1
|
Sia T, Bacchus L, Liu S, Leung J. Subcutaneous immunotherapy in a patient taking ofatumumab for multiple sclerosis and upadacitinib for atopic dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100411. [PMID: 39974306 PMCID: PMC11836496 DOI: 10.1016/j.jacig.2025.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 02/21/2025]
Abstract
Allergen-specific immunotherapy has not been well-studied in the setting of increasingly common immune system-targeting medications. Subcutaneous immunotherapy may not be contraindicated in patients taking anti-CD20 mAbs antibodies and/or Janus kinase inhibitors.
Collapse
Affiliation(s)
- Twan Sia
- Boston Specialists, Boston, Mass
- Stanford University School of Medicine, Stanford, Calif
| | | | | | | |
Collapse
|
2
|
Heine S, Alessandrini F, Grosch J, Graß C, Heldner A, Schnautz B, Grosch J, Buters J, Slusarenko BO, Krappmann D, Fallarino F, Ohnmacht C, Schmidt-Weber CB, Blank S. Activation of the aryl hydrocarbon receptor improves allergen-specific immunotherapy of murine allergic airway inflammation: a novel adjuvant option? Front Immunol 2024; 15:1397072. [PMID: 38915403 PMCID: PMC11194380 DOI: 10.3389/fimmu.2024.1397072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Background Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johannes Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carina Graß
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Alexander Heldner
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Johanna Grosch
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Jeroen Buters
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Benjamin O. Slusarenko
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutic Center, Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Health & Helmholtz Munich, German Research Center for Environmental Health, Member of the German Center of Lung Research (DZL), Member of the Immunology and Inflammation Initiative of the Helmholtz Association, Munich, Germany
| |
Collapse
|
3
|
Pfaar O, Portnoy J, Nolte H, Chaker AM, Luna-Pech JA, Patterson A, Pandya A, Larenas-Linnemann D. Future Directions of Allergen Immunotherapy for Allergic Rhinitis: Experts' Perspective. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:32-44. [PMID: 37716529 DOI: 10.1016/j.jaip.2023.08.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Allergen immunotherapy (AIT) is broadly used all over the world as the only available disease-modifying treatment option. The aim of this experts' perspective is to address 7 important unmet needs for the further direction of AIT and to provide the readership with the authors' positions on these topics. An international group of experts in the field of AIT have formulated 7 important aspects for the future position of AIT, performed a current literature review, and proposed a consented position on these topics. The aspects discussed and consented by the authors include: (1) alternative routes of allergen application in AIT, (2) potential of recombinant vaccines, (3) the role of allergy diagnosis based on component-resolved diagnosis for AIT composition, (4) the impact of COVID-19 vaccination for further innovations in AIT, (5) potential of combining biologics to AIT, (6) future innovations in high-risk children/adolescents, and (7) the future regulatory position on AIT. Important unmet needs and topics for AIT have been addressed in this expert review. The authors' views and personal position on these 7 aspects have also been elaborated.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Jay Portnoy
- Division of Allergy, Immunology, Pulmonary and Sleep Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Mo
| | | | - Adam M Chaker
- TUM School of Medicine, Department of Otorhinolaryngology and Center of Allergy and Environment, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jorge A Luna-Pech
- Departamento de Disciplinas Filosófico, Metodológico e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Amber Patterson
- Department of Pediatrics, University of Toledo College of Medicine, Toledo, Ohio; Auni Allergy, Findlay, Ohio
| | - Aarti Pandya
- Division of Allergy, Immunology, Pulmonary and Sleep Medicine, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, Mo
| | | |
Collapse
|
4
|
Konstantinou GN, Petrodimopoulou M. Aeroallergen-specific Immunotherapy and Biologics Co-administration: Cost-benefit Re-considerations are Urgently Needed. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2023; 17:85-87. [PMID: 36959139 DOI: 10.2174/2772270817666230320153734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/25/2023]
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Maria Petrodimopoulou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| |
Collapse
|
5
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
6
|
Heldner A, Alessandrini F, Russkamp D, Heine S, Schnautz B, Chaker A, Mwange J, Carreno Velazquez TL, Heath MD, Skinner MA, Kramer MF, Zissler UM, Schmidt‐Weber CB, Blank S. Immunological effects of adjuvanted low-dose allergoid allergen-specific immunotherapy in experimental murine house dust mite allergy. Allergy 2022; 77:907-919. [PMID: 34287971 DOI: 10.1111/all.15012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.
