; 186:1-11. [PMID: 34878125 PMCID: PMC9019839 DOI: 10.1093/toxsci/kfab149] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of the exposome concept has been one of the hallmarks of environmental and health research for the last decade. The exposome encompasses the life course environmental exposures including lifestyle factors from the prenatal period onwards. It has inspired many research programs and is expected to influence environmental and health research, practices, and policies. Yet, the links bridging toxicology and the exposome concept have not been well developed. In this review, we describe how the exposome framework can interface with and influence the field of toxicology, as well as how the field of toxicology can help advance the exposome field by providing the needed mechanistic understanding of the exposome impacts on health. Indeed, exposome-informed toxicology is expected to emphasize several orientations including (1) developing approaches integrating multiple stressors, in particular chemical mixtures, as well as the interaction of chemicals with other stressors, (2) using mechanistic frameworks such as the adverse outcome pathways to link the different stressors with toxicity outcomes, (3) characterizing the mechanistic basis of long-term effects by distinguishing different patterns of exposures and further exploring the environment-DNA interface through genetic and epigenetic studies, and (4) improving the links between environmental and human health, in particular through a stronger connection between alterations in our ecosystems and human toxicology. The exposome concept provides the linkage between the complex environment and contemporary mechanistic toxicology. What toxicology can bring to exposome characterization is a needed framework for mechanistic understanding and regulatory outcomes in risk assessment.
Collapse
Affiliation(s)
- Robert Barouki
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
- Service de Biochimie métabolomique et protéomique, Hôpital Necker enfants malades, AP-HP, Paris, France
| | - Karine Audouze
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Christel Becker
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Xavier Coumoul
- Inserm UMR S-1124, Université de Paris, T3S, Paris F-75006, France
| | - Spyros Karakitsios
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Brno 60200, Czech Republic
- Faculty of Sports Studies, Masaryk University, Brno 62500, Czech Republic
| | - Denis Sarigiannis
- Center for Interdisciplinary Research and Innovation, HERACLES Research Center on the Exposome and Health, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
- Enve.X, Thessaloniki 55133, Greece
| |
Collapse
|
17
|
Eick SM, Goin DE, Cushing L, DeMicco E, Smith S, Park JS, Padula AM, Woodruff TJ, Morello-Frosch R. Joint effects of prenatal exposure to per- and poly-fluoroalkyl substances and psychosocial stressors on corticotropin-releasing hormone during pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:27-36. [PMID: 33824413 PMCID: PMC8492777 DOI: 10.1038/s41370-021-00322-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prenatal exposure to per- and poly-fluoroalkyl substances (PFAS) and psychosocial stressors has been associated with adverse pregnancy outcomes, including preterm birth. Previous studies have suggested that joint exposure to environmental chemical and social stressors may be contributing to disparities observed in preterm birth. Elevated corticotropin-releasing hormone (CRH) during mid-gestation may represent one biologic mechanism linking chemical and nonchemical stress exposures to preterm birth. METHODS Using data from a prospective birth cohort (N = 497), we examined the cross-sectional associations between five individual PFAS (ng/mL; PFNA, PFOA, PFOS, PFHxS, and Me-PFOSA-AcOH) and CRH (pg/mL) using linear regression. PFAS and CRH were measured during the second trimester in serum and plasma, respectively. Coefficients were standardized to reflect change in CRH associated with an interquartile range (IQR) increase in natural log-transformed PFAS. We additionally examined if the relationship between PFAS and CRH was modified by psychosocial stress using stratified models. Self-reported depression, stressful life events, perceived stress, food insecurity, and financial strain were assessed using validated questionnaires during the second trimester and included as binary indicators of psychosocial stress. RESULTS An IQR increase in PFNA was associated with elevated CRH (β = 5.17, 95% confidence interval [CI] = 1.79, 8.55). Increased concentrations of PFOA were also moderately associated with CRH (β = 3.62, 95% CI = -0.42, 7.66). The relationship between PFNA and CRH was stronger among women who experienced stressful life events, depression, food insecurity, and financial strain compared to women who did not experience these stressors. CONCLUSIONS This cross-sectional study is the first to examine the relationship between PFAS exposure and CRH levels in mid-gestation. We found that these associations were stronger among women who experienced stress, which aligns with previous findings that chemical and nonchemical stressor exposures can have joint effects on health outcomes.
Collapse
Affiliation(s)
- Stephanie M Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Dana E Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lara Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA, USA
| | - Amy M Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
18
|
Dufford AJ, Spann M, Scheinost D. How prenatal exposures shape the infant brain: Insights from infant neuroimaging studies. Neurosci Biobehav Rev 2021; 131:47-58. [PMID: 34536461 DOI: 10.1016/j.neubiorev.2021.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Brain development during the prenatal period is rapid and unparalleled by any other time during development. Biological systems undergoing rapid development are at higher risk for disorganizing influences. Therefore, certain prenatal exposures impact brain development, increasing risk for negative neurodevelopmental outcome. While prenatal exposures have been associated with cognitive and behavioral outcomes later in life, the underlying macroscopic brain pathways remain unclear. Here, we review magnetic resonance imaging (MRI) studies investigating the association between prenatal exposures and infant brain development focusing on prenatal exposures via maternal physical health factors, maternal mental health factors, and maternal drug and medication use. Further, we discuss the need for studies to consider multiple prenatal exposures in parallel and suggest future directions for this body of research.
Collapse
Affiliation(s)
| | - Marisa Spann
- Columbia University Irving Medical Center, 622 West 168th Street, New York, NY, 10032, USA
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Smith BL. Improving translational relevance: The need for combined exposure models for studying prenatal adversity. Brain Behav Immun Health 2021; 16:100294. [PMID: 34589787 PMCID: PMC8474200 DOI: 10.1016/j.bbih.2021.100294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Prenatal environmental adversity is a risk factor for neurodevelopmental disorders (NDDs), with the neuroimmune environment proposed to play a role in this risk. Adverse maternal exposures are associated with cognitive consequences in the offspring that are characteristics of NDDs and simultaneous neuroimmune changes that may underlie NDD risk. In both animal models and human studies the association between prenatal environmental exposure and NDD risk has been shown to be complex. Maternal overnutrition/obesity and opioid use are two different examples of complex exposure epidemics, each with their own unique comorbidities. This review will examine maternal obesity and maternal opioid use separately, illustrating the pervasive comorbidities with each exposure to argue a need for animal models of compound prenatal exposures. Many of these comorbidities can impact neuroimmune function, warranting systematic investigation of combined exposures to begin to understand this complexity. While traditional approaches in animal models have focused on modeling a single prenatal exposure or second exposure later in life, a translational approach would begin to incorporate the most prevalent co-occurring prenatal exposures. Long term follow-up in humans is extremely challenging, so animal models can provide timely insight into neurodevelopmental consequences of complex prenatal exposures. Animal models that represent this translational context of comorbid exposures behind maternal obesity or comorbid exposures behind maternal opioid use may reveal potential synergistic neuroimmune interactions that contribute to cognitive consequences and NDD risk. Finally, translational co-exposure models can identify concerning exposure combinations to guide treatment in complex cases, and identify high risk children starting in the prenatal period where early interventions improve prognosis.
Collapse
Affiliation(s)
- Brittany L. Smith
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
20
|
Gokoel AR, Shankar A, Abdoel Wahid F, Hindori-Mohangoo AD, Covert HH, Wickliffe JK, Harville EW, Zijlmans WCWR, Lichtveld MY. The Cumulative Risk of Prenatal Exposures to Chemical and Non-Chemical Stressors on Birth Outcomes in Suriname. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147683. [PMID: 34300134 PMCID: PMC8305475 DOI: 10.3390/ijerph18147683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/21/2023]
Abstract
The cumulative exposure to chemical and non-chemical stressors may have an impact on birth outcomes. The aim of this study is to examine the cumulative exposure of a mixture of chemicals (mercury, lead, selenium and tin) and non-chemical stressors (social support, perceived stress, probable depression and BMI) on birth outcomes (birthweight, gestational age at birth, and Apgar score at 5 min). The study population is a subset (n = 384) of the Caribbean Consortium for Research in Environmental and Occupational Health–MeKiTamara prospective cohort study. Associations between the latent chemical construct, non-chemical stressors and birth outcomes were assessed using path models. The results showed a significant direct relationship between perceived stress and birthweight (β = −0.17), however even though the relationship between perceived stress and depression was significant in all three path models (β = 0.61), the association between depression and birth outcomes was not significant. Perceived stress was significantly associated with community engagement (β = −0.12) and individual resilience (β = −0.12). BMI (β = 0.12) was also significantly directly associated with birthweight. The latent chemical construct did not show an association with the birth outcomes. Our data indicate the need for the development of a support system for pregnant women by involving them in prenatal care programs to reduce maternal stress, which may also influence depression and (in)directly improve the birth outcomes. Interventions regarding weight management for women of childbearing age are necessary to halt obesity and its negative effects on birth outcomes.
Collapse
Affiliation(s)
- Anisma R. Gokoel
- Scientific Research Center Suriname, Academic Hospital Paramaribo, Paramaribo, Suriname
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname;
- Correspondence:
| | - Arti Shankar
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Firoz Abdoel Wahid
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (F.A.W.); (M.Y.L.)
| | - Ashna D. Hindori-Mohangoo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (A.D.H.-M.); (H.H.C.)
