1
|
Song B, Sun P, Kong L, Xiao C, Pan X, Song Z. The improvement of immunity and activation of TLR2/NF-κB signaling pathway by Romboutsia ilealis in broilers. J Anim Sci 2024; 102:skae286. [PMID: 39305205 PMCID: PMC11544627 DOI: 10.1093/jas/skae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/19/2024] [Indexed: 11/09/2024] Open
Abstract
This study was conducted to investigate the effects of Romboutsia ilealis on the immune function of broilers and the underlying mechanisms. A total of 48 one-day-old Arbor Acres broilers were allocated to 4 groups as follows: broilers treated daily with 1 mL live R. ilealis in general anaerobic medium broth media (0, 1 × 104, 1 × 106, and 1 × 108 CFU/mL) from days 1 to 7. Samples were collected on days 8 and 14. The results showed that R. ilealis had no negative effect on the body weight of broilers (P > 0.05). R. ilealis significantly increased the levels of lysozyme, IFN-γ, IFN-γ/IL-4, and IgG in the serum (P < 0.05). R. ilealis significantly increased the levels of IL-4, IFN-γ, sIgA, lysozyme, and iNOS in the ileal mucosa (P < 0.05). R. ilealis significantly increased the mRNA levels of TLR2, TLR4, NF-κB, IL-1β, TNF-α, IFN-γ, IgA, pIgR, iNOS, and MHC-II in the ileum (P < 0.05). R. ilealis significantly increased the relative abundance of Enterococcus and Paracoccus in the jejunum and ileum, ileal Candidatus Arthromitus, and cecal Romboutsia and Intestinimonas (P < 0.05). Correlation analysis showed that Enterococcus, Paracoccus, Romboutsia, and Intestinimonas were significantly positively correlated with humoral immune function (P < 0.05). In conclusion, R. ilealis boosted the immune system, activated the intestinal TLR2/NF-κB signaling pathway, and improved the gut microbiota in broilers.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Sun
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Department of Biological and Chemical Engineering, Jining Polytechnic, Jining, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Song B, He J, Pan X, Kong L, Xiao C, Keerqin C, Song Z. Dietary Macleaya cordata extract supplementation improves the growth performance and gut health of broiler chickens with necrotic enteritis. J Anim Sci Biotechnol 2023; 14:113. [PMID: 37674220 PMCID: PMC10483844 DOI: 10.1186/s40104-023-00916-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND The poultry industry needs effective antibiotic alternatives to control outbreaks of necrotic enteritis (NE) caused by Clostridium perfringens. METHODS The aim of this study was to investigate the effects of dietary supplementation with Macleaya cordata extract (MCE) on the immune function and gut microbiota of broilers with NE. A total of 288 1-day-old broiler chicks were randomly assigned to a 2 × 2 factorial arrangement with two concentrations of dietary MCE supplementation (0 or 350 mg/kg of diet) and two disease challenge statuses (control or NE). RESULTS The results revealed that NE significantly increased the feed conversion rate (FCR), mortality, intestinal lesion score, the levels of IL-1β, IL-17 and IFN-γ/IL-4 in serum and IL-17/IL-10 in the jejunal mucosa, mRNA levels of TLR2, IFN-γ and pIgR in the jejunum, and Clostridium perfringens concentrations in the cecum. NE significantly decreased the body weight (BW), body weight gain (BWG), jejunal villus height, V/C, mRNA level of AMPK-α1 in jejunum, IL-4 level in the jejunal mucosa and lactic acid bacteria abundance in the cecum. MCE significantly increased BW, BWG, jejunal villus height, V/C, mRNA levels of occludin, ZO-1 and AMPK-α1 in the jejunum, the levels of IgA and IgG in serum and IL-10 in the jejunal mucosa and mRNA levels of NF-κB, IL-10 and MHC-II in the jejunum. Additionally, MCE significantly decreased the FCR, mortality, intestinal lesion score, jejunal crypt depth, the levels of IFN-γ and IL-17 in serum and IL-17/IL-10 in the jejunal mucosa, Clostridium perfringens concentrations in the cecum, and mRNA levels of IL-17/IL-10 in the jejunum. Moreover, NE significantly increased the abundance of bacteria that are associated with inflammation, obesity and depression (Alistipes, Barnesiella, Intestinimonas, RF39 and UCG-005) and significantly decreased the abundance of short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Butyricicoccus and Bacteroides) in the cecum. MCE significantly increased the abundance of SCFA-producing bacteria (Streptococcus, Ruminococcus_torques_group and Lachnospiraceae_NK4A136_group) and significantly reduced the abundance of bacteria that are associated with inflammation and obesity (Alistipes, Barnesiella and UCG-010) in the cecum. In the cecum of broilers with NE, the relative abundance of Barnesiella and Alistipes was higher and that of Lachnoclostridium and Shuttleworthia was lower. Interestingly, these trends were reversed by the addition of MCE to the diet. Spearman correlation analysis showed that Barnesiella and Alistipes were associated with enhanced intestinal inflammation and inhibited growth performance, whereas Lachnoclostridium and Shuttleworthia were associated with anti-inflammatory effects. CONCLUSIONS MCE ameliorated the loss of growth performance in broiler chickens with NE, probably by regulating the intestinal barrier, immune function, and gut microbiota.
