1
|
Aryal A, Nwachukwu ID, Aryee ANA. Examining the impact of crops and foods biofortified with micronutrients on the gut microbiome. Food Res Int 2025; 209:116189. [PMID: 40253169 DOI: 10.1016/j.foodres.2025.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Micronutrient deficiencies (MNDs) impact more than three billion individuals worldwide, particularly those in impoverished and marginalized communities, leading to adverse long-term health consequences. Biofortification, which focusses on enhancing the nutrient density of food crops, presents a promising strategy to address this challenge. Recent studies involving both model organisms and human subjects have demonstrated that, beyond remedying common dietary insufficiencies, micronutrients can modulate the composition and functionality of the gut microbiome. The microbiota, in turn, utilize these micronutrients, facilitating digestion, synthesizing essential nutrients, and modulating immune responses, thereby establishing a bidirectional relationship known as the micronutrient-microbiome axis. Numerous studies have also documented significant variations in these interactions, highlighting the complex dynamics of the micronutrient-microbiome relationship. The composition and interactions of the microbiota have been investigated using various methodologies, including 16S rRNA gene sequencing, RT-PCR, metagenomics, and metabolomics. This review explores recent advancements in understanding the reciprocal relationship between micronutrient levels and the gut microbiome, emphasizing key findings that provide critical insights for the development of targeted dietary strategies aimed at alleviating MNDs and improving overall health.
Collapse
Affiliation(s)
- Asmita Aryal
- Department of Human Ecology (Food Science and Biotechnology Program), Delaware State University, Dover, DE, 19901, USA
| | - Ifeanyi D Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Alberta N A Aryee
- Department of Human Ecology (Food Science and Biotechnology Program), Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
2
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
3
|
Knez M, Stangoulis JCR. Dietary Zn deficiency, the current situation and potential solutions. Nutr Res Rev 2023; 36:199-215. [PMID: 37062532 DOI: 10.1017/s0954422421000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Zinc (Zn) deficiency is a worldwide problem, and this review presents an overview of the magnitude of Zn deficiency with a particular emphasis on present global challenges, current recommendations for Zn intake, and factors that affect dietary requirements. The challenges of monitoring Zn status are clarified together with the discussion of relevant Zn bioaccessibility and bioavailability issues. Modern lifestyle factors that may exacerbate Zn deficiency and new strategies of reducing its effects are presented. Biofortification, as a potentially useful strategy for improving Zn status in sensitive populations, is discussed. The review proposes potential actions that could deliver promising results both in terms of monitoring dietary and physiological Zn status as well as in alleviating dietary Zn deficiency in affected populations.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
- Center of Research Excellence in Nutrition and Metabolism, University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, 11000Belgrade, Serbia
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, AdelaideSA5001, Australia
| |
Collapse
|
4
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
5
|
Food-Grade Metal Oxide Nanoparticles Exposure Alters Intestinal Microbial Populations, Brush Border Membrane Functionality and Morphology, In Vivo ( Gallus gallus). Antioxidants (Basel) 2023; 12:antiox12020431. [PMID: 36829990 PMCID: PMC9952780 DOI: 10.3390/antiox12020431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Among food additive metal oxide nanoparticles (NP), titanium dioxide (TiO₂) and silicon dioxide (SiO₂) are commonly used as food coloring or anti-caking agents, while zinc oxide (ZnO) and iron oxide (Fe₂O₃) are added as antimicrobials and coloring agents, respectively, and can be used as micronutrient supplements. To elucidate potential perturbations associated with NP consumption on gastrointestinal health and development, this in vivo study utilized the Gallus gallus (broiler chicken) intraamniotic administration to assess the effects of physiologically relevant concentrations of food-grade metal oxide NP on brush border membrane (BBM) functionality, intestinal morphology and intestinal microbial populations in vivo. Six groups with 1 mL injection of the following treatments were utilized: non-injected, 18 MΩ DI H2O; 1.4 × 10-6 mg TiO2 NP/mL, 2.0 × 10-5 mg SiO2 NP/mL, 9.7 × 10-6 mg ZnO NP/mL, and 3.8 × 10-4 mg Fe2O3 NP/mL (n = 10 per group). Upon hatch, blood, cecum, and duodenum were collected to assess mineral (iron and zinc) metabolism, BBM functional, and pro-inflammatory-related protein gene expression, BBM morphometric analysis, and the relative abundance of intestinal microflora. Food additive NP altered mineral transporter, BBM functionality, and pro-inflammatory cytokine gene expression, affected intestinal BBM development and led to compositional shifts in intestinal bacterial populations. Our results suggest that food-grade TiO₂ and SiO₂ NP have the potential to negatively affect intestinal functionality; food-grade ZnO NP exposure effects were associated with supporting intestinal development or compensatory mechanisms due to intestinal damage, and food-grade Fe₂O₃ NP was found to be a possible option for iron fortification, though with potential alterations in intestinal functionality and health.
