1
|
Locke SR, Vinayamohan PG, Diaz-Campos D, Habing G. Biofilm-forming Abilities of Salmonella Serovars Isolated From Clinically Ill Livestock at 48 and 168 h. J Food Prot 2025; 88:100466. [PMID: 39954737 DOI: 10.1016/j.jfp.2025.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Little is known regarding the biofilm-forming capabilities of a somewhat distinct population of Salmonellae present on-farm and responsible for illnesses in livestock and humans. Evaluation of cleaning and disinfection in preharvest environments has found little success in eradicating Salmonella biofilms to date. Disrupting the environmental survival of Salmonella via biofilm removal will be critical to reducing carriage in livestock reservoirs and the risk of foodborne illness. Therefore, the objective of this study was to characterize the biofilm-forming abilities of Salmonellae relevant to livestock and human health. Eighty-one isolates from 8 serovars (S. Typhimurium, Heidelberg, Montevideo, Agona, Newport, Dublin, 4,[5],12:i:-, Enteritidis) were sourced from poultry and clinically ill cattle, swine, and equine. We hypothesized that biofilm production rate would vary significantly between serovars, and biofilm density would increase from 48 to 168 hrs. Isolates were grown in 24-well microplates in tryptone soy broth at ambient temperature, with media refreshed every 48 h. Biofilm density was quantified using crystal violet assays. Strong biofilm formers comprised 84% (68/81) of isolates tested, while 5.9% (4/81) were considered weak. Biofilm density was significantly greater at 168 h versus 48 h for all serovars except Dublin. Additionally, biofilm growth rate varied by serovar. Differences in biofilm-associated genes were evaluated, and only the detection of csrB was significantly associated with the categorization of biofilm producers. Results suggest inconsistent cleaning likely allows for the establishment of biofilms in on-farm environments. Further, some serovars may pose a greater risk for rapid biofilm establishment. This study provides data necessary to inform the development of evidence-based cleaning and disinfection protocols effective against the most prolific biofilm-forming strains of virulent Salmonella.
Collapse
Affiliation(s)
- Samantha R Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Poonam G Vinayamohan
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Dubraska Diaz-Campos
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Gregory Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
2
|
Chao NV, Dung HT, Thanh Tam VT, Hang PT, Hien BT. The role of veterinary drug use in driving antimicrobial resistance of Staphylococcus aureus isolates in smallholder swine farms in Central Vietnam. Open Vet J 2025; 15:847-862. [PMID: 40201839 PMCID: PMC11974315 DOI: 10.5455/ovj.2025.v15.i2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Background Staphylococcus aureus is a well-known opportunistic pathogen widely present in humans and food- producing animals. The emergence of antimicrobial resistance (AMR) in S. aureus represents a major challenge to animal and public health. Poor biosecurity practices and the misuse and overuse of veterinary drugs in farming settings may apply environmental pressure, which favors the selection of AMR bacteria. Aim This study aimed to describe veterinary drug usage (VDU), prevalence of AMR phenotypes, and associations among S. aureus isolates from swine of smallholder farms in Central Vietnam. Methods A cross-sectional survey was conducted to collect VDU data from smallholder swine farms. A total of 155 nasal swab samples were collected and used for isolating S. aureus. The AMR of S. aureus strains was tested using the disk diffusion method. Results Approximately 56.8%, 71.6%, 36.1%, and 69.7% of farmers used vaccines, disinfectants, and antimicrobials (AMs) for prevention and treatment, respectively. Of the 155 nasal swab samples, 99 (63.9%) were positive for S. aureus. Resistance was most commonly observed against oxacillin (59.6%), cefotaxime (59.6%), and linezolid (53.5%). Positive associations were found between the use of vaccines and resistance to oxytetracycline (OR = 3.28, p = 0.01) and povidone usage and resistance to meropenem (OR = 9.35, p = 0.03). Almost all positive associations were observed between the use of AMs (for both prevention and treatment) and AMR in S. aureus. Negative associations were found between resistance to oxytetracycline and the use of gentamicin, linezolid, streptomycin, and norfloxacin. Conclusion The present study highlights information on VDU, prevalence, AMR, and their associations with S. aureus isolated from a smallholder swine farm in Central Vietnam. These findings are expected to aid in developing countermeasures against AMR against swine production in Vietnam.
Collapse
Affiliation(s)
- Nguyen Van Chao
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue city, Vietnam
| | - Ho Thi Dung
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue city, Vietnam
| | - Vu Thi Thanh Tam
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue, Vietnam
| | - Phan Thi Hang
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue city, Vietnam
| | - Bui Thi Hien
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue city, Vietnam
| |
Collapse
|
3
|
Nicolaisen T, Vornholz H, Köchling M, Lillie-Jaschniski K, Brinkmann D, Vonnahme J, Hennig-Pauka I. Longitudinal study on the influence of sow and piglet vaccination on seroprevalence of Salmonella Typhimurium in rearing pigs and at slaughter in a farrow-to-finish production system. Porcine Health Manag 2024; 10:58. [PMID: 39658785 PMCID: PMC11629494 DOI: 10.1186/s40813-024-00409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Salmonella is widespread in pig husbandry and pork is an important source for human salmonellosis. Surveillance programmes are conducted in many European countries and various management measures are implemented on farm level to control Salmonella. Piglet or maternal vaccination can reduce Salmonella shedding and lower the likelihood of piglet infection. Proper management of risk factors can help to maintain low infection pressure. The aim of the study was to evaluate the effect of sow vaccination and piglet vaccination on Salmonella seroprevalence at slaughter. RESULTS Different vaccination strategies were evaluated for their effect on seroprevalences in nursery (serum) and slaughter pigs (meat juice) in a farrow-to-finish production chain tested positive for Salmonella Typhimurium (ST). Antibody levels of four piglet groups from one rearing farm and of pigs from four downstream fattening farms were measured by Salmonella LPS-ELISA in a longitudinal study (UNVAC: no vaccination against Salmonella; PIGVAC: piglets vaccinated twice with an attenuated Salmonella Cholerasuis (SC) live vaccine; SOWVAC-1: piglets born from sows vaccinated twice before farrowing with attenuated ST live vaccine; SOWVAC-2: Piglets from vaccinated sows (ST) which had been vaccinated twice already as a piglet (ST). Results revealed significantly lower ELISA optical density (OD) values (p < 0.05) and fewer serological positive piglets (OD > 40) from groups PIGVAC, SOWVAC-1 and SOWVAC-2 compared to group UNVAC at the end of rearing period. Summarizing results from pigs of all fattening farms revealed that pigs from group PIGVAC had significantly lower ELISA OD values in meat juice samples than all other groups (p < 0.05). CONCLUSION Piglet (SC) and sow vaccination (ST) led to significant reduction in detectable antibodies in a ST positive production chain and thus to reduced likelihood of infection during rearing. The results reflect that vaccination with a live attenuated SC vaccine resulted in cross-protection against ST without producing antibodies detectable by standard Salmonella LPS-ELISA. Summarizing all fattening farms, piglet vaccination reduced seroprevalence at the time of slaughter. In conclusion, sow and piglet vaccination with attenuated live vaccines against Salmonella are good instruments to reduce the infection pressure in the rearing period but need additional management measures to show effect on seroprevalence at slaughter.