Collapse
Affiliation(s)
- Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jie He
- Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Linglian Kong
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China
- Precision Livestock and Nutrition Unit, University of Liège, Gembloux Agro-Bio TechGembloux, Belgium
| | - Chake Keerqin
- Phytobiotics (Jiangsu) Biotech Co., Ltd., Jintan, 213200, China
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
3
|
Wu W, Zhou H, Chen Y, Guo Y, Yuan J. Debranching enzymes decomposed corn arabinoxylan into xylooligosaccharides and achieved prebiotic regulation of gut microbiota in broiler chickens. J Anim Sci Biotechnol 2023; 14:34. [PMID: 36890602 PMCID: PMC9996988 DOI: 10.1186/s40104-023-00834-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Corn arabinoxylan (AX) is a complicated and multibranched antinutritional factor, thereby proving the use of endo-xylanase (EX) to be marginally valid. This study focused on specific types of AX-degrading enzymes (ADEs) to exert the synergy of debranching enzymes and track the prebiotic potential of enzymatic hydrolysates. This study investigated the effects of ADEs on the growth performance, intestinal histomorphology, absorption functions, changes in polysaccharide components, fermentation, and gut microbiota of broiler chickens. Five hundred seventy-six five-day-old Arbor Acres male broiler chickens were randomly allocated into eight treatments with six replicates each. Corn basal diets supplemented with or without enzymes were fed for a 21-day period, specifically including EX, its compatible use with arabinofuranosidase (EXA) or ferulic acid esterase (EXF), and compound groups with the above three enzymes (XAF). RESULTS Specific ADEs stimulated the jejunal villus height and goblet cell number and evidently decreased the crypt depth (P < 0.05), while the ratio of ileal villus height to crypt depth was significantly increased in EXF (P < 0.05). Maltase activities of ileal mucosa in XAF groups were extremely enhanced (P < 0.01), and EX boosted the activity of Na+-K+ ATPase in the small intestine (P < 0.01). The insoluble AX concentrations comparatively lessened, thereby notably raising the sundry xylooligosaccharide (XOS) yield in the ileal chyme (P < 0.05), which was dominant in xylobiose and xylotriose. Improvements in the abundance and diversity of ileal microbial communities within the EXA, EXF, and XAF treatments were observed (P < 0.05). Positive correlations between microbiota and XOS were revealed, with xylobiose and xylotriose being critical for ten beneficial bacteria (P < 0.05). EXF increased the BWG and FCR of broiler chickens in this phase (P < 0.05), which was attributed to the thriving networks modified by Lactobacillus. The intracecal contents of acetic acid, butyric acid, and propionic acid were greatly enhanced in most ADE groups, such as EXF (P < 0.05). CONCLUSIONS Debranching enzymes appreciably targeted corn AX to release prebiotic XOS in the posterior ileum and facilitated intracaecal fermentation. It was beneficial for improving gut development, digestion and absorption and modulating the microflora to promote the early performance of broiler chickens.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Huajin Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yanhong Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Youn HY, Kim HJ, Kim DH, Jang YS, Kim H, Seo KH. Gut microbiota modulation via short-term administration of potential probiotic kefir yeast Kluyveromyces marxianus A4 and A5 in BALB/c mice. Food Sci Biotechnol 2023; 32:589-598. [PMID: 36911334 PMCID: PMC9992467 DOI: 10.1007/s10068-023-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Kefir yeast, Kluyveromyces marxianus, has been evaluated for its potential probiotic properties-survivability, non-pathogenicity, and antioxidant and anti-microbial activities. However, host gut microbiota modulation of kefir yeasts remains unclear. Here, we compared kefir yeast strains K. marxianus A4 (Km A4) and K. marxianus A5 (Km A5) with Saccharomyces boulardii ATCC MYA-796 (Sb MYA-796) by investigating their adherence to colorectal adenocarcinoma (Caco-2) cells and gut microbiota modulation in BALB/c mice. The kefir yeast strains exhibited higher intestinal cell adhesion than Sb MYA-796 (p < 0.05). Bacteroidetes, Bacteroidales, and Bacteroides were more abundant in the 1 × 108 CFU/mL of Km A4 treatment group than in the control group (p < 0.05). Moreover, 1 × 108 CFU/mL of Km A5 increased Corynebacteriales and Corynebacterium compared to the 1 × 108 CFU/mL of Km A4 treatment group (p < 0.01). The results showed that Km A4 and Km A5 had good Caco-2 cell adhesion ability and modulated gut microbiota upon short-term administration in healthy mice. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01268-3.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dong-Hyeon Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Yong-Seok Jang
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, Seoul, 04763 Republic of Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
5
|