Collapse
|
6
|
Mazumdar T, Hänniger S, Shukla SP, Murali A, Bartram S, Heckel DG, Boland W. 8-HQA adjusts the number and diversity of bacteria in the gut microbiome of Spodoptera littoralis. Front Microbiol 2023; 14:1075557. [PMID: 36744087 PMCID: PMC9891463 DOI: 10.3389/fmicb.2023.1075557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Quinolinic carboxylic acids are known for their metal ion chelating properties in insects, plants and bacteria. The larval stages of the lepidopteran pest, Spodoptera littoralis, produce 8-hydroxyquinoline-2-carboxylic acid (8-HQA) in high concentrations from tryptophan in the diet. At the same time, the larval midgut is known to harbor a bacterial population. The motivation behind the work was to investigate whether 8-HQA is controlling the bacterial community in the gut by regulating the concentration of metal ions. Knocking out the gene for kynurenine 3-monooxygenase (KMO) in the insect using CRISPR/Cas9 eliminated production of 8-HQA and significantly increased bacterial numbers and diversity in the larval midgut. Adding 8-HQA to the diet of knockout larvae caused a dose-dependent reduction of bacterial numbers with minimal effects on diversity. Enterococcus mundtii dominates the community in all treatments, probably due to its highly efficient iron uptake system and production of the colicin, mundticin. Thus host factors and bacterial properties interact to determine patterns of diversity and abundance in the insect midgut.
Collapse
Affiliation(s)
- Tilottama Mazumdar
- Department of Zoology, Institute of Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shantanu P. Shukla
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Aishwarya Murali
- Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany,*Correspondence: David G. Heckel, ✉
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
7
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
8
|
Intraamniotic Administration (Gallus gallus) of Genistein Alters Mineral Transport, Intestinal Morphology, and Gut Microbiota. Nutrients 2022; 14:nu14173473. [PMID: 36079731 PMCID: PMC9458084 DOI: 10.3390/nu14173473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 12/28/2022] Open
Abstract
Genistein is an isoflavone naturally present in numerous staple food crops, such as soybeans and chickpeas. This study utilized the Gallus gallus intraamniotic administration procedure to assess genistein administration effects on trace mineral status, brush border membrane (BBM) functionality, intestinal morphology, and intestinal microbiome in vivo. Eggs were divided into five groups with 1 mL injection of the following treatments: no-injection, DI H2O, 5% inulin, and 1.25% and 2.5% genistein (n = 8 per group). Upon hatch, blood, cecum, small intestine, and liver were collected for assessment of hemoglobin, intestinal microflora alterations, intestinal morphometric assessment, and mRNA gene expression of relevant iron and zinc transporter proteins, respectively. This study demonstrated that intraamniotic administration of 2.5% genistein increased villus surface area, number of acidic goblet cells, and hemoglobin. Additionally, genistein exposure downregulated duodenal cytochrome B (DcytB) and upregulated hepcidin expression. Further, genistein exposure positively altered the composition and function of the intestinal microbiota. Our results suggest a physiological role for genistein administration in improving mineral status, favorably altering BBM functionality and development, positively modulating the intestinal microbiome, as well as improving physiological status.