Collapse
Affiliation(s)
- Thies Nicolaisen
- Field Station for Epidemiology Bakum, University of Veterinary Medicine Hannover, Foundation, Büscheler Straße 9, 49456, Bakum, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, Building 116, 30173, Hannover, Germany
| | - Hubertus Vornholz
- Viehvermarktung Münsterland eG, Bechtrup 22, 59348, Lüdinghausen, Germany
| | - Monika Köchling
- CEVA Tiergesundheit GmbH, Kanzlerstraße 4, 40472, Düsseldorf, Germany
| | | | - Detert Brinkmann
- Fleischhof Rasting GmbH, Eisbachstraße/Am Pannacker, 53340, Meckenheim, Germany
| | - Jörg Vonnahme
- FGS Tierarztpraxis GmbH & Co. KG, Bruchberg 24, 33142, Büren, Germany
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology Bakum, University of Veterinary Medicine Hannover, Foundation, Büscheler Straße 9, 49456, Bakum, Germany.
| |
Collapse
|
4
|
Marin C, Migura-García L, Rodríguez JC, Ventero MP, Pérez-Gracia MT, Vega S, Tort-Miró C, Marco-Fuertes A, Lorenzo-Rebenaque L, Montoro-Dasi L. Swine farm environmental microbiome: exploring microbial ecology and functionality across farms with high and low sanitary status. Front Vet Sci 2024; 11:1401561. [PMID: 39021414 PMCID: PMC11252001 DOI: 10.3389/fvets.2024.1401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Stringent regulations in pig farming, such as antibiotic control and the ban on certain additives and disinfectants, complicate disease control efforts. Despite the evolution of microbial communities inside the house environment, they maintain stability over the years, exhibiting characteristics specific to each type of production and, in some cases, unique to a particular company or farm production type. In addition, some infectious diseases are recurrent in specific farms, while other farms never present these diseases, suggesting a connection between the presence of these microorganisms in animals or their environment. Therefore, the aim of this study was to characterise environmental microbiomes of farms with high and low sanitary status, establishing the relationships between both, health status, environmental microbial ecology and its functionality. Methods For this purpose, 6 pig farms were environmentally sampled. Farms were affiliated with a production company that handle the majority of the pigs slaughtered in Spain. This study investigated the relationship among high health and low health status farms using high throughput 16S rRNA gene sequencing. In addition, to identify ecologically relevant functions and potential pathogens based on the 16S rRNA gene sequences obtained, functional Annotation with PROkaryotic TAXa (FAPROTAX) was performed. Results and Discussion This study reveals notable differences in microbial communities between farms with persistent health issues and those with good health outcomes, suggesting a need for protocols tailored to address specific challenges. The variation in microbial populations among farms underscores the need for specific and eco-friendly cleaning and disinfection protocols. These measures are key to enhancing the sustainability of livestock farming, ensuring safer products and boosting competitive edge in the market.
Collapse
Affiliation(s)
- Clara Marin
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Lourdes Migura-García
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - Maria Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Santiago Vega
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Carla Tort-Miró
- IRTA, Programa de Sanitat Animal, CReSA, Collaborating Centre of the World Organisation for Animal Health for Research and Control of Emerging and Re-Emerging Pig Diseases in Europe, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Marco-Fuertes
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute of Science and Animal Technology, Universitat Politècnica de Valencia, Valencia, Spain
| | - Laura Montoro-Dasi
- Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| |
Collapse
|
5
|
Halpin KM, Lawlor PG, Arnaud EA, Teixé-Roig J, O’ Doherty JV, Sweeney T, O’ Brien TM, Gardiner GE. Effect of implementing an effective farrowing accommodation hygiene routine on clinical cases of disease, medication usage, and growth in suckling and weaned pigs. Transl Anim Sci 2024; 8:txae095. [PMID: 39044901 PMCID: PMC11263928 DOI: 10.1093/tas/txae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
The few studies that have evaluated hygiene routines in farrowing accommodation to date have focused on pathogen elimination from pens, with little attention paid to pig growth and no information provided on pig health or medication usage. This study aimed to determine if implementation of an optimized farrowing accommodation hygiene routine could improve pig health and growth and reduce medication usage pre- and post-weaning (PW). Forty seven sows were blocked on parity, previous litter size and body weight and assigned to two treatments: T1) Basic hygiene: cold water washing only with minimal drying time; T2) Optimized hygiene: use of detergent and a chlorocresol-based disinfectant with a 6-d drying time. Total bacterial counts (TBC), Enterobacteriaceae counts and adenosine triphosphate (ATP) swabs were obtained from different areas within the farrowing pens. Pig growth and medication usage were monitored from birth to slaughter and carcass data were obtained at slaughter. On entry of sows to the farrowing pens, TBC and Enterobacteriaceae counts and ATP concentrations were lower on pen surfaces subjected to the optimized compared to the basic hygiene routine (P < 0.05). Pre-weaning diarrhea prevalence was lower in pigs born into optimal compared to basic hygiene pens (0 vs. 22%; P < 0.001). The number of clinical cases of disease and injections administered to piglets per litter was 75% and 79% less for the optimized compared to the basic hygiene routine, respectively (P < 0.001). This led to reductions of 77% (P < 0.001) and 75% (P < 0.01), respectively in the volume of antibiotics and anti-inflammatories administered per litter in the optimized hygiene group. Pigs from the optimized hygiene treatment were also heavier at weaning (P < 0.01) and their average daily gain (ADG) was higher from day 21 to weaning and days 22 to 49 PW (P < 0.05). However, these growth improvements did not carry through to the finisher period. In conclusion, implementation of an optimized hygiene routine reduced the bacterial load in farrowing pens, leading to a reduction in diarrhea and clinical cases of disease and therefore, medication usage, in suckling pigs. Pig growth was also improved during the suckling and early PW periods. Based on the results, an easily implementable farrowing room hygiene protocol with demonstrable benefits for pig health, growth, and welfare can be provided to farmers.
Collapse
Affiliation(s)
- Keely M Halpin
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
- Eco-Innovation Research Centre, Department of Science, South East Technological University, Waterford, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Elisa A Arnaud
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
- Eco-Innovation Research Centre, Department of Science, South East Technological University, Waterford, Ireland
| | - Júlia Teixé-Roig
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
- Food Technology Department, University of Lleida, Lleida, Spain
| | - John V O’ Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Triona M O’ Brien
- Teagasc, Food Safety Department, Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Gillian E Gardiner
- Eco-Innovation Research Centre, Department of Science, South East Technological University, Waterford, Ireland
| |
Collapse
|
6
|
Jaleta M, Junker V, Kolte B, Börger M, Werner D, Dolsdorf C, Schwenker J, Hölzel C, Zentek J, Amon T, Nübel U, Kabelitz T. Improvements of weaned pigs barn hygiene to reduce the spread of antimicrobial resistance. Front Microbiol 2024; 15:1393923. [PMID: 38812683 PMCID: PMC11135127 DOI: 10.3389/fmicb.2024.1393923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the blaTEM-1 gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.
Collapse
Affiliation(s)
- Megarsa Jaleta
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Dahlem Research School, Freie Universität Berlin, Berlin, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Baban Kolte
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Maria Börger
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Claudia Dolsdorf
- Teaching and Research Station for Animal Breeding and Husbandry (LVAT), Ruhlsdorf, Germany
| | - Julia Schwenker
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Free University Berlin, Berlin, Germany
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
7
|
Makovska I, Chantziaras I, Caekebeke N, Dhaka P, Dewulf J. Assessment of Cleaning and Disinfection Practices on Pig Farms across Ten European Countries. Animals (Basel) 2024; 14:593. [PMID: 38396561 PMCID: PMC10886142 DOI: 10.3390/ani14040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study delves into the assessment of cleaning and disinfection (C&D) measures within the context of European pig farming, employing the Biocheck.UGent™ tool as an effective instrument for evaluation. A comprehensive set of relevant parameters was examined to enable meaningful comparisons across farms from 10 European countries during four years (2019-2022). Findings indicate a notable increase in C&D measure implementation in select countries (Belgium, Finland, Italy, and Spain), reflecting heightened awareness and responsibility among farmers. Additionally, the overall score for the C&D subcategory highlights variation across countries, with Italy (75), Poland (74), and Belgium (72) displaying the highest scores, while Ireland (56), Slovenia (55), and Serbia (50) reported the lowest scores. However, the considerable variation in the number of participating farms necessitates cautious comparisons. The study identifies well-implemented C&D measures in the frame of external biosecurity but underscores gaps in the application of C&D measures for the material introduction practices across farms (22% of farms), which are attributed to awareness gaps and resource limitations. In the areas of internal biosecurity, strong points include C&D procedures after each production cycle (79%), implementing different stages in the C&D process (65%) and sufficient sanitary break (82%), while gaps are evident in the presence and using of hand hygiene stations (19% of farms) and boots disinfection equipment (40% of farms) between compartments/units. Notably, the study reveals a lack of evaluation of hygiene after C&D procedures (only 1% of farms), signaling critical knowledge gaps among farmers regarding proper assessment tools and methods. In conclusion, this comprehensive analysis sheds light on the implementation status of C&D measures in European pig farming, offering insights into both areas of progress and those requiring improvement. The findings emphasize the need for targeted awareness campaigns and training initiatives to bolster biosecurity practices within the industry.
