1
|
Mathisen AJH, Gómez de la Torre Canny S, Gundersen MS, Østensen MA, Olsen Y, Vadstein O, Bakke I. Community assembly of gut microbiomes in yolk sac fry of Atlantic salmon: host genetics, environmental microbiomes, and ecological processes. FEMS Microbiol Ecol 2025; 101:fiaf007. [PMID: 39824653 PMCID: PMC11797051 DOI: 10.1093/femsec/fiaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/28/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
In this study, we investigated the influence of host genetics and environmental microbiomes on the early gut microbiome of Atlantic salmon. We aimed at rearing the fish in either r- or K-selected environments, where the r-selected environment would be expected to be dominated by fast-growing opportunistic bacteria and thus represent more detrimental microbial environment than the K-selected water. Eggs from both wild and aquaculture strains of Atlantic salmon were hatched under germ-free conditions. One week after hatching, rearing flasks were inoculated with either r- or K-selected water communities. Three weeks after hatching, no effect of host strain on the gut microbiomes were observed. r-selection was found to take place in the rearing water of all flasks, including in the flasks added K-selected water. Still, the water microbiomes differed significantly between the flasks that had been added r- and K-selected water (Add-r and Add-K flasks, respectively). Lower alpha diversity and higher abundances of Pseudomonas were observed for the Add-K flasks, indicating a potential unfavorable microbial environment. Selection in the host structured the gut microbiomes, but an extensive interindividual variation was explained by stochastic processes in community assembly. The gut microbiomes also differed significantly between the Add-r and Add-K flasks. In Add-K flasks, they had higher similarities to the rearing water microbiomes, and the assembly of gut communities was less influenced by stochastic processes. The fish in Add-K flasks had lower growth rates than in Add-r flasks, probably as a result of negative host-microbe interactions. These findings highlight the importance of, but also the challenges related to, managing the microbial environment when cultivating fish.
Collapse
Affiliation(s)
- Amalie Johanne Horn Mathisen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Sol Gómez de la Torre Canny
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Skretting Aquaculture Innovation (AI), 4016 Stavanger, Norway
| | - Madeleine S Gundersen
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Mari-Ann Østensen
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Yngvar Olsen
- Department of Biology, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Kanika NH, Liaqat N, Chen H, Ke J, Lu G, Wang J, Wang C. Fish gut microbiome and its application in aquaculture and biological conservation. Front Microbiol 2025; 15:1521048. [PMID: 39839099 PMCID: PMC11747440 DOI: 10.3389/fmicb.2024.1521048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding the diversity and function of fish gut microbiomes has advanced substantially, yet many aspects remain poorly understood, particularly the interplay among microbiota, host species, and environmental factors in the context of conservation. This review explores the composition and abundance of gut bacterial communities in key aquaculture fish groups-cyprinids, ictalurids (catfish), salmonids, and cichlids (tilapia)-alongside the model organism zebrafish, across diverse geographic regions. The findings highlight environmental habitats and host species as primary determinants of gut microbiome structure, offering a global perspective on these microbial communities. Across all fish groups, the phyla Firmicutes, Fusobacteria, and Proteobacteria consistently dominated, while temperate, sub-equatorial, and sub-tropical regions exhibited the highest microbiome diversity, underscoring the contribution of taxonomic and environmental factors. The gut bacterial diversity of farm-raised fish shows a significant divergence from that of wild-caught fish, reflecting the impacts of ecological and management differences. Understanding the dynamic responses of fish gut microbiota is vital for guiding conservation efforts, safeguarding aquatic biodiversity, and advancing sustainable aquaculture practices. Future research should leverage innovative techniques and integrative approaches, both experimental and theoretical, to uncover the functional roles of microbiomes and predict their responses to environmental changes. Expanding geographic and taxonomic coverage will be critical for creating a comprehensive framework to inform global aquaculture and conservation strategies. Collectively, this perspective highlights the transformative potential of microbiome research in addressing global challenges in aquaculture and conservation biology.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nusrat Liaqat
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, China
| | - Huifan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Fu Y, Cheng Y, Ma L, Zhou Q. Longitudinal Microbiome Investigations Reveal Core and Growth-Associated Bacteria During Early Life Stages of Scylla paramamosain. Microorganisms 2024; 12:2457. [PMID: 39770661 PMCID: PMC11678816 DOI: 10.3390/microorganisms12122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
In animals, growth and development are strongly correlated with the gut microbiota. The gut of the economically important marine crab (Scylla paramamosain) harbors a diverse microbial community, yet its associations with the surrounding environment, growth performance, and developmental stages remain obscure. In this study, we first characterized stage-specific microbiomes and shifts in the contributions of live feed and water via SourceTracker. We observed decreased microbial diversity and increased priority effects along zoea stages. Psychobacter was identified as the core genus, whereas Lactobacillus was the hub genus connecting different stages. Second, microbial correlations with various stage-specific growth traits were observed under interventions generating enhanced (probiotic mixture enrichment), normal (control), and reduced (antibiotic treatment) microbiomes. By combining machine learning regression and bioinformatics analysis, we identified four candidate growth performance-associated probiotics belonging to Rhodobacterales, Sulfitobacter, Confluentimicrobium, and Lactobacillus, respectively. Our study interpreted the dynamics and origins of the Scylla paramamosain zoea microbiome and underscored the importance of optimizing potential probiotics to increase growth performance during early life stages in marine invertebrates for effective larviculture.
Collapse
Affiliation(s)
- Yin Fu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Yongxu Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China;
| | - Lingbo Ma
- Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China
| | - Qicun Zhou
- Laboratory of Fish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
4
|
Mueller J, van Muilekom DR, Ehlers J, Suhr M, Hornburg SC, Bang C, Wilkes M, Schultheiß T, Maser E, Rebl A, Goldammer T, Seibel H, Schulz C. Dietary Chlorella vulgaris supplementation modulates health, microbiota and the response to oxidative stress of Atlantic salmon. Sci Rep 2024; 14:23674. [PMID: 39389986 PMCID: PMC11467335 DOI: 10.1038/s41598-024-72531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Microalgae are emerging as functional feed ingredients in aquaculture due to their immune-stimulating and stress-modulating properties. We investigated the potential of the microalgae Chlorella vulgaris as a feed supplement to improve the health and modulate microbiota and stress responses of Atlantic salmon. Triplicate groups of Atlantic salmon (~ 126 g) were reared in a recirculating aquaculture system (RAS) at 15 °C and received diets supplemented with 2% (CV2) or 14% (CV14) spray-dried C. vulgaris daily, 14% once weekly (CV14w), or a control diet (CD) for 8 weeks. Subsequently, all groups were exposed to an acute one-hour peracetic acid (CH3CO3H; PAA) treatment, a commonly used disinfectant in RAS. While CV14 increased feed conversion (FCR) significantly, feeding the diets CV2 and CV14w improved protein retention efficiency. CV14 significantly modulated beta-diversity in the intestinal digesta and mucosa, but this effect was already visible in fish fed CV2. Feeding CV14 and, to a lesser degree, CV2 increased the relative abundances of Paenarthrobacter and Trichococcus in the digesta and mucosa, which are able to metabolize complex carbohydrates. However, the same diets reduced the abundance of the lactic acid bacteria Lactobacillus and Weissella in the digesta and Floricoccus in the mucosa. Peracetic acid exposure induced systemic stress (increase in plasma glucose and cortisol) and a local immune response in the gill, with the most prominent upregulation of several immune- and stress-regulated genes (clra, cebpb, marco, tnfrsf14, ikba, c1ql2, drtp1) 18 h after exposure in fish fed the control diet. Fish receiving CV14 once a week showed a reduced transcriptional response to PAA exposure. Catalase protein abundance in the liver increased following exposure to PAA, while superoxide dismutase abundance in the gill and liver was increased in response to C. vulgaris inclusion before stress. Overall, the results highlight that a high (14%) inclusion rate of C. vulgaris in feed for Atlantic salmon impairs feed conversion and shifts the intestinal microbiota composition in digesta and mucosa. Weekly feeding of C. vulgaris proves a viable approach in improving protein retention and improving transcriptional resilience towards oxidative stress in increasingly intensive production systems. Thereby this study may motivate future studies on optimizing temporal feeding schedules for health-promoting aquafeeds.
Collapse
Affiliation(s)
- Jonas Mueller
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany.
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany.
| | - Doret R van Muilekom
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jannick Ehlers
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Marvin Suhr
- Institute of Animal Nutrition and Physiology, Kiel University, Kiel, Germany
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marie Wilkes
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Thekla Schultheiß
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Alexander Rebl
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Carsten Schulz
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| |
Collapse
|
5
|
Bao C, Yang Y, Ye H. Effect of Dietary Restriction on Gut Microbiota and Brain-Gut Short Neuropeptide F in Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2415. [PMID: 39199949 PMCID: PMC11350653 DOI: 10.3390/ani14162415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Aquatic animals frequently undergo feed deprivation and starvation stress. It is well-known that the gut microbiota and the gut-brain short neuropeptide F (sNPF) play essential roles in diet restriction. Therefore, investigating the responses of the gut microbiota and sNPF can enhance our understanding of physiological adaptations to feed deprivation and starvation stress. In this study, we examined the alterations in the gut microbiota of juvenile mud crabs under feed deprivation and starvation conditions. The results reveal differences in the richness and diversity of gut microbiota among the satisfied, half food, and starvation groups. Moreover, the microbial composition was affected by starvation stress, and more than 30 bacterial taxa exhibited significantly different abundances among the three feeding conditions. These results indicate that the diversity and composition of the gut microbiota are influenced by diet restriction, potentially involving interactions with the gut-brain sNPF. Subsequently, we detected the location of sNPF in the brains and guts of mud crabs through immunofluorescence and investigated the expression profile of sNPF under different feeding conditions. The results suggest that sNPF is located in both the brains and guts of mud crabs and shows increased expression levels among different degrees of diet restriction during a 96 h period. This study suggested a potential role for sNPF in regulating digestive activities and immunity through interactions with the gut microbiota. In conclusion, these findings significantly contribute to our understanding of the dynamic changes in gut microbiota and sNPF, highlighting their interplay in response to diet restriction.
Collapse
Affiliation(s)
- Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315832, China;
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315832, China;
| | - Haihui Ye
- School of Fisheries, Jimei University, Xiamen 361021, China;
| |
Collapse
|
6
|
Sun M, Halimubieke N, Fang B, Valdebenito JO, Xu X, Sheppard SK, Székely T, Zhang T, He S, Lu R, Ward S, Urrutia AO, Liu Y. Gut microbiome in two high-altitude bird populations showed heterogeneity in sex and life stage. FEMS MICROBES 2024; 5:xtae020. [PMID: 39385800 PMCID: PMC11462087 DOI: 10.1093/femsmc/xtae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
Gut microbiotas have important impacts on host health, reproductive success, and survival. While extensive research in mammals has identified the exogenous (e.g. environment) and endogenous (e.g. phylogeny, sex, and age) factors that shape the gut microbiota composition and functionality, yet avian systems remain comparatively less understood. Shorebirds, characterized by a well-resolved phylogeny and diverse life-history traits, present an ideal model for dissecting the factors modulating gut microbiota dynamics. Here, we provide an insight into the composition of gut microbiota in two high-altitude (ca. 3200 m above sea level) breeding populations of Kentish plover (Charadrius alexandrinus) and Tibetan sand plover (Charadrius altrifrons) in the Qinghai-Tibetan Plateau, China. By analysing faecal bacterial communities using 16S rRNA sequencing technology, we find a convergence in gut microbial communities between the two species, dominated by Firmicutes, Proteobacteria, and Bacteroidetes. This suggests that the shared breeding environment potentially acts as a significant determinant shaping their gut microbiota. We also show sex- and age-specific patterns of gut microbiota: female adults maintain a higher diversity than males, and juveniles are enriched in Rhizobiaceae and Exiguobacterium due to their vegetative food resource. Our study not only provides a comprehensive descriptive information for future investigations on the diversity, functionality, and determinants of avian microbiomes, but also underscores the importance of microbial communities in broader ecological contexts.