- Foundation for Perinatal Interventions and Research in Suriname (Perisur), Paramaribo, Suriname
| | - Hannah H. Covert
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (A.D.H.-M.); (H.H.C.)
| | - Jeffrey K. Wickliffe
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Emily W. Harville
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Wilco C. W. R. Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname;
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; (A.D.H.-M.); (H.H.C.)
| | - Maureen Y. Lichtveld
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; (F.A.W.); (M.Y.L.)
| |
Collapse
|
21
|
Reducing Prenatal Exposure to Toxic Environmental Agents: ACOG Committee Opinion, Number 832. Obstet Gynecol 2021; 138:e40-e54. [PMID: 34259492 DOI: 10.1097/aog.0000000000004449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ABSTRACT There is emerging evidence that links exposure to toxic environmental agents and adverse reproductive and developmental health outcomes. Toxic exposures related to reproductive and developmental health primarily have been associated with infertility and miscarriage, obstetric outcomes such as preterm birth and low birth weight, neurodevelopmental delay such as autism and attention deficit hyperactivity disorder, and adult and childhood cancer. Although there is substantial overlap in the type of exposure and the associated health outcomes, for the purposes of this document, exposures generally can be grouped into the following categories: toxic chemicals, air pollution, and climate change-related exposures. Obstetric care clinicians do not need to be experts in environmental health science to provide useful information to patients and refer patients to appropriate specialists, if needed, when a hazardous exposure is identified. It is important for obstetrician-gynecologists and other obstetric care clinicians to become knowledgeable about toxic environmental exposures that are endemic to their specific geographic areas, such as local water safety advisories (eg, lead-contaminated water), local air quality levels, and patients' proximity to power plants and fracking sites. Although exposure to toxic environmental agents is widespread across populations, many environmental factors that are harmful to reproductive health disproportionately affect underserved populations and are subsumed in issues of environmental justice. Clinical encounters offer an opportunity to screen and counsel patients during the prepregnancy and prenatal periods-particularly individuals most disproportionately affected-about opportunities to reduce toxic environmental health exposures. This Committee Opinion is revised to integrate more recent literature regarding reducing prepregnancy and prenatal toxic environmental exposures.
Collapse
|
22
|
Smith GCS. Developing Novel Tests to Screen for Fetal Growth Restriction. Trends Mol Med 2021; 27:743-752. [PMID: 34147360 DOI: 10.1016/j.molmed.2021.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
Fetal growth restriction (FGR) is a major determinant of global morbidity and mortality. There is an unmet need for methods to stratify the pregnant population on the basis of FGR risk. Despite evolutionary divergence in mammalian reproduction, studies of genetically modified mice have identified biomarkers that have been validated in women, and a systematic screen for genes that control fetal growth in animals could help identify novel clinical biomarkers. Current approaches to biomarker identification using human samples include both targeted and discovery approaches (omics). Application of omic methods to the placenta and maternal blood has yielded promising results, but comes with logistical, experimental, and analytical challenges and all studies are limited by the lack of a gold standard for disease.
Collapse
Affiliation(s)
- Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge; NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
| |
Collapse
|
23
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
24
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
25
|
Ashrap P, Aker A, Watkins DJ, Mukherjee B, Rosario-Pabón Z, Vélez-Vega CM, Alshawabkeh A, Cordero JF, Meeker JD. Psychosocial status modifies the effect of maternal blood metal and metalloid concentrations on birth outcomes. ENVIRONMENT INTERNATIONAL 2021; 149:106418. [PMID: 33548848 PMCID: PMC7897320 DOI: 10.1016/j.envint.2021.106418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Metal exposure and psychosocial stress in pregnancy have each been associated with adverse birth outcomes, including preterm birth and low birth weight, but no study has examined the potential interaction between them. OBJECTIVES We examined the modifying effect of psychosocial stress on the association between metals and birth outcomes among pregnant women in Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) birth cohort study. METHODS In our analysis of 682 women from the PROTECT study, we measured 16 essential and non-essential metals in blood samples at two time points. We administered questionnaires to collect information on depression, perceived stress, social support, and life experience during pregnancy. Using K-means clustering, we categorized pregnant women into one of two groups: "good" and "poor" psychosocial status. We then evaluated whether the effect of blood metals (geometric average) on adverse birth outcomes (gestational age, preterm birth [overall and spontaneous], birth weight z-score, small for gestation [SGA], large for gestation [LGA]) vary between two clusters of women, adjusting for maternal age, maternal education, pre-pregnancy body mass index (BMI), and second-hand smoke exposure. RESULTS Blood manganese (Mn) was associated with an increased odds ratio (OR) of overall preterm birth (OR/interquartile range [IQR] = 2.76, 95% confidence interval [CI] = 1.25, 6.12) and spontaneous preterm birth (OR/IQR: 3.68, 95% CI: 1.20, 6.57) only among women with "poor" psychosocial status. The association between copper (Cu) and SGA was also statistically significant only among women having "poor" psychosocial status (OR/IQR: 2.81, 95% CI: 1.20, 6.57). We also observed associations between nickel (Ni) and preterm birth and SGA that were modified by psychosocial status during pregnancy. CONCLUSIONS Presence of "poor" psychosocial status intensified the adverse associations between Mn and preterm birth, Cu and SGA, and protective effects of Ni on preterm. This provides evidence that prenatal psychosocial stress may modify vulnerability to metal exposure.
Collapse
Affiliation(s)
- Pahriya Ashrap
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amira Aker
- Department of Health and Society, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, PR, United States
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, Boston, MA, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
26
|
Bloom MS, Valachovic EL, Begum TF, Kucklick JR, Brock JW, Wenzel AG, Wineland RJ, Cruze L, Unal ER, Newman RB. Association between gestational phthalate exposure and newborn head circumference; impacts by race and sex. ENVIRONMENTAL RESEARCH 2021; 195:110763. [PMID: 33516688 DOI: 10.1016/j.envres.2021.110763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Observational and experimental studies report associations between gestational phthalate exposure and fetal development, yet few data exist to characterize phthalate effects on head circumference (HC) or to estimate the impact of race or sex. To address this data gap, we enrolled 152 African American and 158 white mothers with uncomplicated singleton pregnancies from the Charleston, South Carolina (USA) metropolitan area in a prospective birth cohort. Study participants provided up to two urine specimens during mid and late gestation, completed a study questionnaire, and allowed access to hospital birth records. We measured eight phthalate monoester metabolites using liquid chromatography with tandem mass spectrometry, and calculated molar sums of phthalate parent diesters. After specific gravity correction, we tested for associations between phthalates and neonatal HC (cm) and cephalization index (cm/g) using multiple informant linear regression with inverse probability weighting to account for selection bias between repeated urine sampling, adjusted for maternal race, age, body mass index, education, and smoking. We explored interactions by maternal race and infant sex. A doubling of urinary monoethyl phthalate (MEP) concentration was associated with a -0.49% (95%CI: -0.95%, -0.02%) smaller head circumference, although seven other phthalate metabolites were null. There were no statistically significant associations with cephalization index. HC was larger for whites than African American newborns (p < 0.0001) but similar for males and females (p = 0.16). We detected interactions for maternal race with urinary monobutyl phthalate (MBP; p = 0.03), monobenzyl phthalate (MBzP; p = 0.01), monoethylhexyl phthalate (MEHP; p = 0.05), monomethyl phthalate (MMP; p = 0.02), and the sum of dibutyl phthalate metabolites (∑DBP; p = 0.05), in which reduced HC circumference associations were stronger among whites than African Americans, and interactions for sex with MBP (p = 0.08) and MiBP (p = 0.03), in which associations were stronger for females than males. Our results suggest that gestational phthalate exposure is associated with smaller neonatal HC and that white mothers and female newborns have greater susceptibility.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA, USA.
| | - Edward L Valachovic
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Thoin F Begum
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina Asheville, Asheville, NC, USA
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
27
|
Eick SM, Enright EA, Geiger SD, Dzwilewski KLC, DeMicco E, Smith S, Park JS, Aguiar A, Woodruff TJ, Morello-Frosch R, Schantz SL. Associations of Maternal Stress, Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFAS), and Demographic Risk Factors with Birth Outcomes and Offspring Neurodevelopment: An Overview of the ECHO.CA.IL Prospective Birth Cohorts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E742. [PMID: 33467168 PMCID: PMC7830765 DOI: 10.3390/ijerph18020742] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Infants whose mothers experience greater psychosocial stress and environmental chemical exposures during pregnancy may face greater rates of preterm birth, lower birth weight, and impaired neurodevelopment. METHODS ECHO.CA.IL is composed of two cohorts, Chemicals in Our Bodies (CIOB; n = 822 pregnant women and n = 286 infants) and Illinois Kids Development Study (IKIDS; n = 565 mother-infant pairs), which recruit pregnant women from San Francisco, CA and Urbana-Champaign, IL, respectively. We examined associations between demographic characteristics and gestational age, birth weight z-scores, and cognition at 7.5 months across these two cohorts using linear models. We also examined differences in biomarkers of exposure to per- and polyfluoroalkyl substances (PFAS), measured in second-trimester serum, and psychosocial stressors by cohort and participant demographics. RESULTS To date, these cohorts have recruited over 1300 pregnant women combined. IKIDS has mothers who are majority white (80%), whereas CIOB mothers are racially and ethnically diverse (38% white, 34% Hispanic, 17% Asian/Pacific Islander). Compared to CIOB, median levels of PFOS, a specific PFAS congener, are higher in IKIDS (2.45 ng/mL versus 1.94 ng/mL), while psychosocial stressors are higher among CIOB. Across both cohorts, women who were non-white and single had lower birth weight z-scores relative to white women and married women, respectively. Demographic characteristics are not associated with cognitive outcomes at 7.5 months. CONCLUSIONS This profile of the ECHO.CA.IL cohort found that mothers and their infants who vary in terms of socioeconomic status, race/ethnicity, and geographic location are similar in many of our measures of exposures and cognitive outcomes. Similar to past work, we found that non-white and single women had lower birth weight infants than white and married women. We also found differences in levels of PFOS and psychosocial stressors based on geographic location.