Collapse
Affiliation(s)
- Iryna Makovska
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (P.D.); (J.D.)
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (P.D.); (J.D.)
| | | | - Pankaj Dhaka
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (P.D.); (J.D.)
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (I.C.); (P.D.); (J.D.)
| |
Collapse
|
8
|
Chen D, Cheng K, Wan L, Cui C, Li G, Zhao D, Yu Y, Liao X, Liu Y, D'Souza AW, Lian X, Sun J. Daily occupational exposure in swine farm alters human skin microbiota and antibiotic resistome. IMETA 2024; 3:e158. [PMID: 38868515 PMCID: PMC10989081 DOI: 10.1002/imt2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 06/14/2024]
Abstract
Antimicrobial resistance (AMR) is a major threat to global public health, and antibiotic resistance genes (ARGs) are widely distributed across humans, animals, and environment. Farming environments are emerging as a key research area for ARGs and antibiotic resistant bacteria (ARB). While the skin is an important reservoir of ARGs and ARB, transmission mechanisms between farming environments and human skin remain unclear. Previous studies confirmed that swine farm environmental exposures alter skin microbiome, but the timeline of these changes is ill defined. To improve understanding of these changes and to determine the specific time, we designed a cohort study of swine farm workers and students through collected skin and environmental samples to explore the impact of daily occupational exposure in swine farm on human skin microbiome. Results indicated that exposure to livestock-associated environments where microorganisms are richer than school environment can reshape the human skin microbiome and antibiotic resistome. Exposure of 5 h was sufficient to modify the microbiome and ARG structure in workers' skin by enriching microorganisms and ARGs. These changes were preserved once formed. Further analysis indicated that ARGs carried by host microorganisms may transfer between the environment with workers' skin and have the potential to expand to the general population using farm workers as an ARG vector. These results raised concerns about potential transmission of ARGs to the broader community. Therefore, it is necessary to take corresponding intervention measures in the production process to reduce the possibility of ARGs and ARB transmission.
Collapse
Affiliation(s)
- Dong‐Rui Chen
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Ke Cheng
- Veterinary CenterGuangxi State Farms Yongxin Animal Husbandry Group Co., Ltd.NanningChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Chao‐Yue Cui
- Laboratory Animal CentreWenzhou Medical UniversityWenzhouChina
| | - Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Dong‐Hao Zhao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Yang Yu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Xiao‐Ping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Ya‐Hong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| | - Alaric W. D'Souza
- Department of PediatricsBoston Children's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Xin‐Lei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou UniversityYangzhouChina
| |
Collapse
|
9
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
10
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
11
|
Pinto Jimenez CE, Keestra S, Tandon P, Cumming O, Pickering AJ, Moodley A, Chandler CIR. Biosecurity and water, sanitation, and hygiene (WASH) interventions in animal agricultural settings for reducing infection burden, antibiotic use, and antibiotic resistance: a One Health systematic review. Lancet Planet Health 2023; 7:e418-e434. [PMID: 37164518 DOI: 10.1016/s2542-5196(23)00049-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/12/2023]
Abstract
Prevention and control of infections across the One Health spectrum is essential for improving antibiotic use and addressing the emergence and spread of antibiotic resistance. Evidence for how best to manage these risks in agricultural communities-45% of households globally-has not been systematically assembled. This systematic review identifies and summarises evidence from on-farm biosecurity and water, sanitation, and hygiene (WASH) interventions with the potential to directly or indirectly reduce infections and antibiotic resistance in animal agricultural settings. We searched 17 scientific databases (including Web of Science, PubMed, and regional databases) and grey literature from database inception to Dec 31, 2019 for articles that assessed biosecurity or WASH interventions measuring our outcomes of interest; namely, infection burden, microbial loads, antibiotic use, and antibiotic resistance in animals, humans, or the environment. Risk of bias was assessed with the Systematic Review Centre for Laboratory Animal Experimentation tool, Risk of Bias in Non-Randomized Studies of Interventions, and the Appraisal tool for Cross-Sectional Studies, although no studies were excluded as a result. Due to the heterogeneity of interventions found, we conducted a narrative synthesis. The protocol was pre-registered with PROSPERO (CRD42020162345). Of the 20 672 publications screened, 104 were included in this systematic review. 64 studies were conducted in high-income countries, 24 studies in upper-middle-income countries, 13 studies in lower-middle-income countries, two in low-income countries, and one included both upper-middle-income countries and lower-middle-income countries. 48 interventions focused on livestock (mainly pigs), 43 poultry (mainly chickens), one on livestock and poultry, and 12 on aquaculture farms. 68 of 104 interventions took place on intensive farms, 22 in experimental settings, and ten in smallholder or subsistence farms. Positive outcomes were reported for ten of 23 water studies, 17 of 35 hygiene studies, 15 of 24 sanitation studies, all three air-quality studies, and 11 of 17 other biosecurity-related interventions. In total, 18 of 26 studies reported reduced infection or diseases, 37 of 71 studies reported reduced microbial loads, four of five studies reported reduced antibiotic use, and seven of 20 studies reported reduced antibiotic resistance. Overall, risk of bias was high in 28 of 57 studies with positive interventions and 17 of 30 studies with negative or neutral interventions. Farm-management interventions successfully reduced antibiotic use by up to 57%. Manure-oriented interventions reduced antibiotic resistance genes or antibiotic-resistant bacteria in animal waste by up to 99%. This systematic review highlights the challenges of preventing and controlling infections and antimicrobial resistance, even in well resourced agricultural settings. Most of the evidence emerges from studies that focus on the farm itself, rather than targeting agricultural communities or the broader social, economic, and policy environment that could affect their outcomes. WASH and biosecurity interventions could complement each other when addressing antimicrobial resistance in the human, animal, and environmental interface.
Collapse
Affiliation(s)
- Chris E Pinto Jimenez
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK; Agriculture and Infectious Disease Group, London School of Hygiene & Tropical Medicine, London, UK.
| | - Sarai Keestra
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Agriculture and Infectious Disease Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Pranav Tandon
- Global Health Office, McMaster University, Hamilton, ON, Canada
| | - Oliver Cumming
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, University of California Berkeley, CA, USA
| | | | - Clare I R Chandler
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK; Antimicrobial Resistance Centre, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
12
|
Scollo A, Perrucci A, Stella MC, Ferrari P, Robino P, Nebbia P. Biosecurity and Hygiene Procedures in Pig Farms: Effects of a Tailor-Made Approach as Monitored by Environmental Samples. Animals (Basel) 2023; 13:ani13071262. [PMID: 37048519 PMCID: PMC10093544 DOI: 10.3390/ani13071262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
In livestock, the importance of hygiene management is gaining importance within the context of biosecurity. The aim of this study was to monitor the implementation of biosecurity and hygiene procedures in 20 swine herds over a 12-month period, as driven by tailor-made plans, including training on-farm. The measure of adenosine triphosphate (ATP) environmental contents was used as an output biomarker. The presence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) and extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) was also investigated as sentinels of antibiotic resistance. A significant biosecurity improvement (p = 0.006) and a reduction in the ATP content in the sanitised environment (p = 0.039) were observed. A cluster including 6/20 farms greatly improved both biosecurity and ATP contents, while the remaining 14/20 farms ameliorated them only slightly. Even if the ESBL-E. coli prevalence (30.0%) after the hygiene procedures significantly decreased, the prevalence of LA-MRSA (22.5%) was unaffected. Despite the promising results supporting the adoption of tailor-made biosecurity plans and the measure of environmental ATP as an output biomarker, the high LA-MRSA prevalence still detected at the end of the study underlines the importance of improving even more biosecurity and farm hygiene in a one-health approach aimed to preserve also the pig workers health.