Collapse
Affiliation(s)
- Mingwan Sun
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
| | - Naerhulan Halimubieke
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Department of Anthropology, University College London, London WC1H 0BW, United Kingdom
| | - Baozhu Fang
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - José O Valdebenito
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia 5110566, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Santiago 8331150, Chile
| | - Xieyang Xu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Samuel K Sheppard
- Ineos Oxford Institute, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Tamás Székely
- Milner Centre for Evolution, Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen 4032, Hungary
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shunfu He
- Xining National Terrestrial Wildlife Epidemic Monitoring Station, Xining 810008, China
| | - Rong Lu
- Xining National Terrestrial Wildlife Epidemic Monitoring Station, Xining 810008, China
| | - Stephen Ward
- Department of Life Science, University of Bath, Bath BA27AY, United Kingdom
| | - Araxi O Urrutia
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Tawfik MM, Lorgen-Ritchie M, Król E, McMillan S, Norambuena F, Bolnick DI, Douglas A, Tocher DR, Betancor MB, Martin SAM. Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages. Anim Microbiome 2024; 6:38. [PMID: 38951941 PMCID: PMC11218362 DOI: 10.1186/s42523-024-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Marlene Lorgen-Ritchie
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Elżbieta Król
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Stuart McMillan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Mónica B Betancor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
8
|
Huo J, Li X, Hu X, Lv A. Multi-omics analysis of miRNA-mediated intestinal microflora changes in crucian carp Carassius auratus infected with Rahnella aquatilis. Front Immunol 2024; 15:1335602. [PMID: 38426108 PMCID: PMC10902443 DOI: 10.3389/fimmu.2024.1335602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-β, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-β. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.
Collapse
Affiliation(s)
- Jiaxin Huo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiaowei Li
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lv
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
9
|
Suhr M, Fichtner-Grabowski FT, Seibel H, Bang C, Franke A, Schulz C, Hornburg SC. Effects of plant-based proteins and handling stress on intestinal mucus microbiota in rainbow trout. Sci Rep 2023; 13:22563. [PMID: 38110473 PMCID: PMC10728151 DOI: 10.1038/s41598-023-50071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023] Open
Abstract
Via 16S rRNA gene amplicon sequencing, this study explores whether the gut mucus microbiota of rainbow trout is affected by the interaction of a plant-protein-based diet and a daily handling stressor (chasing with a fishing net) across two genetic lines (A, B). Initial body weights of fish from lines A and B were 124.7 g and 147.2 g, respectively. Fish were fed 1.5% of body weight per day for 59 days either of two experimental diets, differing in their fish meal [fishmeal-based diet (F): 35%, plant-based diet (V): 7%] and plant-based protein content (diet F: 47%, diet V: 73%). No diet- or stress-related effect on fish performance was observed at the end of the trial. However, we found significantly increased observed ASVs in the intestinal mucus of fish fed diet F compared to diet V. No significant differences in Shannon diversity could be observed between treatments. The autochthonous microbiota in fish fed with diet V was dominated by representatives of the genera Mycoplasma, Cetobacterium, and Ruminococcaceae, whereas Enterobacteriaceae and Photobacterium were significantly associated with diet F. The mucus bacteria in both genetic lines were significantly separated by diet, but neither by stress nor an interaction, as obtained via PERMANOVA. However, pairwise comparisons revealed that the diet effect was only significant in stressed fish. Therefore, our findings indicate that the mucus-associated microbiota is primarily modulated by the protein source, but this modulation is mediated by the stress status of the fish.
Collapse
Affiliation(s)
- Marvin Suhr
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany.
| | | | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Hafentörn 3, 25761, Büsum, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering (IMTE), Hafentörn 3, 25761, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Stéphanie C Hornburg
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| |
Collapse
|
10
|
Kivistik C, Tammert H, Kisand V, Käiro K, Herlemann DPR. Impact of disturbance and dietary shift on gastrointestinal bacterial community and its invertebrate host system. Mol Ecol 2023; 32:6631-6643. [PMID: 35876211 DOI: 10.1111/mec.16628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
The gut microbiome is one of the most important sites of host-microbe interactions, however, mechanisms governing the responses of host-associated microbes to changing environmental conditions are poorly understood. To address this, we investigated individual and combined effects of dietary changes and increase in salinity (from freshwater to salinity 3) or antibiotic concentration on the gastrointestinal bacterial community of the aquatic snail Ampullaceana balthica. In parallel, the energy reserves of the host were quantified. A change of natural food source to biofilm forming green algae Scenedesmus obliquus as well as the combined treatment of salinity and S. obliquus decreased the richness and changed the composition of the A. balthica gastrointestinal bacterial community. In these treatments Pseudomonas became the dominant bacterium. However, energy reserves of the host were higher in these treatments compared to the reference aquaria specimens and the combined treatment of antibiotics with S. obliquus. The presence of antibiotics inhibited the dominance of Pseudomonas and resulted in lower energy reserves despite S. obliquus feeding. Therefore the host seems to be able to adapt and replace its bacterial community composition to respond to mild changes in salinity and food source. Antibiotics in the water can disturb this self-regulating mechanism. Our study underlines the ability of aquatic macroinvertebrates to respond to sudden changes in food source and mild shifts in salinity. Moreover, it emphasizes the strong impact of the food source on the gastrointestinal microbiome and the importance of generalists during disturbance.
Collapse
Affiliation(s)
- Carmen Kivistik
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Veljo Kisand
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kairi Käiro
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | | |
Collapse
|
11
|
Hoa TTT, Fagnon MS, Thy DTM, Chabrillat T, Trung NB, Kerros S. Growth Performance and Disease Resistance against Vibrio parahaemolyticus of Whiteleg Shrimp ( Litopenaeus vannamei) Fed Essential Oil Blend (Phyto AquaBiotic). Animals (Basel) 2023; 13:3320. [PMID: 37958074 PMCID: PMC10649422 DOI: 10.3390/ani13213320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND) is a serious and emerging disease caused by a group of strains of Vibrio parahaemolyticus and affects farmed shrimp, particularly whiteleg shrimps (Liptopenaeus vannamei). The objective of this study is to assess the effect of dietary supplementation with two dosages of an essential oil mixture (Phyto AquaBiotic, abbreviated as PAB) on growth performance and mortality reduction after challenge against V. parahaemolyticus. PAB was mixed with basal diets at rates of 0, 1 and 2 g/kg and fed for 42 days. Each tank was stocked with 100 individuals with experimentation performed in triplicate. The results showed an improvement in growth performance in a dose-dependent manner, specifically regarding daily weight gain, specific growth rate and total biomass, which were significantly improved compared to control (p < 0.05). Further, PAB significantly reduced mortalities when challenged against Vibrio parahaemolyticus (p < 0.05) and decreased Vibrio spp. count in the hepatopancreas of infected shrimp. Overall, PAB was efficient in reducing mortalities in cases of disease outbreaks at a rate of 2 g/kg.
Collapse
Affiliation(s)
- Tran Thi Tuyet Hoa
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | | - Dang Thuy Mai Thy
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | | - Nguyen Bao Trung
- Faculty of Aquatic Pathology, College of Aquaculture and Fisheries, Can Tho University, Campus II, 3/2 Street, Can Tho City 90000, Vietnam; (D.T.M.T.)
| | | |
Collapse
|
12
|
Deck CA, Salger SA, Reynolds HM, Tada MD, Severance ME, Ferket P, Egna HS, Fatema MK, Haque SM, Borski RJ. Nutritional programming in Nile tilapia (Oreochromis niloticus): Effect of low dietary protein on growth and the intestinal microbiome and transcriptome. PLoS One 2023; 18:e0292431. [PMID: 37792787 PMCID: PMC10550151 DOI: 10.1371/journal.pone.0292431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
Nutritional programming is the idea that early nutrient contributions can influence organismal structure or function and is documented in a variety of vertebrates, yet studies in fish are largely lacking. Tilapia are an important foodfish, with global production having increased rapidly since the 1990s. They exhibit high disease-resistance and grow well on formulated feeds which makes them an ideal aquaculture species, however incorporating high quality proteins into feeds can be costly. As feed constitutes 50-70% of total production costs in aquaculture, reducing protein content could curb these costs and increase revenue. Thus, we examined the effects of feeding Nile tilapia (O. niloticus) fry a restricted protein diet for the first 7-21 days on growth, gut microbial flora, and the intestinal transcriptome. Fish were fed either a 25% restricted or 48% control crude protein starter (ST) diet for up to 21 days and then switched to a 25% or 38% control crude protein growout (GO) diet. Fish fed a 25% ST diet for 14 days followed by a 38% GO diet had significantly higher lengths and weights and better feed efficiency than fish fed the control 48% ST and 38% GO diet after 56 days of culture. Growth of fry on the 25% ST, 7-day/38% GO and the 25% ST,7-day/25% GO diets did not differ from the those fed the control protein diets, while fish fed the 25% ST diet for 21 days had significantly lower growth and survival rates. We observed no significant differences in either alpha or beta diversity of the gut microbial flora between diets, however species richness (Shannon Index) was higher in fry fed the 25% protein ST diet regardless of the GO diet. Similarly, fish fed the 25% ST diet for 14 days followed by the 38% GO diet had minimal changes to the intestinal transcriptome relative to fish fed the control 48% ST and 38% GO diet. However, those fed 25% ST and GO diets for the entire 56 days exhibited substantial differences in the gut transcriptome from other groups showing gene expression profiles characteristic of detrimental changes to gut physiology, protein metabolism and immune function. Results suggest protein restriction for up to 14 days early in development leads to enhanced growth and feed efficiency with minimal effects on gut microbes or intestinal function. Protein restriction beyond this period appears detrimental to fish growth and health as underscored by expression of disease related genes and higher mortality rates.
Collapse
Affiliation(s)
- Courtney A. Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Scott A. Salger
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
- School of Sciences, Barton College, Wilson, NC, United States of America
| | - Hannah M. Reynolds
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Michael D. Tada
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Madeline E. Severance
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| | - Peter Ferket
- Department of Poultry Science, North Carolina State University, Raleigh, NC, United States of America
| | - Hillary S. Egna
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Mst. Kaniz Fatema
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shahroz M. Haque
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
13
|
Józefiak A, Rawski M, Kierończyk B, Józefiak D, Mazurkiewicz J. Effect of two insect meals on the gut commensal microbiome of healthy sea trout (Salmo trutta vr. trutta). BMC Vet Res 2023; 19:124. [PMID: 37580683 PMCID: PMC10424358 DOI: 10.1186/s12917-023-03671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The balance of the intestinal commensal microbiome of fish and other animals plays an important role in the physiological processes of healthy animals, contributes to the defense against pathogens, stimulates the immune system and facilitates nutrient metabolism. In the last decade, the interest in the application of the insects in fish nutrition increased, although little is known regarding the effects of insect meals on the gastrointenstinal tract microbiome of the sea trout fingerlings. The aim of this study was to evaluate the effect of two diets containing mealworm (MW) and superworm (SW) on the microbiome of the digesta of sea trout fingerlings and the relative abundances of different taxa among communities under controlled conditions. RESULTS The insect meals produced a similar weight gain and survival rate to sea trout fed fishmeal. The most abundant bacterial phylum in all the treatment groups was Firmicutes followed by Proteobacteria and Actinobacteria, and significant differences in the amount of Cyanobacteria were observed in the SW group. CONCLUSIONS The insect meals did not produce differences in the three most abundant phyla in the sea trout digesta. However, the effect of each type of meal on the lower taxonomic levels was evident, particularly in the case of the superworm meal. These microbiome differences indicated that mealworm meal was more related to fishmeal than superworm meal. Our results highlight the potential effects of insect meals, such as mealworm and superworm meals, on the microbiota of sea trout.