Collapse
Affiliation(s)
- Stephanie M. Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (E.D.); (T.J.W.); (R.M.-F.)
| | - Elizabeth A. Enright
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; (S.D.G.); (K.L.C.D.); (A.A.); (S.L.S.)
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Sarah D. Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; (S.D.G.); (K.L.C.D.); (A.A.); (S.L.S.)
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Kelsey L. C. Dzwilewski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; (S.D.G.); (K.L.C.D.); (A.A.); (S.L.S.)
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (E.D.); (T.J.W.); (R.M.-F.)
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA; (S.S.); (J.-S.P.)
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, CA 94710, USA; (S.S.); (J.-S.P.)
| | - Andrea Aguiar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; (S.D.G.); (K.L.C.D.); (A.A.); (S.L.S.)
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL 61802, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (E.D.); (T.J.W.); (R.M.-F.)
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA; (E.D.); (T.J.W.); (R.M.-F.)
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Susan L. Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; (S.D.G.); (K.L.C.D.); (A.A.); (S.L.S.)
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Champaign, IL 61802, USA
| |
Collapse
|
28
|
Goin DE, Izano MA, Eick SM, Padula AM, DeMicco E, Woodruff TJ, Morello-Frosch R. Maternal Experience of Multiple Hardships and Fetal Growth: Extending Environmental Mixtures Methodology to Social Exposures. Epidemiology 2021; 32:18-26. [PMID: 33031217 PMCID: PMC7708528 DOI: 10.1097/ede.0000000000001272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Women can be exposed to a multitude of hardships before and during pregnancy that may affect fetal growth, but previous approaches have not analyzed them jointly as social exposure mixtures. METHODS We evaluated the independent, mutually adjusted, and pairwise joint associations between self-reported hardships and birthweight for gestational age z-scores in the Chemicals in Our Bodies-2 prospective birth cohort (N = 510) using G-computation. We examined financial hardship, food insecurity, job strain, poor neighborhood environment, low community standing, caregiving, high burden of stressful life events, and unplanned pregnancy collected via questionnaire administered in the second trimester of pregnancy. We used propensity scores to ensure our analyses had sufficient data support and estimated absolute differences in outcomes. RESULTS Food insecurity was most strongly associated with reduced birthweight for gestational age z-scores individually, with an absolute difference of -0.16, 95% confidence interval (CI) -0.45, 0.14. We observed an unexpected increase in z-scores associated with poor perceived neighborhood environment (0.18, 95% CI -0.04, 0.41). Accounting for coexposures resulted in similar findings. The pairwise joint effects were strongest for food insecurity in combination with unplanned pregnancy (-0.45, 95% CI -0.93, 0.02) and stressful life events (-0.42, 95% CI -0.90, 0.05). Poor neighborhood environment in combination with caregiving was associated with an increase in z-scores (0.47, 95% CI -0.01, 0.95). CONCLUSIONS Our results are consistent with the hypothesis that experiencing food insecurity during pregnancy, alone and in combination with stressful life events and unplanned pregnancy, may affect fetal growth.
Collapse
Affiliation(s)
- Dana E. Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Science, School of Medicine, University of California, San Francisco
| | | | - Stephanie M. Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Science, School of Medicine, University of California, San Francisco
| | - Amy M. Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Science, School of Medicine, University of California, San Francisco
| | - Erin DeMicco
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Science, School of Medicine, University of California, San Francisco
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Science, School of Medicine, University of California, San Francisco
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, and Management & School of Public Health, University of California, Berkeley
| |
Collapse
|
29
|
Lindström L, Ageheim M, Axelsson O, Hussain-Alkhateeb L, Skalkidou A, Bergman E. Swedish intrauterine growth reference ranges of biometric measurements of fetal head, abdomen and femur. Sci Rep 2020; 10:22441. [PMID: 33384446 PMCID: PMC7775468 DOI: 10.1038/s41598-020-79797-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/11/2020] [Indexed: 11/30/2022] Open
Abstract
Ultrasonic assessment of fetal growth is an important part of obstetric care to prevent adverse pregnancy outcome. However, lack of reliable reference ranges is a major barrier for accurate interpretation of the examinations. The aim of this study was to create updated Swedish national reference ranges for intrauterine size and growth of the fetal head, abdomen and femur from gestational week 12 to 42. This prospective longitudinal multicentre study included 583 healthy pregnant women with low risk of aberrant fetal growth. Each woman was examined up to five times with ultrasound from gestational week 12 + 3 to 41 + 6. The assessed intrauterine fetal biometric measurements were biparietal diameter (outer–inner), head circumference, mean abdominal diameter, abdominal circumference and femur length. A two-level hierarchical regression model was employed to account for the individual measurements of the fetus and the number of repeated visits for measurements while accounting for the random effect of the identified parameterization of gestational age. The expected median and variance, expressed in both standard deviations and percentiles, for each individual biometric measurement was calculated. The presented national reference ranges can be used for assessment of intrauterine size and growth of the fetal head, abdomen and femur in the second and third trimester of pregnancy.
Collapse
Affiliation(s)
- Linda Lindström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Mårten Ageheim
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Ove Axelsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Laith Hussain-Alkhateeb
- Global Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Jussila H, Pelto J, Korja R, Ekholm E, Pajulo M, Karlsson L, Karlsson H. The association of maternal-fetal attachment with smoking and smoking cessation during pregnancy in The FinnBrain Birth Cohort Study. BMC Pregnancy Childbirth 2020; 20:741. [PMID: 33256653 PMCID: PMC7708161 DOI: 10.1186/s12884-020-03393-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/04/2020] [Indexed: 11/20/2022] Open
Abstract
Background Smoking in pregnancy constitutes a preventable risk factor for fetal/child development and maternal-fetal attachment (MFA) seems to contain a momentum that can break the chain of adverse outcomes by promoting maternal prenatal health practices. This study aimed to explore the association of MFA with smoking at any time during pregnancy and smoking cessation in early pregnancy, and the modifying role of MFA on the expected effects of education and prenatal psychological distress (PPD) on prenatal smoking behavior. Methods The pregnant women (n = 3766) participated in the The FinnBrain Birth Cohort Study in Finland between December 2011 and April 2015. The binary outcomes, smoking at any time during pregnancy and smoking cessation in early pregnancy, were obtained from self-reports at gestational weeks (gwks) 14 and 34 and The Finnish Medical Birth Register. MFA was assessed with the Maternal-Fetal Attachment Scale (MFAS) at gwks 24 and 34. Logistic regression analyses were used to determine the association between MFA and maternal prenatal smoking behavior. Findings The prevalence of smoking was 16.5%, and 58.1% of the smokers quit smoking during pregnancy. The independent associations of total MFA scores with prenatal smoking behavior were not established (aOR = 1.00-1.02, multiplicity adjusted p > 0.05). A higher score in the altruistic subscale of MFA, Giving of self, associated with a higher probability of smoking cessation (24 gwks: aOR = 1.13, 95% CI [1.04, 1.24], p = 0.007, multiplicity adjusted p = 0.062; 34 gwks: aOR = 1.17, 95% CI [1.07, 1.29], p < 0.001, multiplicity adjusted p = 0.008). The modifying effect of MFA on the observed associations between PPD and smoking in pregnancy and between maternal education and smoking in pregnancy / smoking cessation in early pregnancy was not demonstrated. Conclusions The altruistic dimension of maternal-fetal attachment associates with an increased probability of smoking cessation during pregnancy and therefore strengthening altruistic maternal-fetal attachment may constitute a promising novel approach for interventions aiming at promoting smoking cessation during pregnancy.