Collapse
Affiliation(s)
- Alexander Heldner
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Sonja Heine
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Benjamin Schnautz
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Adam Chaker
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
- Department of Otolaryngology, Klinikum rechts der Isar Faculty of Medicine Technical University of Munich Munich Germany
| | | | | | | | | | - Matthias F. Kramer
- Allergy Therapeutic PLC. Worthing UK
- Bencard Allergie GmbH Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich, Faculty of Medicine and Helmholtz Center Munich German Research Center for Environmental Health Member of the German Center of Lung Research (DZL) Member of the Immunology and Inflammation Initiative of the Helmholtz AssociationMunich Germany
| |
Collapse
|
7
|
Georas SN, Wright RJ, Ivanova A, Israel E, LaVange LM, Akuthota P, Carr TF, Denlinger LC, Fajt ML, Kumar R, O'Neal WK, Phipatanakul W, Szefler SJ, Aronica MA, Bacharier LB, Burbank AJ, Castro M, Crotty Alexander L, Bamdad J, Cardet JC, Comhair SAA, Covar RA, DiMango EA, Erwin K, Erzurum SC, Fahy JV, Gaffin JM, Gaston B, Gerald LB, Hoffman EA, Holguin F, Jackson DJ, James J, Jarjour NN, Kenyon NJ, Khatri S, Kirwan JP, Kraft M, Krishnan JA, Liu AH, Liu MC, Marquis MA, Martinez F, Mey J, Moore WC, Moy JN, Ortega VE, Peden DB, Pennington E, Peters MC, Ross K, Sanchez M, Smith LJ, Sorkness RL, Wechsler ME, Wenzel SE, White SR, Zein J, Zeki AA, Noel P. The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. J Allergy Clin Immunol 2022; 149:488-516.e9. [PMID: 34848210 PMCID: PMC8821377 DOI: 10.1016/j.jaci.2021.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Anastasia Ivanova
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Lisa M LaVange
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Praveen Akuthota
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Merritt L Fajt
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | | | - Wanda K O'Neal
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Stanley J Szefler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark A Aronica
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Allison J Burbank
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Laura Crotty Alexander
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Julie Bamdad
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| | | | | | | | | | - Kim Erwin
- Institute for Healthcare Delivery Design, University of Illinois at Chicago, Chicago, Ill
| | | | - John V Fahy
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University, Indianapolis, Ind
| | - Lynn B Gerald
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - John James
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Sumita Khatri
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Andrew H Liu
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark C Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, the Johns Hopkins University, Baltimore, Md
| | - M Alison Marquis
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Fernando Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jacob Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James N Moy
- Rush University Medical Center, Chicago, Ill
| | - Victor E Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Michael C Peters
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | - Kristie Ross
- The Cleveland Clinic, Cleveland, Ohio; UH Rainbow Babies and Children's Hospitals, Cleveland, Ohio
| | - Maria Sanchez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael E Wechsler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| |
Collapse
|
8
|