Collapse
Affiliation(s)
- Agata Józefiak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| | - Mateusz Rawski
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Bartosz Kierończyk
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Damian Józefiak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Jan Mazurkiewicz
- Division of Inland Fisheries and Aquaculture, Institute of Zoology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznań, Poland
| |
Collapse
|
14
|
Leeper A, Sauphar C, Berlizot B, Ladurée G, Koppe W, Knobloch S, Skírnisdóttir S, Björnsdóttir R, Øverland M, Benhaïm D. Enhancement of Soybean Meal Alters Gut Microbiome and Influences Behavior of Farmed Atlantic Salmon ( Salmo salar). Animals (Basel) 2023; 13:2591. [PMID: 37627382 PMCID: PMC10451335 DOI: 10.3390/ani13162591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Atlantic salmon (Salmo salar) is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal (SBM), and soy protein concentrate (SPC) in certain combinations can impact gut health, which has consequences for immunity and welfare, limiting the use of soy products in salmonid feeds. This study sought to address this challenge by evaluating two gut health-targeted enhancements of SBM for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). This study took a multi-disciplinary approach, investigating the effect on growth performance, gut microbiome, and behaviors relevant to welfare in aquaculture. This study suggests that both enhancements of SBM provide benefits for growth performance compared with conventional SBM. Both SBM treatments altered fish gut microbiomes and in the case of ETS, increased the presence of the lactic acid bacteria Enterococcus. For the first time, the effects of marine protein sources and plant protein sources on the coping style of salmon were demonstrated. Fish fed SBM showed a tendency for more reactive behavior compared with those fed the FM-based control. All fish had a similar low response to elicited stress, although ETS-fed fish responded more actively than US-fed fish for a single swimming measure. Furthermore, SBM-fed fish displayed lower repeatability of behavior, which may indicate diminished welfare for intensively farmed fish. The implications of these findings for commercial salmonid aquaculture are discussed.
Collapse
Affiliation(s)
- Alexandra Leeper
- Department of Research and Innovation, Iceland Ocean Cluster, Grandagardur 16, 101 Reykjavik, Iceland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Clara Sauphar
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6025 Ålesund, Norway
| | - Benoit Berlizot
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Gabrielle Ladurée
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| | - Wolfgang Koppe
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
| | - Stephen Knobloch
- Department of Research and Innovation, Matís Ltd., 12, Vínlandsleid, 113 Reykjavik, Iceland
- Department of Food Technology, Fulda University of Applied Sciences, 36037 Fulda, Germany
| | | | - Rannveig Björnsdóttir
- Faculty of Natural Resource Sciences, University of Akureyi, Nordurslod, 600 Akureyi, Iceland
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1420 Aas, Norway
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, 551 Hólar, Iceland
| |
Collapse
|
15
|
Suhr M, Fichtner-Grabowski FT, Seibel H, Bang C, Franke A, Schulz C, Hornburg SC. The microbiota knows: handling-stress and diet transform the microbial landscape in the gut content of rainbow trout in RAS. Anim Microbiome 2023; 5:33. [PMID: 37386608 DOI: 10.1186/s42523-023-00253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The aim of the present study was to characterize the effects of handling stress on the microbiota in the intestinal gut contents of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet from two different breeding lines (initial body weights: A: 124.69 g, B: 147.24 g). Diets were formulated in accordance with commercial trout diets differing in their respective protein sources: fishmeal (35% in fishmeal-based diet F, 7% in plant protein-based diet V) and plant-based proteins (47% in diet F, 73% in diet V). Experimental diets were provided for 59 days to all female trout in two separate recirculating aquaculture systems (RASs; mean temperature: A: 15.17 °C ± 0.44, B: 15.42 °C ± 0.38). Half of the fish in each RAS were chased with a fishing net twice per day to induce long-term stress (Group 1), while the other half were not exposed to stress (Group 0). RESULTS No differences in performance parameters were found between the treatment groups. By using 16S rRNA amplicon sequencing of the hypervariable region V3/V4, we examined the microbial community in the whole intestinal content of fish at the end of the trial. We discovered no significant differences in alpha diversity induced by diet or stress within either genetic trout line. However, the microbial composition was significantly driven by the interaction of stress and diet in trout line A. Otherwise, in trout line B, the main factor was stress. The communities of both breeding lines were predominantly colonized by bacteria from the phyla Fusobacteriota, Firmicutes, Proteobacteria, Actinobacteriota, and Bacteroidota. The most varying and abundant taxa were Firmicutes and Fusobacteriota, whereas at the genus level, Cetobacterium and Mycoplasma were key components in terms of adaptation. In trout line A, Cetobacterium abundance was affected by factor stress, and in trout line B, it was affected by the factor diet. CONCLUSION We conclude that microbial gut composition, but neither microbial diversity nor fish performance, is highly influenced by stress handling, which also interacts with dietary protein sources. This influence varies between different genetic trout lines and depends on the fish's life history.
Collapse
Affiliation(s)
- Marvin Suhr
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany.
| | | | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig-Holstein, Rosalind-Franklin-Str. 12, 24105, Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Hafentörn 3, 25761, Büsum, Germany
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 6, 24118, Kiel, Germany
| | - Stéphanie Céline Hornburg
- Institute of Animal Nutrition and Physiology, Christian-Albrechts-University Kiel, Hermann-Rodewald-Straße 9, 24118, Kiel, Germany
| |
Collapse
|
16
|
Mugetti D, Pastorino P, Beltramo C, Audino T, Arillo A, Esposito G, Prearo M, Bertoli M, Pizzul E, Bozzetta E, Acutis PL, Peletto S. The Gut Microbiota of Farmed and Wild Brook Trout ( Salvelinus fontinalis): Evaluation of Feed-Related Differences Using 16S rRNA Gene Metabarcoding. Microorganisms 2023; 11:1636. [PMID: 37512808 PMCID: PMC10386504 DOI: 10.3390/microorganisms11071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiota has become a topic of increasing importance in various fields, including aquaculture. Several fish species have been the subject of investigations concerning the intestinal microbiota, which have compared different variables, including the intestinal portions, the environment, and diet. In this study, the microbiota of farmed and wild brook trout (Salvelinus fontinalis) were analyzed, in which the wall and content of the medial portion of the intestine were considered separately. A total of 66 fish (age class 2+) were sampled, of which 46 were wild and 20 were farmed brook trout, in two different years. Microbiota data were obtained using a 16S metabarcoding approach by analyzing the V3-V4 hypervariable regions of the corresponding 16S rRNA. The data showed that the core microbiota of these species consist of Proteobacteria (Alpha- and Gammaproteobacteria), Actinobacteria, Firmicutes (Bacilli and Clostridia), and, only for farmed animals, Fusobacteria. The latter taxon's presence is likely related to the fishmeal-based diet administered to farmed brook trout. Indeed, alpha and beta diversity analysis showed differences between wild and farmed fish. Finally, statistically significant differences in the microbiota composition were observed between the intestinal walls and contents of wild fish, while no differences were detected in reared animals. Our work represents the first study on the intestinal microbiota of brook trout with respect to both farmed and wild specimens. Future studies might focus on the comparison of our data with those pertaining to other fish species and on the study of other portions of the brook trout intestine.
Collapse
Affiliation(s)
- Davide Mugetti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Tania Audino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Alessandra Arillo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Marino Prearo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
- Centro di Referenza Regionale per la Biodiversità degli Ambienti Acquatici (BioAqua), Via L. Maritano 22, 10051 Avigliana, Italy
| | - Marco Bertoli
- Dipartimento Scienze della Vita, Università degli Studi di Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Dipartimento Scienze della Vita, Università degli Studi di Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Pier Luigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
17
|
Zhao Z, Zhao H, Zhang L, Huang Z, Ke H, Liu Y, Duan Y, Li H, Wang X, Li Q. Integrated analysis of how gender and body weight affect the intestinal microbial diversity of Gymnocypris chilianensis. Sci Rep 2023; 13:8811. [PMID: 37258553 DOI: 10.1038/s41598-023-35600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Intestinal microorganisms that living in the mucosa and contents of the gastrointestinal tract of animals, have close links with their hosts over a long evolutionary history. The community structure of the fish intestinal microbiota is associated with food, living environment, and the growth stage. To screen for potential probiotics that can be used for regulating breeding behaviors, this study focused on the diversity of fish intestinal microorganisms. This study aimed to investigate the effects of sex and body weight on the intestinal microbial diversity of Gymnocypris chilianensis in the wild. The results showed that the significant high diversity and richness of intestinal microbiota were fould in heavier individuals, and males. The dominant bacterial phyla of G. chilianensis were Proteobacteria, Firmicutes, and Bacteroidetes. In addition, the abundance of Firmicutes varied significantly among different body weights. The genus profile revealed that small individuals were dominated by Weissella, while females were dominated by Aeromonas, and both large individuals and males were dominated by other genera. Phylogenetic relationships and UPGMA clustering analysis showed significant differences among the groups. In general, the two main factors that have an effect on the intestinal microbiota diversity of wild G. chilianensis are sex and body weight.
Collapse
Affiliation(s)
- Zhongmeng Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Han Zhao
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Lu Zhang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Zhipeng Huang
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Hongyu Ke
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Ya Liu
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Yuanliang Duan
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Huadong Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China
| | - Xiongyan Wang
- Sichuan Water Conservancy Vocational College, Chongzhou, Sichuan, China
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, 1611 Xiyuan Avenue, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Kusumawaty D, Augustine SMN, Aryani A, Effendi Y, Emran TB, Tallei TE. Configuration of gut bacterial community profile and their potential functionality in the digestive tract of the wild and cultivated Indonesian shortfin elver-phase eels ( Anguilla bicolor bicolor McClelland, 1844). 3 Biotech 2023; 13:153. [PMID: 37131968 PMCID: PMC10148933 DOI: 10.1007/s13205-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023] Open
Abstract
This study aimed to explore the bacteria present in the digestive tracts of wild and cultivated Indonesian shortfin eel during the elver phase. The eel has high export potential due to its vitamin and micronutrient content, but slow growth and vulnerability to collapse in farm conditions hinder its cultivation. The microbiota in the eel's digestive tract is crucial for its health, particularly during the elver phase. This study used Next Generation Sequencing to analyze the community structure and diversity of bacteria in the eels' digestive tracts, focusing on the V3-V4 regions of the 16S rRNA gene. Mothur software was used for data analysis and PAST v.3.26 was used to calculate alpha diversity. The results showed that Proteobacteria (64.18%) and Firmicutes (33.55%) were the predominant phyla in the digestive tract of cultivated eels, while Bacteroidetes (54.16%), Firmicutes (14.71%), and Fusobacteria (10.56%) were predominant in wild eels. The most prevalent genera in cultivated and wild elver were Plesiomonas and Cetobacterium, respectively. The microbiota in the digestive tract of cultivated eels was diverse despite uneven distribution. The KEGG database analysis revealed that the primary function of the microbiome was to facilitate the eel's absorption of nutrients by contributing significantly to the metabolism of carbohydrates and amino acids. This study's findings can aid in assessing eel health and improving eel farming conditions.