Collapse
Affiliation(s)
- Annalisa Scollo
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Alice Perrucci
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | | | - Paolo Ferrari
- CRPA Research Centre for Animal Production, 42121 Reggio Emilia, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy
| |
Collapse
|
13
|
Wang X, Chen D, Du J, Cheng K, Fang C, Liao X, Liu Y, Sun J, Lian X, Ren H. Occupational exposure in swine farm defines human skin and nasal microbiota. Front Microbiol 2023; 14:1117866. [PMID: 37065142 PMCID: PMC10090692 DOI: 10.3389/fmicb.2023.1117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Anthropogenic environments take an active part in shaping the human microbiome. Herein, we studied skin and nasal microbiota dynamics in response to the exposure in confined and controlled swine farms to decipher the impact of occupational exposure on microbiome formation. The microbiota of volunteers was longitudinally profiled in a 9-months survey, in which the volunteers underwent occupational exposure during 3-month internships in swine farms. By high-throughput sequencing, we showed that occupational exposure compositionally and functionally reshaped the volunteers’ skin and nasal microbiota. The exposure in farm A reduced the microbial diversity of skin and nasal microbiota, whereas the microbiota of skin and nose increased after exposure in farm B. The exposure in different farms resulted in compositionally different microbial patterns, as the abundance of Actinobacteria sharply increased at expense of Firmicutes after exposure in farm A, yet Proteobacteria became the most predominant in the volunteers in farm B. The remodeled microbiota composition due to exposure in farm A appeared to stall and persist, whereas the microbiota of volunteers in farm B showed better resilience to revert to the pre-exposure state within 9 months after the exposure. Several metabolic pathways, for example, the styrene, aminobenzoate, and N-glycan biosynthesis, were significantly altered through our PICRUSt analysis, and notably, the function of beta-lactam resistance was predicted to enrich after exposure in farm A yet decrease in farm B. We proposed that the differently modified microbiota patterns might be coordinated by microbial and non-microbial factors in different swine farms, which were always environment-specific. This study highlights the active role of occupational exposure in defining the skin and nasal microbiota and sheds light on the dynamics of microbial patterns in response to environmental conversion.
Collapse
Affiliation(s)
- Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dongrui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Juan Du
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ke Cheng
- Guangxi State Farms Yongxin Jinguang Animal Husbandry Group Co., Ltd, Nanning, China
| | - Chang Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jian Sun,
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Xinlei Lian,
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Hao Ren,
| |
Collapse
|
14
|
Galipó E, Zoche-Golob V, Sassu EL, Prigge C, Sjölund M, Tobias T, Rzeżutka A, Smith RP, Burow E. Prioritization of pig farm biosecurity for control of Salmonella and hepatitis E virus infections: results of a European expert opinion elicitation. Porcine Health Manag 2023; 9:8. [PMID: 36872376 PMCID: PMC9987137 DOI: 10.1186/s40813-023-00306-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/31/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND In the literature, there is absent or weak evidence on the effectiveness of biosecurity measures to the control of Salmonella spp. and hepatitis E virus (HEV) on pig farms. Therefore, the present study aimed to collect, weigh, and compare opinions from experts on the relevance of several biosecurity measures. An online questionnaire was submitted to selected experts, from multiple European countries, knowledgeable on either HEV or Salmonella spp., in either indoor or outdoor pig farming systems (settings). The experts ranked the relevance of eight biosecurity categories with regards to effectiveness in reducing the two pathogens separately, by assigning a score from a total of 80, and within each biosecurity category they scored the relevance of specific biosecurity measures (scale 1-5). Agreement among experts was analysed across pathogens and across settings. RESULTS After filtering for completeness and expertise, 46 responses were analysed, with 52% of the experts identified as researchers/scientists, whereas the remaining 48% consisted of non-researchers, veterinary practitioners and advisors, governmental staff, and consultant/industrial experts. The experts self-declared their level of knowledge but neither Multidimensional Scaling nor k-means cluster analyses produced evidence of an association between expertise and the biosecurity answers, and so all experts' responses were analysed together without weighting or adaptation. Overall, the top-ranked biosecurity categories were pig mixing; cleaning and disinfection; feed, water and bedding; and purchase of pigs or semen, while the lowest ranked categories were transport, equipment, animals (other than pigs and including wildlife) and humans. Cleaning and disinfection was ranked highest for both pathogens in the indoor setting, whereas pig mixing was highest for outdoor settings. Several (94/222, 42.3%) measures across all four settings were considered highly relevant. Measures with high disagreement between the respondents were uncommon (21/222, 9.6%), but more frequent for HEV compared to Salmonella spp. CONCLUSIONS The implementation of measures from multiple biosecurity categories was considered important to control Salmonella spp. and HEV on farms, and pig mixing activities, as well as cleaning and disinfection practices, were perceived as consistently more important than others. Similarities and differences in the prioritised biosecurity measures were identified between indoor and outdoor systems and pathogens. The study identified the need for further research especially for control of HEV and for biosecurity in outdoor farming.
Collapse
Affiliation(s)
- Erika Galipó
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - Veit Zoche-Golob
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Elena Lucia Sassu
- Division for Animal Health, Austrian Agency for Health and Food Safety, Robert-Koch-Gasse 17, 2340, Mödling, Austria
| | - Christopher Prigge
- Division for Animal Health, Austrian Agency for Health and Food Safety, Robert-Koch-Gasse 17, 2340, Mödling, Austria.,Unit of Veterinary Public Health and Epidemiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Marie Sjölund
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, 751 89, Uppsala, Sweden.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Tijs Tobias
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL, Utrecht, The Netherlands
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100, Puławy, Poland
| | - Richard Piers Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Elke Burow
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
15
|
Montagnin C, Cawthraw S, Ring I, Ostanello F, Smith RP, Davies R, Martelli F. Efficacy of Five Disinfectant Products Commonly Used in Pig Herds against a Panel of Bacteria Sensitive and Resistant to Selected Antimicrobials. Animals (Basel) 2022; 12:ani12202780. [PMID: 36290166 PMCID: PMC9597786 DOI: 10.3390/ani12202780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022] Open
Abstract
The growing threat of antimicrobial resistance worldwide has led to an increasing concern in the human, veterinary, and environmental fields, highlighting the need for strategies to effectively control bacterial contamination. Correct biosecurity practices, including the appropriate use of disinfectants, play a crucial role in controlling bacterial contamination. This study aimed to verify whether the recommended concentrations defined according to the Defra General Orders concentration (GO, published by the UK Department for Environment, Food and Rural Affairs' disinfectant-approval scheme) of five commercial disinfectant preparations (peroxygen-based, phenol-based, two halogen-releasing agents, and glutaraldehyde/quaternary ammonium compound-based; disinfectants A to E, respectively) were sufficient to inhibit growth and inactivate selected bacterial strains, including some that carry known phenotypic patterns of multidrug resistance. The effectiveness of each disinfectant was expressed as the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, determined by the broth-microdilution method. The results indicate that the type of disinfectant and its concentration influence the inhibitory and bactericidal efficacy. The glutaraldehyde/quaternary ammonium compound-based (disinfectant D) and chlorocresol-based products (disinfectant B) were the most effective, and the GO concentration was bactericidal in all the strains tested. The efficacy of the other compounds varied, depending on the bacterial species tested. The GO concentrations were at least able to inhibit the bacterial growth in all the products and bacterial strains tested. A greater tolerance to the compounds was observed in the strains of E. coli with multidrug-resistance profiles compared to the strains that were sensitive to the same antimicrobials.