Collapse
|
9
|
Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients 2022; 14:nu14153130. [PMID: 35956307 PMCID: PMC9370700 DOI: 10.3390/nu14153130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized H2O (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased Clostridium and NRCl treatment resulted in increased populations of Bifidobacterium, Lactobacillus, and E. coli. Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.
Collapse
|
10
|
Cheng J, Bar H, Tako E. Zinc Status Index (ZSI) for Quantification of Zinc Physiological Status. Nutrients 2021; 13:nu13103399. [PMID: 34684398 PMCID: PMC8541600 DOI: 10.3390/nu13103399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/22/2022] Open
Abstract
Zinc (Zn) deficiency is estimated to affect over one billion (17%) of the world’s population. Zn plays a key role in various cellular processes such as differentiation, apoptosis, and proliferation, and is used for vital biochemical and structural processes in the body. Widely used biomarkers of Zn status include plasma, whole blood, and urine Zn, which decrease in severe Zn deficiency; however, accurate assessment of Zn status, especially in mild to moderate deficiency, is difficult, as studies with these biomarkers are often contradictory and inconsistent. Thus, sensitive and specific biological markers of Zn physiological status are still needed. In this communication, we provide the Zn status index (ZSI) concept, which consists of a three-pillar formula: (1) the LA:DGLA ratio, (2) mRNA gene expression of Zn-related proteins, and (3) gut microbiome profiling to provide a clear assessment of Zn physiological status and degree of Zn deficiency with respect to assessing dietary Zn manipulation. Analysis of five selected studies found that with lower dietary Zn intake, erythrocyte LA:DGLA ratio increased, mRNA gene expression of Zn-related proteins in duodenal and liver tissues was altered, and gut microbiota populations differed, where the ZSI, a statistical model trained on data from these studies, was built to give an accurate estimation of Zn physiological status. However, the ZSI needs to be tested and refined further to determine its full potential.
Collapse
Affiliation(s)
- Jacquelyn Cheng
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
| | - Haim Bar
- Department of Statistics, University of Connecticut, Philip E. Austin Building, Storrs, CT 06269, USA;
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
11
|
|
12
|
Juste Contin Gomes M, Stampini Duarte Martino H, Tako E. Effects of Iron and Zinc Biofortified Foods on Gut Microbiota In Vivo ( Gallus gallus): A Systematic Review. Nutrients 2021; 13:E189. [PMID: 33435398 PMCID: PMC7827887 DOI: 10.3390/nu13010189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Dietary iron and zinc deficiencies are a global health concern. Bacteria that colonize the gastrointestinal tract depend on minerals to maintain their activities; thus, recent evidence suggests that biofortified foods can modulate the host's beneficial bacterial taxa. The current review analyzed the research data that linked between iron and zinc biofortified foods and gut microbiota modulation. The data analysis was based on the PRISMA guidelines and the data search was performed at PubMed, Web of Science, Science Direct, and Scopus databases for experimental studies published from January 2010 until December 2020. The five selected studies were conducted in an experimental in vivo model (Gallus gallus). The identified and discussed research showed positive effects of biofortified foods on the composition and function of the gut microbiota. Further, an increase in short chain fatty acids producing bacterial populations as Lactobacillus and Ruminococcus, and a decrease in potentially pathogenic bacteria as Streptococcus, Escherichia, and Enterobacter was identified due to the consumption of biofortified foods. In conclusion, biofortified foods may contribute to improved gut health without increasing the colonization of pathogenic bacteria. The dietary inclusion of approximately 50% of iron/zinc biofortified foods has a significant beneficial effect on the gut microbiota. Additional studies in humans and animal models are warranted to further establish the suggested effects on the intestinal microbiome. PROSPERO (CRD42020184221).