Collapse
Affiliation(s)
- Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Stella Melbournita Noor Augustine
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Any Aryani
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung, 40154 Indonesia
| | - Yunus Effendi
- Department of Biology, Faculty of Science and Technology, Al-Azhar Indonesia University, Jakarta, 12110 Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381 Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115 North Sulawesi Indonesia
| |
Collapse
|
19
|
Keiz K, Ulrich S, Wenderlein J, Keferloher P, Wiesinger A, Neuhaus K, Lagkouvardos I, Wedekind H, Straubinger RK. The Development of the Bacterial Community of Brown Trout ( Salmo trutta) during Ontogeny. Microorganisms 2023; 11:211. [PMID: 36677503 PMCID: PMC9863972 DOI: 10.3390/microorganisms11010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown trout (Salmo trutta) is an important aquaculture species in Germany, but its production faces challenges due to global warming and a high embryo mortality. Climate factors might influence the fish's bacterial community (BC) and thus increase embryo mortality. Yet, knowledge of the physiological BC during ontogeny in general is scarce. In this project, the BC of brown trout has been investigated in a period from unfertilized egg to 95 days post fertilization (dpf) using 16S rRNA gene amplicon sequencing. Developmental changes differed between early and late ontogeny and major differences in BC occurred especially during early developmental stages. Thus, analysis was conducted separately for 0 to 67 dpf and from 67 to 95 dpf. All analyzed stages were sampled in toto to avoid bias due to different sampling methods in different developmental stages. The most abundant phylum in the BC of all developmental stages was Pseudomonadota, while only two families (Comamonadaceae and Moraxellaceae) occurred in all developmental stages. The early developmental stages until 67 dpf displayed greater shifts in their BC regarding bacterial richness, microbial diversity, and taxonomic composition. Thereafter, in the fry stages, the BC seemed to stabilize and changes were moderate. In future studies, a reduction in the sampling time frames during early development, an increase in sampling numbers, and an attempt for biological reproduction in order to characterize the causes of these variations is recommended.
Collapse
Affiliation(s)
- Katharina Keiz
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Sebastian Ulrich
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Jasmin Wenderlein
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Patrick Keferloher
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Anna Wiesinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Ilias Lagkouvardos
- Core Facility Microbiome, ZIEL—Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology and Aquaculture (IMBBC), 715 00 Heraklion, Greece
| | - Helmut Wedekind
- Bavarian State Research Center for Agriculture (LfL), Institute for Fisheries (IFI), Weilheimer Straße 8, 82319 Starnberg, Germany
| | - Reinhard K. Straubinger
- Institute of Infectious Diseases and Zoonosis, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| |
Collapse
|
20
|
Wang X, Luo H, Wang D, Zheng Y, Zhu W, Zhang W, Chen Z, Chen X, Shao J. Partial Substitution of Fish Meal with Soy Protein Concentrate on Growth, Liver Health, Intestinal Morphology, and Microbiota in Juvenile Large Yellow Croaker ( Larimichthys crocea). AQUACULTURE NUTRITION 2023; 2023:3706709. [PMID: 36860984 PMCID: PMC9973153 DOI: 10.1155/2023/3706709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
The present study investigated the growth performance, feed utilization, intestinal morphology, and microbiota communities of juvenile large yellow croaker (Larimichthys crocea) fed diets containing different proportions of soy protein concentrate (SPC) (0, 15%, 30%, and 45%, namely FM, SPC15, SPC30, and SPC45) as a substitute for fish meal (FM) for 8 weeks. The weight gain (WG) and specific growth rate (SGR) in fish fed SPC45 were significantly lower than those fed FM and SPC15 but not differ with these fed SPC30. The feed efficiency (FE) and protein efficiency ratio (PER) decreased sharply when the dietary SPC inclusion level was higher than 15%. The activity of alanine aminotransferase (ALT) and expression of alt and aspartate aminotransferase (ast) were significantly higher in fish fed SPC45 than those fed FM. The activity and mRNA expression of acid phosphatase were opposite. The villi height (VH) in distal intestine (DI) showed a significant quadratic response to increasing dietary SPC inclusion levels and was highest in SPC15. The VH in proximal intestine, middle intestine decreased significantly with increasing dietary SPC levels. The 16S rRNA sequences in intestine revealed that fish fed SPC15 had higher bacterial diversity and abundance of Phylum Firmicutes such as order Lactobacillales and order Rhizobiaceae than those fed other diets. Genus vibrio, family Vibrionaceae and order Vibrionales within phylum Proteobacteria were enriched in fish fed FM and SPC30 diets. Tyzzerella and Shewanella that belongs to phylum Firmicutes and Proteobacteria, respectively, were enriched in fish fed SPC45 diet. Our results indicated that SPC replacing more than 30% FM could lead to lower quality diet, retard growth performance, ill health, disordered intestine structure, and microbiota communities. Tyzzerella could be the bacteria indicator of intestinal in large yellow croaker fed low quality diet due to high SPC content. Based on the quadratic regression analysis of WG, the best growth performance could be observed when the replacement of FM with SPC was 9.75%.
Collapse
Affiliation(s)
- Xuexi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongjie Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dejuan Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunzong Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Zhu
- Fuzhou Haima Feed Co., Ltd., Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
21
|
Puri P, Sharma JG, Singh R. Biotherapeutic microbial supplementation for ameliorating fish health: developing trends in probiotics, prebiotics, and synbiotics use in finfish aquaculture. Anim Health Res Rev 2022; 23:113-135. [PMID: 36597760 DOI: 10.1017/s1466252321000165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nutrition demands in aquaculture can be realized through quality aquafeeds as compounded diets that contribute to the growth and health of aquaculture species. Functional additives in feed, notably probiotics, prebiotics, and their admixture synbiotics, have been recently recognized for their biotherapeutic role as immunostimulants capable of conferring disease resistance, stress tolerance, and gastrointestinal health; counteracting the negative effects of anti-nutrients, pathogenic prevalence, and antimicrobials in finfish aquaculture. Formulated diets based on probiotics, prebiotics, and as a supplemental combination for synbiotics can significantly influence fish gut microbiomes, establishing the modalities of microbial dynamics to maximize host-associated benefits. These microbial functional-feed supplements are acclaimed to be biocompatible, biodegradable, and safe for dietary consumption as well as the environment. In fed fish aquaculture, prebiotic appended probiotic diet 'synbiotic' has propounded larger attention for its additional health and nutritional benefits. Synbiotic, prebiotic, and probiotic usage as functional feeds for finfish aquaculture thus provides promising prospects. Developing trends in their intended application are reviewed here forth.
Collapse
Affiliation(s)
- Parul Puri
- Department of Biotechnology, Delhi Technological University, Delhi, India
- Department of Zoology, Sri Aurobindo College, University of Delhi, Delhi, India
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
22
|
Hines IS, Santiago-Morales KD, Ferguson CS, Clarington J, Thompson M, Rauschenbach M, Levine U, Drahos D, Aylward FO, Smith SA, Kuhn DD, Stevens AM. Steelhead trout ( Oncorhynchus mykiss) fed probiotic during the earliest developmental stages have enhanced growth rates and intestinal microbiome bacterial diversity. FRONTIERS IN MARINE SCIENCE 2022; 9:1021647. [PMID: 39664599 PMCID: PMC11633451 DOI: 10.3389/fmars.2022.1021647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Sustainable aquaculture practices can help meet the increasing human demand for seafood, while easing pressures on natural fish populations. Studies aimed at increasing fish production in aquaculture have included supplementary dietary probiotics that often promote general health and enhanced growth rates by altering the microbiome of the host. Steelhead trout (Oncorhynchus mykiss) is anadromous, like salmon, and it is a subspecies of rainbow trout capable of rapid growth, making it an attractive fish to the aquaculture industry. In this study, the impact of feeding a Bacillus subtilis probiotic on the bacterial microbiome of steelhead trout was examined temporally across several stages of animal development, from eggs (day -19) through 184 days after hatching, in relation to physiological measures. Diets included: commercial feed only as a control (A), continually-fed probiotic top-coated on commercial feed (B), commercial then switch to probiotic feed (C), or probiotic then switch to commercial feed (D). Validation of probiotic concentrations on feed and in fish tissues was performed using CFU/g and qPCR, respectively. Fish growth was measured and samples for intestinal microbiome analyses were collected at multiple timepoints during fish development. Fish fed diet D yielded higher weights than the other three diets, with little impact on other biometric parameters. However, bacterial microbiome analysis indicated an increasing trend of overall alpha diversity from the egg stage to day 29 for fish fed the various diets with diet D having the highest diversity. Fish fed diets A and D maintained a high alpha diversity beyond day 29 in contrast to a decreased trend for fish still being fed probiotics in diets B and C. The fish fed diets B and C harbored a significantly higher relative abundance of Bacillus sp. in their total microbiomes (feces + mucosa). Interestingly, the mucosal-only microbiome indicated little variation between the four groups of fish. Feeding the probiotic earlier in development, during the hatchery phase, to influence bacterial microbiome composition in the intestine (rather than later after the microbiome has been established) appears to be a more effective aquaculture practice by enhancing microbiome diversity while enabling higher fish yields.
Collapse
Affiliation(s)
- Ian S. Hines
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | | | - Clay S. Ferguson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Jireh Clarington
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Uri Levine
- Novozymes Biologicals Inc., Salem, VA, United States
| | - David Drahos
- Novozymes Biologicals Inc., Salem, VA, United States
| | - Frank O. Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - Stephen A. Smith
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - David D. Kuhn
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Testerman T, Beka L, Reichley SR, King S, Welch TJ, Wiens GD, Graf J. A large-scale, multi-year microbial community survey of a freshwater trout aquaculture facility. FEMS Microbiol Ecol 2022; 98:6680245. [PMID: 36047934 DOI: 10.1093/femsec/fiac101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Aquaculture is an important tool for solving the growing worldwide food demand, but infectious diseases of farmed animals represent a serious roadblock to continued industry growth. Therefore, it is essential to understand the microbial communities that reside within the built environments of aquaculture facilities to identify reservoirs of bacterial pathogens and potential correlations between commensal species and specific disease agents. Here, we present the results from 3 years of sampling a commercial rainbow trout aquaculture facility. We observed that the microbial communities residing on the abiotic surfaces within the hatchery were distinct from those residing on the surfaces at the facility's water source as well as the production raceways, despite similar communities in the water column at each location. Also, a subset of the water community seeds the biofilm communities. Lastly, we detected a common fish pathogen, Flavobacterium columnare, within the hatchery, including at the source water inlet. Importantly, the relative abundance of this pathogen was correlated with clinical disease. Our results characterized the microbial communities in an aquaculture facility, established that the hatchery environment contains a unique community composition and demonstrated that a specific fish pathogen resides within abiotic surface biofilms and is seeded from the natural water source.