Song B, Li P, Xu H, Wang Z, Yuan J, Zhang B, Lv Z, Song Z, Guo Y. Effects of rearing system and antibiotic treatment on immune function, gut microbiota and metabolites of broiler chickens. J Anim Sci Biotechnol 2022; 13:144. [PMID: 36522791 PMCID: PMC9756480 DOI: 10.1186/s40104-022-00788-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In China, cage systems with a high space utilization have gradually replaced ground litter systems, but the disease incidence of chickens in cages is higher. Broilers in the ground litter pens may be stimulated by more environmental microbes during the growth process and show strong immune function and status, but knowledge of which microbes and their metabolites play an immunomodulatory role is still limited. This study aimed to explore the differences and correlations in the immune function, gut microbiota and metabolites and the importance of gut microbiota of broilers raised in cages and ground litter pens. METHODS The experiment involved a 2 × 2 factorial arrangement, with rearing systems (cages or ground litter pens) and antibiotic treatment (with or without broad-spectrum antibiotics in drinking water) as factors. RESULTS The results showed that, compared with the cage group, the ground litter broilers had stronger nonspecific immune function (Macrophages% and NO in blood), humoral immune function (IgG in blood, LPS stimulation index in ileum) and cellular immune function (T%, Tc%, ConA stimulation index and cytokines in blood). Antibiotic (ABX) treatment significantly reduced nonspecific immune function (Macrophages% and NO in blood, iNOS and Mucin2 mRNA expression in ileum), humoral immune function (IgG in blood and sIgA in ileum) and cellular immune function (T% and cytokines in blood, Th and Tc ratio, TLRs and cytokines mRNA expression in ileum). Furthermore, the ground litter broilers had higher α diversity of microbiota in ileum. The relative abundance of Staphylococcus, Jeotgalicoccus, Jeotgalibaca and Pediococcus in the ileum of ground litter broilers were higher. ABX treatment significantly reduced the α diversity of ileal microbiota, with less Chloroplast and Mitochondria. In addition, the levels of acetic acid, isobutyric acid, kynurenic acid and allolithocholic acid in the ileum of ground litter broilers were higher. Spearman correlation analysis showed that Jeotgalibaca, Pediococcus, acetic acid, kynurenic acid and allolithocholic acid were related to the immune function. CONCLUSIONS There were more potential pathogens, litter breeding bacteria, short-chain fatty acids, kynurenine, allolithocholic acid and tryptophan metabolites in the ileum of broilers in ground litter pens, which may be the reason for its stronger immune function and status.
Collapse
Affiliation(s)
- Bochen Song
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China ,grid.440622.60000 0000 9482 4676Department of Animal Science, Shandong Agricultural University, Taian, 271018 China
| | - Peng Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Huiping Xu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhong Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianmin Yuan
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bingkun Zhang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zengpeng Lv
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhigang Song
- grid.440622.60000 0000 9482 4676Department of Animal Science, Shandong Agricultural University, Taian, 271018 China
| | - Yuming Guo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
6
|
Song B, Yan S, Li P, Li G, Gao M, Yan L, Lv Z, Guo Y. Comparison and Correlation Analysis of Immune Function and Gut Microbiota of Broiler Chickens Raised in Double-Layer Cages and Litter Floor Pens. Microbiol Spectr 2022; 10:e0004522. [PMID: 35766494 PMCID: PMC9431680 DOI: 10.1128/spectrum.00045-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
This study aimed to compare the immune function and gut microbiota between double-layer caged and litter floor pen-raised broiler chickens. Eighty meaty male chicks were selected and divided into cage group and litter floor group, with 20 replicates in each group. The broilers were raised in the same chicken house. The rearing density of the two rearing systems was same. The broilers were sampled on days 13 and 34. The results showed that compared with the cage group, the litter floor broilers had worse growth performance (23.24% increase in feed conversion ratio) in the early stage; better slaughter performance at day 42; stronger peripheral immune function (including higher lysozyme activity, T-cell ratio, Th-cell ratio, Tc-cell ratio, CD4/CD8, IL-10, B-cell ratio, IgG and IgA levels; and spleen immune-related gene expression); and stronger intestinal immune function (including higher ileum CD80, AvBD2, Mucin2, NF-κB, IL-8, IFN-γ/IL-4, and IgA mRNA expression levels and ileal mucosa sIgA levels). Compared with the cage group, the alpha diversity of ileum microbiota of the litter floor broilers was higher, and the relative abundance levels of litter breeding bacteria (Facklamia, Globicatella, and Jeotgalicoccus) and potential pathogenic bacteria (Streptococcus and Staphylococcus) were higher (P < 0.05). Through Spearman correlation analysis, it was found that enriched microbes in the ileum of litter floor broilers were positively correlated with immune function. In summary, compared with cage broilers, litter floor broilers had more potential pathogenic bacteria and litter breeding bacteria in the ileum, which may be one of the important reasons for the stronger immune function status. IMPORTANCE In China, the three-dimensional rearing system (cage) for broilers has gradually become a trend. In production, it was found that the incidence of disease in broiler chickens raised in cage systems was significantly higher than that of ground litter. Given that broilers raised on ground litter systems may be exposed to more environmental microbes, it is important to understand whether the rearing environment affects the function and status of the host immune system by altering the gut microbiota. In this study, rearing environment-derived gut microbes associated with stronger immune function in ground litter broilers were provided, which will provide new insights into strategies to target gut microbes to promote immune function and status in broilers raised in cages.
