1
|
Adam P, Fabi F, Parent S, Renaud LI, Cadrin M, Asselin E. The roles of AKT isoforms in decidualization and embryo implantation using a Progesterone Receptor-Cre mouse model†. Biol Reprod 2025; 112:1134-1147. [PMID: 40143411 PMCID: PMC12191639 DOI: 10.1093/biolre/ioaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025] Open
Abstract
Implantation is a complex process requiring a prepared, receptive endometrium, reliant on synchronized decidualization of stromal cells. During this process, cell proliferation and apoptosis are tightly regulated by signaling factors, including the survival and proliferation of the PI3K/AKT pathway. The three AKT isoforms each play distinct physiological roles, but their specific functions in endometrial cell survival and apoptosis remain unclear. We hypothesize that for successful implantation, each AKT isoform has distinct roles in the endometrium during decidualization, which varies throughout the process. To explore this, we developed a unique PGR-Cre tissue-specific mouse model with single and combined knockouts (KO) of each AKT isoform. Using artificial decidualization during pseudopregnancy and normal gestation, we investigated the specific activity of each AKT isoform and their downstream targets to assess the role of AKT pathway. Our results showed that the AKT1-2 KO genotype failed to decidualize during pseudopregnancy and exhibited a reduced number of implantation sites. Interestingly, AKT3 was hyperphosphorylated in the AKT1-2 KO mice and emerged as the primary isoform active throughout decidualization, specifically signaling through GSK3B. This study suggests distinct yet partially redundant roles for AKT1 and AKT2 during decidualization and embryo implantation. We propose that the AKT pathway plays significant role in fertility, and a deeper understanding of its involvement in decidualization could lead to improved strategies for addressing fertility issues. These findings highlight the importance of AKT activity in the cellular and molecular regulation of mouse fertility.
Collapse
Affiliation(s)
- Pascal Adam
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - François Fabi
- Service de radio-oncologie du Département de médecine spécialisée, Centre intégré de cancérologie, Hôpital de l’Enfant-Jésus, Centre Hospitalier Universitaire (CHU) de Québec—Université Laval, Québec, Canada
| | - Sophie Parent
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Léa-Isabelle Renaud
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Monique Cadrin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Eric Asselin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
2
|
Cao Y, Yang D, Cai S, Yang L, Yu S, Geng Q, Mo M, Li W, Wei Y, Li Y, Yin T, Diao L. Adenomyosis-associated infertility: an update of the immunological perspective. Reprod Biomed Online 2025; 50:104703. [PMID: 40175227 DOI: 10.1016/j.rbmo.2024.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 04/04/2025]
Abstract
Adenomyosis is characterized by the invasion of endometrial glands and stroma into the myometrium. Its clinical manifestations often include dysmenorrhoea, excessive menstrual bleeding and infertility. Reduced pregnancy and live birth rates and an increased miscarriage rate are observed in women with adenomyosis. This review summarizes relevant advances and presents the underlying mechanisms of adenomyosis-associated infertility from an immunological perspective. Individuals with adenomyosis exhibit imbalances in immune cell subpopulations and the endocrine hormone-immunomodulatory axis. These immunological alterations may be key contributors to, or at least accomplices in, impaired endometrial receptivity. In addition, adenomyosis often occurs in association with endometriosis, uterine leiomyoma or endometrial polyps, which are pathogenetically relevant; their similarities and differences are discussed from an immunological perspective. The clinical diagnostic criteria of adenomyosis are not perfect, and the pathogenesis remains to be fully explored. Therefore screening for effective targets for early diagnosis and treatment at the cellular and molecular levels from the immunological point of view holds great potential, which will be of great importance in preventing this disease and improving women's reproductive health.
Collapse
Affiliation(s)
- Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongyong Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Qiang Geng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Meilan Mo
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Wenzhu Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Zhan T, Shen L, Zhang Y, Wan F, Qiu Y, Jin Q, Wu Y, Huang Y, Zhuang S. Decidual Disrupting Effects of Low-Dose Benzophenone-Type UV Filters in Human Endometrial Stromal Cells via ER/PR/FOXO1 Signaling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6464-6476. [PMID: 40127073 DOI: 10.1021/acs.est.4c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Exposure to endocrine disrupting chemicals (EDCs), particularly benzophenone (BP)-type UV filters, has been epidemiologically linked to endometrium-related reproductive risks in women. However, their effects on hormone-driven endometrial events and key receptor signaling at the human cellular level remain unexplored. Herein, using human primary endometrial stromal cells (HESCs), we investigated the disrupting effects of five BP congeners and deciphered the underlying mechanism on decidualization, a functional change of the endometrium preparing for pregnancy. BP-8, its two metabolites, BP-3, and BP-1 at 10 nM significantly disrupted progesterone-dependent decidualization in HESCs, marked by 1.5-1.8-fold and 2.2-2.6-fold upregulation of IGFBP-1 and LEFTY, respectively. Decidual transcriptional activators, WNT-FOXO1, were significantly induced by BPs, which are implicated in G2 phase cell arrest (from 3.26% to 8.93%) and apoptosis (from 12.29% to 25.61%). Mechanistically, the inhibition of estrogen receptor α (ERα) effectively alleviated these decidual disrupting effects. BPs increased the transcription of ERα and progesterone receptor (PR) signaling and enhanced nuclear translocation and interaction between ERα and PR during decidualization. The ERα-mediated enhancement of PR signaling activity by BPs was further validated in progesterone response element-luciferase transfected cells. Collectively, our findings elucidate the molecular pathway through which BPs disrupt endometrial decidualization via ERα/PR/FOXO1, providing critical mechanistic insights for the reproductive risk assessment of BPs and structurally related EDCs.
Collapse
Affiliation(s)
- Tingjie Zhan
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lilai Shen
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Fang Wan
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yu Qiu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qinyang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yiqu Wu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Lu M, Han Y, Zhang Y, Yu R, Su Y, Chen X, Liu B, Li T, Zhao R, Zhao H. Investigating Aging-Related Endometrial Dysfunction Using Endometrial Organoids. Cell Prolif 2025; 58:e13780. [PMID: 39695355 PMCID: PMC11969247 DOI: 10.1111/cpr.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 12/20/2024] Open
Abstract
Ageing of the endometrium is a critical factor that affects reproductive health, yet its intricate mechanisms remain poorly explored. In this study, we performed transcriptome profiling and experimental verification of endometrium and endometrial organoids from young and advanced age females, to elucidate the underlying mechanisms and to explore novel treatment strategies for endometrial ageing. First, we found that age-associated decline in endometrial functions including fibrosis and diminished receptivity, already exists in reproductive age. Subsequently, based on RNA-seq analysis, we identified several changes in molecular processes affected by age, including fibrosis, imbalanced inflammatory status including Th1 bias in secretory phase, cellular senescence and abnormal signalling transduction in key pathways, with all processes been further validated by molecular experiments. Finally, we uncovered for the first time that PI3K-AKT-FOXO1 signalling pathway is overactivated in ageing endometrium and is closely correlated with fibrosis and impaired receptivity characteristics of ageing endometrium. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of ageing or accelerate dysfunction of endometrial organoids. This discovery is expected to bring new breakthroughs for understanding the pathophysiological processes associated with endometrial ageing, as well as treatment strategies to improve reproductive outcomes in women of advanced reproductive age.
Collapse
Affiliation(s)
- Minghui Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| | - Yanli Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| | - Yu Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| | - Ruijie Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
| | - Yining Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
| | - Xueyao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| | - Boyang Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| | - Tao Li
- Department of Obstetrics and Gynecology, Shandong Provincial HospitalShandong First Medical UniversityJinanChina
| | - Rusong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversitySuzhouJiangsuChina
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive HealthShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticsShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology (Shandong University)Ministry of EducationJinanChina
- Shandong Technology Innovation Center for Reproductive HealthJinanChina
- Shandong Provincial Clinical Research Center for Reproductive HealthJinanChina
- Shandong Key Laboratory of Reproductive Research and Birth Defect PreventionJinanShandongChina
- Research Unit of Gametogenesis and Health of ART‐OffspringChinese Academy of Medical Sciences (No. 2021RU001)JinanChina
| |
Collapse
|
5
|
Scheliga I, Baston-Buest DM, Haramustek D, Knebel A, Kruessel JS, Bielfeld AP. Dead or Alive: Exploratory Analysis of Selected Apoptosis- and Autophagy-Related Proteins in Human Endometrial Stromal Cells of Fertile Females and Their Potential Role During Embryo Implantation. Int J Mol Sci 2024; 26:175. [PMID: 39796033 PMCID: PMC11720002 DOI: 10.3390/ijms26010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis. This study evaluated the protein expression of apoptosis receptors and autophagy markers during the window of implantation. Previous research has shown that a syndecan 1 (Sdc1) knockdown (kd) in endometrial stromal cell lines increased the sensitivity to apoptosis induced by embryonic stimuli. We aimed to determine if this effect is also present in primary cells and if Sdc1 regulates autophagy. The expression of autophagy- and apoptosis-associated proteins in primary ESCs from fertile individuals was investigated in this preliminary study, along with their impact on the process of human embryo implantation. During decidualization and exposure to embryo contact, we observed an upregulation of apoptosis- and autophagy-related proteins in ESCs. Decidualized ESCs exhibited higher levels of apoptosis receptors, indicating increased sensitivity to embryo-induced apoptosis. Additionally, the increase in basal autophagy proteins suggests a significant role in the implantation process. Sdc1 is potentially involved in regulating apoptosis and autophagy, demonstrating its possible role in modulating implantation-related cell activities. These findings suggest a complex interplay between apoptosis and autophagy in regulating human embryo implantation. The changes in the expression of apoptotic and autophagic proteins in ESCs after decidualization and upon contact with the embryo provide new insights into the cellular mechanisms that underlie successful implantation. These results have potential implications for understanding the pathophysiology of implantation disorders and improving assisted reproductive technologies. The first results of this pilot study need to be verified with a larger sample size in the future.
Collapse
Affiliation(s)
| | - Dunja M. Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40255 Duesseldorf, Germany; (I.S.)
| | | | | | | | | |
Collapse
|
6
|
Zhao H, Liu J, Yin S, Bao H. PAI-1 promotes human endometrial stromal decidualization via inhibiting VEGFR2/PI3K/AKT signaling pathway mediated F-actin reorganization. FASEB J 2024; 38:e70233. [PMID: 39718443 DOI: 10.1096/fj.202401882r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.
Collapse
Affiliation(s)
- Huishan Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Juan Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shuyuan Yin
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Hongchu Bao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| |
Collapse
|
7
|
Tong J, Li H, Zhang L, Zhang C. The landscape of N1-methyladenosine (m 1A) modification in mRNA of the decidua in severe preeclampsia. BIOMOLECULES & BIOMEDICINE 2024; 24:1827-1847. [PMID: 38958464 PMCID: PMC11496874 DOI: 10.17305/bb.2024.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Recent discoveries in mRNA modification have highlighted N1-methyladenosine (m1A), but its role in preeclampsia (PE) pathogenesis remains unclear. In this study, we utilized methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to identify m1A peaks and the expression profile of mRNA in the decidua of humans with early-onset PE (EPE), late-onset PE (LPE), and normal pregnancy (NP). We assessed the m1A modification patterns in preeclamptic decidua using 10 m1A modulators. Our bioinformatic analysis focused on differentially methylated mRNAs (DMGs) and differentially expressed mRNAs (DEGs) in pairwise comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE, as well as m1A-related DEGs. The comparisons of EPE vs. NP, LPE vs. NP, and EPE vs. LPE identified 3110, 2801, and 2818 DMGs, respectively. We discerned three different m1A modification patterns from this data. Further analysis revealed that key PE-related DMGs and m1A-related DEGs predominantly influence signaling pathways critical for decidualization, including cAMP, MAPK, PI3K-Akt, Notch, and TGF-β pathways. Additionally, these modifications impact pathways related to vascular smooth muscle contraction, estrogen signaling, and relaxin signaling, contributing to vascular dysfunction. Our findings demonstrate that preeclamptic decidua exhibits unique mRNA m1A modification patterns and gene expression profiles that significantly alter signaling pathways essential for both decidualization and vascular dysfunction. These differences in m1A modification patterns provide valuable insights into the molecular mechanisms influencing the decidualization process and vascular function in the pathogenesis of PE. These m1A modification regulators could potentially serve as potent biomarkers or therapeutic targets for PE, warranting further investigation.