Collapse
Affiliation(s)
- Clara Montagnin
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Isaac Ring
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy
- Correspondence:
| | - Richard P. Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Rob Davies
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| | - Francesca Martelli
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone KT15 3NB, UK
| |
Collapse
|
16
|
Harrison OL, Gebhardt JT, Paulk CB, Plattner BL, Woodworth JC, Rensing S, Jones CK, Trinetta V. Inoculation of Weaned Pigs by Feed, Water, and Airborne Transmission of Salmonella enterica Serotype 4,[5],12:i:. J Food Prot 2022; 85:693-700. [PMID: 35076710 DOI: 10.4315/jfp-21-418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella enterica serotype 4,[5],12:i:- (STM) has become an increasing problem for food safety and has been often detected in swine products. Weanling pigs were exposed to STM-contaminated feed, water, or air to determine possible STM transmission routes. A control group of pigs was included. STM was monitored daily in feces and rectal and nasal swabs. STM colonization was most prevalent in tissues from tonsil, lower intestine, and mesenteric lymph nodes. No differences in lesion severity were observed between inoculated and control pigs. Contaminated feed, water, and aerosolized particles caused infection in weaned pigs; however, no STM colonization was observed in skeletal muscle destined for human consumption. Based on the results from this study, STM contamination in pork products most likely results from cross-contamination of meat by digesta or lymph node tissue during processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Olivia L Harrison
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Brandon L Plattner
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Susan Rensing
- Department of Gender, Women, and Sexuality Studies, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
17
|
Karabasanavar N, Sivaraman GK, S P S, Nair AS, Vijayan A, Rajan V, P S G. Non-diarrhoeic pigs as source of highly virulent and multidrug-resistant non-typhoidal Salmonella. Braz J Microbiol 2022; 53:1039-1049. [PMID: 35128626 PMCID: PMC9151962 DOI: 10.1007/s42770-022-00700-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Food-producing animals act as reservoirs of non-typhoidal Salmonella (NTS) serovars with potential food safety and public health implications. The present cross-sectional study aimed at determining the prevalence of Salmonella serotypes in non-diarrhoeic pigs and characterizing the isolates using molecular tools. Salmonella isolates (n = 22) recovered from faecal samples of 194 randomly selected pigs were characterized for virulence and antimicrobial resistance and subtyped using XbaI-PFGE. The prevalence of Salmonella in apparently healthy non-diarrhoeic pigs was 11.3% (95%CI, 4.3-19.5%), with S. Weltevreden (81.8%) and S. Enteritidis (18.2%) being the serotypes detected. Salmonella isolates harboured virulence genes such as invA (100%), stn (100%), spvR/spvC (86.3%) and fimA (22.7%). Phenotypically, isolates showed sensitivity to chloramphenicol, levofloxacin and ciprofloxacin and resistance to tetracycline and ampicillin (100%), streptomycin (86.4%), amoxicillin-clavulanate (63.6%), cefotaxime (22.7%) and ceftriaxone (9.1%). Notably, 18.2% isolates were multidrug-resistant (≥ 3 antimicrobial class) with multiple antimicrobial resistance (MAR) index of 0.56-0.67 (18.2%), 0.44 (45.5%), 0.33 (31.8%) and 0.22 (4.5%). Genotypically, isolates carried various antibiotic resistance genes: ESBL (blaTEM and blaOXA), aminoglycoside (strA, strB and aadA1), sulphonamide (sul1, sul2 and dfrA1), tetracycline (tetA and tetB) and plasmid AmpC beta-lactamase (ACC, FOX, MOX, DHA, CIT and EBC). The present investigation emphasizes the epidemiological significance of PFGE typing in the detection of emerging strains of highly virulent and multidrug-resistant S. Weltevreden and S. Enteritidis in non-diarrhoeic pigs that pose serious public health implications in the pork supply chain environment. More extensive longitudinal study is warranted to provide epidemiological links between environmental reservoirs and animal and human infections in piggery settings.
Collapse
Affiliation(s)
- Nagappa Karabasanavar
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India.
| | - G K Sivaraman
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Satheesha S P
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India
| | - Archana S Nair
- Department of Veterinary Public Health & Epidemiology, Veterinary College (Karnataka Veterinary, Animal & Fisheries Sciences University), Vidyanagar, Hassan, 573 202, Karnataka, India
| | - Ardhra Vijayan
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Vineeth Rajan
- Microbiology, Fermentation & Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - Girish P S
- ICAR National Research Centre On Meat, Hyderabad, 500 092, Telangana, India
| |
Collapse
|
18
|
Abstract
Consumption of pork and pork products can be associated with outbreaks of human salmonellosis. Salmonella infection is usually subclinical in pigs, and farm-based control measures are challenging to implement. To obtain data on Salmonella prevalence, samples can be collected from pigs during the slaughter process. Here we report the results of a Great Britain (GB) based abattoir survey conducted by sampling caecal contents from pigs in nine British pig abattoirs during 2019. Samples were collected according to a randomised stratified scheme, and pigs originating from 286 GB farms were included in this survey. Salmonella was isolated from 112 pig caecal samples; a prevalence of 32.2% [95% confidence interval (CI) 27.4–37.4]. Twelve different Salmonella serovars were isolated, with the most common serovars being S. 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium (36.6% of Salmonella-positive samples), followed by S. Derby (25.9% of Salmonella-positive samples). There was no significant difference compared to the estimate of overall prevalence (30.5% (95% CI 26.5–34.6)) obtained in the last abattoir survey conducted in the UK (2013). Abattoir-based control measures are often effective in the reduction of Salmonella contamination of carcasses entering the food chain. In this study, the effect of abattoir hygiene practices on the prevalence of Salmonella on carcasses was not assessed. Continuing Salmonella surveillance at slaughter is recommended to assess effect of farm-based and abattoir-based interventions and to monitor potential public health risk associated with consumption of Salmonella-contaminated pork products.
Collapse
|
19
|
A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens. Microorganisms 2021; 9:microorganisms9091825. [PMID: 34576721 PMCID: PMC8466550 DOI: 10.3390/microorganisms9091825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
This systematic review aimed to assess the effectiveness of pre-harvest interventions to control the main foodborne pathogens in pork in the European Union. A total of 1180 studies were retrieved from PubMed® and Web of Science for 15 pathogens identified as relevant in EFSA's scientific opinion on the public health hazards related to pork (2011). The study selection focused on controlled studies where a cause-effect could be attributed to the interventions tested, and their effectiveness could be inferred. Altogether, 52 studies published from 1983 to 2020 regarding Campylobacter spp., Clostridium perfringens, Methicillin-resistant Staphylococcus aureus, Mycobacterium avium, and Salmonella spp. were retained and analysed. Research was mostly focused on Salmonella (n = 43 studies). In-feed and/or water treatments, and vaccination were the most tested interventions and were, overall, successful. However, the previously agreed criteria for this systematic review excluded other effective interventions to control Salmonella and other pathogens, like Yersinia enterocolitica, which is one of the most relevant biological hazards in pork. Examples of such successful interventions are the Specific Pathogen Free herd principle, stamping out and repopulating with disease-free animals. Research on other pathogens (i.e., Hepatitis E, Trichinella spiralis and Toxoplasma gondii) was scarce, with publications focusing on epidemiology, risk factors and/or observational studies. Overall, high herd health coupled with good management and biosecurity were effective to control or prevent most foodborne pathogens in pork at the pre-harvest level.