Collapse
Affiliation(s)
- Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Bilal M, Ji L, Xu Y, Xu S, Lin Y, Iqbal HMN, Cheng H. Bioprospecting Kluyveromyces marxianus as a Robust Host for Industrial Biotechnology. Front Bioeng Biotechnol 2022; 10:851768. [PMID: 35519613 PMCID: PMC9065261 DOI: 10.3389/fbioe.2022.851768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Kluyveromyces marxianus is an emerging non-conventional food-grade yeast that is generally isolated from diverse habitats, like kefir grain, fermented dairy products, sugar industry sewage, plants, and sisal leaves. A unique set of beneficial traits, such as fastest growth, thermotolerance, and broad substrate spectrum (i.e., hemi-cellulose hydrolysates, xylose, l-arabinose, d-mannose, galactose, maltose, sugar syrup molasses, cellobiose, and dairy industry) makes this yeast a particularly attractive host for applications in a variety of food and biotechnology industries. In contrast to Saccharomyces cerevisiae, most of the K. marxianus strains are apparently Crabtree-negative or having aerobic-respiring characteristics, and unlikely to endure aerobic alcoholic fermentation. This is a desirable phenotype for the large-scale biosynthesis of products associated with biomass formation because the formation of ethanol as an undesirable byproduct can be evaded under aerobic conditions. Herein, we discuss the current insight into the potential applications of K. marxianus as a robust yeast cell factory to produce various industrially pertinent enzymes, bioethanol, cell proteins, probiotic, fructose, and fructo-oligosaccharides, and vaccines, with excellent natural features. Moreover, the biotechnological improvement and development of new biotechnological tools, particularly CRISPR-Cas9-assisted precise genome editing in K. marxianus are delineated. Lastly, the ongoing challenges, concluding remarks, and future prospects for expanding the scope of K. marxianus utilization in modern biotechnology, food, feed, and pharmaceutical industries are also thoroughly vetted. In conclusion, it is critical to apprehend knowledge gaps around genes, metabolic pathways, key enzymes, and regulation for gaining a complete insight into the mechanism for producing relevant metabolites by K. marxianus.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuping Lin
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Song B, Li P, Yan S, Liu Y, Gao M, Lv H, Lv Z, Guo Y. Effects of Dietary Astragalus Polysaccharide Supplementation on the Th17/Treg Balance and the Gut Microbiota of Broiler Chickens Challenged With Necrotic Enteritis. Front Immunol 2022; 13:781934. [PMID: 35265068 PMCID: PMC8899652 DOI: 10.3389/fimmu.2022.781934] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary astragalus polysaccharide (APS) supplementation on the immune function, gut microbiota and metabolism of broiler chickens challenged with necrotic enteritis (NE). Two hundred forty Arbor Acres broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary APS (0 or 200 ppm of diet) and two disease challenge groups (control or NE challenged). The results showed that NE infection significantly increased FCR, mortality rate, Th17/Treg (Th17 cells% in blood and ileum, Th17/Treg, IL-17 and IL-17/IL-10 in blood), NO, lysozyme activity and IL-1β in blood, intestinal immune cell proportion and activity (Tc%, Treg% and monocyte phagocytic activity in ileum), intestinal inflammatory cytokines (TLR2, NF-κB, TNF-α and IL- 6) gene expression levels, and the number of Clostridium perfringens in cecum. NE infection significantly reduced body weight gain, thymus index, lymphocyte proliferation activity in blood and ileum, villus height and V/C in jejunum, Th cells% and Mucin2 gene expression in ileum. Dietary APS supplementation significantly increased body weight, feed intake, proportion of immune cells (T cells in blood and Tc, Treg in ileum), lymphocyte proliferation activity, V/C in jejunum, and ZO-1 gene expression in ileum. Dietary APS supplementation significantly reduced FCR and mortality rate, Th17/Treg, Th17%, intestinal pathology scores, intestinal inflammatory cytokine gene expression levels, and the number of Clostridium perfringens in cecum. In addition, broilers challenged with NE significantly increased Staphylococcus and Turicibacter and reduced α diversity of microbiota in ileum. Dietary APS supplementation significantly increased α diversity, Romboutsia, Halomonas, propionic acid, butyric acid, formononetin, taurine, cholic acid and equol and downregulated uric acid, L-arginine and serotonin in ileum. Spearman’s correlation analysis revealed that Romboutsia, Turicibacter, Staphylocpccus, Halomonas, Streptococcus, Escherichia-Shigella, Prevotella, uric acid, L-arginine, jerivne, sodium cholate and cholic acid were related to inflammation and Th17/Treg balance. In conclusion, APS alleviated intestinal inflammation in broilers challenged with NE probably by regulating intestinal immune, Th17/Treg balance, as well as intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Centre Research Institute, Beijing Centre Biology Co., Ltd., Beijing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Yuming Guo,
| |
Collapse
|
9
|
Liu Y, Liu C, An K, Gong X, Xia Z. Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks. Animals (Basel) 2021; 11:ani11092514. [PMID: 34573480 PMCID: PMC8471152 DOI: 10.3390/ani11092514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary In poultry farming, the use of prophylactic antibiotics can lead to increased resistance, so probiotics are a good alternative. Clostridium butyricum (C. butyricum) has been widely used to improve the gut health of animals. Therefore, we carried out the current study of Pekin ducks supplemented with C. butyricum for a period of 42 days. Here, we found a clear increase in the growth performance of Pekin ducks supplemented with C. butyricum. Moreover, a high level of secretory IgA, IgM, IgG, IL-4, and IL-10 and comparatively higher short-chain fatty acids (SCFAs) and intestinal tight junction changes were found in Pekin ducks supplemented with C. butyricum. The gut microbial diversity of Pekin ducks supplemented with C. butyricum was clearly different than that of Pekin ducks fed a non-C. butyricum diet. In conclusion, our findings suggest that 400 mg/kg C. butyricum supplementation improved the intestinal health of Pekin ducks by increasing the α-diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems indicating that 400 mg/kg C. butyricum might be a preferable antibiotic alternative for commercial application. Abstract Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet.
