1
|
Hilsmann L, Wolf L, Thamm M, Vandenabeele S, Scheiner R. Towards a Stable Host-Parasite Relationship Between Honey Bees and Varroa Mites Through Innovative Beekeeping. Environ Microbiol 2025; 27:e70101. [PMID: 40311603 PMCID: PMC12045652 DOI: 10.1111/1462-2920.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Varroa destructor is a major factor in declining honey bee health worldwide. Conventional beekeeping involves multiple Varroa treatments, limiting bees' ability to adapt to the mite. To foster a stable host-parasite relationship, we tested an "innovative" beekeeping method with fewer Varroa treatments, focusing on its impact on honey bee health. We compared Varroa mite fall, immune responses, and seasonal dynamics of Deformed Wing Virus-B (DWV-B) in colonies managed under conventional and innovative practices. Viral loads of newly emerged honey bees and foragers were quantified three times during the season. Varroa mite fall was monitored and immune responses were assessed. In spring, bees managed with the innovative method had significantly lower haemocyte counts 48 h after emergence. DWV-B loads did not differ between groups in spring but were higher in summer in bees managed with the innovative method. After summer treatment, DWV-B loads and Varroa mite fall were similar between groups. Despite higher numbers in Varroa mite fall and DWV-B loads in summer, the innovative method reduced both by fall, ensuring healthy winter bee production and colony survival. These findings suggest that reducing Varroa treatments can support a stable host-parasite relationship while minimising negative effects on honey bee health.
Collapse
Affiliation(s)
- Lioba Hilsmann
- Behavioral Physiology and SociobiologyBiocenter, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Lena Wolf
- Behavioral Physiology and SociobiologyBiocenter, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Markus Thamm
- Behavioral Physiology and SociobiologyBiocenter, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Sylvie Vandenabeele
- Behavioral Physiology and SociobiologyBiocenter, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| | - Ricarda Scheiner
- Behavioral Physiology and SociobiologyBiocenter, Julius‐Maximilians‐Universität WürzburgWürzburgGermany
| |
Collapse
|
2
|
Oz ME, Avci O, Dogan M. Factors influencing the prevalence of acute bee paralysis virus in Apis mellifera and insights into its phylogenetic relationships. Virus Genes 2025; 61:220-229. [PMID: 39934593 DOI: 10.1007/s11262-025-02135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Acute bee paralysis virus (ABPV) is a notable pathogen frequently detected in managed honeybee (Apis mellifera) colonies. Although infections are often covert, they can lead to severe outcomes in the presence of Varroa destructor infestations. This study aims to evaluate the prevalence of ABPV and its correlation with a range of biotic and abiotic stressors in managed beehives located in the Central Anatolia and Mediterranean Regions of Türkiye during the spring-summer and autumn seasons of 2021. ABPV was identified in 38.6% of the samples (27/70) using real-time RT-PCR. The high prevalence observed was linked to Varroa destructor infestations, elevated temperatures and dry climatic conditions, migratory beekeeping practices, and disruptions in colony management during the COVID-19 pandemic. Phylogenetic relationships among ABPV strains were elucidated through partial sequencing of the capsid and RNA-dependent RNA polymerase protein coding genes, employing maximum likelihood tree construction with the Tamura 3-parameter model. Turkish ABPV strains clustered into a distinct subclade, sharing 98.4-99% nucleotide identity with European strains, indicative of a monophyletic origin and geographic segregation at the regional or continental level. These findings highlight the necessity for robust surveillance and research programs to monitor ABPV prevalence and mitigate its detrimental effects on colony health and productivity. Additionally, the phylogenetic insights provided by this study enhance our understanding of the geographic distribution and evolutionary dynamics of ABPV strains, offering critical information for future molecular epidemiological research and apicultural management strategies.