Collapse
Affiliation(s)
- Todd Testerman
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| | - Lidia Beka
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| | | | - Stacy King
- Riverence Provisions LLC, Buhl, ID 83316, USA
| | - Timothy J Welch
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service/U.S. Department of Agriculture, Kearneysville, WV, 25430, USA
| | - Joerg Graf
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT, 06269, USA
| |
Collapse
|
24
|
Dietary carbohydrate-to-protein ratio influences growth performance, hepatic health and dynamic of gut microbiota in atlantic salmon (Salmo salar). ANIMAL NUTRITION 2022; 10:261-279. [PMID: 35785253 PMCID: PMC9234083 DOI: 10.1016/j.aninu.2022.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/11/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Atlantic salmon (Salmo salar) fed a carbohydrate-rich diet exhibit suboptimal growth performance, along with other metabolic disturbances. It is well known that gut microbes play a pivotal role in influencing metabolism of the host, and these microbes can be modified by the diet. The main goal of the present study was to determine the effect of feeding graded levels of digestible carbohydrates to Atlantic salmon on the distal intestine digesta microbiota at 3 sampling times (i.e., weeks 4, 8 and 12), during a 12-week trial. A low carbohydrate-to-high protein diet (LC/HP, 0% wheat starch), a medium carbohydrate-to-medium protein diet (MC/MP, 15% wheat starch) or a high carbohydrate-to-low protein diet (HC/LP, 30% wheat starch) was fed to triplicate fish tanks (27 to 28 fish per tank). We performed an in-depth characterization of the distal intestine digesta microbiota. Further, growth parameters, liver histology and the expression of genes involved in hepatic neolipogenesis in fish were measured. Fish fed a HC/LP diet showed greater hepatosomatic and viscerosomatic indexes (P = 0.026 and P = 0.018, respectively), lower final weight (P = 0.005), weight gain (P = 0.003), feed efficiency (P = 0.033) and growth rate (P = 0.003) compared with fish fed the LC/HP diet. Further, feeding salmon a high digestible carbohydrate diet caused greater lipid vacuolization, steatosis index (P = 0.007) and expression of fatty acid synthase (fas) and delta-6 fatty acyl desaturase (d6fad) (P = 0.001 and P = 0.001, respectively) in the liver compared with fish fed the LC/HP diet. Although, the major impact of feeding a carbohydrate-rich diet to Atlantic salmon in beta diversity of distal intestine digesta microbiota was observed at week 4 (HC/LP vs MC/MP and HC/LP vs LC/HP; P = 0.007 and P = 0.008, respectively) and week 8 (HC/LP vs MC/MP; P = 0.04), no differences between experimental groups were detected after 12 weeks of feeding. Finally, at the end of the trial, there was a negative correlation between lactic acid bacteria (LAB) members, including Leuconostoc and Lactobacillus, with hepatic steatosis level, the hepatosomatic and viscerosomatic indexes as well as the expression of fas and d6fad. Weissella showed negative correlation with hepatic steatosis level and the hepatosomatic index. Finally, further research to explore the potential use of LAB as probiotics to improve liver health in carnivorous fish fed fatty liver-induced diet is warranted.
Collapse
|
25
|
Xu JR, Zheng PH, Zhang XX, Li JT, Chen HQ, Zhang ZL, Hao CG, Cao YL, Xian JA, Lu YP, Dai HF. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:280-294. [PMID: 35752371 DOI: 10.1016/j.fsi.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1β, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Hui-Qin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Chen-Guang Hao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Hao-Fu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
26
|
Colin Y, Molbert N, Berthe T, Agostini S, Alliot F, Decencière B, Millot A, Goutte A, Petit F. Dysbiosis of fish gut microbiota is associated with helminths parasitism rather than exposure to PAHs at environmentally relevant concentrations. Sci Rep 2022; 12:11084. [PMID: 35773378 PMCID: PMC9246949 DOI: 10.1038/s41598-022-15010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/16/2022] [Indexed: 11/14/2022] Open
Abstract
Although parasite infection and pollution are common threats facing wild populations, the response of the gut microbiota to the joint impact of these stressors remains largely understudied. Here, we experimentally investigated the effects of exposure to Polycyclic Aromatic Hydrocarbons (PAHs) and infection by a common acanthocephalan intestinal parasite (Pomphorhynchus sp.) on the gut microbial flora of a freshwater fish, the European chub (Squalius cephalus). Naturally infected or uninfected individuals were exposed to PAHs at environmentally realistic concentrations over a five-week period. Characterization of the gut bacterial community through 16S rRNA gene amplicon sequencing revealed that parasitic infection was a more structuring factor of bacterial diversity and composition than PAH exposure. Specifically, chub infected by Pomphorhynchus sp. harbored significantly less evenly represented gut bacterial communities than the uninfected ones. In addition, substantial changes in sequence abundance were observed within the main bacterial phyla, including the Firmicutes, Fusobacteriota, Actinobacteriota, and Proteobacteria. Again, these compositional changes correlated with host infection with Pomphorhynchus sp., confirming its pivotal role in gut microbial assemblage. Overall, these results highlight the importance of defining the parasitic status of individuals when conducting microbial ecotoxicological analyses at the digestive tract level, as this should lead to better understanding of microbiota modulations and help to identify microbial markers specifically associated with chemicals.
Collapse
Affiliation(s)
- Yannick Colin
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France. .,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.
| | - Noëlie Molbert
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| | - Thierry Berthe
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France.,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| | - Simon Agostini
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Fabrice Alliot
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.,EPHE, UMR 7619, PSL Research University, Sorbonne University, 4 place Jussieu, 75005, Paris, France
| | - Beatriz Decencière
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Alexis Millot
- Département de biologie, Centre de recherche en ecologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), Ecole normale supérieure, CNRS, PSL University, 77140, Saint-Pierre-lès-Nemours, France
| | - Aurélie Goutte
- CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France.,EPHE, UMR 7619, PSL Research University, Sorbonne University, 4 place Jussieu, 75005, Paris, France
| | - Fabienne Petit
- CNRS, M2C, UNICAEN, UNIROUEN, Normandie University, 76821, Rouen, France.,CNRS, EPHE, UMR METIS, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
27
|
Song C, Wen H, Liu G, Ma X, Lv G, Wu N, Chen J, Xue M, Li H, Xu P. Gut Microbes Reveal Pseudomonas Medicates Ingestion Preference via Protein Utilization and Cellular Homeostasis Under Feed Domestication in Freshwater Drum, Aplodinotus grunniens. Front Microbiol 2022; 13:861705. [PMID: 35722333 PMCID: PMC9204248 DOI: 10.3389/fmicb.2022.861705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
With strong demand for aquatic products, as well as a rapid decrease in global fishery resources and capture fisheries, domesticating animals to provide more high-quality proteins is meaningful for humans. Freshwater drum (Aplodinotus grunniens) is widely distributed in the wild habitats of North America. However, the research on A. grunniens and the feed domestication with diets composed of artificial compounds remains unclear. In this study, a 4-month feeding domestication experiment was conducted with A. grunniens larvae to evaluate the underlying mechanism and molecular targets responsible for alternations in the ingestion performance. The results indicated that a significant increase in the final body weight was exhibited by the feed domesticated group (DOM, 114.8 g) when compared to the group that did not ingest the feed (WT, 5.3 g) as the latest version we raised From the result, the final body weight exhibited significant increase between unfavorable with the feed (WT, 5.3 g) and feed domesticated group (DOM, 114.8 g). In addition, the enzyme activity of digestive enzymes like amylase, lipase, and trypsin was increased in DOM. Genes related to appetite and perception, such as NPY4R, PYY, and LEPR, were activated in DOM. 16s rRNA gene sequencing analysis revealed that Pseudomonas sp. increased from 58.74% to 89.77% in DOM, which accounts for the dominant upregulated microbial community at the genus level, followed by Plesiomonas. Analogously, Mycobacterium, Methylocystis, and Romboutsia also accounted for the down-regulated microbes in the diversity. Transcriptome and RT-PCR analysis revealed that feed domestication significantly improved protein digestion and absorption, inhibited apoptosis by AGE-RAGE signaling, and activated extracellular matrix remodeling by relaxin signaling. Integrated analysis of the microbiome and host transcriptome revealed that Pseudomonas-mediated ingestion capacity, protein utilization, and cellular homeostasis might be the underlying mechanism under feed domestication. These results indicate Pseudomonas and its key genes relating to food ingestion and digestion could serve as the molecular targets for feed domestication and sustainable development in A. grunniens.
Collapse
Affiliation(s)
- Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Haibo Wen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Guangxiang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Xueyan Ma
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Guohua Lv
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Ningyuan Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jianxiang Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Miaomiao Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hongxia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
28
|
Chen X, Sun C, Dong J, Li W, Tian Y, Hu J, Ye X. Comparative Analysis of the Gut Microbiota of Mandarin Fish ( Siniperca chuatsi) Feeding on Compound Diets and Live Baits. Front Genet 2022; 13:797420. [PMID: 35664316 PMCID: PMC9158118 DOI: 10.3389/fgene.2022.797420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Siniperca chuatsi feeds on live fry throughout their life. The sustainable development of its farming industry has urgently necessitated the development of artificial diets to substitute live baits. It has been demonstrated that gut microbiota assists in feed adaptation and improves the feed conversion rate in fish. Therefore, this study aimed to understand the potential role of intestinal microorganisms in the domestication of S. chuatsi with a compound diet. Accordingly, we performed 16S rRNA sequencing of the gut microbial communities in S. chuatsi groups that were fed a compound diet (including large and small individuals) and live baits. A total of 2,471 OTUs were identified, and the large individual group possessed the highest number of unique OTUs. The α-diversity index of the gut microbiota in groups that were fed a compound diet was significantly higher (p < 0.05) than that in the live bait group. There were no significant differences in the α-diversity between the large and small individual groups. However, relatively higher numbers of Lactococcus, Klebsiella, and Woeseia were observed in the intestines of the large individual group. Prediction of the metabolic function of the microbiota among these three fish groups by Tax4Fun revealed that most metabolic pathways, such as glycan metabolism and amino acid metabolism, were typically more enriched for the larger individuals. The results indicated that certain taxa mentioned above exist in large individuals and may be closely related to the digestion and absorption of compound diets. The present study provides a basis for understanding the utilization mechanism of artificial feed by S. chuatsi.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
29
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
30
|
Thépot V, Slinger J, Rimmer MA, Paul NA, Campbell AH. Is the Intestinal Bacterial Community in the Australian Rabbitfish Siganus fuscescens Influenced by Seaweed Supplementation or Geography? Microorganisms 2022; 10:microorganisms10030497. [PMID: 35336073 PMCID: PMC8954549 DOI: 10.3390/microorganisms10030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
We recently demonstrated that dietary supplementation with seaweed leads to dramatic improvements in immune responses in S. fuscescens, a candidate species for aquaculture development in Asia. Here, to assess whether the immunostimulatory effect was facilitated by changes to the gut microbiome, we investigated the effects of those same seaweed species and four commercial feed supplements currently used in aquaculture on the bacterial communities in the hindgut of the fish. Since we found no correlations between the relative abundance of any particular taxa and the fish enhanced innate immune responses, we hypothesised that S. fuscescens might have a core microbiome that is robust to dietary manipulation. Two recently published studies describing the bacteria within the hindgut of S. fuscescens provided an opportunity to test this hypothesis and to compare our samples to those from geographically distinct populations. We found that, although hindgut bacterial communities were clearly and significantly distinguishable between studies and populations, a substantial proportion (55 of 174 taxa) were consistently detected across all populations. Our data suggest that the importance of gut microbiota to animal health and the extent to which they can be influenced by dietary manipulations might be species-specific or related to an animals’ trophic level.
Collapse
Affiliation(s)
- Valentin Thépot
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (M.A.R.); (N.A.P.)