Collapse
Affiliation(s)
- Yanhan Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Cun Liu
- Shandong Provincial Center for Animal Disease Control, Ji’nan 250100, China;
| | - Keying An
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Xiaowei Gong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (K.A.); (X.G.)
- Correspondence: ; Tel.: +86-10-62733781
| |
Collapse
|
10
|
Chen F, Zhang H, Du E, Fan Q, Zhao N, Jin F, Zhang W, Guo W, Huang S, Wei J. Supplemental magnolol or honokiol attenuates adverse effects in broilers infected with Salmonella pullorum by modulating mucosal gene expression and the gut microbiota. J Anim Sci Biotechnol 2021; 12:87. [PMID: 34365974 PMCID: PMC8351427 DOI: 10.1186/s40104-021-00611-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/07/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Salmonella pullorum is one of the most harmful pathogens to avian species. Magnolol and honokiol, natural compounds extracted from Magnolia officinalis, exerts anti-inflammatory, anti-oxidant and antibacterial activities. This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). RESULTS The results showed that challenging with S. pullorum impaired growth performance in broilers, as indicated by the observed decreases in body weight (P < 0.05) and average daily gains (P < 0.05), along with increased spleen (P < 0.01) and bursa of Fabricus weights (P < 0.05), serum globulin contents, and the decreased intestine villus height and villus/crypt ratios (P < 0.05). Notably, supplemental magnolol and honokiol attenuated these adverse changes, and the effects of magnolol were better than those of honokiol. Therefore, we performed RNA-Seq in ileum tissues and 16S rRNA gene sequencing of ileum bacteria. Our analysis revealed that magnolol increased the α-diversity (observed species, Chao1, ACE, and PD whole tree) and β-diversity of the ileum bacteria (P < 0.05). In addition, magnolol supplementation increased the abundance of Lactobacillus (P < 0.01) and decreased unidentified Cyanobacteria (P < 0.05) both at d 14 and d 21. Further study confirmed that differentially expressed genes induced by magnolol and honokiol supplementation enriched in cytokine-cytokine receptor interactions, in the intestinal immune network for IgA production, and in the cell adhesion molecule pathways. CONCLUSIONS Supplemental magnolol and honokiol alleviated S. pullorum-induced impairments in growth performance, and the effect of magnolol was better than that of honokiol, which could be partially due to magnolol's ability to improve the intestinal microbial and mucosal barrier.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Encun Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| | - Qiwen Fan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Na Zhao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Feng Jin
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanzheng Guo
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaowen Huang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
11
|
Guo S, Xi Y, Xia Y, Wu T, Zhao D, Zhang Z, Ding B. Dietary Lactobacillus fermentum and Bacillus coagulans Supplementation Modulates Intestinal Immunity and Microbiota of Broiler Chickens Challenged by Clostridium perfringens. Front Vet Sci 2021; 8:680742. [PMID: 34136557 PMCID: PMC8200825 DOI: 10.3389/fvets.2021.680742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Preventative effects of Lactobacillus fermentum and Bacillus coagulans against Clostridium perfringens infection in broilers have been well-demonstrated. The present study was conducted to investigate the modulation of these two probiotics on intestinal immunity and microbiota of C. perfringens-challenged birds. The 336 one-day-old broilers were assigned to four groups with six replicates in each group. Birds in the control were unchallenged and fed a basal diet, and birds in the three challenged groups were dietary supplemented with nothing (Cp group), 1 × 109 CFU/kg of L. fermentum (Lf_Cp group), or 1 × 1010 CFU/kg of B. coagulans (Bc_Cp group). Challenge was performed from days 14 to 20, and samples were collected on days 21 and 28. Challenge upregulated interleukin (IL)-1β and transforming growth factor (TGF)-β4 mRNA expression in jejunum on day 21, which was downregulated by B. coagulans and L. fermentum, respectively (P < 0.05). Both probiotic groups upregulated jejunal IL-1β, interferon (IFN)-γ, IL-17, and TGF-β4 on day 28 as well as IFN-γ on day 21 (P < 0.05). The Bc_Cp group increased CD3+ T cell counts in the jejunal crypt on day 21 (P < 0.05). Challenge decreased the ileal ACE index on day 21 and cecal microbial richness on day 28, which were increased by probiotic treatments, and ileal bacterial richness decreased in the Bc_Cp group on day 28 (P < 0.05). Only ileal microbiota on day 21 was distinctly affected with an R-value at 0.3116 by ANOSIM analysis (P < 0.05). Compared with the control, ileal Firmicutes increased on day 21, and ileal Bacteroidetes and cecal Proteobacteria decreased on day 28 in challenged groups (P < 0.05). Challenge increased Romboutsia spp. in the ileum as well as unclassified f_Lachnospiraceae and Ruminococcus_torques group in the cecum, and decreased Lactobacillus spp. in the ileum on day 21, which were all conversely modulated by L. fermentum (P < 0.05). Challenge increased amino acid metabolism of ileal microbiota and membrane transport of cecal microbiota, and decreased amino acid metabolism of cecal microbiota on day 21, which were conversely regulated by both probiotics (P < 0.05). In conclusion, L. fermentum and B. coagulans attenuated the intestinal inflammation and microbial dysbiosis soon after C. perfringens challenge.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yu Xi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yi Xia
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
12
|
Arsène MMJ, Davares AKL, Andreevna SL, Vladimirovich EA, Carime BZ, Marouf R, Khelifi I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021; 14:319-328. [PMID: 33776297 PMCID: PMC7994123 DOI: 10.14202/vetworld.2021.319-328] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.