Collapse
Affiliation(s)
- Mustafa Emin Oz
- Molecular Microbiology Laboratory, Konya Veterinary Control Institute, 42090, Konya, Turkey.
| | - Oguzhan Avci
- Department of Virology, Faculty of Veterinary Medicine, University of Selcuk, 42090, Konya, Turkey
| | - Muge Dogan
- Molecular Microbiology Laboratory, Konya Veterinary Control Institute, 42090, Konya, Turkey
| |
Collapse
|
3
|
Nicewicz Ł, Nicewicz AW, Nakonieczny M. Vitellogenins Level as a Biomarker of the Honeybee Colony Strength in Urban and Rural Conditions. INSECTS 2024; 16:25. [PMID: 39859607 PMCID: PMC11766442 DOI: 10.3390/insects16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The study aimed to verify whether urban beekeeping affects the strength of the honeybee (Apis mellifera) colonies from urban apiaries and the variability of the crucial for their health and long-life protein-vitellogenins. For this purpose, honeybees were kept in two locations-in a city apiary on a roof in the city center and in agricultural areas. Each of the apiaries consisted of six colonies, with the sister queens artificially inseminated with semen from the same pool of drones. The bee colony strength and the variability of the vitellogenins in various tissues in foragers from both apiaries were analyzed from May to August. Here, we revealed that colonies from the urban apiary were more abundant than those from the rural apiary. We observed the compensation mechanism during periods of worker deficiency in the bee colony, which was expressed as a change in the Vgs level in the forager tissues. Using the vitellogenin level as a biomarker of the honeybee colony strength can predict the fate of colonies, especially those with low numbers. The high level of Vgs can be a candidate for bee colony depopulation biomarker.
Collapse
Affiliation(s)
| | - Agata Wanda Nicewicz
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmen-tal Protection, Research Team of Animal Physiology and Ecotoxicology, Bankowa 9, 40-007 Katowice, Poland; (Ł.N.); (M.N.)
| | | |
Collapse
|
4
|
Glinski DA, Purucker ST, Minucci JM, Richardson RT, Lin CH, Johnson RM, Henderson WM. Analysis of contaminant residues in honey bee hive matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176329. [PMID: 39304159 PMCID: PMC11815508 DOI: 10.1016/j.scitotenv.2024.176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Pollinators provide ecological services essential to maintaining our food supply and propagating natural habitats. Populations are in decline due to environmental stressors including pesticides, pathogens, and habitat loss. To better understand the impacts of pesticide exposures on colony health, a field survey in Ohio, USA was conducted to monitor the potential contamination of honey bee colonies by pesticides. Apiaries (n = 10) were situated across an agricultural gradient and samples were collected over a 4-week period encompassing corn planting. Dead bees from entrance traps (DBT), pollen, and in-hive (IH) matrices including bee bread, honey, larvae, and nurse bees were analyzed for a whole suite of pesticides. Out of 210 pesticides targeted, 68 residues were quantified across 306 samples. Neonicotinoids, miticides, and fungicides were the dominant pesticide classes identified throughout all the matrix types. Neonicotinoids were detected at higher concentrations and at higher frequencies compared to fungicides, specifically in field pollen samples. DBT also contained high concentrations of these two contaminant classes, although detection frequencies for neonicotinoids were typically lower. Overall, herbicides and non‑neonicotinoid insecticides were found with low frequency and at low concentrations. For most pesticide classes, trends for the mean concentrations were DBT > IH nurse bees > field pollen > IH larvae > IH honey. Pesticides were detected in 100 % of samples with concentrations ranging from 0.01 ppb (diphenylamine) to 2790 ppb (clothianidin). All samples were contaminated with at least two pesticide residues, while 19 samples presented over ten detects and maximum detections of 20 in DBT. Pesticide residues were positively correlated with agricultural gradients across sites and sampling periods. These findings reveal that foraging leads to the exposure of the entire colony to a wide range of pesticides. Moreover, residues determined in DBT serve as an effective proxy for monitoring hive matrices with significantly less disturbance to active hives.