Collapse
Affiliation(s)
- Heidi Jussila
- Doctoral Programme of Clinical Investigation, Department of Child Psychiatry, University of Turku, Turku, Finland. .,FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.
| | - Juho Pelto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland
| | - Riikka Korja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.,Department of Psychology , University of Turku , Turku, Finland
| | - Eeva Ekholm
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.,Department of Obstetrics and Gynecology , Turku University Hospital , Turku, Finland
| | - Marjukka Pajulo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.,Department of Child Psychiatry , University of Turku , Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.,Centre for Population Health Research , University of Turku and Turku University Hospital , Turku, Finland.,Department of Child Psychiatry , Turku University Hospital and University of Turku , Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Lemminkäisenkatu 3, 20014, Turku, Finland.,Department of Psychiatry , Turku University Hospital and University of Turku , Turku, Finland
| |
Collapse
|
31
|
Eick SM, Goin DE, Chartres N, Lam J, Woodruff TJ. Assessing risk of bias in human environmental epidemiology studies using three tools: different conclusions from different tools. Syst Rev 2020; 9:249. [PMID: 33121530 PMCID: PMC7596989 DOI: 10.1186/s13643-020-01490-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Systematic reviews are increasingly prevalent in environmental health due to their ability to synthesize evidence while reducing bias. Different systematic review methods have been developed by the US National Toxicology Program's Office of Health Assessment and Translation (OHAT), the US Environmental Protection Agency's (EPA) Integrated Risk Information System (IRIS), and by the US EPA under the Toxic Substances Control Act (TSCA), including the approach to assess risk of bias (ROB), one of the most vital steps which is used to evaluate internal validity of the studies. Our objective was to compare the performance of three tools (OHAT, IRIS, TSCA) in assessing ROB. METHODS We selected a systematic review on polybrominated diphenyl ethers and intelligence quotient and/or attention deficit hyperactivity disorder because it had been endorsed by the National Academy of Sciences. Two reviewers followed verbatim instructions from the tools and independently applied each tool to assess ROB in 15 studies previously identified. We documented the time to apply each tool and the impact the ROB ratings for each tool had on the final rating of the quality of the overall body of evidence. RESULTS The time to complete the ROB assessments varied widely (mean = 20, 32, and 40 min per study for the OHAT, IRIS, and TSCA tools, respectively). All studies were rated overall "low" or "uninformative" using IRIS, due to "deficient" or "critically deficient" ratings in one or two domains. Similarly, all studies were rated "unacceptable" using the TSCA tool because of one "unacceptable" rating in a metric related to statistical power. Approximately half of the studies had "low" or "probably low ROB" ratings across all domains with the OHAT and Navigation Guide tools. CONCLUSIONS Tools that use overall ROB or study quality ratings, such as IRIS and TSCA, may reduce the available evidence to assess the harms of environmental exposures by erroneously excluding studies, which leads to inaccurate conclusions about the quality of the body of evidence. We recommend using ROB tools that circumvents these issues, such as OHAT and Navigation Guide. SYSTEMATIC REVIEW REGISTRATION This review has not been registered as it is not a systematic review.
Collapse
Affiliation(s)
- Stephanie M Eick
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Dana E Goin
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Juleen Lam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA.,Department of Health Sciences, California State University, East Bay, Hayward, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA.
| |
Collapse
|
32
|
Aker A, McConnell RER, Loch-Caruso R, Park SK, Mukherjee B, Rosario ZY, Vélez-Vega CM, Huerta-Montanez G, Alshawabkeh AN, Cordero JF, Meeker JD. Interactions between chemicals and non-chemical stressors: The modifying effect of life events on the association between triclocarban, phenols and parabens with gestational length in a Puerto Rican cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134719. [PMID: 31785910 PMCID: PMC6957748 DOI: 10.1016/j.scitotenv.2019.134719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 04/13/2023]
Abstract
BACKGROUND Phenols and parabens are common additives to consumer products. There is evidence of adverse birth outcomes in association with prenatal exposure to these chemicals, in addition to psychosocial factors. We previously reported an increase in gestational length with bisphenol-A, methylparaben and propylparaben, and a decrease in gestational length with triclocarban. OBJECTIVES We examined the modifying effect of psychosocial stress on the association between chemicals and gestational length in up to 752 women among a pregnancy cohort study. METHODS Urinary biomarkers were measured at up to three time points in pregnancy. Multiple linear regression models were conducted to investigate the association between gestational length and the interaction between average exposure biomarkers and LES. Multiple linear regression models regressing the exposure biomarkers in relation to gestational length were also stratified by LES, Negative LES, and Positive LES, based on the subjective ratings of events. Results were transformed into the change in gestational length for an inter-quartile-range difference in the exposure. RESULTS Of the four psychosocial stress measures, only the life events score (LES) was a significant modifier. Associations between triclocarban, bisphenol-S, methyl- and propylparaben in relation to gestational length were stronger among women with negative Total LES scores. Among women with negative Total LES scores, bisphenol-S and triclocarban were associated with a 3-5 day decrease in gestational length [(-3.15; 95% CI: -6.06, -0.24); (-4.68; 95% CI: -8.47, -0.89)], whereas methylparaben and propylparaben were associated with a 2-3 day increase in gestational length [(2.21; 95% CI: 0.02, 4.40); (2.92; 95% CI: 0.58, 5.26)]. Significant interactions were driven by negative life events, but the association with triclocarban was driven by few positive life events. CONCLUSIONS Associations between exposure biomarkers and gestational length were stronger in the presence of negative life events. This provides evidence that stress makes the body more vulnerable to chemical exposure.
Collapse
Affiliation(s)
- Amira Aker
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Rafael E Rios McConnell
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Bhramar Mukherjee
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Zaira Y Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Carmen M Vélez-Vega
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | | | | | - José F Cordero
- College of Public Health, Athens, University of Georgia, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Schechter J, Do EK, Zhang J(J, Hoyo C, Murphy SK, Kollins SH, Fuemmeler B. Effect of Prenatal Smoke Exposure on Birth Weight: The Moderating Role of Maternal Depressive Symptoms. Nicotine Tob Res 2020; 22:40-47. [PMID: 30590728 PMCID: PMC7297019 DOI: 10.1093/ntr/nty267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Both prenatal smoke exposure and depression have been linked to lower birth weight, a risk factor for morbidity and mortality. Few studies have looked at the interaction between these risk factors and none have used a biomarker to objectively measure prenatal smoke exposure. The current study sought to examine independent and interactive effects of cotinine and depression on birth weight. The effect of race was also explored. METHOD Data were drawn from a prospective study of pregnant women (N = 568) in the southeastern United States. Maternal demographic, health information, depressive symptoms, and birth data were collected via self-report and medical record abstraction. Prenatal blood samples were assayed for cotinine. RESULTS Controlling for covariates, multiple regression analyses indicated that both cotinine and depressive symptoms independently predicted lower birth weight and a significant interaction was also observed. Upon probing the interaction, a negative association between cotinine levels and birth weight was found in the context of higher depression but not lower depression scores. Similarly, logistic regression analyses revealed a significant interaction between cotinine and depression, such that cotinine predicted having a baby less than 2500 g among women who fell above the indicated cutoff score. African American women had the highest levels of cotinine and lowest weight babies; however, race was not a significant moderator. CONCLUSIONS Results suggest prenatal smoke exposure has a greater negative effect on birth weight for women endorsing co-occurring depressive symptoms. Findings can inform targeted interventions and assist medical providers with identifying women at increased risk for poor perinatal outcomes. IMPLICATIONS Despite the common occurrence of smoking during pregnancy and prenatal depression, the interaction between these risk factors on birth weight has rarely been examined. Further, the extant results have been mixed, likely due in part to difficulties in measurement. The current study was the first to use prenatal cotinine to assess bias-free, continuous levels of prenatal smoke exposure. Results indicate that prenatal cotinine was a significant predictor of birth weight only in the context of maternal depressive symptoms. These findings have important implications for mitigating negative perinatal outcomes for pregnant women and their children.
Collapse
Affiliation(s)
- Julia Schechter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Elizabeth K Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, NC
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC
| | - Scott H Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC
| | - Bernard Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
34
|
Lu Y, Ji B, Zhao G, Dai J, Sakurai R, Liu Y, Mou Q, Xie Y, Zhang Q, Xu S, Rehan VK. Comparison of Protective Effects of Electroacupuncture at ST 36 and LU 5 on Pulmonary and Hypothalamic Pituitary Adrenal Axis Changes in Perinatal Nicotine-Exposed Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3901528. [PMID: 32090085 PMCID: PMC6996710 DOI: 10.1155/2020/3901528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Maternal smoking and/or exposure to environmental tobacco smoke continue to be significant factors in fetal and childhood morbidity and are a serious public health issue worldwide. Nicotine passes through the placenta easily with minimal biotransformation, entering fetal circulation, where it results in many harmful effects on the developing offspring, especially on the developing respiratory system. OBJECTIVES Recently, in a rat model, electroacupuncture (EA) at maternal acupoints ST 36 has been shown to block perinatal nicotine-induced pulmonary damage; however, the underlying mechanism and the specificity of ST 36 acupoints for this effect are unknown. Here, we tested the hypothesis that compared with EA at ST 36, EA at LU 5 acupoints, which are on lung-specific meridian, will be equally or more effective in preventing perinatal nicotine-induced pulmonary changes. METHODS Twenty-four pregnant rat dams were randomly divided into 4 groups: saline ("S"), nicotine ("N"), nicotine + ST 36 (N + ST 36), and nicotine + LU 5 (N + LU 5) groups. Nicotine (1 mg/kg, subcutaneously) and EA (at ST 36 or LU 5 acupoints, bilaterally) were administered from embryonic day 6 to postnatal day 21 once daily. The "S" group was injected saline. As needed, using ELISA, western analysis, q-RT-PCR, lung histopathology, maternal and offspring hypothalamic pituitary adrenal axes, offspring key lung developmental markers, and lung morphometry were determined. RESULTS With nicotine exposure, alveolar count decreased, but mean linear intercept and septal thickness increased. It also led to a decrease in pulmonary function and PPARγ and an increase of β-catenin and glucocorticoid receptor expression in lung tissue and corticosterone in the serum of offspring rats. Electroacupuncture at ST 36 normalized all of these changes, whereas EA at LU 5 had no obvious effect. CONCLUSION Electroacupuncture applied to ST 36 acupoints provided effective protection against perinatal nicotine-induced lung changes, whereas EA applied at LU 5 acupoints was ineffective, suggesting mechanistic specificity and HPA axis' involvement in mediating EA at ST 36 acupoints' effects in mitigating perinatal nicotine-induced pulmonary phenotype. This opens the possibility that other acupoints, besides ST 36, can have similar or even more robust beneficial effects on the developing lung against the harmful effect of perinatal nicotine exposure. The approach proposed by us is simple, cheap, quick, easy to administer, and is devoid of any significant side effects.