Collapse
Affiliation(s)
- Mbarga M. J. Arsène
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Anyutoulou K. L. Davares
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Smolyakova L. Andreevna
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | | | - Bassa Z. Carime
- Department of Food Sciences and Nutrition, National School of Agro-industrial Sciences, University of Ngaoundere, Cameroon
| | - Razan Marouf
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| | - Ibrahim Khelifi
- Department of microbiology and virology, Institute of Medicine, RUDN University, Moscow, Russia
| |
Collapse
|
13
|
16S rRNA gene sequencing reveals an altered composition of the gut microbiota in chickens infected with a nephropathogenic infectious bronchitis virus. Sci Rep 2020; 10:3556. [PMID: 32103130 PMCID: PMC7044311 DOI: 10.1038/s41598-020-60564-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis virus (IBV), a member of the Coronaviridae family, causes serious losses to the poultry industry. Intestinal microbiota play an important role in chicken health and contribute to the defence against colonization by invading pathogens. The aim of this study was to investigate the link between the intestinal microbiome and nephropathogenic IBV (NIBV) infection. Initially, chickens were randomly distributed into 2 groups: the normal group (INC) and the infected group (IIBV). The ilea were collected for morphological assessment, and the ileal contents were collected for 16S rRNA gene sequencing analysis. The results of the IIBV group analyses showed a significant decrease in the ratio of villus height to crypt depth (P < 0.05), while the goblet cells increased compared to those in the INC group. Furthermore, the microbial diversity in the ilea decreased and overrepresentation of Enterobacteriaceae and underrepresentation of Chloroplast and Clostridia was found in the NIBV-infected chickens. In conclusion, these results showed that the significant separation of the two groups and the characterization of the gut microbiome profiles of the chickens with NIBV infection may provide valuable information and promising biomarkers for the diagnosis of this disease.
Collapse
|
14
|
Zhang B, Gan L, Shahid MS, Lv Z, Fan H, Liu D, Guo Y. In vivo and in vitro protective effect of arginine against intestinal inflammatory response induced by Clostridium perfringens in broiler chickens. J Anim Sci Biotechnol 2019; 10:73. [PMID: 31428367 PMCID: PMC6697915 DOI: 10.1186/s40104-019-0371-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023] Open
Abstract
Background Necrotic enteritis is a widespread disease in poultry caused by Clostridium perfringens. We previously reported that dietary arginine supplementation protected the intestinal mucosa of broiler chickens with necrotic enteritis, but the related protective mechanisms remain unclear. The in vivo trial was designed as a 2 × 2 factorial arrangement to evaluated the effects of arginine supplementation on inflammatory responses, arginine transporters, arginine catabolism and JAK-STAT signalling pathway in broiler chickens challenged with C. perfringens or without C. perfringens. Furthermore, we validated the in vivo results using intestinal epithelial cells of chicken embryos. Results C. perfringens infection markedly increased gut gross pathological and histopathological lesion scores, promoted liver C. perfringens invasion, reduced serum arginine levels, and elevated jejunal mucosal lysozyme activities (P < 0.05), but these effects were significantly reversed by arginine supplementation in vivo (P < 0.05). The challenge significantly increased serum procalcitonin levels, jejunal mucosal iNOS activities and jejunal IL-6, TGF-β3, cationic amino acid transporter (CAT)-1, and CAT-3 mRNA expression (P < 0.05), whereas arginine supplementation significantly reduced jejunal IFN-γ, IL-1β, IL-6, IL-10, TGF-β3, and CAT-3 mRNA expression (P < 0.05). Arginine supplementation significantly attenuated the C. perfringens challenge-induced increases in jejunal iNOS, arginase 2, arginine decarboxylase, arginine:glycine amidinotransferase, JAK1, JAK3, STAT1, and STAT6 mRNA expression (P < 0.05). The in vitro experiment showed that C. perfringens challenge markedly increased cellular cytotoxicity and the mRNA expression of IL-1β, IL-8, IL-10, CAT-1 and CAT-3 (P < 0.05), which were significantly reversed by 50 μmol/L and/or 400 μmol/L arginine pre-treatment (P < 0.05). Conclusions Arginine prevented C. perfringens challenge-induced circulated arginine deficiency, normalized intestinal arginine transport and catabolism, down-regulated JAK-STAT signalling pathway and attenuated the inflammatory response, which exerted protective effects on the intestine of broiler chickens.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Muhammad Suhaib Shahid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hao Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