Collapse
Affiliation(s)
- Jing Tong
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hua Li
- Jinan Maternal and Child Health Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Zhang
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
Delenko J, Xue X, Chatterjee PK, Hyman N, Shih AJ, Adelson RP, Safaric Tepes P, Gregersen PK, Metz CN. Quercetin enhances decidualization through AKT-ERK-p53 signaling and supports a role for senescence in endometriosis. Reprod Biol Endocrinol 2024; 22:100. [PMID: 39118090 PMCID: PMC11308242 DOI: 10.1186/s12958-024-01265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Patients with endometriosis suffer with chronic pelvic pain and infertility, and from the lack of pharmacologic therapies that consistently halt disease progression. Differences in the endometrium of patients with endometriosis vs. unaffected controls are well-documented. Specifically, shed endometrial tissues (delivered to the pelvic cavity via retrograde menstruation) reveal that a subset of stromal cells exhibiting pro-inflammatory, pro-fibrotic, and pro-senescence-like phenotypes is enhanced in endometriosis patients compared to controls. Additionally, cultured biopsy-derived endometrial stromal cells from endometriosis patients exhibit impaired decidualization, a defined differentiation process required for human embryo implantation and pregnancy. Quercetin, a senolytic agent, shows therapeutic potential for pulmonary fibrosis, a disorder attributed to senescent pulmonary fibroblasts. In rodent models of endometriosis, quercetin shows promise, and quercetin improves decidualization in vitro. However, the exact mechanisms are not completely understood. Therefore, we investigated the effects of quercetin on menstrual effluent-derived endometrial stromal cells from endometriosis patients and unaffected controls to define the signaling pathways underlying quercetin's effects on endometrial stromal cells. METHODS Menstrual effluent-derived endometrial stromal cells were collected and cultured from unaffected controls and endometriosis patients and then, low passage cells were treated with quercetin (25 µM) under basal or standard decidualization conditions. Decidualization responses were analyzed by measuring the production of IGFBP1 and PRL. Also, the effects of quercetin on intracellular cAMP levels and cellular oxidative stress responses were measured. Phosphokinase arrays, western blotting, and flow cytometry methods were performed to define the effects of quercetin on various signaling pathways and the potential mechanistic roles of quercetin. RESULTS Quercetin significantly promotes decidualization of control- and endometriosis-endometrial stromal cells. Quercetin substantially reduces the phosphorylation of multiple signaling molecules in the AKT and ERK1/2 pathways, while enhancing the phosphorylation of p53 and total p53 levels. Furthermore, p53 inhibition blocks decidualization while p53 activation promotes decidualization. Finally, we provide evidence that quercetin increases apoptosis of endometrial stromal cells with a senescent-like phenotype. CONCLUSIONS These data provide insight into the mechanisms of action of quercetin on endometrial stromal cells and warrant future clinical trials to test quercetin and other senolytics for treating endometriosis.
Collapse
Affiliation(s)
- Julia Delenko
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA
| | - Xiangying Xue
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Prodyot K Chatterjee
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Nathaniel Hyman
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Andrew J Shih
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Robert P Adelson
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Polona Safaric Tepes
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA
| | - Peter K Gregersen
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA.
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
| | - Christine N Metz
- The Donald and Barbara Zucker School of Medicine, Hempstead, NY, 11549, USA.
- The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
| |
Collapse
|
9
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
10
|
Walewska E, Makowczenko KG, Witek K, Laniecka E, Molcan T, Alvarez-Sanchez A, Kelsey G, Perez-Garcia V, Galvão AM. Fetal growth restriction and placental defects in obese mice are associated with impaired decidualisation: the role of increased leptin signalling modulators SOCS3 and PTPN2. Cell Mol Life Sci 2024; 81:329. [PMID: 39090270 PMCID: PMC11335253 DOI: 10.1007/s00018-024-05336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/05/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karol G Makowczenko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Krzysztof Witek
- Laboratory of Cell and Tissue Analysis and Imaging, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Laniecka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Andrea Alvarez-Sanchez
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Vicente Perez-Garcia
- Molecular Mechanisms of Placental Invasion, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
11
|
Doma Sherpa D, Dasgupta S, Mitra I, Kanti Das T, Chakraborty P, Joshi M, Sharma S, Kalapahar S, Chaudhury K. PI3K/AKT signaling alters glucose metabolism in uterine microenvironment of women with idiopathic recurrent spontaneous miscarriage. Clin Chim Acta 2024; 561:119834. [PMID: 38944409 DOI: 10.1016/j.cca.2024.119834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND This study aims to identify metabolomic signatures in uterine fluid of women with idiopathic recurrent spontaneous miscarriage (IRSM) during window of implantation (WOI). Also, glucose transporters GLUT3 and GLUT4 and proteins of PI3K-Akt signaling pathway in endometrial tissue are assessed. METHODS Paired uterine fluid and endometrial biopsies were collected during WOI from women with IRSM (n = 24) and healthy women with azoospermic male partners as controls (n = 15). NMR metabolomics was used to identify the dysregulated metabolites in uterine fluid of IRSM women. Additionally, proteins and glucose transporters were investigated in the endometrial tissue using immunohistochemistry (IHC) and western blotting. RESULTS Uterine fluid metabolomics indicated eleven metabolites to be significantly downregulated in IRSM. While expression levels of PI3K (p85), PI3K (p110), p-Akt (Thr308), p-Akt (Ser473), GLUT3 and GLUT4 were significantly downregulated in endometrial tissue of these women, p-IKK α/β (Ser176/180) and p-NFkBp65 (Ser536) were significantly increased. CONCLUSION Our findings suggest that dysregulation of PI3K/Akt pathway in the uterine microenvironment could be a likely cause of endometrial dysfunction, thereby affecting implantation. Further studies on the downstream effects of the Akt signaling pathway in-vitro for improved understanding of the Akt-mediated cellular responses in IRSM is, therefore, warranted.
Collapse
Affiliation(s)
- Da Doma Sherpa
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | - Imon Mitra
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India
| | | | | | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
12
|
Artimovič P, Badovská Z, Toporcerová S, Špaková I, Smolko L, Sabolová G, Kriváková E, Rabajdová M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024; 13:1081. [PMID: 38994935 PMCID: PMC11240766 DOI: 10.3390/cells13131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Eva Kriváková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| |
Collapse
|
13
|
Zhang H, Sun Q, Dong H, Jin Z, Li M, Jin S, Zeng X, Fan J, Kong Y. Long-chain acyl-CoA synthetase-4 regulates endometrial decidualization through a fatty acid β-oxidation pathway rather than lipid droplet accumulation. Mol Metab 2024; 84:101953. [PMID: 38710444 PMCID: PMC11099325 DOI: 10.1016/j.molmet.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Lipid metabolism plays an important role in early pregnancy, but its effects on decidualization are poorly understood. Fatty acids (FAs) must be esterified by fatty acyl-CoA synthetases to form biologically active acyl-CoA in order to enter the anabolic and/or catabolic pathway. Long-chain acyl-CoA synthetase 4 (ACSL4) is associated with female reproduction. However, whether it is involved in decidualization is unknown. METHODS The expression of ACSL4 in human and mouse endometrium was detected by immunohistochemistry. ACSL4 levels were regulated by the overexpression of ACSL4 plasmid or ACSL4 siRNA, and the effects of ACSL4 on decidualization markers and morphology of endometrial stromal cells (ESCs) were clarified. A pregnant mouse model was established to determine the effect of ACSL4 on the implantation efficiency of mouse embryos. Modulation of ACSL4 detects lipid anabolism and catabolism. RESULTS Through examining the expression level of ACSL4 in human endometrial tissues during proliferative and secretory phases, we found that ACSL4 was highly expressed during the secretory phase. Knockdown of ACSL4 suppressed decidualization and inhibited the mesenchymal-to-epithelial transition induced by MPA and db-cAMP in ESCs. Further, the knockdown of ACSL4 reduced the efficiency of embryo implantation in pregnant mice. Downregulation of ACSL4 inhibited FA β-oxidation and lipid droplet accumulation during decidualization. Interestingly, pharmacological and genetic inhibition of lipid droplet synthesis did not affect FA β-oxidation and decidualization, while the pharmacological and genetic inhibition of FA β-oxidation increased lipid droplet accumulation and inhibited decidualization. In addition, inhibition of β-oxidation was found to attenuate the promotion of decidualization by the upregulation of ACSL4. The decidualization damage caused by ACSL4 knockdown could be reversed by activating β-oxidation. CONCLUSIONS Our findings suggest that ACSL4 promotes endometrial decidualization by activating the β-oxidation pathway. This study provides interesting insights into our understanding of the mechanisms regulating lipid metabolism during decidualization.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qianyi Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haojie Dong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zeen Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Mengyue Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shanyuan Jin
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaolan Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
14
|
Qiao QF, Wang LQ, Yu DE, Li N, Xu QJ, Zhou YJ. Effect of beta-cypermethrin on the reproductive capacity of female mice in advanced age. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104410. [PMID: 38423490 DOI: 10.1016/j.etap.2024.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The aim of the present study was to investigate whether exposure to pesticides beta-cypermethrin (β-CYP) harms the reproductive capacity of advanced-age female mice. The results evidenced that peri-implantation β-CYP exposure significantly reduced the number of fetuses per advanced-age female in the first litter, and the number and weight of implantation sites. The levels of decidualization markers were significantly reduced in β-CYP-administered advanced-age mice. Lower expression of Pcna, Cdk6, Foxo1, Ki67, and p62 protein and mRNA was found in the decidua of β-CYP-treated advanced-age mice. The levels of Bax, cleaved caspase-3, Lc3a/b, Atg, mTOR, and p-mTOR protein, and the ratio of p-mTOR/mTOR protein expression were clearly downregulated by peri-implantation β-CYP exposure. These results indicated that peri-implantation β-CYP exposure may elevate the decline in reproductive capacity of early pregnant mice in advanced age.