- Correspondence:
| | - Joel Slinger
- CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia;
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia
| | - Michael A. Rimmer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (M.A.R.); (N.A.P.)
| | - Nicholas A. Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia; (M.A.R.); (N.A.P.)
| | - Alexandra H. Campbell
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia;
| |
Collapse
|
31
|
Leeper A, Ekmay R, Knobloch S, Skírnisdóttir S, Varunjikar M, Dubois M, Smárason BÖ, Árnason J, Koppe W, Benhaïm D. Torula yeast in the diet of Atlantic salmon Salmo salar and the impact on growth performance and gut microbiome. Sci Rep 2022; 12:567. [PMID: 35022439 PMCID: PMC8755733 DOI: 10.1038/s41598-021-04413-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Atlantic salmon aquaculture is expanding, and with it, the need to find suitable replacements for conventional protein sources used in formulated feeds. Torula yeast (Cyberlindnera jadinii), has been identified as a promising alternative protein for feed and can be sustainably cultivated on lignocellulosic biomasses. The present study investigated the impact of torula yeast on the growth performance and gut microbiome of freshwater Atlantic salmon. A marine protein base diet and a mixed marine and plant protein base diet were tested, where conventional proteins were replaced with increasing inclusion levels of torula yeast, (0%, 10%, 20%). This study demonstrated that 20% torula yeast can replace fish meal without alteration to growth performance while leading to potential benefits for the gut microbiome by increasing the presence of bacteria positively associated with the host. However, when torula yeast replaced plant meal in a mixed protein diet, results suggested that 10% inclusion of yeast produced the best growth performance results but at the 20% inclusion level of yeast, potentially negative changes were observed in the gut microbial community, such as a decrease in lactic acid bacteria. This study supports the continued investigation of torula yeast for Atlantic salmon as a partial replacement for conventional proteins.
Collapse
Affiliation(s)
- Alexandra Leeper
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box, 1420, Ås, Norway. .,Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland.
| | | | - Stephen Knobloch
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | | | - Madhushri Varunjikar
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Marianne Dubois
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Birgir Örn Smárason
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Jón Árnason
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - Wolfgang Koppe
- Department of Research and Innovation, Matís Ltd, 12, Vínlandsleid, 113, Reykjavik, Iceland
| | - David Benhaïm
- Department of Aquaculture and Fish Biology, Hólar University, Haeyri 1, 551, Saudárkrókur, Iceland
| |
Collapse
|
32
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
33
|
Roy Choudhury A, Park JY, Kim DY, Choi J, Acharya S, Park JH. Exposure to Oxy-Tetracycline Changes Gut Bacterial Community Composition in Rainbow Trout: A Preliminary Study. Animals (Basel) 2021; 11:ani11123404. [PMID: 34944183 PMCID: PMC8698040 DOI: 10.3390/ani11123404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
The extensive use of antibiotics is evident in most of the livestock and aquaculture management for inhibiting pathogen infection. Korean aquaculture depends on the usage of oxy-tetracycline for growing rainbow trout. Hence, this study was conducted to evaluate the changes in gut bacterial community profiles of rainbow trout exposed to oxy-tetracycline and predict the metabolic functioning of the bacterial community. The gut bacterial community composition of oxy-tetracycline treated fish was assessed by amplicon sequencing targeting the 16S rRNA gene of bacteria and comparing with the control group that did not receive any antibiotic. The principle coordinate analysis and non-metric multidimensional scaling analysis had shown two distinct clusters that implies the changes in community composition. In phyla level, the relative abundances of Tenericutes and Firmicutes were observed to be significantly higher in oxy-tetracycline treated fish compared to the control. Furthermore, the prediction based metabolic profiling revealed the processes that are affected due to the shift in community profiles. For example, metabolic functioning of membrane efflux system, amino acid metabolism and glycolysis were significantly higher in oxy-tetracycline treated fish compared to the control. This study describes alteration in gut bacterial community composition and potential metabolic profiles of the community that might be responsible for surviving in antibiotic rich environment.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Ji-Young Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Do Young Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Jeongyun Choi
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
| | - Satabdi Acharya
- Department of Bioactive Material Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea; (A.R.C.); (J.-Y.P.); (D.Y.K.); (J.C.)
- Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
34
|
Bai S, Zhang P, Zhang C, Du J, Du X, Zhu C, Liu J, Xie P, Li S. Comparative Study of the Gut Microbiota Among Four Different Marine Mammals in an Aquarium. Front Microbiol 2021; 12:769012. [PMID: 34745077 PMCID: PMC8567075 DOI: 10.3389/fmicb.2021.769012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Despite an increasing appreciation in the importance of host–microbe interactions in ecological and evolutionary processes, information on the gut microbial communities of some marine mammals is still lacking. Moreover, whether diet, environment, or host phylogeny has the greatest impact on microbial community structure is still unknown. To fill part of this knowledge gap, we exploited a natural experiment provided by an aquarium with belugas (Delphinapterus leucas) affiliated with family Monodontidae, Pacific white-sided dolphins (Lagenorhynchus obliquidens) and common bottlenose dolphin (Tursiops truncatus) affiliated with family Delphinidae, and Cape fur seals (Arctocephalus pusillus pusillus) affiliated with family Otariidae. Results show significant differences in microbial community composition of whales, dolphins, and fur seals and indicate that host phylogeny (family level) plays the most important role in shaping the microbial communities, rather than food and environment. In general, the gut microbial communities of dolphins had significantly lower diversity compared to that of whales and fur seals. Overall, the gut microbial communities were mainly composed of Firmicutes and Gammaproteobacteria, together with some from Bacteroidetes, Fusobacteria, and Epsilonbacteraeota. However, specific bacterial lineages were differentially distributed among the marine mammal groups. For instance, Lachnospiraceae, Ruminococcaceae, and Peptostreptococcaceae were the dominant bacterial lineages in the gut of belugas, while for Cape fur seals, Moraxellaceae and Bacteroidaceae were the main bacterial lineages. Moreover, gut microbial communities in both Pacific white-sided dolphins and common bottlenose dolphins were dominated by a number of pathogenic bacteria, including Clostridium perfringens, Vibrio fluvialis, and Morganella morganii, reflecting the poor health condition of these animals. Although there is a growing recognition of the role microorganisms play in the gut of marine mammals, current knowledge about these microbial communities is still severely lacking. Large-scale research studies should be undertaken to reveal the roles played by the gut microbiota of different marine mammal species.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | | | - Jiang Du
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Chengwei Zhu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Xie
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
35
|
Huyben D, Chiasson M, Lumsden JS, Pham PH, Chowdhury MAK. Dietary Microencapsulated Blend of Organic Acids and Plant Essential Oils Affects Intestinal Morphology and Microbiome of Rainbow Trout ( Oncorhynchus mykiss). Microorganisms 2021; 9:2063. [PMID: 34683384 PMCID: PMC8537560 DOI: 10.3390/microorganisms9102063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
A study was conducted on 500 juvenile rainbow trout (122 ± 4 g) fed either a control diet or a treatment diet containing 300 mg/kg of a microencapsulated blend of organic acids and essential oils to elucidate effects on intestinal morphology and microbiome. Proximal intestinal villi length was significantly increased in fish fed the treatment diet. Despite no differences in gut inflammation scores, edema, lamina propria inflammation and apoptosis were completely absent in the distal intestine of fish fed the treatment diet. Next-generation sequencing of the 16S rDNA showed no differences in alpha and beta diversity, and gut bacteria were mainly composed of Firmicutes, Bacteroidetes and Proteobacteria. On the genus level, LefSe analysis of indicator OTUs showed Bacteroides, Sporosarcina, Veillonella, Aeromonas and Acinetobacter were associated with the control diet whereas Streptococcus, Fusobacterium and Escherichia were associated with the treatment diet. Aeromonas hydrophila and Acinetobacter spp. are opportunistic pathogens and several strains have been found to be resistant to antibiotics. The increase in villi length and reduction of specific pathogens indicates that feeding a microencapsulated blend of organic acids and essential oils improves gut health and may serve as a part of an effective strategy to reduce antibiotic use in aquaculture.
Collapse
Affiliation(s)
- David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marcia Chiasson
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, ON N0B 1S0, Canada;
| | - John S. Lumsden
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.L.); (P.H.P.)
| | - Phuc H. Pham
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.L.); (P.H.P.)
| | | |
Collapse
|
36
|
Sawant S, Dugad J, Parikh D, Srinivasan S, Singh H. Identification & correlation of bacterial diversity in oral cancer and long-term tobacco chewers- A case-control pilot study. J Med Microbiol 2021; 70. [PMID: 34553683 DOI: 10.1099/jmm.0.001417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Squamous cell carcinoma is a highly aggressive type of oral cancer (OC). It is the most common cancer among men, and accounts for almost 90 % of all oral cancers in India. Consumption of tobacco is a leading factor contributing to maximum oral cancer incidences as per the WHO.Hypothesis/Gap statement. Researchers reported a direct association of microorganisms with dysbiosis in various oral lesions including oral cancer. However, there is a dearth of information related to compositional changes in the oral microbiome in long-term tobacco chewers and the Indian oral cancer population.Aim. The aim of this study was to identify and correlate the bacterial diversity in the oral cavity of tobacco chewers, patients with oral cancer and healthy subjects in the Indian population.Methods. Oral rinse samples were collected for ten subjects in each group followed by DNA extraction. The variable regions of the bacterial 16S rRNA gene (V6-V8) were amplified, sequenced, processed, and analysed using QIIME2 platform to assess alpha and beta diversity between the study groups.Results. This pilot study showed genus Streptococcus dominated the control group (18.54 %), and the abundance decreased in tobacco and OC group (9.63 and 5.45% respectively); whereas genus Prevotella dominated the tobacco and OC group (21.01 and 26.03% respectively). A shift in abundance of microbiome was observed from control population to oral cancer via the tobacco chewing population. Maximum alpha diversity of oral microbiome was found in Indian tobacco chewers. Beta diversity of tobacco chewers was similar to both the healthy population as well as oral cancer patients suggesting transitioning of the oral microbiome from healthy to oral cancer microbiome via the tobacco chewers microbiome.Conclusion. The data provides evidence of oral bacterial dysbiosis due to tobacco chewing habits that can further lead to progression towards cancer.
Collapse
Affiliation(s)
- Shriya Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, India
| | - Jinesh Dugad
- Somaiya Ayurvihar -Asian Cancer Institute, Off Eastern Express Highway, Behind Everard Nagar, Somaiya Ayurvihar, Sion (East), Mumbai, India
| | - Deepak Parikh
- Somaiya Ayurvihar -Asian Cancer Institute, Off Eastern Express Highway, Behind Everard Nagar, Somaiya Ayurvihar, Sion (East), Mumbai, India
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
- Gene Strand Technologies Pvt. Ltd., Chennai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, India
| |
Collapse
|
37
|
Kazlauskaite R, Cheaib B, Heys C, Ijaz UZ, Connelly S, Sloan W, Russel J, Rubio L, Sweetman J, Kitts A, McGinnity P, Lyons P, Llewellyn M. SalmoSim: the development of a three-compartment in vitro simulator of the Atlantic salmon GI tract and associated microbial communities. MICROBIOME 2021; 9:179. [PMID: 34465363 PMCID: PMC8408954 DOI: 10.1186/s40168-021-01134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The aquaculture sector now accounts for almost 50% of all fish for human consumption and is anticipated to provide 62% by 2030. Innovative strategies are being sought to improve fish feeds and feed additives to enhance fish performance, welfare, and the environmental sustainability of the aquaculture industry. There is still a lack of knowledge surrounding the importance and functionality of the teleost gut microbiome in fish nutrition. In vitro gut model systems might prove a valuable tool to study the effect of feed, and additives, on the host's microbial communities. Several in vitro gut models targeted at monogastric vertebrates are now in operation. Here, we report the development of an Atlantic salmon gut model, SalmoSim, to simulate three gut compartments (stomach, pyloric caecum, and midgut) and associated microbial communities. RESULTS The gut model was established in a series of linked bioreactors seeded with biological material derived from farmed adult marine-phase salmon. We first aimed to achieve a stable microbiome composition representative of founding microbial communities derived from Atlantic salmon. Then, in biological triplicate, the response of the in vitro system to two distinct dietary formulations (fishmeal and fishmeal free) was compared to a parallel in vivo trial over 40 days. Metabarcoding based on 16S rDNA sequencing qPCR, ammoniacal nitrogen, and volatile fatty acid measurements were undertaken to survey the microbial community dynamics and function. SalmoSim microbiomes were indistinguishable (p = 0.230) from their founding inocula at 20 days and the most abundant genera (e.g., Psycrobacter, Staphylococcus, Pseudomonas) proliferated within SalmoSim (OTUs accounting for 98% of all reads shared with founding communities). Real salmon and SalmoSim responded similarly to the introduction of novel feed, with majority of the taxa (96% Salmon, 97% SalmoSim) unaffected, while a subset of taxa (e.g., a small fraction of Psychrobacter) was differentially affected across both systems. Consistent with a low impact of the novel feed on microbial fermentative activity, volatile fatty acid profiles were not significantly different in SalmoSim pre- and post-feed switch. CONCLUSION By establishing stable and representative salmon gut communities, this study represents an important step in the development of an in vitro gut system as a tool for the improvement of fish nutrition and welfare. The steps of the system development described in this paper can be used as guidelines to develop various other systems representing other fish species. These systems, including SalmoSim, aim to be utilised as a prescreening tool for new feed ingredients and additives, as well as being used to study antimicrobial resistance and transfer and fundamental ecological processes that underpin microbiome dynamics and assembly. Video abstract.