Georas SN, Donohue P, Connolly M, Wechsler ME. JAK inhibitors for asthma. J Allergy Clin Immunol 2021; 148:953-963. [PMID: 34625142 DOI: 10.1016/j.jaci.2021.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Asthma is an inflammatory disease of the airways characterized by intermittent episodes of wheezing, chest tightness, and cough. Many of the inflammatory pathways implicated in asthma involve cytokines and growth factors that activate Janus kinases (JAKs). The discovery of the JAK/signal transducer and activator of transcription (STAT) signaling pathway was a major breakthrough that revolutionized our understanding of cell growth and differentiation. JAK inhibitors are under active investigation for immune and inflammatory diseases, and they have demonstrated clinical efficacy in diseases such as rheumatoid arthritis and atopic dermatitis. Substantial preclinical data support the idea that inhibiting JAKs will ameliorate airway inflammation and hyperreactivity in asthma. Here, we review the rationale for use of JAK inhibitors in different asthma endotypes as well as the preclinical and early clinical evidence supporting such use. We review preclinical data from the use of systemic and inhaled JAK inhibitors in animal models of asthma and safety data based on the use of JAK inhibitors in other diseases. We conclude that JAK inhibitors have the potential to usher in a new era of anti-inflammatory treatment for asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Margaret Connolly
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
9
|
Allergen immunotherapy and biologics in respiratory allergy: friends or foes? Curr Opin Allergy Clin Immunol 2020; 21:16-23. [PMID: 33369567 DOI: 10.1097/aci.0000000000000707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Allergen-specific immunotherapy has established as an indispensable disease-modifying treatment in allergy practice but its safety and efficacy might be furtherly improved by combining it with other drugs or therapeutic intervention that co-modulate immune type 2 immune networks. RECENT FINDINGS In the past two decades, clinical research focused on AIT and omalizumab co-treatment to improve both safety and long-term efficacy of allergic disease treatment. Recently, combination of AIT with other biologicals targeting different mediators of type 2 inflammation has been set up with interesting preliminary results. Moreover, AIT current contraindication might be overcome by contemporarily controlling underlying type 2 inflammation in severe atopic patients. SUMMARY AIT--biological combination treatment can realize a complex multitargeted treatment strategy allowing for consistently improving disease control and sparing steroid administration.
Collapse
|
10
|
Joo YH, Cho HJ, Jeon YJ, Kim JH, Jung MH, Jeon SY, Suh YS, Park JJ, Kim SW. Therapeutic Effects of Intranasal Tofacitinib on Chronic Rhinosinusitis with Nasal Polyps in Mice. Laryngoscope 2020; 131:E1400-E1407. [PMID: 32990335 DOI: 10.1002/lary.29129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway play a key role in immune modulation, especially in the polarization of T helper cells. JAK inhibitors reduce inflammation by inhibiting the phosphorylation of STAT. We investigated whether a JAK inhibitor, tofacitinib, can reduce inflammation in a mouse model of chronic rhinosinusitis with nasal polyps (CRSwNP). METHODS An eosinophilic CRSwNP model was induced using 4-week-old BALB/c mice. The therapeutic effects of topical tofacitinib were compared with the effects of triamcinolone acetonide (TAC). Polyp formation and eosinophilic infiltration were assessed by histology. Levels of phosphorylated STAT (pSTAT), eosinophil cationic protein, and eotaxin were measured by immunohistochemistry. Gene expression levels of GATA-3 was measured using quantitative PCR. The production of cytokines in sinonasal tissues, including interleukin IL-4, IL-5, IL-12, and interferon-γ, were measured using enzyme-linked immunosorbent assays (ELISA). RESULTS Topical tofacitinib administration significantly reduced the number of polyp-like lesions and the degree of eosinophilic infiltration, with an efficacy comparable with that of systemic TAC administration. Similarly, the levels of pSTAT6, eosinophil cationic protein, and eotaxin decreased with tofacitinib treatment. Tofacitinib decreased the gene expression level of GATA-3. Lastly, tofacitinib significantly decreased IL-4 and IL-5 production to a similar extent as that by systemic or topical TAC administration. Tofacitinib, but not TAC, significantly increased the production of interferon-γ. CONCLUSION Topical tofacitinib administration may be an effective treatment for eosinophilic CRSwNP by inhibiting phosphorylation of STATs. LEVEL OF EVIDENCE N/A. Laryngoscope, 131:E1400-E1407, 2021.