Collapse
Affiliation(s)
- Mariana Juste Contin Gomes
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; (M.J.C.G.); (H.S.D.M.)
| | | | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14850, USA
| |
Collapse
|
13
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
14
|
Beasley JT, Johnson AAT, Kolba N, Bonneau JP, Glahn RP, Ozeri L, Koren O, Tako E. Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus). Sci Rep 2020; 10:2297. [PMID: 32041969 PMCID: PMC7010747 DOI: 10.1038/s41598-020-57598-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/21/2019] [Indexed: 01/21/2023] Open
Abstract
Wheat flour iron (Fe) fortification is mandatory in 75 countries worldwide yet many Fe fortificants, such as Fe-ethylenediaminetetraacetate (EDTA), result in unwanted sensory properties and/or gastrointestinal dysfunction and dysbiosis. Nicotianamine (NA) is a natural chelator of Fe, zinc (Zn) and other metals in higher plants and NA-chelated Fe is highly bioavailable in vitro. In graminaceous plants NA serves as the biosynthetic precursor to 2' -deoxymugineic acid (DMA), a related Fe chelator and enhancer of Fe bioavailability, and increased NA/DMA biosynthesis has proved an effective Fe biofortification strategy in several cereal crops. Here we utilized the chicken (Gallus gallus) model to investigate impacts of NA-chelated Fe on Fe status and gastrointestinal health when delivered to chickens through intraamniotic administration (short-term exposure) or over a period of six weeks as part of a biofortified wheat diet containing increased NA, Fe, Zn and DMA (long-term exposure). Striking similarities in host Fe status, intestinal functionality and gut microbiome were observed between the short-term and long-term treatments, suggesting that the effects were largely if not entirely due to consumption of NA-chelated Fe. These results provide strong support for wheat with increased NA-chelated Fe as an effective biofortification strategy and uncover novel impacts of NA-chelated Fe on gastrointestinal health and functionality.
Collapse
Affiliation(s)
- Jesse T Beasley
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | | | - Nikolai Kolba
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Julien P Bonneau
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA
| | - Lital Ozeri
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York, 14853, USA.
| |
Collapse
|
15
|
Evolutionary Engineering of an Iron-Resistant Saccharomyces cerevisiae Mutant and Its Physiological and Molecular Characterization. Microorganisms 2019; 8:microorganisms8010043. [PMID: 31878309 PMCID: PMC7023378 DOI: 10.3390/microorganisms8010043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Iron plays an essential role in all organisms and is involved in the structure of many biomolecules. It also regulates the Fenton reaction where highly reactive hydroxyl radicals occur. Iron is also important for microbial biodiversity, health and nutrition. Excessive iron levels can cause oxidative damage in cells. Saccharomyces cerevisiae evolved mechanisms to regulate its iron levels. To study the iron stress resistance in S. cerevisiae, evolutionary engineering was employed. The evolved iron stress-resistant mutant “M8FE” was analysed physiologically, transcriptomically and by whole genome re-sequencing. M8FE showed cross-resistance to other transition metals: cobalt, chromium and nickel and seemed to cope with the iron stress by both avoidance and sequestration strategies. PHO84, encoding the high-affinity phosphate transporter, was the most down-regulated gene in the mutant, and may be crucial in iron-resistance. M8FE had upregulated many oxidative stress response, reserve carbohydrate metabolism and mitophagy genes, while ribosome biogenesis genes were downregulated. As a possible result of the induced oxidative stress response genes, lower intracellular oxidation levels were observed. M8FE also had high trehalose and glycerol production levels. Genome re-sequencing analyses revealed several mutations associated with diverse cellular and metabolic processes, like cell division, phosphate-mediated signalling, cell wall integrity and multidrug transporters.