Collapse
|
20
|
van der Wolf P, Meijerink M, Libbrecht E, Tacken G, Gijsen E, Lillie-Jaschniski K, Schüller V. Salmonella Typhimurium environmental reduction in a farrow-to-finish pig herd using a live attenuated Salmonella Typhimurium vaccine. Porcine Health Manag 2021; 7:43. [PMID: 34301340 PMCID: PMC8299633 DOI: 10.1186/s40813-021-00222-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/03/2021] [Indexed: 01/27/2023] Open
Abstract
Background Salmonella Typhimurium is an important zoonotic pathogen in pigs, that can cause clinical disease. Many sow herds and finishing herds are infected with Salmonella, and therefore pose a threat for the contamination of pork and pork products and ultimately consumers. Case presentation This case study describes a farrow-to-finish pig herd, producing its own replacement gilts, which had experienced clinical outbreaks of salmonellosis since 2002. Outbreaks were characterised by profuse diarrhoea, dead pigs and high antimicrobial use (colistin sulphate). The aim of this study was to see whether using vaccination of sows and piglets with Salmoporc®, a live attenuated Salmonella Typhimurium vaccine, in combination with standard hygienic precautions, it was possible to reduce Salmonella Typhimurium to below the bacteriological detection limit. Monitoring of the presence of Salmonella was done using a total of 20 pooled faecal, sock and dust samples per herd visit in the period from September 2016 to October 2020. Within the first 10 months after the start of vaccination in August 2016, there was a rapid reduction in clinical symptoms, antimicrobial usage and the number of Salmonella-positive samples. During the winters of 2017/2018 and 2018/2019 the number of positive samples increased again, however with minimal need to use antimicrobials to treat the affected animals. In July 2019, only two samples from a corridor were positive. In September and November 2019 and in October 2020 all three samplings were completely negative for S. Typhimurium. Conclusions This case, together with other longitudinal studies, can be seen as a proof of the principle that long term vaccination with a live attenuated S. Typhimurium vaccine can reduce the level of S. Typhimurium in the herd environment to very low levels within a farrow-to-finish herd initially suffering from clinical salmonellosis. Also, clinical symptoms indicating salmonellosis were no longer observed and antimicrobials to treat clinically diseased pigs were no longer needed.
Collapse
Affiliation(s)
| | | | | | - Gerrit Tacken
- Veterinary Practice "VarkensArtsenZuid", Panningen, The Netherlands
| | - Emile Gijsen
- Veterinary Practice "VarkensArtsenZuid", Panningen, The Netherlands
| | | | | |
Collapse
|
21
|
Brown AJ, Scoley G, O’Connell N, Robertson J, Browne A, Morrison S. Pre-Weaned Calf Rearing on Northern Irish Dairy Farms: Part 1. A Description of Calf Management and Housing Design. Animals (Basel) 2021; 11:1954. [PMID: 34208877 PMCID: PMC8300315 DOI: 10.3390/ani11071954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/21/2022] Open
Abstract
The first few months of life are of great importance to the longevity and lifetime performance of dairy cows. The nutrition, environment and healthcare management of heifer calves must be sufficient to minimise exposure to stress and disease and enable them to perform to their genetic potential. Lack of reporting of farm management practices in Northern Ireland (NI) makes it difficult to understand where issues impacting health, welfare and performance may occur in the rearing process. The objective of this study was to investigate housing design and management practices of calves on 66 dairy farms across NI over a 3-month period and also identify areas that may cause high risk of poor health and performance in dairy calves. An initial survey was used to detail housing and management practices, with two subsequent visits to each farm used to collect animal and housing-based measurements linked to hygiene management, animal health and performance. Large variations in key elements such as weaning criteria and method, calf grouping method used, nutritional feed plane, and routine hygiene management were identified. The specification of housing, in particular ventilation and stocking density, was highlighted as a potential limiting factor for calf health and performance. Lack of measurement of nutritional inputs, hygiene management practices and calf performance was observed. This poses a risk to farmers' ability to ensure the effectiveness of key management strategies and recognise poor calf performance and health.
Collapse
Affiliation(s)
- Aaron J Brown
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK; (G.S.); (S.M.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT7 1NN, UK;
| | - Gillian Scoley
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK; (G.S.); (S.M.)
| | - Niamh O’Connell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT7 1NN, UK;
| | | | - Amanda Browne
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK;
| | - Steven Morrison
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK; (G.S.); (S.M.)
| |
Collapse
|
22
|
Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
23
|
Wales AD, Gosling RJ, Bare HL, Davies RH. Disinfectant testing for veterinary and agricultural applications: A review. Zoonoses Public Health 2021; 68:361-375. [PMID: 33939312 DOI: 10.1111/zph.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/15/2023]
Abstract
Disinfectants for veterinary and livestock use, plus skin antiseptics, are critical elements for the control of infectious agents, including zoonotic and antimicrobial-resistant micro-organisms, in managed animal species. Such agents impact animal welfare, economic performance and human health. Testing of disinfectants is needed for safety, efficacy and quality control. The present review examines the principal types of test (carrier, suspension, surface and field) that have been developed or attempted, plus the features inherent in the respective tests, particularly with respect to variability. Elements of testing that have to be controlled, or which can be manipulated, are discussed in the context of real-world scenarios and anticipated applications. Current national and international testing regimes are considered, with an emphasis on the UK, continental Europe and North America, and with further detail provided in the Supporting Information. Challenges to disinfectant efficacy include: the nature of the biological targets (bacteria, fungi, yeasts, spores, viruses and prions), the need for economical and safe working concentrations, the physical and chemical nature of contaminated surfaces, constraints on contact times and temperatures, the presence of organic soil and other barrier or neutralising substances (including biofilms), and thoroughness of pre-cleaning and disinfectant application. The principal challenges with veterinary disinfectant testing are the control of test variability, and relating test results to likely performance in variable field conditions. Despite some ambitions to develop standardised field tests for disinfectants, aside from skin antiseptic trials the myriad problems such tests pose with respect to cost, reproducibility and generalisability remain intractable.
Collapse
Affiliation(s)
- Andrew D Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Rebecca J Gosling
- Department of Bacteriology, Animal and Plant Health Agency (APHA - Weybridge), Addlestone, UK
| | - Harriet L Bare
- Department of Bacteriology, Animal and Plant Health Agency (APHA - Weybridge), Addlestone, UK
| | - Robert H Davies
- Department of Bacteriology, Animal and Plant Health Agency (APHA - Weybridge), Addlestone, UK
| |
Collapse
|
24
|
Mencía-Ares O, Argüello H, Puente H, Gómez-García M, Manzanilla EG, Álvarez-Ordóñez A, Carvajal A, Rubio P. Antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. is influenced by production system, antimicrobial use, and biosecurity measures on Spanish pig farms. Porcine Health Manag 2021; 7:27. [PMID: 33741079 PMCID: PMC7980634 DOI: 10.1186/s40813-021-00206-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 01/23/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a global public health threat consequence of antimicrobial use (AMU) in human and animal medicine. In food-producing animals factors such as management, husbandry or biosecurity may impact AMU. Organic and extensive Iberian swine productions are based on a more sustainable and eco-friendly management system, providing an excellent opportunity to evaluate how sustained differences in AMU impact the AMR in indicator bacteria. Here, we evaluate the usefulness of commensal Escherichia coli and Enterococcus spp. isolates as AMR bioindicators when comparing 37 Spanish pig farms from both intensive and organic-extensive production systems, considering the effect of AMU and biosecurity measures, the last only on intensive farms. Results The production system was the main factor contributing to explain the AMR differences in E. coli and Enterococcus spp. In both bacteria, the pansusceptible phenotype was more common (p < 0.001) on organic-extensive farms when compared to intensive herds. The microbiological resistance in commensal E. coli was, for most of the antimicrobials evaluated, significantly higher (p < 0.05) on intensive farms. In enterococci, the lincosamides usage revealed the association between AMR and AMU, with an increase in the AMR for erythromycin (p < 0.01), quinupristin-dalfopristin (p < 0.01) and the multidrug-resistant (MDR) phenotype (p < 0.05). The biosecurity measures implemented on intensive farms influenced the AMR of these bioindicators, with a slightly lower resistance to sulfamethoxazole (p < 0.01) and the MDR phenotype (p < 0.05) in E. coli isolated from farms with better cleaning and disinfection protocols. On these intensive farms, we also observed that larger herds had a higher biosecurity when compared to smaller farms (p < 0.01), with no significant associations between AMU and the biosecurity scores. Conclusions Overall, this study evidences that the production system and, to a lesser extent, the biosecurity measures, contribute to the AMR development in commensal E. coli and Enterococcus spp., with antimicrobial usage as the main differential factor, and demonstrates the potential value of these bacteria as bioindicators on pig farms in AMR surveillance programs.