Collapse
Affiliation(s)
- Yeon-Hee Joo
- Department of Otorhinolaryngology, Gyeongsang National University Changwon Hospital and Gyeongsang National University College of Medicine, Changwon, Republic of Korea
| | - Hyun-Jin Cho
- Department of Otorhinolaryngology, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Yung Jin Jeon
- Department of Otorhinolaryngology, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin Hyun Kim
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myeong Hee Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | | | - Young Sun Suh
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Changwon Hospital and Gyeongsang National University College of Medicine, Changwon, Republic of Korea
| | - Jung Je Park
- Department of Otorhinolaryngology, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Wook Kim
- Department of Otorhinolaryngology, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju, Republic of Korea.,Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
Zissler UM, Schmidt-Weber CB. Predicting Success of Allergen-Specific Immunotherapy. Front Immunol 2020; 11:1826. [PMID: 32983092 PMCID: PMC7477353 DOI: 10.3389/fimmu.2020.01826] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 01/11/2023] Open
Abstract
The immune response to antigens is a key aspect of immunology, as it provides opportunities for therapeutic intervention. However, the induction of immunological tolerance is an evolving area that is still not sufficiently understood. Allergen immunotherapy (AIT) is a disease-modulating therapy available for immunoglobulin E (IgE)-mediated airway diseases such as allergic rhinitis or allergic asthma. This disease-modifying effect is not only antigen driven but also antigen specific. The specificity and also the long-lasting, often life-long symptom reduction make the therapy attractive for patients. Additionally, the chance to prevent the onset of asthma by treating allergic rhinitis with AIT is important. The mechanism and, in consequence, therapy guiding biomarker are still in its infancy. Recent studies demonstrated that the interaction of T, B, dendritic, and epithelial cells and macrophages are individually contributing to clinical tolerance and therefore underline the need for a system to monitor the progress and success of AIT. As clinical improvement is often accompanied by decreases in numbers of effector cells in the tissue, analyses of cellular responses and cytokine pattern provide a good insight into the mechanisms of AIT. The suppression of type-2 immunity is accompanied by decreased levels of type-2 mediators such as epithelial CCL-26 and interleukin (IL)-4, IL-13 produced by T cells that are constituting the immune memory and are increasingly controlled by regulatory T and B cells following AIT. Immune tolerance is also associated with increased production of type-1 mediators like interferon-gamma, tissue-homeostating factors like indoleamine 2,3-dioxygenase (IDO) expressed by macrophages and dendritic cells. Although these individual genes were convincingly demonstrated to play a role immune tolerance, they do not predict therapy outcomes of AIT on an individual level. Therefore, combinations or ratios of gene expression levels are a promising way to achieve predictive value and definition of helpful biomarker.
Collapse
Affiliation(s)
- Ulrich M Zissler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), and Member of the Helmholtz I&I Initiative, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), and Member of the Helmholtz I&I Initiative, Munich, Germany
| |
Collapse
|
12
|
Tofacitinib suppresses mast cell degranulation and attenuates experimental allergic conjunctivitis. Int Immunopharmacol 2020; 86:106737. [PMID: 32615452 DOI: 10.1016/j.intimp.2020.106737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Allergic conjunctivitis (AC), a common eye inflammation that affects patients' health and quality of life, is still a therapeutic challenge for ophthalmologists. Tofacitinib, a new Janus kinase (JAK) inhibitor, has been successfully used in the treatment of several disorders. Nonetheless, its effect in AC and the potential anti-allergic mechanisms are still unclear. The objective of the current study was to explore the roles of tofacitinib in preventing AC and elucidate the potential underlying mechanisms. METHODS Tofacitinib was used topically in BALB/c mice with experimental allergic conjunctivitis (EAC). Ocular allergic symptoms and biological modifications were examined. To assess the anti-allergic mechanisms of tofacitinib, RBL-2H3 cells and HUVECs were cultured in vitro. The inhibitory effects and mechanisms of tofacitinib were studied and measured by real-time quantitative PCR, ELISA, western blot analysis, and flow cytometry. RESULTS Topical administration of tofacitinib reduced the clinical symptoms of OVA-induced EAC, with a substantial mitigation in inflammatory cell infiltration, histamine release, and TNF-α mRNA as well as IL-4 mRNA expression. In vitro, tofacitinib repressed the degranulation and cytokine production in RBL-2H3 cells and reduced histamine-induced vascular hyperpermeability. The underlying mechanism might involve the downregulation of phosphorylation of JAK3/STATs signaling molecules in RBL-2H3 cells and HUVECs. CONCLUSIONS Our findings provide evidence that tofacitinib prevented EAC by targeting the JAK3/STATs pathway. We recommend the use of tofacitinib as an innovative approach for the treatment of AC.