Collapse
Affiliation(s)
- Qian-Feng Qiao
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Li-Qing Wang
- Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - De-E Yu
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Na Li
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Qiong-Jun Xu
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China
| | - Yong-Jiang Zhou
- Heinz Mehlhorn Academician Workstation, Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, People's Republic of China.
| |
Collapse
|
15
|
Wang B, Gao M, Yao Y, Li H, Zhang X. Focusing on the role of protein kinase mTOR in endometrial physiology and pathology: insights for therapeutic interventions. Mol Biol Rep 2024; 51:359. [PMID: 38400863 DOI: 10.1007/s11033-023-08937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 02/26/2024]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Mingxia Gao
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Ying Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongwei Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China.
| |
Collapse
|
16
|
Bralewska M, Pietrucha T, Sakowicz A. The Role of Catestatin in Preeclampsia. Int J Mol Sci 2024; 25:2461. [PMID: 38473713 DOI: 10.3390/ijms25052461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Preeclampsia (PE) is a unique pregnancy disorder affecting women across the world. It is characterized by the new onset of hypertension with coexisting end-organ damage. Although the disease has been known for centuries, its exact pathophysiology and, most importantly, its prevention remain elusive. The basis of its associated molecular changes has been attributed to the placenta and the hormones regulating its function. One such hormone is chromogranin A (CgA). In the placenta, CgA is cleaved to form a variety of biologically active peptides, including catestatin (CST), known inter alia for its vasodilatory effects. Recent studies indicate that the CST protein level is diminished both in patients with hypertension and those with PE. Therefore, the aim of the present paper is to review the most recent and most relevant in vitro, in vivo, and clinical studies to provide an overview of the proposed impact of CST on the molecular processes of PE and to consider the possibilities for future experiments in this area.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
17
|
Zahir M, Tavakoli B, Zaki-Dizaji M, Hantoushzadeh S, Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin Chim Acta 2024; 553:117731. [PMID: 38128815 DOI: 10.1016/j.cca.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recurrent implantation failure (RIF), defined as the inability to achieve conception following multiple consecutive in-vitro fertilization (IVF) attempts, represents a complex and multifaceted challenge in reproductive medicine. The emerging role of non-coding RNAs in RIF etiopathogenesis has only gained prominence over the last decade, illustrating a new dimension to our understanding of the intricate network underlying RIF. Successful embryo implantation demands a harmonious synchronization between an adequately decidualized endometrium, a competent blastocyst, and effective maternal-embryonic interactions. Emerging evidence has clarified the involvement of a sophisticated network of non-coding RNAs, including microRNAs, circular RNAs, and long non-coding RNAs, in orchestrating these pivotal processes. Disconcerted expression of these molecules can disrupt the delicate equilibrium required for implantation, amplifying the risk of RIF. This comprehensive review presents an in-depth investigation of the complex role played by non-coding RNAs in the pathogenesis of RIF. Furthermore, it underscores the vast potential of non-coding RNAs as diagnostic biomarkers and therapeutic targets, with the ultimate goal of enhancing implantation success rates in IVF cycles. As ongoing research continues to unravel the intercalated web of molecular interactions, exploiting the power of non-coding RNAs may offer promising avenues for mitigating the challenges posed by RIF and improving the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Mazyar Zahir
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Tavakoli
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Maragheh University, Maragheh, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Keleş ID, Günel T, Özgör BY, Ülgen E, Gümüşoğlu E, Hosseini MK, Sezerman U, Buyru F, Yeh J, Baştu E. Gene pathway analysis of the endometrium at the start of the window of implantation in women with unexplained infertility and unexplained recurrent pregnancy loss: is unexplained recurrent pregnancy loss a subset of unexplained infertility? HUM FERTIL 2023; 26:1129-1141. [PMID: 36369952 DOI: 10.1080/14647273.2022.2143299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 06/05/2022] [Indexed: 11/14/2022]
Abstract
This study aims to understand differences/similarities in the genetic profile of the endometrium at the start of window of implantation (WOI) in women with unexplained infertility (UI) and unexplained recurrent pregnancy loss (uRPL). Differentially expressed genes (DEGs) from the endometrium were evaluated using gene expression array and pathway enrichment analysis was performed to analyse gene expression pathways involved in both conditions. We found 2,171 genes arranged in 117 pathways and 730 genes arranged in 33 pathways differentially expressed in endometrium of patients in UI and uRPL, respectively. Complement-coagulation cascades, morphine addiction pathway, and PI3K-Akt signalling pathway were predominantly differentially expressed in UI. Cancer pathways, NF-κB signalling pathway, and actin cytoskeleton regulation pathway showed significant changes in uRPL. Forty-eight percent of DEGs and 84% of differentially expressed pathways in uRPL were found in the endometrium of UI patients. Unexpected close association in gene expression pathways between UI and uRPL is observed supporting the hypothesis 'uRPL is a clinical subset of UI'. Yet 100% DEGs overlap wasn't found suggesting the endometrium has still some different gene expression patterns at start of WOI in UI and uRPL. Lastly, diagnostic tools may be developed for uRPL because more specific genes-pathways are involved compared with UI, which shows broader genetic expression profile.
Collapse
Affiliation(s)
- Irem Demiral Keleş
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba Günel
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Bahar Yüksel Özgör
- Department of Obstetrics and Gynecology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ege Ülgen
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ece Gümüşoğlu
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | | | - Uğur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - John Yeh
- Department of Obstetrics and Gynecology, UMass Memorial Medical Center, Worcester, MA, USA
| | - Ercan Baştu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Sirohi VK, Medrano TI, Kannan A, Bagchi IC, Cooke PS. Uterine-specific Ezh2 deletion enhances stromal cell senescence and impairs placentation, resulting in pregnancy loss. iScience 2023; 26:107028. [PMID: 37360688 PMCID: PMC10285549 DOI: 10.1016/j.isci.2023.107028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Maternal uterine remodeling facilitates embryo implantation, stromal cell decidualization and placentation, and perturbation of these processes may cause pregnancy loss. Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that epigenetically represses gene transcription; loss of uterine EZH2 affects endometrial physiology and induces infertility. We utilized a uterine Ezh2 conditional knockout (cKO) mouse to determine EZH2's role in pregnancy progression. Despite normal fertilization and implantation, embryo resorption occurred mid-gestation in Ezh2cKO mice, accompanied by compromised decidualization and placentation. Western blot analysis revealed Ezh2-deficient stromal cells have reduced amounts of the histone methylation mark H3K27me3, causing upregulation of senescence markers p21 and p16 and indicating that enhanced stromal cell senescence likely impairs decidualization. Placentas from Ezh2cKO dams on gestation day (GD) 12 show architectural defects, including mislocalization of spongiotrophoblasts and reduced vascularization. In summary, uterine Ezh2 loss impairs decidualization, increases decidual senescence, and alters trophoblast differentiation, leading to pregnancy loss.
Collapse
Affiliation(s)
- Vijay K. Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I. Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S. Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Zhang H, Wang Z, Zhou Q, Cao Z, Jiang Y, Xu M, Liu J, Zhou J, Yan G, Sun H. Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway. J Assist Reprod Genet 2023; 40:1135-1146. [PMID: 36913138 PMCID: PMC10239411 DOI: 10.1007/s10815-023-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). METHODS RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson's correlation analysis. RESULTS Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). CONCLUSIONS The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhilong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Quan Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Manlin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jingyu Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Bralewska M, Pietrucha T, Sakowicz A. Reduction in CgA-Derived CST Protein Level in HTR-8/SVneo and BeWo Trophoblastic Cell Lines Caused by the Preeclamptic Environment. Int J Mol Sci 2023; 24:ijms24087124. [PMID: 37108287 PMCID: PMC10138478 DOI: 10.3390/ijms24087124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
One of the most dangerous complications of pregnancy is preeclampsia (PE), a disease associated with a high risk of maternal and fetal mortality and morbidity. Although its etiology remains unknown, the placenta is believed to be at the center of ongoing changes. One of the hormones produced by the placenta is chromogranin A (CgA). Thus far, its role in pregnancy and pregnancy-related disorders is enigmatic, yet it is known that both CgA and its derived peptide catestatin (CST) are involved in the majority of the processes that are disturbed in PE, such as blood pressure regulation or apoptosis. Therefore, in this study, the influence of the preeclamptic environment on the production of CgA using two cell lines, HTR-8/SVneo and BeWo, was investigated. Furthermore, the capacity of trophoblastic cells to secrete CST to the environment was tested, as well as the correlation between CST and apoptosis. This study provided the first evidence that CgA and CST proteins are produced by trophoblastic cell lines and that the PE environment has an impact on CST protein production. Furthermore, a strong negative correlation between CST protein level and apoptosis induction was found. Hence, both CgA and its derived peptide CST may play roles in the complex process of PE pathogenesis.
Collapse
Affiliation(s)
- Michalina Bralewska
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
22
|
Zhou YJ, Qiao QF, Wang LQ, Sheng TY, Cui MX, Chen QD, Wang CY, Zhang YX. Toxicity mechanism of peri-implantation pesticide beta-cypermethrin exposure on endometrial remodeling in early pregnant mice. Toxicology 2023; 489:153497. [PMID: 37011868 DOI: 10.1016/j.tox.2023.153497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Beta-cypermethrin (β-CYP) is a universally used pyrethroid pesticide with adverse effects on human health. β-CYP may impair endometrial remodeling in mice; however, the mechanism remains largely unknown. Endometrial remodeling plays a vital role in embryonic development and the maintenance of pregnancy. Therefore, we explored the mechanism by which peri-implantation β-CYP administration reduces uterine remodeling in pregnant mice. The C57BL/6J pregnant mice were administered a dose of 20mg/kg.bw. d β-CYP via oral gavage once daily from day 1 of gestation (GD1) to GD7. Molecular markers of endometrial remodeling, stromal cell proliferation, cell cycle regulation, and the PI3K/Akt/mTOR signaling pathway were evaluated in the decidual tissue of the uterus on GD7. An in vivo pseudopregnancy mouse model, a pregnant mouse model treated with an mTOR activator and an mTOR inhibitor and an in vitro decidualization model of mouse endometrial stromal cells were used to confirm β-CYP-induced defective endometrial remodeling and the key molecules expression of PI3K/Akt/mTOR signaling pathway. The results showed that β-CYP decreased the expression of the endometrial remodeling markers MMP9 and LIF in the uterine decidua. Peri-implantation β-CYP treatment markedly downregulated the expression of endometrial proliferation markers PCNA and Ki67 and decreased decidua thickness. Correspondingly, peri-implantation β-CYP exposure upregulated the expression of FOXO1, P57 and p-4E-BP1 in the decidua. Further experiments showed β-CYP significantly inhibited key molecules in the PI3K/Akt/mTOR pathway: PI3K, p-Akt/Akt, p-mTOR, and p-P70S6K in the uterine decidua. Additional experiments showed that aberrant endometrial remodeling induced by β-CYP was aggravated by rapamycin (an mTOR inhibitor) and partially reversed by MHY1485 (an mTOR agonist). In summary, our results indicated that a reduction in the PI3K/Akt/mTOR pathway may enhance defective endometrial remodeling by downregulating the proliferation and differentiation of endometrial stromal cells in early pregnant mice exposed to β-CYP. Our study elucidates the mechanism of defective endometrial remodeling induced by peri-implantation β-CYP exposure.
Collapse
Affiliation(s)
- Yong-Jiang Zhou
- Heinz Mehlhorn Academician Workstation, Maternal, Child and Adolescent Health, International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Qian-Feng Qiao
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Li-Qing Wang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Tao-Yu Sheng
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Man-Xue Cui
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Qi-Duo Chen
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Can-Yang Wang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| | - Yun-Xiao Zhang
- International School of Public Health and One Health, Hainan Medical University, Hainan Province 571199, China
| |
Collapse
|
23
|
Chromogranin A: An Endocrine Factor of Pregnancy. Int J Mol Sci 2023; 24:ijms24054986. [PMID: 36902417 PMCID: PMC10002927 DOI: 10.3390/ijms24054986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pregnancy is a state of physiological and hormonal changes. One of the endocrine factors involved in these processes is chromogranin A, an acidic protein produced, among others, by the placenta. Although it has been previously linked to pregnancy, no existing articles have ever managed to clarify the role of this protein regarding this subject. Therefore, the aim of the present study is to gather knowledge of chromogranin A's function with reference to gestation and parturition, clarify elusive information, and, most importantly, to formulate hypotheses for the future studies to verify.