Collapse
Affiliation(s)
- Oscar Mencía-Ares
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain.
| | - Héctor Argüello
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Héctor Puente
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Manuel Gómez-García
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Edgar G Manzanilla
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Faculty of Veterinary, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Ana Carvajal
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| | - Pedro Rubio
- Department of Animal Health, Faculty of Veterinary, Universidad de León, León, Spain
| |
Collapse
|
25
|
AbuOun M, O'Connor HM, Stubberfield EJ, Nunez-Garcia J, Sayers E, Crook DW, Smith RP, Anjum MF. Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain. Front Microbiol 2020; 11:861. [PMID: 32523560 PMCID: PMC7261845 DOI: 10.3389/fmicb.2020.00861] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Combatting antimicrobial resistant (AMR) using a One-Health approach is essential as various bacteria, including Escherichia coli, a common bacteria, are becoming increasingly resistant and livestock may be a reservoir. The AMR gene content of 492 E. coli, isolated from 56 pig farms across Great Britain in 2014–2015, and purified on antibiotic selective and non-selective plates, was determined using whole genome sequencing (WGS). The E. coli were phylogenetically diverse harboring a variety of AMR profiles with widespread resistance to “old” antibiotics; isolates harbored up to seven plasmid Inc-types. None showed concurrent resistance to third-generation cephalosporins, fluoroquinolones and clinically relevant aminoglycosides, although ∼3% harbored AMR genes to both the former two. Transferable resistance to carbapenem and colistin were absent, and six of 117 E. coli STs belonged to major types associated with human disease. Prevalence of genotypically MDR E. coli, gathered from non-selective media was 35% and that of extended-spectrum-beta-lactamase E. coli was low (∼2% from non-selective). Approximately 72.6% of E. coli from ciprofloxacin plates and only 8.5% from the other plates harbored fluoroquinolone resistance due to topoisomerase mutations; the majority were MDR. In fact, multivariable analysis confirmed E. coli purified from CIP enrichment plates were more likely to be MDR, and suggested MDR isolates were also more probable from farms with high antibiotic usage, specialist finisher farms, and farms emptying their manure pits only after each batch. Additionally, farms from the South East were more likely to have MDR E. coli, whereas farms in Yorkshire and the Humber were less likely. Future investigations will determine whether suggested improvements such as better biosecurity or lower antimicrobial use decreases MDR E. coli on pig farms. Although this study focuses on pig farms, we believe the methodology and findings can be applied more widely to help livestock farmers in the United Kingdom and elsewhere to tackle AMR.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| | - Heather M O'Connor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Emma J Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Ellie Sayers
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Derick W Crook
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| |
Collapse
|
26
|
Drauch V, Ibesich C, Vogl C, Hess M, Hess C. In-vitro testing of bacteriostatic and bactericidal efficacy of commercial disinfectants against Salmonella Infantis reveals substantial differences between products and bacterial strains. Int J Food Microbiol 2020; 328:108660. [PMID: 32450393 DOI: 10.1016/j.ijfoodmicro.2020.108660] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
Salmonella (S.) Infantis is currently the most common serovar in broilers and boiler meat in the European Union. In the field, eradication of S. Infantis in affected poultry flocks is considered extremely difficult. Despite stringent cleaning and disinfection measures between the placement of flocks, recurrent infections are often reported. So far, the efficacy of disinfectants on S. Infantis has rarely been studied. Therefore, in the present in-vitro study the bacteriostatic and bactericidal efficacy of ten commercial disinfectants were tested against seven S. Infantis field isolates. Combinations of aldehyde and quarternary ammonium were the active compounds of five, peroxygen of three, cresol and alkylamines of one disinfectant, respectively. Investigations were performed according to standard protocols and regulations. Different concentrations of disinfectants were used to test the bacteriostatic efficacy. Different temperatures and low and high protein exposures were applied as variables to investigate the bactericidal efficacy. Following neutralization of the disinfectants an additional incubation step was introduced to investigate the revitalisation potential of S. Infantis. The bacteriostatic efficacy could be assessed for seven disinfectants. For three disinfectants a bacteriostatic effect was observed when the recommended concentration was used, whereas with four disinfectants only increased concentrations led to this effect. The bactericidal efficacy was not influenced by temperature, whereas high protein exposure decreased the efficacy of nine disinfectants. Furthermore, reactivation of S. Infantis was revealed after application of disinfectants for the majority of products. Interestingly, the strain of S. Infantis influenced the efficacy of the disinfectants. Overall, products based on aldehydes and quarternary ammonium compounds proved most efficient, followed by peroxgen, cresol and alkylamines.
Collapse
Affiliation(s)
- Victoria Drauch
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Claudia Ibesich
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
27
|
Heinemann C, Meyer I, Bögel FT, Schmid SM, Hayer JJ, Steinhoff-Wagner J. Individual training for farmers based on results from protein and ATP rapid tests and microbiological conventional cultural methods improves hygiene in pig fattening pens. J Anim Sci 2020; 98:5687032. [PMID: 31875908 DOI: 10.1093/jas/skz389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/21/2019] [Indexed: 11/13/2022] Open
Abstract
Optimal hygiene management is an essential part of maintaining a high standard of health in conventional pig production systems and for the successful interruption of infection chains. Currently, efficiency assessments on cleaning and disinfection are only performed by visual inspection or are neglected completely. The aim of this study was to evaluate the available methods for on farm monitoring of hygiene, identify critical points in pig pens and use the data obtained for training purposes. In addition to visual inspection by assessing the cleanliness, microbiological swab samples, i.e., aerobic total viable count (TVC), total coliform count, methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases-producing bacteria (ESBL), swab samples for ATP as well as protein residues and agar contact plates combined with 3 different culture media, were applied and ranked according to their suitability for livestock farming. Samples were collected on at least 15 critical points from one representative pen on 6 pig fattening farms with various hygiene management practices after cleaning and disinfection. After the first sampling, farmers were trained with their individual results, and sampling was repeated 6 mo after training. Nipple drinkers, feeding tubes (external and inner surface), and troughs (external and inner surface) showed the greatest bacterial loads (TVC: 4.5-6.7 log10 cfu cm-2) and values for ATP and protein residues; therefore, these surfaces could be identified as the most important critical points. Spearman rank correlations (P < 0.01) were found between the different assessment methods, especially for the TVC and ATP (r = 0.82, P < 0.001). For rapid assessment on farms, ATP tests represented an accurate and cost-efficient alternative to microbiological techniques. Training improved cleaning performance as indicated by a lower rating for visual inspection, TVC, ATP, MRSA, and ESBL in the second assessment. The monitoring of cleaning efficiency in pig pens followed by training of the staff constitutes a valuable strategy to limit the spread of infectious diseases and antibiotic-resistant bacteria. Special attention should be paid to the sufficient hygiene of drinkers and feeders.