Collapse
|
13
|
de Wolf ACMT, Herberts CA, Hoefnagel MHN. Dawn of Monitoring Regulatory T Cells in (Pre-)clinical Studies: Their Relevance Is Slowly Recognised. Front Med (Lausanne) 2020; 7:91. [PMID: 32300597 PMCID: PMC7142310 DOI: 10.3389/fmed.2020.00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products. However, the extent of immune monitoring performed in studies for marketing authorisation and the degree of correspondence with data available in the public domain is not known. We evaluated the presence of T cell immunomonitoring in 46 registration dossiers of monoclonal antibodies indicated for immune-related disorders and published scientific papers. We found that the depth of Treg analysis in registration dossiers was rather small. Nevertheless, data on treatment-related Treg effects are available in public academia-driven studies (post-registration) and suggest that Tregs may act as a biomarker for clinical responses. However, public data are fragmented and obtained with heterogeneity of experimental approaches from a diversity of species and tissues. To reveal the potential added value of T cell (and particular Treg) evaluation in (pre-)clinical studies, more cell-specific data should be acquired, at least for medicinal products with an immunomodulatory mechanism. Therefore, extensive analysis of T cell subset contribution to clinical responses and the relevance of treatment-induced changes in their levels is needed. Preferably, industry and academia should work together to obtain these data in a standardised manner and to enrich our knowledge about T cell activity in disease pathogenesis and therapies. This will ultimately elucidate the necessity of T cell subset monitoring in the therapeutic benefit-risk assessment.
Collapse
|
14
|
Gutermuth J, Schmidt‐Weber CB, Blank S. Supporting allergen-specific immunotherapy by inhibition of Janus kinases. Allergy 2019; 74:1814-1816. [PMID: 30953592 DOI: 10.1111/all.13808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Jan Gutermuth
- Department of Dermatology, Universitair Ziekenhuis Brussel Vrije Universiteit Brussel Brussels Belgium
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
15
|
Russkamp D, Aguilar‐Pimentel A, Alessandrini F, Gailus‐Durner V, Fuchs H, Ohnmacht C, Chaker A, Angelis MH, Ollert M, Schmidt‐Weber CB, Blank S. IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma. Allergy 2019; 74:1549-1560. [PMID: 30829405 DOI: 10.1111/all.13759] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only causal treatment for allergy. However, success rates vary depending on the type of allergy and disease background of the patient. Hence, strategies targeting an increased therapeutic efficacy are urgently needed. Here, the effects of blockade of IL-4 and IL-13 signaling on different phases of AIT were addressed. METHODS The impact of the recombinantly produced IL-4 and IL-13 antagonist IL-4 mutein (IL-4M) on allergic sensitization and AIT outcome in experimental allergic asthma were analyzed in a murine model. The effects of IL-4M administration were assessed prior/during sensitization, immediately after AIT under allergen challenge, and two weeks post-treatment. RESULTS Intervention with IL-4M prior/during sensitization led to strong induction of IgG1, IgG2a, IgG2b, and IgG3, decrease of specific and total IgE, as well as of IL-5 in serum. Similar effects on the serum immunoglobulin levels were observed immediately after IL4M-supplemented AIT during allergen challenge. Additionally, IL4M markedly suppressed type-2 cytokine secretion of splenocytes beyond the effect of AIT alone. These effects were equaled to those of AIT alone two weeks post-treatment. Intriguingly, here, IL-4M induced a sustained decrease of Th2-biased Tregs (ST2+ FOXP3+ GATA3intermediate ). CONCLUSIONS IL-4 and IL-13 blockade during experimental AIT demonstrates beneficial effects on immunological key parameters such as immunoglobulin and cytokine secretion immediately after AIT. Although two weeks later these effects were dropped to those of AIT alone, the number of potentially disease-triggering Th2-biased Tregs was further significantly decreased by IL-4M treatment. Hence, IL-4/IL13-targeting therapies prime the immune memory in therapy success-favoring manner.