Collapse
|
24
|
Luo Y, Chen J, Cui Y, Fang F, Zhang Z, Hu L, Chen X, Li Z, Li L, Chen L. Transcriptome-wide high-throughput m 6 A sequencing of differential m 6 A methylation patterns in the decidual tissues from RSA patients. FASEB J 2023; 37:e22802. [PMID: 36786696 DOI: 10.1096/fj.202201232rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Recurrent spontaneous abortion (RSA) is characterized by two or more consecutive pregnancy losses in the first trimester of pregnancy, experienced by 5% of women during their reproductive age. As a complex pathological process, the etiology of RSA remains poorly understood. Recent studies have established that gene expression changes dramatically in human endometrial stromal cells (ESCs) during decidualization. N6-methyladenosine (m6 A) modification is the most prevalent epigenetic modification of mRNA in eukaryotic cells and it is closely related to the occurrence and development of many pathophysiological phenomena. In this study, we first confirmed that high levels of m6 A mRNA methylation in decidual tissues are associated with RSA. Then, we used m6 A-modified RNA immunoprecipitation sequence (m6 A-seq) and RNA sequence (RNA-seq) to identify the differentially expressed m6 A methylation in decidual tissues from RSA patients and identified the key genes involved in abnormal decidualization by bioinformatics analysis. Using m6 A-seq, we identified a total of 2169 genes with differentially expressed m6 A methylation, of which 735 m6 A hypermethylated genes and 1434 m6 A hypomethylated genes were identified. Further joint analysis of m6 A-seq and RNA-seq revealed that 133 genes were m6 A modified with mRNA expression. GO and KEGG analyses indicated that these unique genes were mainly enriched in environmental information processing pathways, including the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. In summary, this study uncovered the transcriptome-wide m6 A modification pattern in decidual tissue of RSA, which provides a theoretical basis for further research into m6 A modification and new therapeutic strategies for RSA.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ziyu Zhang
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lili Hu
- Ambulatory Surgery Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Zengming Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Liping Li
- Prenatal Diagnosis Center, Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
25
|
Machtinger R, Racowsky C, Baccarelli AA, Bollati V, Orvieto R, Hauser R, Barnett-Itzhaki Z. Recombinant human chorionic gonadotropin and gonadotropin-releasing hormone agonist differently affect the profile of extracellular vesicle microRNAs in human follicular fluid. J Assist Reprod Genet 2023; 40:527-536. [PMID: 36609942 PMCID: PMC10033801 DOI: 10.1007/s10815-022-02703-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/19/2022] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To compare the expression profile of extracellular vesicle microRNAs (EV-miRNAs) derived from follicular fluid after a trigger with recombinant human chorionic gonadotropin (r-hCG) or with a gonadotropin-releasing hormone GnRH agonist (GnRH-a) for final oocyte maturation. METHODS A retrospective analysis of a prospective cohort. Women undergoing in vitro fertilization at a tertiary university-affiliated hospital were recruited between 2014 and 2016. EV-miRNAs were extracted from the follicular fluid of a single follicle, and their expression was assessed using TaqMan Open Array®. Genes regulated by EV-miRNAs were analyzed using miRWalk2.0 Targetscan database, DAVID Bioinformatics Resources, Kyoto-Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). RESULTS Eighty-two women were included in the r-hCG trigger group and 9 in the GnRH-a group. Of 754 EV-miRNAs screened, 135 were detected in at least 50% of the samples and expressed in both groups and were further analyzed. After adjusting for multiple testing, 41 EV-miRNAs whose expression levels significantly differed between the two trigger groups were identified. Bioinformatics analysis of the genes regulated by these EV-miRNAs showed distinct pathways between the two triggers, including TGF-beta signaling, cell cycle, and Wnt signaling pathways. Most of these pathways regulate cascades associated with apoptosis, embryo development, implantation, decidualization, and placental development. CONCLUSIONS Trigger with GnRH-a or r-hCG leads to distinct EV-miRNAs expression profiles and to downstream biological effects in ovarian follicles. These findings may provide an insight for the increased apoptosis and the lower implantation rates following GnRH-a trigger vs. r-hCG in cases lacking intensive luteal phase support.
Collapse
Affiliation(s)
- R Machtinger
- Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat Gan 5262000, Israel.
- Sackler School of Medicine, Tel-Aviv University, 6997801, Tel Aviv, Israel.
| | - C Racowsky
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - A A Baccarelli
- Laboratory of Precision Environmental Biosciences, Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, 10032, USA
| | - V Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, 20122, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - R Orvieto
- Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat Gan 5262000, Israel
| | - R Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Z Barnett-Itzhaki
- Public Health Services, Ministry of Health, 9446724, Jerusalem, Israel
- Faculty of Engineering, Ruppin Academic Center, 4025000, Emek Hefer, Israel
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, 4025000, Emek Hefer, Israel
| |
Collapse
|
26
|
Kuroda K, Matsumoto A, Horikawa T, Takamizawa S, Ochiai A, Kawamura K, Nakagawa K, Sugiyama R. Transcriptomic profiling analysis of human endometrial stromal cells treated with autologous platelet-rich plasma. Reprod Med Biol 2023; 22:e12498. [PMID: 36704119 PMCID: PMC9868347 DOI: 10.1002/rmb2.12498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
Purpose To clarify the mechanisms of intrauterine platelet-rich plasma (PRP) infusion that support embryo implantation in in vitro fertilization treatment. Methods Blood and endometrial samples were collected from four infertile women. Human endometrial stromal cells (HESCs) were cultured and passaged equally into four cell culture dishes in each patient. Two were treated with PRP twice, and the other two were treated with vehicle. Subsequently, two cultures with and without PRP were decidualized with 8-bromoadenosine 3',5'-cyclic AMP and progesterone for 5 days. Results The gene expression in undifferentiated or decidualized HESCs with and without PRP was compared. In the microarray analysis, 381 and 63 differentially expressed genes were detected in undifferentiated and decidualized HESCs, respectively. In the undifferentiated HESCs, PRP was found to promote the gene expression associated with cell growth, tissue regeneration, proinflammatory response, and antibiotic effects. In decidualized HESCs, PRP was found to attenuate the gene expression involved in cell proliferation and inflammation by inhibiting the expression of phosphoinositide 3-kinase signaling. Conclusions Platelet-rich plasma regulates the reprogramming of cell proliferation and inflammation depending on menstrual cycle phases in an appropriate manner, suggesting that PRP has the potential to increase endometrial thickness in the proliferative phase and improve immune tolerance in the secretory phase.
Collapse
Affiliation(s)
- Keiji Kuroda
- Center for Reproductive Medicine and EndoscopySugiyama Clinic MarunouchiTokyoJapan
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Akemi Matsumoto
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Takashi Horikawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Satoru Takamizawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Asako Ochiai
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Kazuhiro Kawamura
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Koji Nakagawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Rikikazu Sugiyama
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| |
Collapse
|
27
|
Primary Cilia Restrain PI3K-AKT Signaling to Orchestrate Human Decidualization. Int J Mol Sci 2022; 23:ijms232415573. [PMID: 36555215 PMCID: PMC9779442 DOI: 10.3390/ijms232415573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFβ, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.
Collapse
|
28
|
Zhu Y, Zhang Z, Ma Z, Deng W, Zhang Y, Wu Q. Autophagy markers are dysregulated in the endometrial tissues of patients with unexplained repeated implantation failure. Mol Reprod Dev 2022; 89:655-660. [PMID: 36468838 DOI: 10.1002/mrd.23654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrium decidualization is a complex biological process, which includes the interplay of transcription factors, cytokines, cell cycle regulators, and other signaling pathways. However, the underlying molecular mechanisms of this process are not fully elucidated to date. In this study, we aimed to investigate the possible association between autophagy and recurrent implantation failure (RIF). A total of 81 genes were downregulated and 231 genes were upregulated in the RIF group compared with the control group, and the differences were statistically significant (p < 0.05). Further, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were analyzed, and we found that some autophagy markers, for example, LC3-II, LAMP2, and HIF-1α were significantly increased, whereas P62 was drastically downregulated in the RIF group. Similar results were observed in proteins level; and the autophagy puncta were also markedly enhanced in the endometrial tissues of RIF patients. Autophagy is closely associated with the RIF occurs and may be involved in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Yuanchang Zhu
- Fertility Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China.,Fertility Center, Shenzhen Hengsheng Hospital, Shenzhen, China
| | - Zhiqin Zhang
- Fertility Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Zhuanhong Ma
- Fertility Center, Shenzhen Hengsheng Hospital, Shenzhen, China
| | - Weifen Deng
- Fertility Center, Shenzhen Hengsheng Hospital, Shenzhen, China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qiongfang Wu
- Fertility Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
29
|
Dabaja MZ, Dos Santos AA, Christofolini DM, Barbosa CP, de Oliveira DN, de Oliveira AN, Melo CFOR, Guerreiro TM, Catharino RR. Comparative metabolomic profiling of women undergoing in vitro fertilization procedures reveals potential infertility-related biomarkers in follicular fluid. Sci Rep 2022; 12:20531. [PMID: 36446837 PMCID: PMC9709069 DOI: 10.1038/s41598-022-24775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Infertility is a worldwide concern, affecting one in six couples throughout their reproductive period. Therefore, enhancing the clinical tools available to identify the causes of infertility may save time, money, and emotional distress for the involved parties. This study aims to annotate potential biomarkers in follicular fluid that are negatively affecting pregnancy outcomes in women suffering infertility-related diseases such as endometriosis, tuboperitoneal factor, uterine factor, and unexplained infertility, using a metabolomics approach through high-resolution mass spectrometry. Follicular fluid samples collected from women who have the abovementioned diseases and managed to become pregnant after in vitro fertilization procedures [control group (CT)] were metabolically compared with those from women who suffer from the same diseases and could not get pregnant after the same treatment [infertile group (IF)]. Mass spectrometry analysis indicated 10 statistically relevant differential metabolites in the IF group, including phosphatidic acids, phosphatidylethanolamines, phosphatidylcholines, phosphatidylinositol, glucosylceramides, and 1-hydroxyvitamin D3 3-D-glucopyranoside. These metabolites are associated with cell signaling, cell proliferation, inflammation, oncogenesis, and apoptosis, and linked to infertility problems. Our results indicate that understanding the IF's metabolic profile may result in a faster and more assertive female infertility diagnosis, lowering the costs, and increasing the probability of a positive pregnancy outcome.