Collapse
Affiliation(s)
- Yawen Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guozhen Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Dai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiujie Mou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Virender Kumar Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
35
|
Padula AM, Monk C, Brennan PA, Borders A, Barrett ES, McEvoy C, Foss S, Desai P, Alshawabkeh A, Wurth R, Salafia C, Fichorova R, Varshavsky J, Kress A, Woodruff TJ, Morello-Frosch R. A review of maternal prenatal exposures to environmental chemicals and psychosocial stressors-implications for research on perinatal outcomes in the ECHO program. J Perinatol 2020; 40:10-24. [PMID: 31616048 PMCID: PMC6957228 DOI: 10.1038/s41372-019-0510-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
Exposures to environmental chemicals and psychosocial stressors during pregnancy have been individually associated with adverse perinatal outcomes related to birthweight and gestational age, but are not often considered in combination. We review types of psychosocial stressors and instruments used to assess them and classes of environmental chemical exposures that are known to adversely impact perinatal outcomes, and identify studies relevant studies. We discuss the National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) program that has combined existing longitudinal cohorts that include more than 50,000 children across the U.S. We describe future opportunities for investigators to use this important new resource for addressing relevant and critical research questions to maternal health. Of the 84 cohorts in ECHO, 38 collected data on environmental chemicals and psychosocial stressors and perinatal outcomes. The diverse ECHO pregnancy cohorts provide capacity to compare regions with distinct place-based environmental and social stressors.
Collapse
Affiliation(s)
- Amy M. Padula
- University of California San Francisco, San Francisco, CA
USA
| | | | | | - Ann Borders
- North Shore University Health System, Evanston, IL,
USA
| | | | | | - Sophie Foss
- Columbia University Medical Center, New York, NY, USA
| | - Preeya Desai
- Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Raina Fichorova
- Brigham and Women’s Hospital and Harvard Medical
School, Boston, MA, USA
| | | | - Amii Kress
- Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
Spurgeon DJ. Higher than … or lower than ….? Evidence for the validity of the extrapolation of laboratory toxicity test results to predict the effects of chemicals and ionising radiation in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105757. [PMID: 29970267 DOI: 10.1016/j.jenvrad.2018.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Single species laboratory tests and associated species sensitivity distributions (SSDs) that utilise the resulting data can make a key contribution to efforts to prospective hazard assessments for pesticides, biocides, metals and ionising radiation for research and regulatory risk assessment. An assumption that underlies the single species based toxicity testing approach when combined in SSD models is that the assessments of sensitivities to chemical and ionising radiation measured across a range of species in the laboratory can inform on the likely effects on communities present in the field. Potential issues with the validity of this assumption were already recognised by Van Straalen and Denneman (1989) in their landmark paper on the SSD methodology. In this work, they identified eight major factors that could potentially compromise the extrapolation of laboratory toxicity data to the field. Factors covered a range of issues related to differences in chemistry (e.g. bioavailability, mixtures); environmental conditions (optimal, variable), ecological (compensatory, time-scale) and population genetic structure (adaptation, meta-population dynamics). This paper outlines the evidence pertaining to the influence of these different factors on toxicity in the laboratory as compared to the field focussing especially on terrestrial ecosystems. Through radiological and ecotoxicological research, evidence of the influence of each factor on the translation of observed toxicity from the laboratory to field is available in all cases. The importance of some factors, such as differences in chemical bioavailability between laboratory tests and the field and the ubiquity of exposure to mixtures is clearly established and has some relevance to radiological protection. However, other factors such as the differences in test conditions (optimal vs sub-optimal) and the development of tolerance may be relevant on a case by case basis. When SSDs generated from laboratory tests have been used to predict chemical and ionising radiation effects in the field, results have indicated that they may often seem to under-predict impacts, although this may also be due to other factors such as the effects of other non-chemical stressors also affecting communities at polluted sites. A better understanding of the main factors affecting this extrapolation can help to reduce uncertainty during risk assessment.
Collapse
Affiliation(s)
- David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK.
| |
Collapse
|
37
|
Ferguson KK, Rosen EM, Barrett ES, Nguyen RHN, Bush N, McElrath TF, Swan SH, Sathyanarayana S. Joint impact of phthalate exposure and stressful life events in pregnancy on preterm birth. ENVIRONMENT INTERNATIONAL 2019; 133:105254. [PMID: 31675562 PMCID: PMC6924167 DOI: 10.1016/j.envint.2019.105254] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Urinary phthalate metabolites and psychosocial stress in pregnancy have each been associated with preterm birth (PTB), but no study has examined the joint impact of these two environmental exposures. We hypothesized that there would be stronger associations between phthalate exposure and PTB in mothers with higher stress in pregnancy compared to mothers with lower stress. METHODS We addressed this question using data from The Infant Development and the Environment Study (TIDES), a prospective birth cohort conducted at four US sites (N = 783). We examined urinary phthalate metabolite concentrations measured in samples collected from up to three trimesters of pregnancy. Mothers reported their exposure to stressful life events (SLE) in each trimester in a questionnaire administered in the third trimester. PTB was defined as delivery before 37 weeks completed gestation (n = 71, 9.1%). We examined associations between urinary phthalate metabolite concentrations (individual time points and on average) and PTB using logistic regression models adjusted for maternal race, age, pre-pregnancy body mass index, education, specific gravity, and gestational age at sample collection. In addition, we created models stratified by whether or not mothers were exposed to any or no SLE in pregnancy. RESULTS Summed di-2-ethylhexyl phthalate (ΣDEHP) metabolites measured in urine samples from the third trimester, but not the first trimester, were associated with an increased odds ratio (OR) of PTB (OR = 1.44, 95% confidence interval [CI] = 1.06, 1.95). In models stratified by SLE, associations between third trimester ΣDEHP concentrations and PTB were significant only for women experiencing one or more SLE during pregnancy (OR for ΣDEHP: 2.09, 95% CI: 1.29, 3.37) but not for women with no SLE during pregnancy (OR for ΣDEHP: 1.04, 95% CI: 0.66, 1.63) (p for interaction = 0.07). CONCLUSIONS We observed an association between urinary ΣDEHP levels and PTB that was modified by whether a mother was exposed to one or more psychosocial stressors during pregnancy. Additional research to understand the joint impacts of chemical and non-chemical exposures, with an emphasis on timing of exposure, is needed in order to advance the state of the science on how the environment influences pregnancy.
Collapse
Affiliation(s)
- Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nicole Bush
- Department of Psychiatry and Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Casey JA, Goin DE, Rudolph KE, Schwartz BS, Mercer D, Elser H, Eisen EA, Morello-Frosch R. Unconventional natural gas development and adverse birth outcomes in Pennsylvania: The potential mediating role of antenatal anxiety and depression. ENVIRONMENTAL RESEARCH 2019; 177:108598. [PMID: 31357155 PMCID: PMC6726131 DOI: 10.1016/j.envres.2019.108598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Studies have reported associations between unconventional natural gas development (UNGD) and adverse birth outcomes. None have evaluated potential mediating mechanisms. OBJECTIVES To evaluate associations between (1) UNGD and antenatal anxiety and depression and (2) antenatal anxiety and depression and preterm birth (<37 weeks gestation) and reduced term birth weight, (3) stochastic direct and indirect effects of UNGD on preterm birth and term birth weight operating through antenatal anxiety and depression, and (4) effect modification by family-level socioeconomic status. METHODS This retrospective cohort study included mothers without prevalent anxiety or depression at time of conception, who delivered at Geisinger in Pennsylvania between January 2009-January 2013. We assembled phase-specific UNGD activity data from public sources. Mothers were categorized as exposed (quartile 4) or unexposed (quartiles 1-3) based on average daily inverse distance-squared UNGD activity metric between conception and the week prior to anxiety or depression (cases) or the pregnancy-average daily metric (non-cases). We estimated associations with a doubly robust estimator (targeted minimum loss-based estimation) and adjusted for potential individual- and community-level confounding variables. RESULTS Analyses included 8,371 births to 7,715 mothers, 12.2% of whom had antenatal anxiety or depression. We found 4.3 additional cases of antenatal anxiety or depression per 100 women (95% CI: 1.5, 7.0) under the scenario where all mothers lived in the highest quartile of UNGD activity versus quartiles 1-3. The risk difference appeared larger among mothers receiving Medical Assistance (indicator of low family income) compared to those who did not, 5.6 (95% CI: 0.5, 10.6) versus 2.9 (95% CI: -0.7, 6.5) additional cases of antenatal anxiety or depression per 100 women. We found no relationship between antenatal anxiety or depression and adverse birth outcomes and no mediation effect either overall or when stratifying by Medical Assistance. CONCLUSION We observed a relationship between UNGD activity and antenatal anxiety and depression, which did not mediate the overall association between UNGD activity and adverse birth outcomes.