Collapse
Affiliation(s)
- Donna A Glinski
- U.S. Environmental Protection Agency, ORD/CEMM/EPD, Athens, GA 30605, USA
| | - S Thomas Purucker
- U.S. Environmental Protection Agency, ORD/CCTE/GLTED, Research Triangle Park, NC 27709, USA
| | - Jeffrey M Minucci
- U.S. Environmental Protection Agency, ORD/CPHEA/PHESD, Research Triangle Park, NC 27709, USA
| | | | - Chia-Hua Lin
- Department of Entomology, The Ohio State University, Rothenbuhler Honey Bee Research Laboratory, Columbus, OH 43210, USA
| | - Reed M Johnson
- Department of Entomology, The Ohio State University-Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | | |
Collapse
|
5
|
Boeing GANS, Provase M, Tsukada E, Salla RF, Waldman WR, Abdalla FC. Spray paint-derived microplastics and incorporated substances as ecotoxicological contaminants in the neotropical bumblebee Bombus atratus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104586. [PMID: 39510216 DOI: 10.1016/j.etap.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
While bumblebees may be exposed to microplastics (MPs), the effects on them are not well studied. Therefore, in this research, we assessed the cytotoxicity of pristine and photodegraded spray paint-derived MPs on the midgut, Malpighian tubules, and hepato-nephrocitic system cells of Bombus atratus workers exposed to 50 mg.L-1 MPs for 96 hours. Histological and histochemical analyses revealed that pristine MPs caused subtle cellular changes, while the exposure to photodegraded MPs led to significant vacuolization, nuclear condensation, and pyknosis. These effects are possibly linked to the release of potentially toxic elements (PTEs) like Copper, Manganese, and Iron from photodegraded MPs, which exceeded Brazil's CONAMA safety limits. Photodegraded MPs also reduced body weight, disrupting homeostasis and potentially decreasing bumblebee's fitness. These findings highlight the importance of studying the toxicity of environmentally realistic MPs, as plastic composition and weathering significantly influence their harmful effects.
Collapse
Affiliation(s)
- Guilherme Andrade Neto Schmitz Boeing
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil.
| | - Michele Provase
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Elisabete Tsukada
- Post-graduate Program in Animal Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel F Salla
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Walter Ruggeri Waldman
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| |
Collapse
|
6
|
Akpınar RK, Gürler AT, Bölükbaş CS, Kaya S, Arslan S, Aydın C, Türlek ŞÖ, Çelik SN, Beyazıt A, Öncel T, Erol U, Çiftci AT, Bastem Z, Ünal HH, Şenel M, Bozdeveci A, Karaoğlu ŞA, Yaldız M, Güven G, Küçükoğlu B, Kurt M. Prevalence and Phylogenetic Network Analysis of Nosema apis and Nosema ceranae Isolates from Honeybee Colonies in Türkiye. Acta Parasitol 2024; 69:1538-1546. [PMID: 39164540 DOI: 10.1007/s11686-024-00887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Nosemosis is a disease that infects both Western honeybees (Apis mellifera L.) and Asian honeybees (Apis cerana) and causes colony losses and low productivity worldwide. In order to control nosemosis, it is important to determine the distribution and prevalence of this disease agent in a particular region. For this purpose, a national study was conducted to assess the prevalence of Nosema ceranae and N. apis throughout Türkiye, to perform network analyses of the parasites, and to determine the presence of nosemosis. METHODS In this study which aimed to assess the prevalence of N. apis and N. ceranae in different colony types and regions where beekeeping is intensive in Türkiye, specimens were collected from hives with no clinical signs. RESULTS A total of 1194 Western honeybee colonies in 400 apiaries from 40 provinces of Türkiye were examined by microscopic and molecular techniques. Nosemosis was found in all of 40 provinces. The mean prevalence ratio was 64.3 ± 3.0, with 95% CI in apiaries and 40.5 ± 2.9, 95% CI in hives. Nosema ceranae DNA was detected in all of positive hives, while N. ceranae and N. apis co-infection was detected in only four colonies. CONCLUSION This study showed that nosemosis has spread to all provinces, and it is common in every region of Türkiye. All of the N. ceranae or N. apis samples examined were 100% identical within themselves. Network analysis showed that they were within largest haplotype reported worldwide.