Collapse
Affiliation(s)
- Mohamed Ziad Dabaja
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | | | - Denise Maria Christofolini
- Instituto Ideia Fértil de Saúde Reprodutiva, Santo André, SP, 09060-650, Brazil
- Centro Universitário FMABC, Santo André, SP, 09060-870, Brazil
| | - Caio Parente Barbosa
- Instituto Ideia Fértil de Saúde Reprodutiva, Santo André, SP, 09060-650, Brazil
- Centro Universitário FMABC, Santo André, SP, 09060-870, Brazil
| | - Diogo Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Carlos Fernando Odir Rodrigues Melo
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Tatiane Melina Guerreiro
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Rua Cinco de Junho, 350, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
30
|
Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Gómez-Álvarez M, Faus A, Gómez-Cerdá M, Moret-Tatay I, Díaz A, Pellicer A, Cervelló I. Human umbilical cord platelet-rich plasma to treat endometrial pathologies: methodology, composition and pre-clinical models. Hum Reprod Open 2022; 2023:hoac053. [PMID: 36523324 PMCID: PMC9747096 DOI: 10.1093/hropen/hoac053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/17/2022] [Indexed: 09/25/2024] Open
Abstract
STUDY QUESTION Can human umbilical cord platelet-rich plasma (hUC-PRP) efficiently treat endometrial damage and restore fertility in a preclinical murine model? SUMMARY ANSWER Local application of hUC-PRP promotes tissue regeneration and fertility restoration in a murine model of Asherman syndrome and endometrial atrophy (AS/EA). WHAT IS KNOWN ALREADY AS/EA are well-described endometrial pathologies that cause infertility; however, there are currently no gold-standard treatments available. Recent reports have described the successful use of human platelet-rich plasma in reproductive medicine, and its regenerative potential is further enhanced using hUC-PRP, due to the ample growth factors and reduced pro-inflammatory cytokines in the latter. STUDY DESIGN SIZE DURATION hUC-PRP (n = 3) was processed, characterized and delivered locally to endometrial damage in a murine model (n = 50). The hUC-PRP was either used alone or loaded into a decellularized porcine endometrium-derived extracellular matrix (EndoECM) hydrogel; endometrial regeneration, fertility outcomes and immunocompatibility were evaluated 2 weeks following treatment administration. PARTICIPANTS/MATERIALS SETTING METHODS Umbilical cord blood was obtained from women in childbirth. Endometrial damage (mimicking AS/EA) was induced using ethanol in 8-week-old C57BL/6 mice, and treated with the most concentrated hUC-PRP sample 4 days later. Characterization of hUC-PRP and immunotolerance was carried out with multiplex technology, while uterine samples were analyzed by immunohistochemistry and quantitative PCR. The number of embryos and their morphology was determined visually. MAIN RESULTS AND THE ROLE OF CHANCE Platelet density was enhanced 3-fold in hUC-PRP compared to that in hUC blood (P < 0.05). hUC-PRP was enriched with growth factors related to tissue regeneration (i.e. hepatocyte growth factor, platelet-derived growth factor-BB and epidermal growth factor), which were released constantly (in vitro) when hUC-PRP was loaded into EndoECM. Both treatments (hUC-PRP alone and hUC-PRP with EndoECM) were immunotolerated and caused significantly regeneration of the damaged endometrium, evidenced by increased endometrial area, neoangiogenesis, cell proliferation and gland density and lower collagen deposition with respect to non-treated uterine horns (P < 0.05). Additionally, we detected augmented gene expression of Akt1, VEGF and Ang, which are involved in regenerative and proliferation pathways. Finally, hUC-PRP treatment restored pregnancy rates in the mouse model. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This proof-of-concept pilot study was based on a murine model of endometrial damage and the use of EndoECM requires further validation prior to clinical implementation for women affected by AS/EA. WIDER IMPLICATIONS OF THE FINDINGS The local administration of hUC-PRP has high impact and is immunotolerated in a murine model of AS/EA, as has been reported in other tissues, making it a promising candidate for heterologous treatment of these endometrial pathologies. STUDY FUNDING/COMPETING INTERESTS This study was supported by the Ministerio de Ciencia, Innovación y Universidades; Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana; and Instituto de Salud Carlos III. The authors do not have any conflicts of interest to declare.
Collapse
Affiliation(s)
| | | | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
- University of Valencia, Valencia, Spain
| | | | - Amparo Faus
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | | | - Inés Moret-Tatay
- Inflammatory Bowel Disease Research Group/Multiplex Analysis Unit, Health Research Institute La Fe, Valencia, Spain
| | - Ana Díaz
- University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- University of Valencia, Valencia, Spain
- IVI-RMA Rome, Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| |
Collapse
|
31
|
Lavogina D, Visser N, Samuel K, Davey E, Björvang RD, Hassan J, Koponen J, Rantakokko P, Kiviranta H, Rinken A, Olovsson M, Salumets A, Damdimopoulou P. Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro. Front Endocrinol (Lausanne) 2022; 13:903505. [PMID: 36060944 PMCID: PMC9437351 DOI: 10.3389/fendo.2022.903505] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target. Decidualization is the morphological and functional change that endometrial stromal cells undergo to support endometrial receptivity, which is crucial for successful implantation, placentation, and pregnancy. We investigated the effect of nine selected EDCs on primary human endometrial stromal cell decidualization in vitro. The cells were exposed to a decidualization-inducing mixture in the presence or absence of 1 μM of nine different EDCs for nine days. Extent of decidualization was assessed by measuring the activity of cAMP dependent protein kinase, Rho-associated coiled-coil containing protein kinase, and protein kinase B in lysates using photoluminescent probes, and secretion of prolactin into the media by using ELISA. Decidualization-inducing mixture upregulated activity of protein kinases and prolactin secretion in cells derived from all women. Of the tested chemicals, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and perfluorooctanesulfonic acid (PFOS) significantly reduced decidualization as judged by the kinase markers and prolactin secretion. In addition, bisphenol A (BPA) reduced prolactin secretion but did not significantly affect activity of the kinases. None of the EDCs was cytotoxic, based on the assessment of total protein content or activity of the viability marker casein kinase 2 in lysates. These results indicate that EDCs commonly present in the blood circulation of reproductive-aged women can reduce decidualization of human endometrial stromal cells in vitro. Future studies should focus on detailed hazard assessment to define possible risks of EDC exposure to endometrial dysfunction and implantation failure in women.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Nadja Visser
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Eva Davey
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jani Koponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Matts Olovsson
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Zhang M, Cai X, Liu J, Zhou J, Shi Q, Jiang Y, Kang N, Zhen X, Wu M, Qiu P, Yan G, Sun H, Li D. A novel lncRNA lncSAMD11-1: 1 interacts with PIP4K2A to promote endometrial decidualization by stabilizing FoxO1 nuclear localization. Int J Biochem Cell Biol 2022; 151:106280. [PMID: 35987479 DOI: 10.1016/j.biocel.2022.106280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
Decidualization is essential for a successful pregnancy and determines embryo implantation and pregnancy maintenance. Abnormal decidualization is one of the main causes of recurrent implantation failure (RIF). Studies have shown that large amounts of long noncoding RNAs (lncRNAs) are abnormally expressed in endometrial samples from patients with RIF. However, the functional contributions of lncRNAs to decidualization in RIF have not been explored. In this study, we found that lncSAMD11-1:1 was significantly declined in the endometria of patients with RIF. The knockdown of lncSAMD11-1:1 in human endometrial stromal cells (hESCs) restrained decidualization and embryo implantation in vitro, while the overexpression of lncSAMD11-1:1 facilitated hESC decidualization and embryo implantation in vitro and ameliorated decidualization in RIF patients. Mechanistically, lncSAMD11-1:1 and phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2A) translocated out of nucleus and bound to each other during decidualization, thereby inhibiting the phosphorylation of AKT and promoting FoxO1 nuclear localization. These data suggest that lncSAMD11-1:1 might be a critical novel lncRNA functionally required for human decidualization, and the dysregulation of lncSAMD11-1:1 in the endometrium may be a new predisposing factor of RIF.
Collapse
Affiliation(s)
- Mei Zhang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Xinyu Cai
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jingyu Liu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Qingqing Shi
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Yue Jiang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Nannan Kang
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Min Wu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Panpan Qiu
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China.
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, People's Republic of China.
| |
Collapse
|
33
|
McCoski SR, Cockrum RR, Ealy AD. Short Communication: Maternal obesity alters ovine endometrial gene expression during peri-implantation development. J Anim Sci 2022; 100:skac090. [PMID: 35772750 PMCID: PMC9246656 DOI: 10.1093/jas/skac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to maternal obesity in utero is associated with marked developmental effects in offspring that may not be evident until adulthood. Mechanisms regulating the programming effects of maternal obesity on fetal development have been reported, but little is known about how maternal obesity affects the earliest periods of embryonic development. This work explored how obesity influences endometrial gene expression during the peri-implantation period using a sheep model. Ewes were assigned randomly to diets that produced an obese state or maintained a lean state. After 4 mo, obese and lean ewes were bred and then euthanized at day 14 post-breeding. The uterus was excised, conceptuses were flushed, and endometrial tissue was collected. Isolated RNA from endometrial tissues (n = 6 ewes/treatment) were sequenced using an Illumina-based platform. Reads were mapped to the Ovis aries genome (Oar_4.0). Differential gene expression was determined, and results were filtered (false discovery rate ≤ 0.05 and ≥2-fold change, ≥0.2 reads/kilobase/million reads). Differentially expressed genes (DEGs) were identified (n = 699), with 171 downregulated and 498 upregulated in obese vs. lean endometrium, respectively. The most pronounced gene ontology categories identified were cellular process, metabolic process, and biological regulation. Enrichments were detected within the DEGs for genes involved with immune system processes, negative regulation of apoptosis, cell growth, and cell adhesion. A literature search revealed that 125 DEGs were associated with either the trophoblast lineage or the placenta. Genes within this grouping were involved with wingless/integrated signaling, angiogenesis, and integrin signaling. In summary, these data indicate that the peri-implantation endometrium is responsive to maternal obesity. Transcript profile analyses suggest that the endometrial immune response, adhesion, and angiogenesis may be especially susceptible to obesity. Thus, alterations in uterine transcript profiles during early embryogenesis may be a mechanism responsible for developmental programming following maternal obesity exposure in utero.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | | | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
34
|
Su Y, Xu J, Gao R, Liu X, Liu T, Li C, Ding Y, Chen X, He J, Liu X, Li C, Qi H, Wang Y. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol 2022; 13:778116. [PMID: 35309064 PMCID: PMC8928262 DOI: 10.3389/fphys.2022.778116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
AimRecurrent miscarriage (RM) is associated with numerous clinical factors. However, some RM occurred without specific factors. It has been revealed that some molecules such as hormones, miRNAs, and transcription factors are involved in RM by regulating proliferation, apoptosis, etc. However, the mechanism of RM has yet to be identified clearly. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that often act as sponges for miRNAs or binds to proteins involved in biological processes. However, the functional role of circRNAs in the uterine decidua of patients with early RM is still unclear. In this study, we aimed to investigate the mechanisms of circ-CYP24A1 in RM.MethodsThe Dual-Luciferase Activity Assay was designed to analyze the bonding between circ-CYP24A1 and miR-224, and miR-224 and prolactin receptor (PRLR) mRNA 3′UTR. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to observe the expression of circ-CYP24A1 and PRLR in the decidua. Rescue experiments were performed to investigate the regulating effects of circ-CYP24A1, miR-224, and PRLR. Western blotting was conducted to test the expression level of PRLR. The proliferation and apoptosis-related markers in Ishikawa cells were analyzed using CCK8, immunofluorescence staining, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay.ResultsIn this study, based on the microarray analysis data, we identified a high level of circ-CYP24A1 and PRLR in the decidua of patients with early RM. Based on the bioinformatics prediction, the binding relationship between circ-CYP24A1 and miR-224, as well as miR-224 and PRLR, were verified. Functional experiments demonstrated that circ-CYP24A1 regulated proliferation and apoptosis by binding to and inhibiting miR-224, resulting in increased PRLR expression. Taken together, this study provides new insights into the mechanism of RM.ConclusionIn this study, we found that circ-CYP24A1 plays a role in RM by impairing the balance of cell proliferation and apoptosis by sponging miR-224, thereby regulating PRLR.
Collapse
Affiliation(s)
- Yan Su
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiani Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Family Planning, Chongqing Health Center for Women and Children, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Cong Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Chunli Li,
| | - Hongbo Qi
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Hongbo Qi,
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Yingxiong Wang,
| |
Collapse
|
35
|
The Anti-Endometriotic Effect of Cyperi Rhizoma Extract, Inhibiting Cell Adhesion and the Expression of Pain-Related Factors through Akt and NF-kB Pathways. Medicina (B Aires) 2022; 58:medicina58030335. [PMID: 35334511 PMCID: PMC8953559 DOI: 10.3390/medicina58030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Rhizomes of Cyperus rotundus have been widely used as a traditional medicine in Asia for the treatment of gynecological diseases. However, there is no scientific evidence demonstrating the effect of C. rotundus rhizomes on endometriosis, which is characterized by the adhesion of endometrial tissues outside the uterus, resulting in chronic and severe pelvic pain. The aim of this study was to investigate the effects of Cyperi rhizoma extract (CRE) on cell adhesion and the expression of pain-related factors (neurotrophins) in endometriotic cells, and to elucidate the underlying molecular mechanisms. CRE inhibited the adhesion of human endometriotic 12Z cells to peritoneal mesothelial Met5A cells using by adhesion assays. The mRNA expression of adhesion molecules [P-cadherin and matrix metalloproteinase (MMP)-2] was downregulated by CRE treatment. In addition, CRE significantly inhibited the mRNA expression of neurotrophins (BDNF, NGF, NT-3 and NT-4/5) in 12Z cells. Moreover, Akt overexpression markedly neutralized the inhibition of cell adhesion by CRE and expression of neurotrophins in 12Z cells. Furthermore, it was found that CRE suppressed NF-kB activation through the Akt pathway. These data suggest that CRE exerts anti-endometriotic activities by the inhibition of cell adhesion and neurotrophin expression, through the negative regulation of the Akt and NF-kB pathways in endometriotic cells.