Collapse
|
16
|
Soluble extracts from carioca beans (Phaseolus vulgaris L.) affect the gut microbiota and iron related brush border membrane protein expression in vivo (Gallus gallus). Food Res Int 2019; 123:172-180. [DOI: 10.1016/j.foodres.2019.04.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 01/10/2023]
|
17
|
An In Vivo ( Gallus gallus) Feeding Trial Demonstrating the Enhanced Iron Bioavailability Properties of the Fast Cooking Manteca Yellow Bean ( Phaseolus vulgaris L.). Nutrients 2019; 11:nu11081768. [PMID: 31374868 PMCID: PMC6724231 DOI: 10.3390/nu11081768] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022] Open
Abstract
The common dry bean (Phaseolus vulgaris L.) is a globally produced pulse crop and an important source of micronutrients for millions of people across Latin America and Africa. Many of the preferred black and red seed types in these regions have seed coat polyphenols that inhibit the absorption of iron. Yellow beans are distinct from other market classes because they accumulate the antioxidant kaempferol 3-glucoside in their seed coats. Due to their fast cooking tendencies, yellow beans are often marketed at premium prices in the same geographical regions where dietary iron deficiency is a major health concern. Hence, this study compared the iron bioavailability of three faster cooking yellow beans with contrasting seed coat colors from Africa (Manteca, Amarillo, and Njano) to slower cooking white and red kidney commercial varieties. Iron status and iron bioavailability was assessed by the capacity of a bean based diet to generate and maintain total body hemoglobin iron (Hb-Fe) during a 6 week in vivo (Gallus gallus) feeding trial. Over the course of the experiment, animals fed yellow bean diets had significantly (p ≤ 0.05) higher Hb-Fe than animals fed the white or red kidney bean diet. This study shows that the Manteca yellow bean possess a rare combination of biochemical traits that result in faster cooking times and improved iron bioavailability. The Manteca yellow bean is worthy of germplasm enhancement to address iron deficiency in regions where beans are consumed as a dietary staple.
Collapse
|
18
|
Rothrock MJ, Locatelli A. Importance of Farm Environment to Shape Poultry-Related Microbiomes Throughout the Farm-to-Fork Continuum of Pasture-Raised Broiler Flocks. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Wang X, Kolba N, Liang J, Tako E. Alterations in gut microflora populations and brush border functionality following intra-amniotic administration (Gallus gallus) of wheat bran prebiotic extracts. Food Funct 2019; 10:4834-4843. [DOI: 10.1039/c9fo00836e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wheat bran is the by-product of milling wheat flour which is one of the richest sources of dietary fiber, and cellulase that can be used for increasing the soluble dietary fiber.
Collapse
Affiliation(s)
- Xuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Nikolai Kolba
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| | - Jianfen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Elad Tako
- USDA-ARS
- Robert W. Holley Center for Agriculture and Health
- Cornell University
- Ithaca
- USA
| |
Collapse
|
20
|
Dias DM, Kolba N, Binyamin D, Ziv O, Regini Nutti M, Martino HSD, Glahn RP, Koren O, Tako E. Iron Biofortified Carioca Bean ( Phaseolus vulgaris L.)-Based Brazilian Diet Delivers More Absorbable Iron and Affects the Gut Microbiota In Vivo ( Gallus gallus). Nutrients 2018; 10:E1970. [PMID: 30551574 PMCID: PMC6316146 DOI: 10.3390/nu10121970] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
Biofortification aims to improve the micronutrient concentration and bioavailability in staple food crops. Unlike other strategies utilized to alleviate Fe deficiency, studies of the gut microbiota in the context of Fe biofortification are scarce. In this study, we performed a 6-week feeding trial in Gallus gallus (n = 15), aimed to investigate the Fe status and the alterations in the gut microbiome following the administration of Fe-biofortified carioca bean based diet (BC) versus a Fe-standard carioca bean based diet (SC). The tested diets were designed based on the Brazilian food consumption survey. Two primary outcomes were observed: (1) a significant increase in total body Hb-Fe values in the group receiving the Fe-biofortified carioca bean based diet; and (2) changes in the gut microbiome composition and function were observed, specifically, significant changes in phylogenetic diversity between treatment groups, as there was increased abundance of bacteria linked to phenolic catabolism, and increased abundance of beneficial SCFA-producing bacteria in the BC group. The BC group also presented a higher intestinal villi height compared to the SC group. Our results demonstrate that the Fe-biofortified carioca bean variety was able to moderately improve Fe status and to positively affect the intestinal functionality and bacterial populations.
Collapse
Affiliation(s)
- Desirrê Morais Dias
- Department of Nutrition and Health, Federal University of Viçosa, 36570000 Viçosa, Minas Gerais, Brazil.