15
|
Dietary Supplementation of Mixed Yeast Culture Derived from Saccharomyces cerevisiae and Kluyveromyces maxianus: Effects on Growth Performance, Nutrient Digestibility, Meat Quality, Blood Parameters, and Gut Health in Broilers. J Poult Sci 2019; 56:140-147. [PMID: 32055208 PMCID: PMC7005402 DOI: 10.2141/jpsa.0180052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to evaluate the effect of dietary supplementation of a mixed yeast culture (MYC; Saccharomyces cerevisiae YJM1592 and Kluyveromyces maxianus TB7258 in a 1:1 ratio) on growth performance, nutrient digestibility, meat quality, blood parameters, and gut health of broiler chickens. In total, 576 one-day-old male broilers (Ross 308) with an average initial bodyweight (BW) of 37±0.51 g were used in a 35-day experiment with a completely randomized design. The broilers were randomly assigned to 3 dietary treatments: CON, basal diet; TRT1, CON + 0.1% MYC; and TRT 2, CON + 0.2% MYC. From days 8 to 21, the feed conversion rate (FCR) was significantly decreased in broilers fed MYC-supplemented diets. From days 22 to 35, BW gain (BWG) significantly increased with increasing MYC concentration. Throughout the experiment, BWG increased (linear effect, P=0.002) and FCR decreased with increasing MYC in the diet. MYC supplementation increased the digestibility of dry matter (DM) in broilers in a dose-dependent manner. Relative organ weight of the bursa of Fabricius linearly increased in broilers fed MYC-supplemented diets. The white blood cell count showed linear and quadratic increases in broilers fed increasing concentrations of MYC. The population of Lactobacillus in the excreta linearly increased P=0.033, whereas that of Escherichia coli tended to linearly decrease (P=0.064) in the MYC groups. This study provides a basis for future research on MYC as a growth promoter in broilers.
Collapse
|
16
|
Wang W, Li Z, Gan L, Fan H, Guo Y. Dietary supplemental Kluyveromyces marxianus alters the serum metabolite profile in broiler chickens. Food Funct 2018; 9:3776-3787. [PMID: 29912245 DOI: 10.1039/c8fo00268a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | | | | | | | | |
Collapse
|
17
|
Ma Y, Wang W, Zhang H, Wang J, Zhang W, Gao J, Wu S, Qi G. Supplemental Bacillus subtilis DSM 32315 manipulates intestinal structure and microbial composition in broiler chickens. Sci Rep 2018; 8:15358. [PMID: 30337568 PMCID: PMC6194052 DOI: 10.1038/s41598-018-33762-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 01/16/2023] Open
Abstract
Knowledge about the modulation of gut microbiota improves our understanding of the underlying mechanism by which probiotic treatment benefits the chickens. This study examined the effects of Bacillus subtilis DSM 32315 on intestinal structure and microbial composition in broilers. Broiler chicks were fed basal diets without or with B. subtilis supplementation (1.0 × 109 spores/kg of diet). Supplemental B. subtilis increased average body weight and average daily gain, as well as elevated villus height and villus height to crypt depth ratio of ileum in broilers. Multi-dimension analysis showed a certain degree of separation between the cecal microbiota from treatment and control groups. Increased Firmicutes abundance and reduced Bacteroidetes abundance in cecum were observed responded to B. subtilis addition, which also increased the abundances of Christensenellaceae and Caulobacteraceae, and simultaneously decreased the abundances of potentially harmful bacteria such as Vampirovibrio, Escherichia/Shigella and Parabacteroides. Network analysis signified that B. subtilis addition improved the interaction pattern within cecal microbiota of broilers, however, it exerted little influence on the metabolic pathways of cecal microbiota by comparison of the functional prediction of metagenomes. In conclusion, supplemental B. subtilis DSM 32315 improved growth performance and intestinal structure of broilers, which could be at least partially responsible by the manipulation of cecal microbial composition.