Collapse
|
36
|
Cheng J, Liang J, Li Y, Gao X, Ji M, Liu M, Tian Y, Feng G, Deng W, Wang H, Kong S, Lu Z. Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy. PLoS Genet 2022; 18:e1010018. [PMID: 35025868 PMCID: PMC8791483 DOI: 10.1371/journal.pgen.1010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. Embryo implantation includes the establishment of uterine receptivity, blastocyst attachment, and endometrial decidualization. Disorders of this process usually induce pregnancy failure, resulting in women infertility. But the signaling mechanisms governing this process remain unclear. Here, using gene knockout mouse model and human endometrial stromal cells (hESCs), we identified a novel key regulator of embryo implantation, Shp2, which plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Shp2 deficiency in mouse uterine stromal cells inhibited the uterine stromal decidualization, disturbing embryo implantation and embryonic development, ultimately reducing female fertility. The absence of Shp2 in hESCs also blocked the decidual differentiation. Our findings not only promote the understanding of peri-implantation biology, but may also provide a critical target for more effectively diagnose and/or treat women with recurrent implantation failure or early pregnancy loss.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jia Liang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xia Gao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| |
Collapse
|
37
|
von Grothusen C, Frisendahl C, Modhukur V, Lalitkumar PG, Peters M, Faridani OR, Salumets A, Boggavarapu NR, Gemzell-Danielsson K. OUP accepted manuscript. Hum Reprod 2022; 37:734-746. [PMID: 35147192 PMCID: PMC8971651 DOI: 10.1093/humrep/deac019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
STUDY QUESTION Is the composition of microRNAs (miRNAs) in uterine fluid (UF) of women with recurrent implantation failure (RIF) different from that of healthy fertile women? SUMMARY ANSWER The composition of miRNAs in UF of women with RIF is different from that of healthy fertile women and the dysregulated miRNAs are associated with impaired endometrial receptivity and embryo implantation. WHAT IS KNOWN ALREADY It has previously been demonstrated that the miRNAs secreted from endometrial cells into the UF contribute to the achievement of endometrial receptivity. Endometrial miRNAs are dysregulated in women with RIF. STUDY DESIGN, SIZE, DURATION In this descriptive laboratory case–control study, miRNA abundancy was compared between UF collected during implantation phase from healthy fertile women (n = 17) and women with RIF (n = 34), which was defined as three failed IVF cycles with high-quality embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS Recruitment of study subjects and sampling of UF were performed at two university clinics in Stockholm, Sweden and Tartu, Estonia. The study participants monitored their menstrual cycles using an LH test kit. The UF samples were collected on Day LH + 7–9 by flushing with saline. Samples were processed for small RNA sequencing and mapped for miRNAs. The differential abundance of miRNAs in UF was compared between the two groups using differential expression analysis (DESeq2). Further downstream analyses, including miRNA target gene prediction (miRTarBase), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (g:Profiler) and external validation using relevant published data, were performed on the dysregulated miRNAs. Two miRNAs were technically validated with quantitative real-time PCR (RT-PCR). MAIN RESULTS AND THE ROLE OF CHANCE After processing of the sequencing data, there were 15 samples in the healthy fertile group and 33 samples in the RIF group. We found 61 differentially abundant UF miRNAs (34 upregulated and 27 downregulated) in RIF compared to healthy women with a false discovery rate of <0.05 and a fold change (FC) of ≤−2 or ≥2. When analyzed with published literature, we found that several of the differentially abundant miRNAs are expressed in endometrial epithelial cells and have been reported in endometrial extracellular vesicles and in association with endometrial receptivity and RIF. Their predicted target genes were further expressed both in the trophectodermal cells of blastocyst-stage embryos and endometrial mid-secretory epithelial cells, as assessed by publicly available single-cell transcriptome-sequencing studies. Pathway analysis further revealed that 25 pathways, having key roles in endometrial receptivity and implantation, were significantly enriched. Hsa-miR-486-5p (FC −20.32; P-value = 0.004) and hsa-miR-92b-3p (FC −9.72; P-value = 0.004) were successfully technically validated with RT-PCR. LARGE SCALE DATA The data are available in Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ with GEO accession number: GSE173289. LIMITATIONS, REASONS FOR CAUTION This is a descriptive study with a limited number of study participants. Moreover, the identified differentially abundant miRNAs should be validated in a larger study cohort, and the predicted miRNA target genes and enriched pathways in RIF need to be confirmed and further explored in vitro. WIDER IMPLICATIONS OF THE FINDINGS RIF is a major challenge in the current IVF setting with no diagnostic markers nor effective treatment options at hand. For the first time, total miRNAs have been extensively mapped in receptive phase UF of both healthy women with proven fertility and women diagnosed with RIF. Our observations shed further light on the molecular mechanisms behind RIF, with possible implications in future biomarker and clinical treatment studies. STUDY FUNDING/COMPETING INTEREST(S) This work was financially supported by the Swedish Research Council (2017-00932), a joint grant from Region Stockholm and Karolinska Institutet (ALF Medicine 2020, FoUI-954072), Estonian Research Council (PRG1076), Horizon 2020 innovation (ERIN, EU952516) and European Commission and Enterprise Estonia (EU48695). The authors have no competing interests to declare for the current study.
Collapse
Affiliation(s)
- Carolina von Grothusen
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Frisendahl
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Correspondence address. Karolinska Institutet, Bioclinicum J9:30, Visionsgatan 4, 171 76 Solna, Sweden. Tel: +46-722502101; E-mail: https://orcid.org/0000-0001-5283-6692
| | - Vijayachitra Modhukur
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Parameswaran Grace Lalitkumar
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Maire Peters
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Omid R Faridani
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Adult Cancer Program, Lowy Cancer Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Nageswara Rao Boggavarapu
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
38
|
Ran Y, He J, Chen R, Qin Y, Liu Z, Zhou Y, Yin N, Qi H, Zhou W. Investigation and Validation of Molecular Characteristics of Endometrium in Recurrent Miscarriage and Unexplained Infertility from a Transcriptomic Perspective. Int J Med Sci 2022; 19:546-562. [PMID: 35370464 PMCID: PMC8964333 DOI: 10.7150/ijms.69648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Recurrent miscarriage (RM) and unexplained infertility (UI) are gordian knots in reproductive medicine, which are troubling many patients, doctors, and researchers. Although these two diseases of early pregnancy have a significant impact on human reproductive health, little is known about the specific mechanisms, which caused treatment difficulties. This study focused on the molecular signatures underlying the pathological phenotypes of two diseases, with the hope of using statistical methods to identify the significant core genes. An unbiased Weighted Correlation Network Analysis (WGCNA) algorithm was used for endometrial transcriptome data analysis and the disease-related gene modules were screened out. Through enrichment analysis of the candidate genes, we found similarities between both diseases and shared enrichment of immune-related pathways. Therefore, we used immune algorithms to assess the infiltration of immune cells and found abnormal increases of CD8+T cells and neutrophils. In order to explore the molecular profile behind the immunophenotypic changes, we used the SVM algorithm and LASSO regression to identify the core genes with diagnostic capacity in both diseases and discussed their significance of immune disorders in the endometrium. In the end, the satisfactory diagnostic ability of these core genes was verified in the broader group. Our results demonstrated the presence of immune disorders in non-pregnancy tissues of RM and UI, and identified the core molecules of this phenotype, and discuss mechanisms. This provides exploratory evidence for the in-depth understanding of the mechanism of RM and UI and may provide potential targets for their future treatment.
Collapse
Affiliation(s)
- Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Qin
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yunqian Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Wei Zhou
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| |
Collapse
|
39
|
van der Ploeg P, Uittenboogaard A, Bucks KMM, Lentjes-Beer MHFM, Bosch SL, van Rumste MME, Vos MC, van Diest PJ, Lambrechts S, van de Stolpe A, Bekkers RLM, Piek JMJ. Cyclic activity of signal transduction pathways in fimbrial epithelium of the human fallopian tube. Acta Obstet Gynecol Scand 2021; 101:256-264. [PMID: 34927235 DOI: 10.1111/aogs.14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The local environment of the fallopian tube represents the optimal conditions for reproductive processes. To maintain tissue homeostasis, signal transduction pathways are thought to play a pivotal role. Enhancing our understanding of functional signal transduction pathway activity is important to be able to clarify the role of aberrant signal transduction pathway activity leading to female subfertility and other tubal diseases. Therefore, in this study we investigate the influence of the hormonal cycle on the activity of key signal transduction pathways in the fimbrial epithelium of morphologically normal fallopian tubes. MATERIAL AND METHODS We included healthy pre- (n = 17) and postmenopausal (n = 8) patients who had surgical interventions for benign gynecologic conditions. Histologic sections of the fallopian tubes were reviewed by two pathologists and, for the premenopausal patients, hormone serum levels and sections of the endometrium were examined to determine the hormonal phase (early follicular [n = 4], late follicular [n = 3], early luteal [n = 5], late luteal [n = 5]). After laser capture microdissection, total mRNA was extracted from the fimbrial epithelium and real-time quantitative reverse transcription-PCR was performed to determine functional signal transduction pathway activity of the androgen receptor (AR), estrogen receptor (ER), phosphoinositide-3-kinase (PI3K), Hedgehog (HH), transforming growth factor-beta (TGF-β) and canonical wingless-type MMTV integration site (Wnt) pathways. RESULTS The early luteal phase demonstrated high AR and ER pathway activity in comparison with the late luteal phase (p = 0.016 and p = 0.032, respectively) and low PI3K activity compared with the late follicular phase (p = 0.036), whereas the late luteal phase showed low activity of HH and Wnt compared with the early follicular phase (both p = 0.016). Signal transduction pathway activity in fimbrial epithelium from postmenopausal patients was most similar to the early follicular and/or late luteal phase with regard to the AR, ER and PI3K pathways. Wnt pathway activity in postmenopausal patients was comparable to the late follicular and early luteal phase. We observed no differences in HH and TGF-β pathway activity between pre- and postmenopausal samples. The cyclic changes in signal transduction pathway activity suggest a stage-specific function which may affect the morphology and physiology of the human fallopian tube. CONCLUSIONS We demonstrated cyclic changes in activity of the AR, ER, PI3K, HH and Wnt pathways throughout the hormonal cycle.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Aniek Uittenboogaard
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | - Karlijn M M Bucks
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Steven L Bosch
- Laboratory for Pathology and Medical Microbiology (Stichting PAMM), Eindhoven, The Netherlands
| | | | - M Caroline Vos
- Department of Obstetrics and Gynecology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Ruud L M Bekkers
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
40
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progestins as Anticancer Drugs and Chemosensitizers, New Targets and Applications. Pharmaceutics 2021; 13:pharmaceutics13101616. [PMID: 34683909 PMCID: PMC8540053 DOI: 10.3390/pharmaceutics13101616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Progesterone and its synthetic analogues, progestins, participate in the regulation of cell differentiation, proliferation and cell cycle progression. Progestins are usually applied for contraception, maintenance of pregnancy, and hormone replacement therapy. Recently, their effectiveness in the treatment of hormone-sensitive tumors was revealed. According to current data, the anticancer activity of progestins is mainly mediated by their cytotoxic and chemosensitizing influence on different cancer cells. In connection with the detection of previously unknown targets of the progestin action, which include the membrane-associated progesterone receptor (PR), non-specific transporters related to the multidrug resistance (MDR) and mitochondrial permeability transition pore (MPTP), and checkpoints of different signaling pathways, new aspects of their application have emerged. It is likely that the favorable influence of progestins is predominantly associated with the modulation of expression and activity of MDR-related proteins, the inhibition of survival signaling pathways, especially TGF-β and Wnt/β-catenin pathways, which activate the proliferation and promote MDR in cancer cells, and the facilitation of mitochondrial-dependent apoptosis. Biological effects of progestins are mediated by the inhibition of these signaling pathways, as well as the direct interaction with the nucleotide-binding domain of ABC-transporters and mitochondrial adenylate translocase as an MPTP component. In these ways, progestins can restore the proliferative balance, the ability for apoptosis, and chemosensitivity to drugs, which is especially important for hormone-dependent tumors associated with estrogen stress, epithelial-to-mesenchymal transition, and drug resistance.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-916-935-31-96
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Pushchino, 142290 Moscow, Russia;
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia;
| |
Collapse
|
41
|
Šućurović S, Nikolić T, Brosens JJ, Mulac-Jeričević B. Analysis of heart and neural crest derivatives-expressed protein 2 (HAND2)-progesterone interactions in peri-implantation endometrium†. Biol Reprod 2021; 102:1111-1121. [PMID: 31982918 DOI: 10.1093/biolre/ioaa013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
Implantation is restricted to a narrow window when the local endometrial microenvironment is supportive of the invading embryo. The ovarian steroid hormones estrogen (E) and progesterone (P) are principal regulators of uterine receptivity. Suppression of E-dependent proliferation of luminal epithelium (LE) by P is mandatory for embryo implantation. Here, we report that the balance of E receptor α (ERα) and P receptors (PR) activity controls HAND2 expression, a key transcription factor that determines the fate of the implanting embryo and thereby pregnancy outcome. As a model, we used wild-type mice as well as mice in which either both PR isoforms or the A-isoform was genetically ablated (PRKO and PRAKO, respectively). Detailed spatiotemporal analyses of PR, HAND2, and ERα expression at implantation site demonstrated co-expression of HAND2 and PR but not ERα. Furthermore, in hormonally treated ovariectomized WT, PRAKO and PRKO mice, E suppresses endometrial HAND2 expression. Adding P together with E partially rescues HAND2 expression in WT, but not PRAKO and PRKO animals. Therefore, infertility in PRAKO mice is at least in part associated with the loss of PR-A-regulated HAND2 expression.