Collapse
Affiliation(s)
- D. Russkamp
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - A. Aguilar‐Pimentel
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - F. Alessandrini
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - V. Gailus‐Durner
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - H. Fuchs
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
| | - C. Ohnmacht
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - A. Chaker
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
- Department of Otolaryngology Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - M. H. Angelis
- German Mouse Clinic Institute of Experimental Genetics Helmholtz Center Munich Neuherberg Germany
- Chair of Experimental Genetics School of Life Science Weihenstephan Technical University of Munich Freising Germany
- German Center for Diabetes Research (DZD) Neuherberg Germany
| | - M. Ollert
- Luxembourg Institute of Health (LIH) Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Center for AnaphylaxisUniversity of Southern Denmark Odense Denmark
| | - C. B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| | - S. Blank
- Center of Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center Munich Member of the German Center of Lung Research (DZL) Munich Germany
| |
Collapse
|
16
|
Cheng Y, Ma XL, Wei YQ, Wei XW. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2019; 1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022]
|
17
|
Chaker AM. [Biologics in Rhinology - Forthcoming Personalized Concepts: the Future Starts Today]. Laryngorhinootologie 2018; 97:S142-S184. [PMID: 29905356 PMCID: PMC6541111 DOI: 10.1055/s-0043-123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinunasale Erkrankungen zählen mit zu den häufigsten chronischen Erkrankungen und führen zu einer erheblichen Störung der Lebensqualität, ein komorbides Asthma ist häufig. Trotz leitliniengerechter Therapie ist anzunehmen, dass mind. 20% der Patienten ihre Erkrankungssymptome nicht adäquat kontrollieren können. Neben den etablierten chirurgischen und konservativen Therapieoptionen finden sich nun vielversprechende Therapieansätze, die bspw. mittels therapeutischer Antikörper mechanistisch gezielt in die Pathophysiologie der Erkrankungen eingreifen können. Die Auswahl der geeigneten Patienten durch geeignete Biomarker und die richtige Therapie zum richtigen Stadium der Erkrankung anbieten zu können, ist das Ziel stratifizierter Medizin und eine wichtige Perspektive für die HNO.Chronic diseases of the nose and the paranasal sinuses are most common, frequently associated with bronchial asthma, and result in substantial reduction of quality of life. Despite optimal treatment according to guidelines, approx. 20 % of the patients will report inadequate control of symptoms. Apart from well established surgical and conservative approaches in therapy new therapeutic antibodies are available that aim specifically pathophysiological targets. The optimal allocation of effective therapy for patients using appropriate biomarkers at the most suitable timepoint is the hallmark of stratified medicine and an important perspective in ENT.
Collapse
Affiliation(s)
- Adam M. Chaker
- Klinik für Hals-Nasen-Ohrenheilkunde und Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
18
|
JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease. Ann Allergy Asthma Immunol 2018; 120:367-375. [PMID: 29454096 DOI: 10.1016/j.anai.2018.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To provide an overview of janus kinase (JAK), chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), and phosphodiesterase 4 (PDE4) inhibitors in allergic disorders. DATA SOURCES PubMed literature review. STUDY SELECTIONS Articles included in this review discuss the emerging mechanism of action of small molecule inhibitors and their use in the treatment of atopic dermatitis (AD), asthma, and allergic rhinitis (AR). RESULTS Allergic diseases represent a spectrum of diseases, including AD, asthma, and AR. For decades, these diseases have been primarily characterized by increased TH2 signaling and downstream inflammation. In recent years, additional research has identified disease phenotypes and subsets of patients with non-Th2 mediated inflammation. The increasing heterogeneity of disease has prompted investigators to move away from wide-ranging treatment approaches with immunosuppressive agents, such as corticosteroids, to consider more targeted immunomodulatory approaches focused on specific pathways. In the past decade, inhibitors that target JAK signaling, PDE4, and CRTH2 have been explored for their potential activity in models of allergic disease and therapeutic benefit in clinical trials. Interestingly, although JAK inhibitors provide an opportunity to interfere with cytokine signaling and could be beneficial in a broad range of allergic diseases, current clinical trials are focused on the treatment of AD. Conversely, both PDE4 and CRTH2 inhibitors have been evaluated in a spectrum of allergic diseases. This review summarizes the varying degrees of success that these small molecules have demonstrated across allergic diseases. CONCLUSION Emerging therapies currently in development may provide more consistent benefit to patients with allergic diseases by specifically targeting inflammatory pathways important for disease pathogenesis.