Collapse
Affiliation(s)
- Raminta Kazlauskaite
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, Scotland.
| | - Bachar Cheaib
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Chloe Heys
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Stephanie Connelly
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - William Sloan
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Julie Russel
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | | | - John Sweetman
- Alltech Aqua, Eindhoven, Netherlands
- Alltech, Lexington, KY, USA
| | - Alex Kitts
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Philip McGinnity
- School of Biological, Earth and Environmental Sciences, University College Cork, T23 N73K, Cork, Ireland
- Marine Institute, Foras na Mara, F28 PF65, Newport, Ireland
| | - Philip Lyons
- Alltech Aqua, Eindhoven, Netherlands
- Alltech, Lexington, KY, USA
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, G12 8QQ, Scotland
| |
Collapse
|
38
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
39
|
Valenzuela-Gutiérrez R, Lago-Lestón A, Vargas-Albores F, Cicala F, Martínez-Porchas M. Exploring the garlic (Allium sativum) properties for fish aquaculture. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1179-1198. [PMID: 34164770 DOI: 10.1007/s10695-021-00952-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry's rapid growth to meet commercial demand can trigger an outbreak of infectious diseases due to high-density farming. Antibiotic overuse and misuse in fish farming and its global health consequences have led to searching for more natural alternatives such as medicinal plants. In this sense, garlic (Allium sativum) has different bioactive compounds with biological properties for animal health. Among them are the ajoene, alliin, and allicin, which confer biological properties such as growth promotion, antimicrobial, antiviral, antioxidant, and antiparasitic. Ways to use garlic in aquaculture include oil, fresh mash, aqueous extract, and garlic powder. The powder presentation is the most used in aquaculture; it is generally applied by oral administration, adding to the feed, and the dose used ranges from 0.05 to 40 g/kg of feed. Garlic has been used in the aquaculture of different species such as rainbow trout (Oncorhynchus mykiss), spotted grouper (Epinephelus coioides), catfish (Clarias gariepinus), tilapia (Oreochromis niloticus), guppy fish (Poecilia reticulata), goldfish (Carassius auratus), and barramundi (Lates calcarifer). In addition to its properties, garlic's usage became popular, thanks to its low cost, easy incorporation into food, and little environmental impact. Therefore, its application can be an effective solution to combat diseases, improve organisms' health using natural supplies, and as an alternative to antibiotics. This review reports and discusses plant-derived products' beneficial properties, emphasizing garlic and its usages in fish aquaculture.
Collapse
Affiliation(s)
- Rocío Valenzuela-Gutiérrez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Asunción Lago-Lestón
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México
| | - Francesco Cicala
- Innovación Biomédica, Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo, Sonora, México.
| |
Collapse
|
40
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
41
|
Fowler EC, Poudel P, White B, St-Pierre B, Brown M. Effects of a Bioprocessed Soybean Meal Ingredient on the Intestinal Microbiota of Hybrid Striped Bass, Morone chrysops x M. saxatilis. Microorganisms 2021; 9:microorganisms9051032. [PMID: 34064862 PMCID: PMC8151853 DOI: 10.3390/microorganisms9051032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
The hybrid striped bass (Morone chrysops x M. saxatilis) is a carnivorous species and a major product of US aquaculture. To reduce costs and improve resource sustainability, traditional ingredients used in fish diets are becoming more broadly replaced by plant-based products; however, plant meals can be problematic for carnivorous fish. Bioprocessing has improved nutritional quality and allowed higher inclusions in fish diets, but these could potentially affect other systems such as the gut microbiome. In this context, the effects of bioprocessed soybean meal on the intestinal bacterial composition in hybrid striped bass were investigated. Using high-throughput sequencing of amplicons targeting the V1-V3 region of the 16S rRNA gene, no significant difference in bacterial composition was observed between fish fed a control diet, and fish fed a diet with the base bioprocessed soybean meal. The prominent Operational Taxonomic Unit (OTU) in these samples was predicted to be a novel species affiliated to Peptostreptococcaceae. In contrast, the intestinal bacterial communities of fish fed bioprocessed soybean meal that had been further modified after fermentation exhibited lower alpha diversity (p < 0.05), as well as distinct and more varied composition patterns, with OTUs predicted to be strains of Lactococcus lactis, Plesiomonas shigelloides, or Ralstonia pickettii being the most dominant. Together, these results suggest that compounds in bioprocessed soybean meal can affect intestinal bacterial communities in hybrid striped bass.
Collapse
Affiliation(s)
- Emily Celeste Fowler
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
| | - Prakash Poudel
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
| | - Brandon White
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, USA;
| | - Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (E.C.F.); (P.P.)
- Correspondence: (B.S.-P.); (M.B.)
| | - Michael Brown
- Department of Natural Resource Management, South Dakota State University, Brookings, SD 57007, USA;
- Correspondence: (B.S.-P.); (M.B.)
| |
Collapse
|
42
|
Gu H, Feng Y, Zhang Y, Yin D, Yang Z, Tang W. Differential study of the Parabramis pekinensis intestinal microbiota according to different habitats and different parts of the intestine. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Purpose
To identify the differences in gut bacterial community of Parabramis pekinensis under different growth conditions, and the effect of the diet in a controlled habitat on the community structure, aiming to provide a comprehensive survey of how the gut microbiota in P. pekinensis varies depending on habitat.
Methods
A total of 73 P. pekinensis from Yangtze River (W), rivers in the outskirts of Jingjiang (Jiangsu province, China, R), and farms (C) were collected to analyze the intestinal microbiota using high-throughput sequencing of the V3-V4 16S ribosomal RNA gene. We also subdivided the gut into the foregut (F), midgut (M), and hindgut (B) to analyze the differences between them.
Results
The dominant bacterial phyla in P. pekinensis were Fusobacteria, Firmicutes, Proteobacteria, and Actinobacteria; meanwhile, Cyanobacteria, Bacteroidetes, Chloroflexi, and Verrucomicrobia were also highly abundant. It is worth noting that the abundance of Fusobacteria Cetobacterium was also very high. The abundance and diversity of the intestinal microbiota structure of fish taken from breeding farm were significantly lower than those taken from Yangtze river and Suburban river, and the abundance of Aeromonas in the gut of fish taken from Yangtze river was much higher than that of fish taken from Suburban river. Compared to midgut, foregut and hindgut have similar microbiota structures, but did not differ significantly in them.
Conclusions
The core intestinal microbiota of P. pekinensis is the same to other herbivorous and partially omnivorous fish. There were significant differences in the intestinal microbiota structure of P. pekinensis from different habitats, but no significant differences in the microbiota abundance and diversity between the different parts of the intestine.
Collapse
|
43
|
Huyben D, Roehe BK, Bekaert M, Ruyter B, Glencross B. Dietary Lipid:Protein Ratio and n-3 Long-Chain Polyunsaturated Fatty Acids Alters the Gut Microbiome of Atlantic Salmon Under Hypoxic and Normoxic Conditions. Front Microbiol 2020; 11:589898. [PMID: 33424792 PMCID: PMC7785582 DOI: 10.3389/fmicb.2020.589898] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Researchers have adjusted dietary lipid:protein ratios and n-3 long-chain polyunsaturated fatty acids (LC-PUFA) to optimize the growth performance of Atlantic salmon. However, dietary impacts on the gut microbiome are lacking, especially under varying environmental conditions. To examine this response, post-smolt salmon (184 ± 5 g) were fed diets with lipid:protein ratios considered low (180, 570 g/kg) and high (230, 460 g/kg) along with low and high levels of n-3 LC-PUFA (7 or 14 g/kg) while fish were reared under low and high levels of dissolved oxygen (6.7 or 8.0 mg/L). At day 0, 35 and 116, digesta in the distal intestine were collected and analyzed for viable counts and 16S ribosomal RNA (rRNA) genes (V4 region) using Illumina MiSeq. The reduction in oxygen had negligible effects, except on viable plate counts of total bacteria and an initial effect on beta-diversity. In contrast, the high lipid (HL) diets had an increased alpha-diversity (e.g., Shannon and Chao-1) at day 0 and day 35 whereas high n-3 diets suppressed these indices at day 116. Generally, a reduction in alpha-diversity was observed over time and an interaction between lipid:protein ratio x n-3 was found. Between diets, beta-diversity and phyla abundance were similar as both Proteobacteria (44%) and Firmicutes (21%) dominated. However, at the genus level Aliivibrio, Streptococcus, Weissella, and Lactobacillus, were associated with low lipid (LL) diets while the high lipid diets were associated with less abundant bacteria, e.g., Chromohalobacter. At day 116, the relative abundance of the Tenericutes phylum increased 10-fold (36%). Fish fed the high lipid diet with high n-3 had reduced alpha-diversity, lowest abundance of lactic acid bacteria, and highest abundance of Mycoplasma, which may indicate a less healthy gut microbiome. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis revealed that saturated and unsaturated fatty acid biosynthesis pathways were several folds higher in fish fed the high lipid diet, possibly to compensate for the lack of dietary n-3. In summary, our results show that the viable plate counts, alpha-diversity, beta-diversity, and predictive function of gut bacteria in Atlantic salmon post-smolts are influenced by dietary lipid:protein ratio and n-3 LC-PUFA over several time points with little effect by dissolved oxygen.
Collapse
Affiliation(s)
- David Huyben
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Beeke K Roehe
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Bente Ruyter
- Norwegian Institute of Food, Fisheries, and Aquaculture Research (Nofima), Tromsø, Norway
| | - Brett Glencross
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
44
|
Gallo BD, Farrell JM, Leydet B. Use of next generation sequencing to compare simple habitat and species level differences in the gut microbiota of an invasive and native freshwater fish species. PeerJ 2020; 8:e10237. [PMID: 33384896 PMCID: PMC7751434 DOI: 10.7717/peerj.10237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Research on the gut microbiome of host organisms has rapidly advanced with next generation sequencing (NGS) and high-performance computing capabilities. Nonetheless, gut microbiome research has focused on mammalian organisms in laboratory settings, and investigations pertaining to wild fish gut microbiota remain in their infancy. We applied a procedure (available at https://github.com/bngallo1994) for sampling of the fish gut for use in NGS to describe microbial community structure. Our approach allowed for high bacterial OTU diversity coverage (>99.7%, Good’s Coverage) that led to detection of differences in gut microbiota of an invasive (Round Goby) and native (Yellow Bullhead) fish species and collected from the upper St. Lawrence River, an environment where the gut microbiota of fish had not previously been tested. Additionally, results revealed habitat level differences in gut microbiota using two distance metrics (Unifrac, Bray–Curtis) between nearshore littoral and offshore profundal collections of Round Goby. Species and habitat level differences in intestinal microbiota may be of importance in understanding individual and species variation and its importance in regulating fish health and physiology.