- Department of Food Science and Technology, Cornell University, Ithaca, NY 14850, USA.
| | - Nikolai Kolba
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14850, USA.
| | - Dana Binyamin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | | | | | - Raymond P Glahn
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14850, USA.
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
21
|
Biasato I, Ferrocino I, Biasibetti E, Grego E, Dabbou S, Sereno A, Gai F, Gasco L, Schiavone A, Cocolin L, Capucchio MT. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res 2018; 14:383. [PMID: 30514391 PMCID: PMC6278000 DOI: 10.1186/s12917-018-1690-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
Abstract
Background Gut health in poultry depends on the balance between the host, intestinal microbiota, intestinal microscopic features and diet. The effects of insect meal (a promising alternative protein source for poultry feed) on chicken gut morphology have recently been reported, but no data about intestinal microbiota and mucin composition modulation are available. The present study evaluated the effects of dietary Tenebrio molitor (TM) meal inclusion on gut health of free-range chickens by intestinal microbiota, morphology and mucin composition characterization. Results One hundred forty female medium-growing hybrids were divided into 2 dietary treatments (control feed [C] and 7.5% TM inclusion, with 5 replicate pens/treatment and 14 birds/pen) and slaughtered at 97 days of age (2 birds/pen for a total of 10 chickens/diet). The gut microbiota assessment on cecal content samples by 16S rRNA amplicon based sequencing showed higher alpha (Shannon, P < 0.05) and beta (Adonis and ANOSIM, P < 0.001) diversity in birds fed TM diet than C. In comparison with C group, TM birds displayed significant increase and decrease, respectively, of the relative abundances of Firmicutes and Bacteroidetes phyla, with higher Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05). The relative abundance of Clostridium, Oscillospira, Ruminococcus, Coprococcus and Sutterella genera was higher in TM chickens than C (FDR < 0.05). On the contrary, TM birds displayed significant decrease of the relative abundance of Bacteroides genus compared to the C group (FDR < 0.05). Gut morphology evaluation by morphometric analysis on small intestine revealed similar villus height, crypt depth and villus height to crypt depth ratio between C and TM birds. Characterization of gut mucin composition by periodic-acid Schiff, Alcian Blue pH 2.5 and high iron diamine staining on small and large intestine showed unaffected mucin staining intensity in TM chickens when compared to C group. Conclusions Dietary TM meal inclusion may positively modulate the gut microbiota of the free-range chickens without influencing the intestinal morphology and mucin composition. Since the rapid growth of chickens directly depends on morphological and functional integrity of the digestive tract, the gut health assessment by a post mortem multidisciplinary approach appears to be fundamental. Electronic supplementary material The online version of this article (10.1186/s12917-018-1690-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilaria Biasato
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Elena Biasibetti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Sihem Dabbou
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Alessandra Sereno
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.,Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy. .,Institute of Multidisciplinary Research on Sustainability, University of Turin, Via Accademia Albertina 13, 10100, Turin, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
22
|
Reed S, Knez M, Uzan A, Stangoulis JCR, Glahn RP, Koren O, Tako E. Alterations in the Gut ( Gallus gallus) Microbiota Following the Consumption of Zinc Biofortified Wheat ( Triticum aestivum)-Based Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6291-6299. [PMID: 29871482 DOI: 10.1021/acs.jafc.8b01481] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structure and function of cecal microbiota following the consumption of a zinc (Zn) biofortified wheat diet was evaluated in a well-studied animal model of human nutrition ( Gallus gallus) during a six-week efficacy trial. Using 16S rRNA gene sequencing, a significant increase in β- but not α-microbial diversity was observed in the animals receiving the Zn biofortified wheat diet, relative to the control. No significant taxonomic differences were found between the two groups. Linear discriminant analysis revealed a group of metagenomic biomarkers that delineated the Zn replete versus Zn deficient phenotypes, such that enrichment of lactic acid bacteria and concomitant increases in Zn-dependent bacterial metabolic pathways were observed in the Zn biofortified group, and expansion of mucin-degraders and specific bacterial groups able to participate in maintaining host Zn homeostasis were observed in the control group. Additionally, the Ruminococcus genus appeared to be a key player in delineating the Zn replete microbiota from the control group, as it strongly predicts host Zn adequacy. Our data demonstrate that the gut microbiome associated with Zn biofortified wheat ingestion is unique and may influence host Zn status. Microbiota analysis in biofortification trials represents a crucial area for study as Zn biofortified diets are increasingly delivered on a population-wide scale.