Collapse
Affiliation(s)
- Sandra Šućurović
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Tamara Nikolić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom
| | - Biserka Mulac-Jeričević
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia and
| |
Collapse
|
42
|
Lavogina D, Stepanjuk A, Peters M, Samuel K, Kasvandik S, Khatun M, Arffman RK, Enkvist E, Viht K, Kopanchuk S, Lättekivi F, Velthut-Meikas A, Uri A, Piltonen TT, Rinken A, Salumets A. Progesterone triggers Rho kinase-cofilin axis during in vitro and in vivo endometrial decidualization. Hum Reprod 2021; 36:2230-2248. [PMID: 34270712 DOI: 10.1093/humrep/deab161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Indexed: 02/01/2023] Open
Abstract
STUDY QUESTION Can a combination of the focussed protein kinase assays and a wide-scale proteomic screen pinpoint novel, clinically relevant players in decidualization in vitro and in vivo? SUMMARY ANSWER Rho-dependent protein kinase (ROCK) activity is elevated in response to the combined treatment with progesterone and 8-Br-cAMP during in vitro decidualization, mirrored by increase of ROCK2 mRNA and protein levels and the phosphorylation levels of its downstream target Cofilin-1 (CFL1) in secretory versus proliferative endometrium. WHAT IS KNOWN ALREADY Decidualization is associated with extensive changes in gene expression profile, proliferation, metabolism and morphology of endometrium, yet only a few underlying molecular pathways have been systematically explored. In vitro decidualization of endometrial stromal cells (ESCs) can be reportedly induced using multiple protocols with variable physiological relevance. In our previous studies, cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA)/prolactin axis that is classically upregulated during decidualization showed dampened activation in ESCs isolated from polycystic ovary syndrome (PCOS) patients as compared to controls. STUDY DESIGN, SIZE, DURATION In vitro decidualization studies were carried out in passage 2 ESCs isolated from controls (N = 15) and PCOS patients (N = 9). In parallel, lysates of non-cultured ESCs isolated from proliferative (N = 4) or secretory (N = 4) endometrial tissue were explored. The observed trends were confirmed using cryo-cut samples of proliferative (N = 3) or secretory endometrium (N = 3), and in proliferative or secretory full tissue samples from controls (N = 8 and N = 9, respectively) or PCOS patients (N = 10 for both phases). PARTICIPANTS/MATERIALS, SETTING, METHODS The activities of four target kinases were explored using kinase-responsive probes and selective inhibitors in lysates of in vitro decidualized ESCs and non-cultured ESCs isolated from tissue at different phases of the menstrual cycle. In the latter lysates, wide-scale proteomic and phosphoproteomic studies were further carried out. ROCK2 mRNA expression was explored in full tissue samples from controls or PCOS patients. The immunofluorescent staining of phosphorylated CFL1 was performed in full endometrial tissue samples, and in the in vitro decidualized fixed ESCs from controls or PCOS patients. Finally, the cellular migration properties were explored in live in vitro decidualized ESCs. MAIN RESULTS AND THE ROLE OF CHANCE During in vitro decidualization, the activities of PKA, protein kinase B (Akt/PKB), and ROCK are increased while the activity of casein kinase 2 (CK2) is decreased; these initial trends are observable after 4-day treatment (P < 0.05) and are further augmented following the 9-day treatment (P < 0.001) with mixtures containing progesterone and 8-Br-cAMP or forskolin. The presence of progesterone is necessary for activation of ROCK, yet it is dispensable in the case of PKA and Akt/PKB; in comparison to controls, PCOS patient-derived ESCs feature dampened response to progesterone. In non-cultured ESCs isolated from secretory vs proliferative phase tissue, only activity of ROCK is increased (P < 0.01). ROCK2 protein levels are slightly elevated in secretory versus proliferative ESCs (relative mean standard deviation < 50%), and ROCK2 mRNA is elevated in mid-secretory versus proliferative full tissue samples (P < 0.05) obtained from controls but not PCOS patients. Activation of ROCK2 downstream signalling results in increase of phospho-S3 CFL1 in secretory endometrium (P < 0.001) as well as in vitro decidualized ESCs (P < 0.01) from controls but not PCOS patients. ROCK2-triggered alterations in the cytoskeleton are reflected by the significantly decreased motility of in vitro decidualized ESCs (P < 0.05). LARGE SCALE DATA Proteomic and phosphoproteomic data are available via ProteomeXchange with identifier PXD026243. LIMITATIONS, REASONS FOR CAUTION The number of biological samples was limited. The duration of protocol for isolation of non-cultured ESCs from tissue can potentially affect phosphorylation pathways in cells, yet the possible artefacts were minimized by the identical treatment of proliferative and secretory samples. WIDER IMPLICATIONS OF THE FINDINGS The study demonstrated the benefits of combining the focussed kinase activity assay with wide-scale phosphoproteomics and showed the need for detailed elaboration of the in vitro decidualization protocols. ROCK was identified as the novel target of interest in decidualization, which requires closer attention in further studies-including the context of decidualization-related subfertility and infertility. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Estonian Ministry of Education and Research, and the Estonian Research Council (PRG1076, PRG454, PSG230 and PSG608), Enterprise Estonia (EU48695), Horizon 2020 innovation grant (ERIN, Grant no. EU952516) of the European Commission, the COMBIVET ERA Chair, H2020-WIDESPREAD-2018-04 (Grant agreement no. 857418), the Academy of Finland (Project grants 315921 and 321763), the Finnish Medical Foundation and The Sigrid Juselius Foundation. The authors confirm that they have no conflict of interest with respect to the content of this article.
Collapse
Affiliation(s)
- Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Artjom Stepanjuk
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Masuma Khatun
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka K Arffman
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Erki Enkvist
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Kaido Viht
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Sergei Kopanchuk
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Estonia
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Asko Uri
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Ago Rinken
- Department of Bioorganic Chemistry, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Santos ED, Moindjie H, Sérazin V, Arnould L, Rodriguez Y, Fathallah K, Barnea ER, Vialard F, Dieudonné MN. Preimplantation factor modulates trophoblastic invasion throughout the decidualization of human endometrial stromal cells. Reprod Biol Endocrinol 2021; 19:96. [PMID: 34176510 PMCID: PMC8237507 DOI: 10.1186/s12958-021-00774-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Successful human embryo implantation requires the differentiation of endometrial stromal cells (ESCs) into decidual cells during a process called decidualization. ESCs express specific markers of decidualization, including prolactin, insulin-like growth factor-binding protein-1 (IGFBP-1), and connexin-43. Decidual cells also control of trophoblast invasion by secreting various factors, such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases. Preimplantation factor (PIF) is a recently identified, embryo-derived peptide with activities at the fetal-maternal interface. It creates a favorable pro-inflammatory environment in human endometrium and directly controls placental development by increasing the human trophoblastic cells' ability to invade the endometrium. We hypothesized that PIF's effects on the endometrium counteract its pro-invasive effects. METHODS We tested sPIF effect on the expression of three decidualization markers by RT-qPCR and/or immunochemiluminescence assay. We examined sPIF effect on human ESC migration by performing an in vitro wound healing assay. We analyzed sPIF effect on endometrial control of human trophoblast invasion by performing a zymography and an invasion assay. RESULTS Firstly, we found that a synthetic analog of PIF (sPIF) significantly upregulates the mRNA expression of IGFBP-1 and connexin-43, and prolactin secretion in ESCs - suggesting a pro-differentiation effect. Secondly, we showed that the HTR-8/SVneo trophoblastic cell line's invasive ability was low in the presence of conditioned media from ESCs cultured with sPIF. Thirdly, this PIF's anti-invasive action was associated with a specifically decrease in MMP-9 activity. CONCLUSION Taken as a whole, our results suggest that PIF accentuates the decidualization process and the production of endometrial factors that limit trophoblast invasion. By controlling both trophoblast and endometrial cells, PIF therefore appears to be a pivotal player in the human embryo implantation process.
Collapse
Affiliation(s)
- Esther Dos Santos
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Hadia Moindjie
- INSERM- UMR 981 Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie. Bâtiment Médecine Moléculaire (B2M), 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Valérie Sérazin
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Lucie Arnould
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Yoann Rodriguez
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Khadija Fathallah
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Eytan R Barnea
- Society for the Investigation of Early Pregnancy, Cherry Hill, NJ, USA
- BioIncept, LLC, Cherry Hill, NJ, USA
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, F-78300, Poissy, France
| | - Marie-Noëlle Dieudonné
- Université Paris-Saclay, UVSQ, INRAE, BREED, F-78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France.