Collapse
Affiliation(s)
- Rahşan Koç Akpınar
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye.
| | - Ali Tümay Gürler
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Cenk Soner Bölükbaş
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Selma Kaya
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Serhat Arslan
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, 55200, Türkiye
| | - Coşkun Aydın
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Şakir Önder Türlek
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Sema Nur Çelik
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Ayşen Beyazıt
- T.C. Ministry of Agriculture and Forestry, İzmir Bornova Veterinary Control Institute, İzmir, 35040, Türkiye
| | - Taraneh Öncel
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Ufuk Erol
- Department of Parasitology, Faculty of Veterinary Medicine, University of Cumhuriyet, Sivas, 58140, Türkiye
| | - Ayşe Türkan Çiftci
- T.C. Ministry of Agriculture and Forestry, Elazığ Veterinary Control Institute, Elazığ, Türkiye
| | - Zekai Bastem
- T.C. Ministry of Agriculture and Forestry, Erzurum Veterinary Control Institute, Erzurum, Türkiye
| | - Hasan Hüseyin Ünal
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Mesut Şenel
- T.C. Ministry of Agriculture and Forestry, Istanbul Pendik Veterinary Control Institute, Istanbul, Türkiye
| | - Arif Bozdeveci
- Department of Biology, Faculty of Sciences and Arts, Recep Tayyip Erdoğan University, Rize, 53100, Türkiye
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Sciences and Arts, Recep Tayyip Erdoğan University, Rize, 53100, Türkiye
| | - Murat Yaldız
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Gökhan Güven
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| | - Bilal Küçükoğlu
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye.
| | - Mitat Kurt
- T.C. Ministry of Agriculture and Forestry, Honeybee Diseases Laboratory, Samsun Veterinary Control Institute, Samsun, 55200, Türkiye
| |
Collapse
|
7
|
Gonzalez FN, Raticelli F, Ferrufino C, Fagúndez G, Rodriguez G, Miño S, Dus Santos MJ. Detection and characterization of Deformed Wing Virus (DWV) in apiaries with stationary and migratory management in the province of Entre Ríos, Argentina. Sci Rep 2024; 14:16747. [PMID: 39033233 PMCID: PMC11271310 DOI: 10.1038/s41598-024-67264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
In Argentina, migratory activity in search of floral diversity has become a common approach to maximizing honey production. The Entre Ríos province possesses a floral diversity that allows beekeepers to perform migratory or stationary management. Beyond the impact caused by transhumance, migratory colonies in this province start and end the season in monoculture areas. To study the effect of these practices on viral infection, we assayed for the presence, abundance and genetic characterization of the Deformed Wing Virus (DWV) in honey bees from apiaries with both types of management. In migratory apiaries, DWV was detectable in 86.2% of the colonies at the beginning of the season (September 2018), and 66% at the end of the season (March 2019). On the other hand, DWV was detected in 44.11% and 53.12% of stationary samples, at the beginning and the end of the season, respectively. Sequence analysis from migratory and stationary colonies revealed that all samples belonged to DWV-A type. The highest viral loads were detected in migratory samples collected in September. Higher DWV presence and abundance were associated with migratory management and the sampling time. Based on our findings we propose that the benefit of migration to wild flowering areas can be dissipated when the bee colonies end the season with monoculture.