Collapse
Affiliation(s)
- Spenser Reed
- College of Medicine , University of Arizona , Tucson , Arizona 85724 , United States
- USDA/ARS, Robert W. Holley Center for Agriculture and Health , Cornell University , Ithaca , New York 14853 , United States
| | - Marija Knez
- College of Science and Engineering , Flinders University , Adelaide South Australia 5001 , Australia
| | - Atara Uzan
- Azrieli Faculty of Medicine , Bar-Ilan University , Safed 1311502 , Israel
| | - James C R Stangoulis
- College of Science and Engineering , Flinders University , Adelaide South Australia 5001 , Australia
| | - Raymond P Glahn
- USDA/ARS, Robert W. Holley Center for Agriculture and Health , Cornell University , Ithaca , New York 14853 , United States
| | - Omry Koren
- Azrieli Faculty of Medicine , Bar-Ilan University , Safed 1311502 , Israel
| | - Elad Tako
- USDA/ARS, Robert W. Holley Center for Agriculture and Health , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
23
|
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith AH, Siu-Ting K, Hughes M, Rubino F, Friedersdorff M, Creevey CJ. CowPI: A Rumen Microbiome Focussed Version of the PICRUSt Functional Inference Software. Front Microbiol 2018; 9:1095. [PMID: 29887853 PMCID: PMC5981159 DOI: 10.3389/fmicb.2018.01095] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Metataxonomic 16S rDNA based studies are a commonplace and useful tool in the research of the microbiome, but they do not provide the full investigative power of metagenomics and metatranscriptomics for revealing the functional potential of microbial communities. However, the use of metagenomic and metatranscriptomic technologies is hindered by high costs and skills barrier necessary to generate and interpret the data. To address this, a tool for Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was developed for inferring the functional potential of an observed microbiome profile, based on 16S data. This allows functional inferences to be made from metataxonomic 16S rDNA studies with little extra work or cost, but its accuracy relies on the availability of completely sequenced genomes of representative organisms from the community being investigated. The rumen microbiome is an example of a community traditionally underrepresented in genome and sequence databases, but recent efforts by projects such as the Global Rumen Census and Hungate 1000 have resulted in a wide sampling of 16S rDNA profiles and almost 500 fully sequenced microbial genomes from this environment. Using this information, we have developed “CowPI,” a focused version of the PICRUSt tool provided for use by the wider scientific community in the study of the rumen microbiome. We evaluated the accuracy of CowPI and PICRUSt using two 16S datasets from the rumen microbiome: one generated from rDNA and the other from rRNA where corresponding metagenomic and metatranscriptomic data was also available. We show that the functional profiles predicted by CowPI better match estimates for both the meta-genomic and transcriptomic datasets than PICRUSt, and capture the higher degree of genetic variation and larger pangenomes of rumen organisms. Nonetheless, whilst being closer in terms of predictive power for the rumen microbiome, there were differences when compared to both the metagenomic and metatranscriptome data and so we recommend, where possible, functional inferences from 16S data should not replace metagenomic and metatranscriptomic approaches. The tool can be accessed at http://www.cowpi.org and is provided to the wider scientific community for use in the study of the rumen microbiome.
Collapse
Affiliation(s)
- Toby J Wilkinson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon A Huws
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Joan E Edwards
- Animal Nutrition Group, Wageningen University and Research, Wageningen, Netherlands
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Karen Siu-Ting
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Martin Hughes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Francesco Rubino
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.,Animal and Bioscience Research Department, Teagasc, Grange, Ireland
| | - Maximillian Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J Creevey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|