Collapse
|
19
|
Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klysner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Zieglmayer P, Zuberbier T, Wahn U. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy 2018; 73 Suppl 104:5-23. [PMID: 29171712 DOI: 10.1111/all.13355] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
The Future of the Allergists and Specific Immunotherapy (FASIT) workshop provides a regular platform for global experts from academia, allergy clinics, regulatory authorities and industry to review developments in the field of allergen immunotherapy (AIT). The most recent meeting, held in February 2017, had two main themes: advances in AIT and hot topics in AIT from the regulatory point of view. The first theme covered opportunities for personalized AIT, advances in adjuvants and delivery systems, and the development of new molecules and future vaccines for AIT. Key topics in the second part of the meeting were the effects of the enactment of European Directive 2001/83 on the availability of allergens for therapy and diagnosis across the EU, the challenges of conducting Phase 3 studies in the field, the future role of allergen exposure chambers in AIT studies and specific considerations in performing AIT studies in the paediatric population. Finally, the group highlighted the forthcoming EAACI guidelines and their particular importance for the standardization of practice in the treatment of allergies. This review presents a comprehensive insight into those panel discussions and highlights unmet needs and also possible solutions to them for the future.
Collapse
Affiliation(s)
- O. Pfaar
- Department of Otorhinolaryngology; Head and Neck Surgery; Universitätsmedizin Mannheim; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Bonini
- Italian National Research Council; Institute of Translational Pharmacology; Rome, and University of Campania ‘Luigi Vanvitelli’; Naples Italy
- Expert-on Secondment at the European Medicines Agency; London UK
| | - V. Cardona
- Hospital Vall D'Hebron, S. Allergologia, S. Medicina Interna; Barcelona Spain
| | - P. Demoly
- Departement de Pneumologie et Addictologie; Hopital Arnaud de Villeneuve; University Hospital of Montpellier; Montpellier France
| | - T. Jakob
- Department of Dermatology and Allergology; University Medical Center Giessen (UKGM); Justus-Liebig-University Giessen; Giessen Germany
- Allergy Research Group; Department of Dermatology; Medical Center - University Freiburg; Freiburg Germany
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- All-Med Medical Research Institute; Wroclaw Poland
| | - J. Kleine-Tebbe
- Allergy & Asthma Center Westend; Outpatient Clinic and Clinical Research Center; Berlin Germany
| | - L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Klysner
- Expres ion Biotechnologies Aps; Hørsholm Denmark
| | - M. V. Kopp
- Department of Pediatric Allergy and Pulmonology; University of Luebeck; Luebeck Germany
- Airway Research Center North (ARCN); Member of the Deutsches Zentrum für Lungenforschung (DZL); Luebeck Germany
| | - P. Kuna
- Department of Internal Medicine, Asthma and Allergy; Barlicki University Hospital; Medical University of Lodz; Lodz Poland
| | - M. Larché
- Divisions of Clinical Immunology & Allergy, and Respirology; Department of Medicine and Firestone Institute for Respiratory Health; McMaster University; Hamilton ON Canada
| | - A. Muraro
- Food Allergy Referral Centre; Padua University Hospital; Padua Italy
| | - C. B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Member of the German Center for Lung Research (DZL); Technical University of Munich and Helmholtz Center Munich; Munich Germany
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology; Inflammation Repair and Development; National Heart and Lung Institute; Imperial College; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | | | - C. Somoza
- Biological Products and Biotechnology Division; Medicines for Human Use Department; Agencia Española de Medicamentos y Productos Sanitarios (AEMPS); Madrid Spain
| | - E. Valovirta
- Department of Lung Disease and Clinical Allergology; University of Turku and Terveystalo Allergy Clinic; Turku Finland
| | - P. Zieglmayer
- Allergy Center Vienna West; Vienna Challenge Chamber; Vienna Austria
| | - T. Zuberbier
- Comprehensive Allergy-Centre-Charité; Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
- Member of Global Allergy and Asthma European Network (GA LEN); GA LEN coordinating Office; Charité - Universitätsmedizin Berlin; Germany
| | - U. Wahn
- Department for Pediatric Pneumology and Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | | |
Collapse
|