Collapse
Affiliation(s)
- Céline Heinemann
- Institute of Animal Science, Preventive Health Management, University of Bonn, Bonn, Germany
| | - Isabell Meyer
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Franziska T Bögel
- Institute of Animal Science, Preventive Health Management, University of Bonn, Bonn, Germany
| | - Simone M Schmid
- Institute of Animal Science, Preventive Health Management, University of Bonn, Bonn, Germany
| | - Jason J Hayer
- Institute of Animal Science, Preventive Health Management, University of Bonn, Bonn, Germany
| | - Julia Steinhoff-Wagner
- Institute of Animal Science, Preventive Health Management, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Tassinari E, Duffy G, Bawn M, Burgess CM, McCabe EM, Lawlor PG, Gardiner G, Kingsley RA. Microevolution of antimicrobial resistance and biofilm formation of Salmonella Typhimurium during persistence on pig farms. Sci Rep 2019; 9:8832. [PMID: 31222015 PMCID: PMC6586642 DOI: 10.1038/s41598-019-45216-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023] Open
Abstract
Salmonella Typhimurium and its monophasic variant S. 4,[5],12:i:- are the dominant serotypes associated with pigs in many countries. We investigated their population structure on nine farms using whole genome sequencing, and their genotypic and phenotypic variation. The population structure revealed the presence of phylogenetically distinct clades consisting of closely related clones of S. Typhimurium or S. 4,[5],12:i:- on each pig farm, that persisted between production cycles. All the S. 4,[5],12:i:- strains carried the Salmonella genomic island-4 (SGI-4), which confers resistance to heavy metals, and half of the strains contained the mTmV prophage, harbouring the sopE virulence gene. Most clonal groups were highly drug resistant due to the presence of multiple antimicrobial resistance (AMR) genes, and two clades exhibited evidence of recent on-farm plasmid-mediated acquisition of additional AMR genes, including an IncHI2 plasmid. Biofilm formation was highly variable but had a strong phylogenetic signature. Strains capable of forming biofilm with the greatest biomass were from the S. 4,[5],12:i:- and S. Typhimurium DT104 clades, the two dominant pandemic clones found over the last 25 years. On-farm microevolution resulted in enhanced biofilm formation in subsequent production cycle.
Collapse
Affiliation(s)
- Eleonora Tassinari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - Geraldine Duffy
- Teagasc, Food Research Centre, Ashtown, Dublin, 15, Ireland.
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Peadar G Lawlor
- Teagasc Pig Development Department, Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Gillian Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- University of East Anglia, Norwich, UK.
| |
Collapse
|
29
|
De Lucia A, Rabie A, Smith RP, Davies R, Ostanello F, Ajayi D, Petrovska L, Martelli F. Role of wild birds and environmental contamination in the epidemiology of Salmonella infection in an outdoor pig farm. Vet Microbiol 2018; 227:148-154. [DOI: 10.1016/j.vetmic.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
|
30
|
Gavin C, Simons RRL, Berriman ADC, Moorhouse D, Snary EL, Smith RP, Hill AA. A cost-benefit assessment of Salmonella-control strategies in pigs reared in the United Kingdom. Prev Vet Med 2018; 160:54-62. [PMID: 30388998 DOI: 10.1016/j.prevetmed.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/05/2023]
Abstract
Pork and pork products are a major source of human salmonellosis in the United Kingdom (UK). Despite a number of surveillance programmes, the prevalence of Salmonella in the UK slaughter pig population remains over 20%. Here, we present the results of a Cost-Benefit Analysis comparing five on-farm control strategies (where the cost is the cost of implementation and the benefits are the financial savings for both the human health and pig industries). The interventions considered were: wet feed, organic acids in feed, vaccination, enhanced cleaning and disinfection and movement of outdoor breeding units. The data originate from published papers and recent UK studies. The effectiveness was assessed by adapting a previous risk assessment, originally developed for the European Food Safety Authority. Using this method, none of the intervention strategies produced a net cost-benefit. Our results suggest that the cost of implementation outweighed the savings for all interventions, even if the effectiveness could be improved. Therefore, to achieve a net cost-benefit it is essential to reduce the cost of interventions. Analyses concluded that large cost reductions (up to 96%) would be required. Use of organic acids required the smallest reduction in cost (22.7%) to achieve a net cost benefit. Uncertainty analysis suggested that a small net gain might be possible, for some of the intervention measures. But this would imply that the model greatly underestimated some key parameters, which was considered unlikely. Areas of key uncertainty were identified as the under-reporting factor (i.e. the proportion of community cases of Salmonella) and the source attribution factor (i.e. the proportion of human Salmonella cases attributable to pork products).
Collapse
Affiliation(s)
- C Gavin
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom.
| | - R R L Simons
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - A D C Berriman
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - D Moorhouse
- ADAS, Pendeford House, Wobaston Road, Pendeford, Wolverhampton, WV9 5AP, United Kingdom
| | - E L Snary
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - R P Smith
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - A A Hill
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, United Kingdom
| |
Collapse
|
31
|
Affiliation(s)
- RJ Gosling
- Senior Research Scientist, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|
32
|
Gay N, Leclaire A, Laval M, Miltgen G, Jégo M, Stéphane R, Jaubert J, Belmonte O, Cardinale E. Risk Factors of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Occurrence in Farms in Reunion, Madagascar and Mayotte Islands, 2016-2017. Vet Sci 2018; 5:vetsci5010022. [PMID: 29473906 PMCID: PMC5876575 DOI: 10.3390/vetsci5010022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
In South Western Indian ocean (IO), Extended-Spectrum β-Lactamase producing Enterobacteriaceae (ESBL-E) are a main public health issue. In livestock, ESBL-E burden was unknown. The aim of this study was estimating the prevalence of ESBL-E on commercial farms in Reunion, Mayotte and Madagascar and genes involved. Secondly, risk factors of ESBL-E occurrence in broiler, beef cattle and pig farms were explored. In 2016-2017, commercial farms were sampled using boot swabs and samples stored at 4 °C before microbiological analysis for phenotypical ESBL-E and gene characterization. A dichotomous questionnaire was performed. Prevalences observed in all production types and territories were high, except for beef cattle in Reunion, which differed significantly. The most common ESBL gene was blaCTX-M-1. Generalized linear models explaining ESBL-E occurrence varied between livestock production sectors and allowed identifying main protective (e.g., water quality control and detergent use for cleaning) and risk factors (e.g., recent antibiotic use, other farmers visiting the exploitation, pet presence). This study is the first to explore tools for antibiotic resistance management in IO farms. It provides interesting hypothesis to explore about antibiotic use in IO territories and ESBL-E transmission between pig, beef cattle and humans in Madagascar.
Collapse
Affiliation(s)
- Noellie Gay
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Alexandre Leclaire
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Morgane Laval
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Guillaume Miltgen
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
- UMR PIMIT, CNRS 9192, INSERM U1187, IRD 249, F-97418 Sainte-Clotilde, La Réunion, France.
| | - Maël Jégo
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Ramin Stéphane
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| | - Julien Jaubert
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Olivier Belmonte
- Bacteriology laboratory, Félix Guyon Hospital, Saint-Denis, 97400 Reunion, France.
| | - Eric Cardinale
- Animals, Health, Territories, Risks and Ecosystems, Avenue Agropolis, 34398 Montpellier CEDEX 5, France.
| |
Collapse
|
33
|
Grierson S, Rabie A, Lambert M, Choudhury B, Smith RP. HEV infection not evident in rodents on English pig farms. Vet Rec 2017; 182:81. [PMID: 29196489 DOI: 10.1136/vr.104417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/16/2017] [Accepted: 11/05/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Sylvia Grierson
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Andre Rabie
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK
| | - Mark Lambert
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, UK
| | - Bhudipa Choudhury
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, UK
| |
Collapse
|