Collapse
Affiliation(s)
- Youbiao Ma
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiwei Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenming Zhang
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Jun Gao
- Evonik Degussa (China) Co. Ltd., Beijing, 100026, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Li X, Wu S, Li X, Yan T, Duan Y, Yang X, Duan Y, Sun Q, Yang X. Simultaneous Supplementation of Bacillus subtilis and Antibiotic Growth Promoters by Stages Improved Intestinal Function of Pullets by Altering Gut Microbiota. Front Microbiol 2018; 9:2328. [PMID: 30369910 PMCID: PMC6194165 DOI: 10.3389/fmicb.2018.02328] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Early nutrition of pullets could determine the overall development and the performance of laying hens. With the aim to reduce the use of antibiotic growth promoters (AGPs) and to maintain the growth and development of pullets, the effect of simultaneous short-termed supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) and Bacillus subtilis (B. subtilis) DSM17299 probiotic, as well as the effect of supplementation of AGPs (bacitracin zinc 20 mg/kg and colistin sulfate 4 mg/kg) during the whole period (0~16 weeks) on the overall growth and development, intestinal health, and caecal microbiota of pullets were evaluated. In the present study, a total of 630 one-day-old Hy-Line Brown layers were randomly distributed into five equal groups: including the AGPs group (supplemented with AGPs based on basal diets for 16 weeks), the BA3 group (supplemented with AGPs and B. subtilis based on basal diets for 3 weeks), the BA6 group (for 6 weeks), the BA12 group (for 12 weeks), and the BA16 group (for 16 weeks). When compared with the AGPs group, the supplementation of AGPs + B. subtilis for the first 3 weeks could maintain overall growth performance, including the average body weight, average feed intake, average daily weight gain, and feed conversion ratio of pullets at 3, 6, 12, and 16 weeks of age (P > 0.05). Meanwhile, the characteristic growth indexes in different periods were separately measured. At 3 weeks of age, the amylase activity in ileum was elevated (P = 0.028), and the length of tibia was up to the standard in the BA3 group. At 12 weeks of age, the increased villus height (P = 0.046) of jejunum, increased villus height (P = 0.023) and ratio of villus height to crypt depth (P = 0.012) of ileum, decreased crypt depth (P = 0.002) of ileum, and elevated mRNA levels of sucrase in jejunum (P < 0.05) were all identified in the BA3 group. At 16 weeks of age, the secreted immunoglobulin A (sIgA) content in the jejunum mucosa of the BA3 group was greater than the other groups (P < 0.001). Furthermore, altered intestinal microbiota was found in the BA3 group. Specifically, decreased amounts of Alistipes, Bacteroides, Odoribacter, Dehalobacterium, and Sutterella and increased amounts of Lactobacillus, Dorea, Ruminococcus, and Oscillospira were determined (P < 0.05) in the BA3 group at week 6. Meanwhile, decreased amounts of B. fragilis and C. leptum (P < 0.05) were identified in the BA3 group at week 12, which were found to be relevant for the improvement of intestinal morphology (P < 0.05) by Pearson analysis. In conclusion, simultaneous supplementation of AGP and B. subtilis for 0~3 weeks increased the relative abundance of beneficial microbiota in caecum in 0~6 weeks, then improved the intestinal morphology by elevating populations of B. fragilis and C. leptum in 7~16 weeks, and further upregulated sucrase expression and increased sIgA content in the intestinal mucosa in 13~16 weeks.
Collapse
Affiliation(s)
- Xueyuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tao Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongle Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulan Duan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Zhang B, Lv Z, Li Z, Wang W, Li G, Guo Y. Dietary l-arginine Supplementation Alleviates the Intestinal Injury and Modulates the Gut Microbiota in Broiler Chickens Challenged by Clostridium perfringens. Front Microbiol 2018; 9:1716. [PMID: 30108569 PMCID: PMC6080643 DOI: 10.3389/fmicb.2018.01716] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
Abstract
Our previous reports suggested that Dietary l-arginine supplementation attenuated gut injury of broiler chickens infected with Clostridium perfringens by enhancing intestinal immune responses, absorption and barrier function, but its effect on the gut microbiome of broiler chickens remains unclear. This experiment aimed at evaluating the effects of Dietary l-arginine supplementation on the gut bacterial community composition and function of broiler chickens challenged with C. perfringens. In total, 105 1-day-old male Arbor Acres broiler chickens were assigned to three groups: Control (CTL), C. perfringens-challenged (CP), and C. perfringens-challenged and fed diet supplemented with 0.3% l-arginine (ARGCP) groups. The challenge led to macroscopic and histomorphological gut lesions, decreased villus height and increased the number of Observed species, Shannon, Chao1 and ACE indices of ileal microbiota, whereas l-arginine addition reversed these changes. Moreover, the three treatments harbored distinct microbial communities (ANOSIM, P < 0.05). At the genus level, 24 taxa (e.g., Nitrosomonas spp., Coxiella spp., Ruegeria spp., and Thauera spp.) were significantly more abundant in CP group than in CTL group (P < 0.05), whereas the levels of 23 genera of them were significantly decreased by l-arginine supplementation (P < 0.05). The abundances of only 3 genera were different between CTL and ARGCP groups (P < 0.05). At the species level, the challenge promoted the relative abundance of Nitrospira sp. enrichment culture clone M1-9, Bradyrhizobium elkanii, Nitrospira bacterium SG8-3, and Pseudomonas veronii, which was reversed by l-arginine supplementation (P < 0.05). Furthermore, the challenge decreased the levels of Lactobacillus gasseri (P < 0.05). Predictive functional profiling of microbial communities by PICRUSt showed that compared with CP group, ARGCP group had enriched pathways relating to membrane transport, replication and repair, translation and nucleotide metabolism and suppressed functions corresponding to amino acid and lipid metabolisms (P < 0.05). The relative abundances of KEGG pathways in l-arginine-fed broilers were almost equal to those of the controls. In conclusion, l-arginine alleviated the gut injury and normalized the ileal microbiota of C. perfringens-challenged chickens to resemble that of unchallenged controls in terms of microbial composition and functionality.
Collapse
Affiliation(s)
- Beibei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhui Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|