- UMR 1198 BREED-RHuMA, Université de Versailles-Saint Quentin en Yvelines - Université Paris Saclay, UFR des Sciences de la Santé Simone Veil, 2 Avenue de la Source de la Bièvre, F-78180, Montigny-le-Bretonneux, France.
| |
Collapse
|
44
|
Fabi F, Adam P, Parent S, Tardif L, Cadrin M, Asselin E. Pharmacologic inhibition of Akt in combination with chemotherapeutic agents effectively induces apoptosis in ovarian and endometrial cancer cell lines. Mol Oncol 2021; 15:2106-2119. [PMID: 33338300 PMCID: PMC8334290 DOI: 10.1002/1878-0261.12888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 01/03/2023] Open
Abstract
The PI3K/Akt signaling pathway, the most frequently altered signaling system in human cancer, is a crucial inducer of dysregulated proliferation and neoplastic processes; however, few therapeutic strategies using PI3K/Akt inhibitors singly have been shown to be effective. The purpose of this paper was to underline the potential benefit of pharmacological modulation of the PI3K/Akt pathway when combined with specific chemotherapeutic regimens. We have studied the ability of NVP‐BEZ235 (PI3K/mTOR inhibitor) and AZD5363 (Akt inhibitor) in the sensitization of cancer cells to cisplatin and doxorubicin. Our results show that NVP‐BEZ235 sensitizes cells preferentially to cisplatin while AZD5363 sensitizes cells to doxorubicin. At equal concentrations (5 μm), both inhibitors reduce ribosomal protein S6 phosphorylation, but AZD5363 is more effective in reducing GSK3β phosphorylation as well as S6 phosphorylation. Additionally, AZD5363 is capable of inducing FOXO1 and p53 nuclear localization and reduces BAD phosphorylation, which is generally increased by cisplatin and doxorubicin. Finally, the combination of AZD5363 and doxorubicin induces apoptosis in cells and robustly reduces cell ability to clonally replicate, which underlines a potential cooperative effect of the studied compounds.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Laurence Tardif
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Monique Cadrin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Canada
| |
Collapse
|
45
|
Zhao F, Liu H, Wang N, Yu L, Wang A, Yi Y, Jin Y. Exploring the role of Luman/CREB3 in regulating decidualization of mice endometrial stromal cells by comparative transcriptomics. BMC Genomics 2020; 21:103. [PMID: 32000663 PMCID: PMC6993373 DOI: 10.1186/s12864-020-6515-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background Luman is a member of CREB3 (cAMP responsive element-binding) subfamily of the basic leucine-zipper (bZIP) transcription factors. It may play an important regulatory role during the decidualization process since Luman was highly expressed in the decidual cells. However, the exact molecular mechanisms of how Luman regulating decidualization is unknown. Results Using an in vitro model, we prove that Luman knockdown significantly affects the decidualization process of mice endometrial stromal cells (ESCs) as the expression of two decidual markers PRL8a2 and PRL3c1 were repressed. We employed massively parallel RNA sequencing (RNA-Seq) to understand the changes in the transcriptional landscape associated with knockdown of Luman in ESCs during in vitro decidualization. We found significant dysregulation of genes related to protein processing in the endoplasmic reticulum (ER). Several genes involved in decidualization including bone morphogenetic proteins (e.g. BMP1, BMP4, BMP8A, BMP2, and BMP8B), growth factor-related genes (e.g. VEGFB, FGF10, and FGFR2), and transcription factors (IF4E, IF4A2, WNT4, WNT9A, ETS1, NOTCH1, IRX1, IDB1, IDB2, and IDB3), show altered expression. We also found that the knockdown of Luman is associated with increased expression of cell cycle-related genes including cycA1, cycB1, cycB2, CDK1, CDK2, and PLPK1, which resulted in an increased proportion of ESCs in the G1 phase. Differentially expressed genes (DEGs) were highly enriched on ECM-receptor interaction signaling, endoplasmic reticulum protein processing, focal adhesion, and PI3K-Akt signaling pathways. Conclusions Luman knockdown results in widespread gene dysregulation during decidualization of ESCs. Genes involved in protein processing in ER, bone morphogenetic protein, growth factor, and cell cycle progression were identified as particularly important for explaining the decidual deficiency observed in this in vitro model. Therefore, this study provides clues as to the underlying mechanisms that may expand our understanding of gene regulation during decidualization.
Collapse
Affiliation(s)
- Fan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Nan Wang
- Institute of Biological Resources and Diversity, College of Life Sciences, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Lijun Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Zhang C, Yang C, Li N, Liu X, He J, Chen X, Ding Y, Tong C, Peng C, Yin H, Wang Y, Gao R. Elevated insulin levels compromise endometrial decidualization in mice with decrease in uterine apoptosis in early-stage pregnancy. Arch Toxicol 2019; 93:3601-3615. [PMID: 31642978 DOI: 10.1007/s00204-019-02601-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023]
Abstract
Women with hyperinsulinism and insulin resistance have reduced fertility, but the underlying mechanism is still poorly understood. Aberrant endometrial decidualization in early pregnancy was linked to pregnancy complications. In this study, we aimed to test whether elevated insulin levels compromise decidualization in early-stage pregnancy. C57BL/6J mice in high insulin-exposed group were given a subcutaneous injection of recombinant insulin at a concentration of 0.05 IU daily. During decidualization in early pregnancy, serum levels of insulin, E2, P4, LH, FSH and blood glucose were significantly altered in mice treated with high insulin levels. The number of embryo implantation sites and endometrial decidual markers BMP2, ER, PR was significantly decreased by high insulin levels in vivo. Artificial decidual induction in primary mouse endometrial stromal cells and immortal human endometrial stromal cells line were all compromised after treated with 100 nmol/L insulin levels. All these results on flow cytometry, transmission electron microscopy and western blotting of Bax, Bcl2, cleaved Caspase3, cleaved PARP proteins level showed that decidual cells apoptosis was significantly decreased. Mitochondrial transmembrane potential also significantly increased by the influence of high insulin levels. PI3K and p-Akt were much higher after insulin exposure and the compromised decidualization by high insulin treatment was rescued by PI3K/Akt inhibitor LY294002 both in vitro and in vivo. In conclusion, we demonstrated that elevated insulin levels could compromise mice decidualization in early-stage pregnancy and PI3K/p-Akt-regulated apoptosis was essential for this role. It provides a clue for future investigation on compromised reproduction in women with hyperinsulinemia.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Na Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Peng
- Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China. .,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
47
|
Cho HJ, Baek MO, Khaliq SA, Chon SJ, Son KH, Lee SH, Yoon MS. Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Sci Rep 2019; 9:12094. [PMID: 31431660 PMCID: PMC6702225 DOI: 10.1038/s41598-019-48580-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/08/2019] [Indexed: 12/28/2022] Open
Abstract
Decidualization is characterized by the differentiation of endometrial stromal cells (eSCs), which is critical for embryo implantation and maintenance of pregnancy. In the present study, we investigated the possible effect of simulated microgravity (SM) on the process of proliferation and in vitro decidualization using primary human eSCs. Exposure to SM for 36 h decreased the proliferation and migration of eSCs significantly, without inducing cell death and changes in cell cycle progression. The phosphorylation of Akt decreased under SM conditions in human eSCs, accompanied by a simultaneous decrease in the level of matrix metalloproteinase (MMP)-2 and FOXO3a. Treatment with Akti, an Akt inhibitor, decreased MMP-2 expression, but not FOXO3a expression. The decreased level of FOXO3a under SM conditions impeded autophagic flux by reducing the levels of autophagy-related genes. In addition, pre-exposure of eSCs to SM significantly inhibited 8-Br-cAMP induced decidualization, whereas restoration of the growth status under SM conditions by removing 8-Br-cAMP remained unchanged. Treatment of human eSCs with SC-79, an Akt activator, restored the reduced migration of eSCs and decidualization under SM conditions. In conclusion, exposure to SM inhibited decidualization in eSCs by decreasing proliferation and migration through Akt/MMP and FOXO3a/autophagic flux.
Collapse
Affiliation(s)
- Hye-Jeong Cho
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Sana Abdul Khaliq
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Sung Ho Lee
- Department of Thoracic and Cardiovascular Surgery, Korea University, Seoul, 02841, Republic of Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea. .,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
48
|
Sohn JO, Seong SY, Kim HJ, Jo YM, Lee KH, Chung MK, Song HJ, Park KS, Lim JM. Alterations in intracellular Ca 2+ levels in human endometrial stromal cells after decidualization. Biochem Biophys Res Commun 2019; 515:318-324. [PMID: 31153638 DOI: 10.1016/j.bbrc.2019.05.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 μM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.
Collapse
Affiliation(s)
- Jie Ohn Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Seung Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Yoon Mi Jo
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Hoon Lee
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Mi Kyung Chung
- Seoul Rachel Fertility Center, Seoul, 04146, South Korea
| | - Hyun Jin Song
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea.
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea.
| |
Collapse
|
49
|
Jozaki K, Tamura I, Takagi H, Shirafuta Y, Mihara Y, Shinagawa M, Maekawa R, Taketani T, Asada H, Sato S, Tamura H, Sugino N. Glucose regulates the histone acetylation of gene promoters in decidualizing stromal cells. Reproduction 2019; 157:457-464. [DOI: 10.1530/rep-18-0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022]
Abstract
Decidualization stimuli activate the insulin signaling pathway and increase the glucose uptake in human endometrial stromal cells (ESCs). The inductions of prolactin (PRL) and IGF-binding protein-1 (IGFBP1), specific markers of decidualization, were inhibited by incubating ESCs under low glucose concentrations. These results suggested that decidualization stimuli activate the insulin signaling pathway, which contributes to decidualization through the increase of glucose uptake. Here, we investigated the mechanisms by which glucose regulates decidualization. ESCs were incubated with cAMP to induce decidualization. We examined whether low glucose affects the expression levels of transcription factors that induce decidualization. Forkhead box O1 (FOXO1) expression was significantly suppressed under low glucose conditions. Knockdown of FOXO1 by siRNA inhibited the expression levels of PRL and IGFBP1 during decidualization. Taken together, our results showed that low glucose inhibits decidualization by decreasing FOXO1 expression. We also examined the levels of histone H3K27 acetylation (H3K27ac), which is related to active transcription, of the promoter regions of FOXO1, PRL and IGFBP1 by ChIP assay. The H3K27ac levels of these promoter regions were increased by decidualization under normal glucose conditions, but not under low glucose conditions. Thus, our results show that glucose is indispensable for decidualization by activating the histone modification status of the promoters of PRL, IGFBP1 and FOXO1.
Collapse
|
50
|
Differential regulation of mTORC1 and mTORC2 is critical for 8-Br-cAMP-induced decidualization. Exp Mol Med 2018; 50:1-11. [PMID: 30374127 PMCID: PMC6206090 DOI: 10.1038/s12276-018-0165-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022] Open
Abstract
Human endometrium decidualization, a differentiation process involving biochemical and morphological changes, is a prerequisite for embryo implantation and successful pregnancy. Here, we show that the mammalian target of rapamycin (mTOR) is a crucial regulator of 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)-induced decidualization in human endometrial stromal cells. The level of mSin1 in mTOR complex 2 (mTORC2) and DEPTOR in mTOR complex 1 (mTORC1) decreases during 8-Br-cAMP-induced decidualization, resulting in decreased mTORC2 activity and increased mTORC1 activity. Notably, DEPTOR displacement increases the association between raptor and insulin receptor substrate-1 (IRS-1), facilitating IRS-1 phosphorylation at serine 636/639. Finally, both S473 and T308 phosphorylation of Akt are reduced during decidualization, followed by a decrease in forkhead box O1 (FOXO1) phosphorylation and an increase in the mRNA levels of the decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1). Taken together, our findings reveal a critical role for mTOR in decidualization, involving the differential regulation of mTORC1 and mTORC2.
Collapse
|