Collapse
Affiliation(s)
- Joan A Casey
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Dana E Goin
- Division of Epidemiology, School of Public Health, University of California, Berkeley, USA
| | - Kara E Rudolph
- Department of Emergency Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA; Johns Hopkins School of Medicine, Department of Medicine, Baltimore, MD, USA
| | - Dione Mercer
- Department of Epidemiology and Health Services Research, Geisinger, Danville, PA, USA
| | - Holly Elser
- Division of Epidemiology, School of Public Health, University of California, Berkeley, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Rachel Morello-Frosch
- Division of Community Health Sciences, School of Public Health, University of California, Berkeley, USA; College of Natural Resources Department of Environmental Science, Policy, & Management, University of California, Berkeley, USA
| |
Collapse
|
39
|
Leite DFB, Morillon AC, Melo Júnior EF, Souza RT, McCarthy FP, Khashan A, Baker P, Kenny LC, Cecatti JG. Examining the predictive accuracy of metabolomics for small-for-gestational-age babies: a systematic review. BMJ Open 2019; 9:e031238. [PMID: 31401613 PMCID: PMC6701563 DOI: 10.1136/bmjopen-2019-031238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/13/2019] [Accepted: 07/17/2019] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION To date, there is no robust enough test to predict small-for-gestational-age (SGA) infants, who are at increased lifelong risk of morbidity and mortality. OBJECTIVE To determine the accuracy of metabolomics in predicting SGA babies and elucidate which metabolites are predictive of this condition. DATA SOURCES Two independent researchers explored 11 electronic databases and grey literature in February 2018 and November 2018, covering publications from 1998 to 2018. Both researchers performed data extraction and quality assessment independently. A third researcher resolved discrepancies. STUDY ELIGIBILITY CRITERIA Cohort or nested case-control studies were included which investigated pregnant women and performed metabolomics analysis to evaluate SGA infants. The primary outcome was birth weight <10th centile-as a surrogate for fetal growth restriction-by population-based or customised charts. STUDY APPRAISAL AND SYNTHESIS METHODS Two independent researchers extracted data on study design, obstetric variables and sampling, metabolomics technique, chemical class of metabolites, and prediction accuracy measures. Authors were contacted to provide additional data when necessary. RESULTS A total of 9181 references were retrieved. Of these, 273 were duplicate, 8760 were removed by title or abstract, and 133 were excluded by full-text content. Thus, 15 studies were included. Only two studies used the fifth centile as a cut-off, and most reports sampled second-trimester pregnant women. Liquid chromatography coupled to mass spectrometry was the most common metabolomics approach. Untargeted studies in the second trimester provided the largest number of predictive metabolites, using maternal blood or hair. Fatty acids, phosphosphingolipids and amino acids were the most prevalent predictive chemical subclasses. CONCLUSIONS AND IMPLICATIONS Significant heterogeneity of participant characteristics and methods employed among studies precluded a meta-analysis. Compounds related to lipid metabolism should be validated up to the second trimester in different settings. PROSPERO REGISTRATION NUMBER CRD42018089985.
Collapse
Affiliation(s)
- Debora Farias Batista Leite
- Department of Tocogynecology, Campinas' State University, Campinas, Brazil
- Department of Maternal and Child Health, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Aude-Claire Morillon
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork National University of Ireland, Cork, Ireland
| | | | - Renato T Souza
- Obstetrics and Gynecology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Fergus P McCarthy
- Department of Gynaecology and Obstetrics, St Thomas Hospital, Cork, UK
| | - Ali Khashan
- Department of Epidemiology and Public Health, University College Cork, Cork, Ireland
| | - Philip Baker
- College of Medicine, University of Leicester, Leicester, UK
| | - Louise C Kenny
- Department of Women's and Children's Health, University of Liverpool School of Life Sciences, Liverpool, UK
| | | |
Collapse
|
40
|
Bloom MS, Wenzel AG, Brock JW, Kucklick JR, Wineland RJ, Cruze L, Unal ER, Yucel RM, Jiyessova A, Newman RB. Racial disparity in maternal phthalates exposure; Association with racial disparity in fetal growth and birth outcomes. ENVIRONMENT INTERNATIONAL 2019; 127:473-486. [PMID: 30981018 DOI: 10.1016/j.envint.2019.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Experimental and observational data implicate phthalates as developmental toxicants. However, few data are available to assess the maternal risks of gestational exposure by race and infant sex. To begin to address this data gap, we characterized associations between maternal urinary phthalate metabolites and birth outcomes among African American and white mothers from a southeastern U.S. population. We enrolled pregnant African American (n = 152) and white (n = 158) women with singleton live births between 18 and 22 weeks gestation. We measured phthalate metabolites (mono-n-butyl phthalate (MBP), monoisobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), monoethyl phthalate (MEP), monomethyl phthalate (MMP), and the sums of DEHP (ΣDEHP) and DBP (ΣDBP) metabolites) in up to two gestational urine specimens from mothers, and evaluated confounder-adjusted associations per natural log unit greater concentration with birth weight for gestational age z-score, small for gestational age (SGA; <10th %tile), preterm birth (PTB; <37 weeks gestation), and low birth weight (LBW; <2500 g). We also tested for interactions by maternal race and infant sex. We found that lower z-scores were associated with greater MiBP (β = -0.28; 95% CI: -0.54, -0.02) and MMP (β = -0.30; 95% CI: -0.52, -0.09) concentrations, while MEP interacted with race (p = 0.04), indicating an association among whites (β = -0.14; 95% CI: -0.28, 0.001) but not among African Americans (β = 0.05; 95% CI = -0.09, 0.19). Greater MiBP (OR = 2.82; 95% CI: 1.21, 6.56) and MEOHP (OR = 2.80; 95% CI: 1.05, 7.42) were associated with an overall higher SGA risk, greater MEHP was associated with higher SGA risk (p = 0.10) in whites (OR = 3.26 95% CI: 0.64, 16.56) but not in African Americans (OR = 0.71 95% CI: 0.07, 7.17), and the associations for MiBP (p = 0.02) and ΣDBP (p = 0.02) varied by infant sex. We detected interactions for PTB in which African Americans were at higher risk than whites for greater MiBP (p = 0.08) and MEP (p = 0.02) although lower risk for greater MEHP (p = 0.09). Greater MEP was associated with an overall higher LBW risk (OR = 1.33; 95% CI: 0.95, 1.86), and males were at higher risk than females with greater MBP (p = 0.002), MiBP (p = 0.02), MBzP (p = 0.01), MEP (p = 0.002), MMP (p = 0.09), and ΣDBP (p = 0.01) concentrations. Overall, our results suggest that gestational phthalate exposure is associated with adverse maternal birth outcomes, and that the effects vary by maternal race and infant sex.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina-Asheville, Asheville, NC, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Recai M Yucel
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Assem Jiyessova
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
41
|
Garcia-Gonzales DA, Shonkoff SB, Hays J, Jerrett M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 2019; 40:283-304. [DOI: 10.1146/annurev-publhealth-040218-043715] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.
Collapse
Affiliation(s)
- Diane A. Garcia-Gonzales
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Seth B.C. Shonkoff
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Environment Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake Hays
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
42
|
Huang H, Wang A, Morello-Frosch R, Lam J, Sirota M, Padula A, Woodruff TJ. Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors. Curr Environ Health Rep 2019; 5:88-99. [PMID: 29441463 DOI: 10.1007/s40572-018-0180-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health? RECENT FINDINGS There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem. The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.
Collapse
Affiliation(s)
- Hongtai Huang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA.
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA.
| | - Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
| | - Rachel Morello-Frosch
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
- Department of Environmental Science, Policy, and Management, and the School of Public Health, University of California, Berkeley, CA, USA
| | - Juleen Lam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Marina Sirota
- Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Amy Padula
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Buekers J, Colles A, Cornelis C, Morrens B, Govarts E, Schoeters G. Socio-Economic Status and Health: Evaluation of Human Biomonitored Chemical Exposure to Per- and Polyfluorinated Substances across Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2818. [PMID: 30544905 PMCID: PMC6313392 DOI: 10.3390/ijerph15122818] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022]
Abstract
Research on the environment, health, and well-being nexus (EHWB) is shifting from a silo toward a systemic approach that includes the socio-economic context. To disentangle further the complex interplay between the socio-exposome and internal chemical exposure, we performed a meta-analysis of human biomonitoring (HBM) studies with internal exposure data on per-and polyfluoroalkyl substances (PFASs) and detailed information on risk factors, including descriptors of socio-economic status (SES) of the study population. PFASs are persistent in nature, and some have endocrine-disrupting properties. Individual studies have shown that HBM biomarker concentrations of PFASs generally increase with SES indicators, e.g., for income. Based on a meta-analysis (five studies) of the associations between PFASs and SES indicators, the magnitude of the association could be estimated. For the SES indicator income, changes in income were expressed by a factor change, which was corrected by the Gini coefficient to take into account the differences in income categories between studies, and the income range between countries. For the SES indicator education, we had to conclude that descriptors (
Collapse
Affiliation(s)
- Jurgen Buekers
- Flemish Institute for Technological Research (VITO)-Sustainable Health, 2400 Mol, Belgium.
| | - Ann Colles
- Flemish Institute for Technological Research (VITO)-Sustainable Health, 2400 Mol, Belgium.
| | - Christa Cornelis
- Flemish Institute for Technological Research (VITO)-Sustainable Health, 2400 Mol, Belgium.
| | - Bert Morrens
- Sociology Department, University of Antwerp (UA), 2000 Antwerpen, Belgium.
| | - Eva Govarts
- Flemish Institute for Technological Research (VITO)-Sustainable Health, 2400 Mol, Belgium.