Collapse
Affiliation(s)
- Benjamin D Gallo
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - John M Farrell
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Brian Leydet
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| |
Collapse
|
45
|
Pelusio NF, Rossi B, Parma L, Volpe E, Ciulli S, Piva A, D'Amico F, Scicchitano D, Candela M, Gatta PP, Bonaldo A, Grilli E. Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. FISH & SHELLFISH IMMUNOLOGY 2020; 107:324-335. [PMID: 33096247 DOI: 10.1016/j.fsi.2020.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 05/10/2023]
Abstract
Organic acids (OA) and nature-identical compounds (NIC) such as monoterpenes and aldehydes are well-known growth and health promoters in terrestrial livestock while their application for fish production is recent and their mechanisms of action require further study. Hence, this study tested the increasing dietary level (D0, D250, D500, D1000; 0, 250, 500 and 1000 mg kg feed-1 respectively) of a microencapsulated blend containing citric and sorbic acid, thymol and vanillin over 82 days on rainbow trout to assess the effects on growth, feed utilization, intestine cytokine gene expression and gut microbiota (GM). Furthermore, the effects on intestinal cytokine gene expression and GM were also explored after one week at high water temperature (23 °C). OA and NIC improved specific growth rate (SGR) and feed conversion rate (FCR) during the second half (day 40-82) of the feeding trial, while at the end of the trial protein (PER) and lipid efficiency (LER) increased with increasing dietary level. GM diversity and composition and cytokine gene expression analysis showed no significant differences in fish fed with increasing doses of OA and NIC (82 days) demonstrating the absence of inflammatory activity in the intestinal mucosa. Although there were no statistical differences, GM structure showed a tendency in clustering D0 group separately from the other dietary groups and a trend towards reduction of Streptococcus spp. was observed in the D250 and D1000 groups. After exposure to high water temperature, lower GM diversity and increased gene expression of inflammatory intestinal cytokines were observed for both inclusions (D0 vs. D1000) compared to groups in standard condition. However, the gene up-regulation involved a limited number of cytokines showing the absence of a substantial inflammation process able to compromise the functional activity of the intestine. Despite further study should be conducted to fully clarify this mechanism, cytokines up-regulation seems to be concomitant to the reduction of the GM diversity and, particularly, to the reduction of specific lactic acid bacteria such as Leuconostoc. The application of the microencapsulate blend tested can be a useful strategy to improve growth and feed utilization in rainbow trout under normal temperature conditions. According to the results organic acids and nature-identical compounds did not revert the effects triggered by the increased temperature of water.
Collapse
Affiliation(s)
- Nicole Francesca Pelusio
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Barbara Rossi
- Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy.
| | - Enrico Volpe
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Andrea Piva
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy; Vetagro S.p.A., Via Porro 2, 42124, Reggio Emilia, Italy
| | - Federica D'Amico
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Daniel Scicchitano
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, Bologna, Italy
| |
Collapse
|
46
|
Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, Leung KMY. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol Ecol 2020; 29:5019-5034. [PMID: 33084100 PMCID: PMC7756402 DOI: 10.1111/mec.15699] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms in the gastrointestinal tract of animals play vital roles in food digestion, homeostasis and immune response regulation. Globally, there are 33,700 fish species, representing almost half of all vertebrate diversity and a wide range of physiologies, ecologies and life histories. To investigate gut microbiomes with high coverage, we performed 16S rRNA gene amplicon sequencing with 115 samples of 20 common marine fish species. The fish gut microbiome is a remarkably simple community with low microbial diversity (a maximum of 300 amplicon sequence variants only) and has up to 70% of unknown species in some fish species. The gut microbial community structure was significantly shaped by the combined influence of host-associated factors, including the fish taxon (p < .001, R2 = 0.16, ω2 = 0.04), feeding habit (p < .001, R2 = 0.06, ω2 = 0.02) and trophic level (p < .01, R2 = 0.04, ω2 = 0.01), although the influence was subtle with a small effect size. The core gut microbiomes of different feeding habits were also previously discovered in animal-associated and corresponding habitat samples. Certain energy metabolism pathways were enriched in herbivore/omnivore and zooplanktivore/zoobenthivore fishes, whereas lipid metabolism and glycan metabolism were enriched in zoobenthivore/piscivore fishes. Moreover, substantial taxonomic variability was found between the gut microbiomes of fish and animals, indicated by their low degree of shared microbiota. The data and observations reported herein pave the way for further investigations on the co-evolution of fish gut microbiomes and their hosts, the physiological functions of gut microorganisms and the development of probiotics for improving the nutrition and health of aquaculture fish species.
Collapse
Affiliation(s)
- Qi Huang
- School of Biological SciencesThe University of Hong KongHong KongChina
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Ronia C. Sham
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Yu Deng
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Yanping Mao
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Chunxiao Wang
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Tong Zhang
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Kenneth M. Y. Leung
- School of Biological SciencesThe University of Hong KongHong KongChina
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongHong KongChina
| |
Collapse
|
47
|
Chapagain P, Walker D, Leeds T, Cleveland BM, Salem M. Distinct microbial assemblages associated with genetic selection for high- and low- muscle yield in rainbow trout. BMC Genomics 2020; 21:820. [PMID: 33228584 PMCID: PMC7684950 DOI: 10.1186/s12864-020-07204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Background Fish gut microbial assemblages play a crucial role in the growth rate, metabolism, and immunity of the host. We hypothesized that the gut microbiota of rainbow trout was correlated with breeding program based genetic selection for muscle yield. To test this hypothesis, fecal samples from 19 fish representing an F2 high-muscle genetic line (ARS-FY-H) and 20 fish representing an F1 low-muscle yield genetic line (ARS-FY-L) were chosen for microbiota profiling using the 16S rRNA gene. Significant differences in microbial assemblages between these two genetic lines might represent the effect of host genetic selection in structuring the gut microbiota of the host. Results Tukey’s transformed inverse Simpson indices indicated that high muscle yield genetic line (ARS-FY-H) samples have higher microbial diversity compared to those of the low muscle yield genetic line (ARS-FY-L) (LMM, χ2(1) =14.11, p < 0.05). The fecal samples showed statistically distinct structure in microbial assemblages between the genetic lines (F1,36 = 4.7, p < 0.05, R2 = 11.9%). Functional profiling of bacterial operational taxonomic units predicted characteristic functional capabilities of the microbial communities in the high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic line samples. Conclusion The significant differences of the microbial assemblages between high (ARS-FY-H) and low (ARS-FY-L) muscle yield genetic lines indicate a possible effect of genetic selection on the microbial diversity of the host. The functional composition of taxa demonstrates a correlation between bacteria and improving the muscle accretion in the host, probably, by producing various metabolites and enzymes that might aid in digestion. Further research is required to elucidate the mechanisms involved in shaping the microbial community through host genetic selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07204-7.
Collapse
Affiliation(s)
- Pratima Chapagain
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Donald Walker
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Tim Leeds
- National Center for Cool and Cold-Water Aquaculture, ARS-USDA, Kearneysville, WV, 25430, USA
| | - Beth M Cleveland
- National Center for Cool and Cold-Water Aquaculture, ARS-USDA, Kearneysville, WV, 25430, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742-231, USA.
| |
Collapse
|
48
|
Wu Y, Yin X, Wang Y, Mahmood T, Shahid M, Yin D, Yuan J. Effect of 2-hydroxy-4-(methylthio) butanoic acid and acidifier on the performance, chyme pH, and microbiota of broilers. Anim Sci J 2020; 91:e13409. [PMID: 32524726 DOI: 10.1111/asj.13409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022]
Abstract
This study was aimed to explore the comparative acidifying properties of 2-hydroxy-4-(methylthio) butanoic acid (HMTBA) and a combination of DL-methionine (DLM) and acidifier in male broiler production. A total of 480 1-day-old broiler chicks were randomly divided into four treatments: A (low HMTBA, 0.057% HMTBA); B (low acidifier, 0.05% DLM + 0.057% acidifier); C (high HMTBA, 0.284% HMTBA); and D (high acidifier, 0.25% DLM + 0.284% acidifier). At 21 d, growth performance, chyme pH, digestive enzyme activities, and intestinal microflora were measured. The pH of crop, gizzard, and ileum contents was higher in the HMTBA treatment group than in DLM + acidifier treatment group. Furthermore, acidifier supplementation promoted growth of butyrate-producing bacteria such as Faecalibacterium, whereas high HMTBA (0.284%) inhibited the proliferation of acid-producing bacteria including Roseburia and Collinsella. The chymotrypsin activity was lower in the HMTBA group than in the DLM + acidifier group. In contrast, high-level HMTBA group showed higher average daily gain and average daily feed intake than the DLM + acidifier group. These results suggested that HMTBA work through different pathways with DLM plus acidifier.
Collapse
Affiliation(s)
- Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaonan Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dafei Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
Foysal MJ, Fotedar R, Tay CY, Gupta SK. Biological filters regulate water quality, modulate health status, immune indices and gut microbiota of freshwater crayfish, marron (Cherax cainii, Austin, 2002). CHEMOSPHERE 2020; 247:125821. [PMID: 31972484 DOI: 10.1016/j.chemosphere.2020.125821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Water quality has significant impacts on the health and immune responses of aquaculture species. This study aimed to analyse and compare the effects of two biological filters namely, gravel and, Bio-Ball with a recently developed filter called Water-cleanser on regulation of water quality parameters, health and immune response of marron reared in plastic tanks for 60 days. Results showed that addition of Bio-Ball significantly (P < 0.05) reduced the concentration of ammonia, nitrate and phosphate while Water-cleanser showed the ability to reduce ammonia and nitrate from water in aquaculture tanks. Although the biological filters had no significant effect on marron growth but inclusion of Bio-Ball and Water-cleanser positively influenced the biochemical composition of tail muscle and some haemolymph parameters of marron. The next generation sequence data demonstrated higher bacterial diversity in the hindgut of marron with Water-cleanser, followed by Bio-Ball and gravel, respectively. In addition, the predicted metabolic pathways revealed a significantly higher bacterial activity and gene function correlated to metabolism and biosynthesis of protein, energy and secondary metabolites in Bio-Ball and Water-cleanser. Bio-Ball and Water-cleanser were also associated with up-regulation of innate immune responsive genes of marron gut. Overall, Bio-Ball and Water-cleanser proved to have higher water remediation and immune response modulation capabilities, and therefore could be used as preferred filters for growth of beneficial bacteria in crayfish culture.
Collapse
Affiliation(s)
- Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chin-Yen Tay
- Helicobacter Research Laboratory, Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sanjay K Gupta
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| |
Collapse
|
50
|
Jin L, Wu D, Li C, Zhang A, Xiong Y, Wei R, Zhang G, Yang S, Deng W, Li T, Li B, Pan X, Zhang Z, Huang Y, Zhang H, He Y, Zou L. Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis 2020. [DOI: 10.1007/s13199-020-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|