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO)-Sustainable Health, 2400 Mol, Belgium.
| |
Collapse
|
44
|
Leite DFB, Morillon AC, Melo Júnior EF, Souza RT, Khashan AS, Baker PN, Kenny LC, Cecatti JG. Metabolomics for predicting fetal growth restriction: protocol for a systematic review and meta-analysis. BMJ Open 2018; 8:e022743. [PMID: 30530473 PMCID: PMC6286473 DOI: 10.1136/bmjopen-2018-022743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/11/2018] [Accepted: 10/12/2018] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a relevant research and clinical concern since it is related to higher risks of adverse outcomes at any period of life. Current predictive tools in pregnancy (clinical factors, ultrasound scan, placenta-related biomarkers) fail to identify the true growth-restricted fetus. However, technologies based on metabolomics have generated interesting findings and seem promising. In this systematic review, we will address diagnostic accuracy of metabolomics analyses in predicting FGR. METHODS AND ANALYSIS Our primary outcome is small for gestational age infant, as a surrogate for FGR, defined as birth weight below the 10th centile by customised or population-based curves for gestational age. A detailed systematic literature search will be carried in electronic databases and conference abstracts, using the keywords 'fetal growth retardation', 'metabolomics', 'pregnancy' and 'screening' (and their variations). We will include original peer-reviewed articles published from 1998 to 2018, involving pregnancies of fetuses without congenital malformations; sample collection must have been performed before clinical recognition of growth impairment. If additional information is required, authors will be contacted. Reviews, case reports, cross-sectional studies, non-human research and commentaries papers will be excluded. Sample characteristics and the diagnostic accuracy data will be retrieved and analysed. If data allows, we will perform a meta-analysis. ETHICS AND DISSEMINATION As this is a systematic review, no ethical approval is necessary. This protocol will be publicised in our institutional websites and results will be submitted for publication in a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42018089985.
Collapse
Affiliation(s)
- Debora Farias Batista Leite
- Department of Maternal and Child Health, Clinics Hospital of Federal University of Pernambuco, Recife, Brazil
- Department of Gynaecology and Obstetrics, University Campinas, Sao Paulo, Brazil
| | - Aude-Claire Morillon
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Elias F Melo Júnior
- Department of Maternal and Child Health, Clinics Hospital of Federal University of Pernambuco, Recife, Brazil
| | - Renato T Souza
- Department of Gynaecology and Obstetrics, University Campinas, Sao Paulo, Brazil
| | - Ali S Khashan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- School of Public Health, University College Cork, Cork, Ireland
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Louise C Kenny
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Women's and Children's Health, Faculty of Health and Life Sciences, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
45
|
PLGA nanoparticles with multiple modes are a biologically safe nanocarrier for mammalian development and their offspring. Biomaterials 2018; 183:43-53. [PMID: 30149229 DOI: 10.1016/j.biomaterials.2018.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 01/02/2023]
Abstract
Nano-sized particles (NPs) of various materials have been extensively used as therapeutic and diagnostic agents, drug delivery systems, and biomedical devices. However, the biological impacts of NP exposure during early embryogenesis on following development and next generations have not been investigated. Here, we demonstrated that polylactic-co-glycolic acid (PLGA)-NPs were not toxic and did not perturb development of preimplantation mouse embryos in vitro. Moreover, subsequent fetal development in vivo after embryo transfer proceeded normally and healthy pups were born without any genetic aberrations, suggesting biosafety of PLGA-NPs during developmental processes. TRITC-labeled PLGA-NPs, named TRITC nano-tracer (TnT) were used to visualize the successful delivery of the NPs into sperms, oocytes and early embryos. Various molecular markers for early embryogenesis demonstrated that TnT treatment at various developmental stages did not compromise embryo development to the blastocyst. mRNA-Seq analyses reinforced that TnT treatment did not significantly affect mRNA landscapes of blastocysts which undergo embryo implantation critical for following developmental processes. Moreover, when 2-cell embryos exposed to TnT were transferred into pseudopregnant recipients, healthy offspring were born without any distinct morphologic and chromosomal abnormalities. TnT treatment did not affect the sex ratio of the exposed embryos after birth. When mated with male mice, female mice that were exposed to TnT during early embryogenesis produced a comparable number of pups as control females. Furthermore, the phenotypes of the offspring of mice experienced TnT at their early life clearly demonstrated that TnT did not elicit any negative transgenerational effects on mammalian development.
Collapse
|
46
|
Cushing L, Blaustein-Rejto D, Wander M, Pastor M, Sadd J, Zhu A, Morello-Frosch R. Carbon trading, co-pollutants, and environmental equity: Evidence from California's cap-and-trade program (2011-2015). PLoS Med 2018; 15:e1002604. [PMID: 29990353 PMCID: PMC6038989 DOI: 10.1371/journal.pmed.1002604] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Policies to mitigate climate change by reducing greenhouse gas (GHG) emissions can yield public health benefits by also reducing emissions of hazardous co-pollutants, such as air toxics and particulate matter. Socioeconomically disadvantaged communities are typically disproportionately exposed to air pollutants, and therefore climate policy could also potentially reduce these environmental inequities. We sought to explore potential social disparities in GHG and co-pollutant emissions under an existing carbon trading program-the dominant approach to GHG regulation in the US and globally. METHODS AND FINDINGS We examined the relationship between multiple measures of neighborhood disadvantage and the location of GHG and co-pollutant emissions from facilities regulated under California's cap-and-trade program-the world's fourth largest operational carbon trading program. We examined temporal patterns in annual average emissions of GHGs, particulate matter (PM2.5), nitrogen oxides, sulfur oxides, volatile organic compounds, and air toxics before (January 1, 2011-December 31, 2012) and after (January 1, 2013-December 31, 2015) the initiation of carbon trading. We found that facilities regulated under California's cap-and-trade program are disproportionately located in economically disadvantaged neighborhoods with higher proportions of residents of color, and that the quantities of co-pollutant emissions from these facilities were correlated with GHG emissions through time. Moreover, the majority (52%) of regulated facilities reported higher annual average local (in-state) GHG emissions since the initiation of trading. Neighborhoods that experienced increases in annual average GHG and co-pollutant emissions from regulated facilities nearby after trading began had higher proportions of people of color and poor, less educated, and linguistically isolated residents, compared to neighborhoods that experienced decreases in GHGs. These study results reflect preliminary emissions and social equity patterns of the first 3 years of California's cap-and-trade program for which data are available. Due to data limitations, this analysis did not assess the emissions and equity implications of GHG reductions from transportation-related emission sources. Future emission patterns may shift, due to changes in industrial production decisions and policy initiatives that further incentivize local GHG and co-pollutant reductions in disadvantaged communities. CONCLUSIONS To our knowledge, this is the first study to examine social disparities in GHG and co-pollutant emissions under an existing carbon trading program. Our results indicate that, thus far, California's cap-and-trade program has not yielded improvements in environmental equity with respect to health-damaging co-pollutant emissions. This could change, however, as the cap on GHG emissions is gradually lowered in the future. The incorporation of additional policy and regulatory elements that incentivize more local emission reductions in disadvantaged communities could enhance the local air quality and environmental equity benefits of California's climate change mitigation efforts.
Collapse
Affiliation(s)
- Lara Cushing
- Department of Health Education, San Francisco State University, San Francisco, California, United States of America
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (LC); (RMF)
| | - Dan Blaustein-Rejto
- Goldman School of Public Policy, University of California, Berkeley, Berkeley, California, United States of America
| | - Madeline Wander
- Program for Environmental and Regional Equity, University of Southern California, Los Angeles, California, United States of America
| | - Manuel Pastor
- Program for Environmental and Regional Equity, University of Southern California, Los Angeles, California, United States of America
| | - James Sadd
- Department of Geology, Occidental College, Los Angeles, California, United States of America
| | - Allen Zhu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (LC); (RMF)
| |
Collapse
|
47
|
Wang A, Gerona RR, Schwartz JM, Lin T, Sirota M, Morello-Frosch R, Woodruff TJ. A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077009. [PMID: 30044231 PMCID: PMC6108847 DOI: 10.1289/ehp2920] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND In utero exposure to environmental chemicals can adversely impact pregnancy outcomes and childhood health, but minimal biomonitoring data exist on the majority of chemicals used in commerce. OBJECTIVES We aimed to profile exposure to multiple environmental organic acids (EOAs) and identify novel chemicals that have not been previously biomonitored in a diverse population of pregnant women. METHODS We used liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) to perform a suspect screen for 696 EOAs, (e.g., phenols and phthalate metabolites) on the maternal serum collected at delivery from 75 pregnant women delivering at two large San Francisco Hospitals. We examined demographic differences in peak areas and detection frequency (DF) of suspect EOAs using a Kruskal-Wallis Rank Sum test or Fisher's exact test. We confirmed selected suspects by comparison with their respective reference standards. RESULTS We detected, on average, 56 [standard deviation (SD)]: 8) suspect EOAs in each sample (range: 32-73). Twelve suspect EOAs with DF≥60 were matched to 21 candidate compounds in our EOA database, two-thirds of which are novel chemicals. We found demographic differences in DF for 13 suspect EOAs and confirmed the presence of 6 priority novel chemicals: 2,4-Di-tert-butylphenol, Pyrocatechol, 2,4-Dinitrophenol, 3,5-Di-tert-butylsalicylic acid, 4-Hydroxycoumarin, and 2'-Hydroxyacetophenone (or 3'-Hydroxyacetophenone). The first two are high-production-volume chemicals in the United States. CONCLUSION Suspect screening in human biomonitoring provides a viable method to characterize a broad spectrum of environmental chemicals to prioritize for targeted method development and quantification. https://doi.org/10.1289/EHP2920.
Collapse
Affiliation(s)
- Aolin Wang
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, California, USA
| | - Jackie M Schwartz
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Thomas Lin
- Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
- Department of Pediatrics, University of California, San Francisco, California, USA
| | - Rachel Morello-Frosch
- School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
- Philip R Lee Institute for Health Policy Studies, University of California, San Francisco, California, USA
| |
Collapse
|
48
|
Herbell K, Zauszniewski JA. Reducing Psychological Stress in Peripartum Women With Heart Rate Variability Biofeedback: A Systematic Review. J Holist Nurs 2018; 37:273-285. [PMID: 29944076 DOI: 10.1177/0898010118783030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peripartum women are exposed to a variety of stressors that have adverse health consequences for the maternal-child dyad (e.g., impaired bonding). To combat these adverse health consequences, heart rate variability biofeedback (HRVBF) may be implemented by holistic nurses to aid peripartum women experiencing a high level of stress. A systematic review was completed using the guidelines established in the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. To be included in the review, studies had to meet the following criteria: (a) published scientific articles, (b) studies published in English, (c) experimental, quasi-experimental, or case reports, (d) use of HRVBF as the main treatment, (e) use of psychological stress as a dependent variable, and (f) studies published until December 2017. The major findings of this review can be described as follows: (a) HRVBF and psychological stress in peripartum women are related concepts, (b) peripartum women who completed HRVBF report a reduction in stress compared with participants who did not receive HRVBF, and (c) there is currently no information on the effectiveness of HRVBF on psychological stress in the first and early second trimester of pregnancy. Overall, this systematic review of the literature provides objective evidence that HRVBF may be a potential beneficial adjuvant treatment for stress management in peripartum women.
Collapse
|
49
|
Bourguignon JP, Parent AS, Kleinjans JCS, Nawrot TS, Schoeters G, Van Larebeke N. Rationale for Environmental Hygiene towards global protection of fetuses and young children from adverse lifestyle factors. Environ Health 2018; 17:42. [PMID: 29685149 PMCID: PMC5914065 DOI: 10.1186/s12940-018-0385-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The regulatory management of chemicals and toxicants in the EU addresses hundreds of different chemicals and health hazards individually, one by one. An issue is that, so far, the possible interactions among chemicals or hazards are not considered as such. Another issue is the anticipated delay of several decades before effective protection of public health by regulatory decisions due to a time consuming process. Prenatal and early postnatal life is highly vulnerable to environmental health hazards with lifelong consequences, and a priority period for reduction of exposure. There are some initiatives regarding recommendations for pregnant women aiming at protection against one or another category of health hazard, however not validated by intervention studies. HYPOTHESIS Here, we aim at strengthening the management of exposure to individual health hazards during pregnancy and lactation, with protective measures in a global strategy of Environmental Hygiene. We hypothesize that such a strategy could reduce both the individual effects of harmful agents in complex mixtures and the possible interactions among them. A panel of experts should develop and endorse implementable measures towards a protective behavior. Their application is meant to be preferably as a package of measures in order to maximize protection and minimize interactions in causing adverse effects. Testing our hypothesis requires biomonitoring studies and longitudinal evaluation of health endpoints in the offspring. Favorable effects would legitimate further action towards equal opportunity access to improved environmental health. CONCLUSION Environmental Hygiene is proposed as a global strategy aiming at effective protection of pregnant women, unborn children and infants against lifelong consequences of exposure to combinations of adverse lifestyle factors.
Collapse
Affiliation(s)
- Jean-Pierre Bourguignon
- Pediatric Endocrinology, CHU Liège, 600, rue de Gaillarmont, B-4032 Chênée, Belgium
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4 - 1er étage, 15 Avenue Hippocrate, B-4000 Liège, Belgium
| | - Anne-Simone Parent
- Pediatric Endocrinology, CHU Liège, 600, rue de Gaillarmont, B-4032 Chênée, Belgium
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Quartier Hôpital, Tour 4 - 1er étage, 15 Avenue Hippocrate, B-4000 Liège, Belgium
| | - Jos C. S. Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Centre for Environment and Health, Leuven University, Leuven, Belgium
| | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium
- Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
50
|
Koman PD, Hogan KA, Sampson N, Mandell R, Coombe CM, Tetteh MM, Hill-Ashford YR, Wilkins D, Zlatnik MG, Loch-Caruso R, Schulz AJ, Woodruff TJ. Examining Joint Effects of Air Pollution Exposure and Social Determinants of Health in Defining "At-Risk" Populations Under the Clean Air Act: Susceptibility of Pregnant Women to Hypertensive Disorders of Pregnancy. WORLD MEDICAL & HEALTH POLICY 2018; 10:7-54. [PMID: 30197817 PMCID: PMC6126379 DOI: 10.1002/wmh3.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pregnant women are uniquely susceptible to adverse effects of air pollution exposure due to vulnerabilities and health consequences during pregnancy (e.g., hypertensive disorders of pregnancy [HDP]) compared to the general population. Because the Clean Air Act (CAA) creates a duty to protect at-risk groups, the regulatory assessment of at-risk populations has both policy and scientific foundations. Previously, pregnant women have not been specially protected in establishing the margin of safety for the ozone and particulate matter (PM) standards. Due to physiological changes, pregnant women can be at greater risk of adverse effects of air pollution and should be considered an at-risk population. Women with preexisting conditions, women experiencing poverty, and groups that suffer systematic discrimination may be particularly susceptible to cardiac effects of air pollutants during pregnancy. We rigorously reviewed 11 studies of over 1.3 million pregnant women in the United States to characterize the relationship between ozone or PM exposure and HDP. Findings were generally mixed, with a few studies reporting a joint association between ozone or PM and social determinants or pre-existing chronic health conditions related to HDP. Adequate evidence associates exposure to PM with an adverse effect of HDP among pregnant women not evident among non-gravid populations.
Collapse
Affiliation(s)
- Patricia D Koman
- University of Michigan School of Public Health, Environmental Health Sciences Department in Ann Arbor, Michigan
| | - Kelly A Hogan
- University of Michigan School of Public Health, Environmental Health Sciences Department in Ann Arbor, Michigan, and presently a research fellow in the Department of Biochemistry and Molecular Biology and the Robert and Arlene Kogod Center on Aging at Mayo Clinic, Rochester, Minnesota
| | - Natalie Sampson
- University of Michigan-Dearborn, Department of Health & Human Services in Dearborn, Michigan
| | - Rebecca Mandell
- Arbor Research Collaborative for Health in Ann Arbor, Michigan
| | - Chris M Coombe
- University of Michigan School of Public Health, Department of Health Behavior & Health Education in Ann Arbor, Michigan
| | - Myra M Tetteh
- University of Michigan School of Public Health, Department of Health Behavior & Health Education in Ann Arbor, Michigan
| | | | | | - Marya G Zlatnik
- University of California San Francisco, Department of Obstetrics, Gynecology and Reproductive Sciences in San Francisco, California
| | - Rita Loch-Caruso
- University of Michigan School of Public Health, Environmental Health Sciences Department and director of the Michigan Center on Lifestage Environmental Exposures and Disease and director of the Environmental Toxicology and Epidemiology Program in Ann Arbor, Michigan
| | - Amy J Schulz
- Department of Health Behavior and Health Education, associate director for the Center for Research on Ethnicity, Culture and Health, and co-lead for the Community Engagement Core for the Michigan Center on Lifestage Environmental Exposures and Disease at the University of Michigan School of Public Health
| | - Tracey J Woodruff
- University of California, San Francisco in the Department of Obstetrics, Gynecology, and Reproductive Sciences and Philip R. Lee Institute for Health Policy Studies and the director of the Program on Reproductive Health and the Environment in San Francisco, California
| |
Collapse
|