Collapse
Affiliation(s)
- F N Gonzalez
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - F Raticelli
- Laboratorio de Especialidades Productivas de Maciá (LEPMA), Ecología y Medio Ambiente, Secretaría de Producción, Municipio de Gobernador Maciá, Entre Ríos, Argentina
| | - C Ferrufino
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina
| | - G Fagúndez
- Laboratorio de Actuopalinología, CICYTTP (CONICET - UADER), Diamante, Entre Ríos, Argentina
| | - G Rodriguez
- EEA Hilario Ascasubi, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 3, Km 794, Hilario Ascasubi, Buenos Aires, Argentina
| | - S Miño
- EEA Cerro Azul, Instituto Nacional de Tecnología Agropecuaria, Ruta Nacional 14, Km 836, Cerro Azul, Misiones, Argentina
| | - M J Dus Santos
- Instituto de Virología e Innovaciones Tecnológicas (IVIT), CICVyA, Instituto Nacional de Tecnología Agropecuaria. De las Cabañas y De los Reseros s/n, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Lopes AR, Low M, Martín-Hernández R, de Miranda JR, Pinto MA. Varroa destructor shapes the unique viral landscapes of the honey bee populations of the Azores archipelago. PLoS Pathog 2024; 20:e1012337. [PMID: 38959190 PMCID: PMC11221739 DOI: 10.1371/journal.ppat.1012337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
The worldwide dispersal of the ectoparasitic mite Varroa destructor from its Asian origins has fundamentally transformed the relationship of the honey bee (Apis mellifera) with several of its viruses, via changes in transmission and/or host immunosuppression. The extent to which honey bee-virus relationships change after Varroa invasion is poorly understood for most viruses, in part because there are few places in the world with several geographically close but completely isolated honey bee populations that either have, or have not, been exposed long-term to Varroa, allowing for separate ecological, epidemiological, and adaptive relationships to develop between honey bees and their viruses, in relation to the mite's presence or absence. The Azores is one such place, as it contains islands with and without the mite. Here, we combined qPCR with meta-amplicon deep sequencing to uncover the relationship between Varroa presence, and the prevalence, load, diversity, and phylogeographic structure of eight honey bee viruses screened across the archipelago. Four viruses were not detected on any island (ABPV-Acute bee paralysis virus, KBV-Kashmir bee virus, IAPV-Israeli acute bee paralysis virus, BeeMLV-Bee macula-like virus); one (SBV-Sacbrood virus) was detected only on mite-infested islands; one (CBPV-Chronic bee paralysis virus) occurred on some islands, and two (BQCV-Black queen cell virus, LSV-Lake Sinai virus,) were present on every single island. This multi-virus screening builds upon a parallel survey of Deformed wing virus (DWV) strains that uncovered a remarkably heterogeneous viral landscape featuring Varroa-infested islands dominated by DWV-A and -B, Varroa-free islands naïve to DWV, and a refuge of the rare DWV-C dominating the easternmost Varroa-free islands. While all four detected viruses investigated here were affected by Varroa for one or two parameters (usually prevalence and/or the Richness component of ASV diversity), the strongest effect was observed for the multi-strain LSV. Varroa unambiguously led to elevated prevalence, load, and diversity (Richness and Shannon Index) of LSV, with these results largely shaped by LSV-2, a major LSV strain. Unprecedented insights into the mite-virus relationship were further gained from implementing a phylogeographic approach. In addition to enabling the identification of a novel LSV strain that dominated the unique viral landscape of the easternmost islands, this approach, in combination with the recovered diversity patterns, strongly suggests that Varroa is driving the evolutionary change of LSV in the Azores. This study greatly advances the current understanding of the effect of Varroa on the epidemiology and adaptive evolution of these less-studied viruses, whose relationship with Varroa has thus far been poorly defined.
Collapse
Affiliation(s)
- Ana R. Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo, Spain
| | | | - M. Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
9
|
Zhang Z, Villalobos EM, Nikaido S, Martin SJ. Seasonal Variability in the Prevalence of DWV Strains in Individual Colonies of European Honeybees in Hawaii. INSECTS 2024; 15:219. [PMID: 38667349 PMCID: PMC11050578 DOI: 10.3390/insects15040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
The most prevalent viral pathogen of honeybees is Deformed Wing Virus (DWV) and its two most widely studied and common master-variants are DWV-A and DWV-B. The prevalence of DWV variants in the UK and in the US is changing, with the prevalence of the DWV-A strain declining and DWV-B increasing over time. In 2012, only DWV-A was detected on the Hawaiian Islands of Oahu. In this study we focused on a colony-level survey of DWV strains in a single apiary and examined the prevalence of DWV variants over the course of two years. In 2018 and 2019, a total of 16 colonies underwent viral testing in January, May, and September. Of those 16 colonies, four were monitored in both 2018 and 2019. Individual colonies showed variability of DWV master variants throughout the sampling period. DWV-A was consistently detected; however, the detection of DWV-B was variable across time in individual colonies. Ultimately, this study demonstrated a seasonal variation in both viral prevalence and load for DWV-B, providing a perspective on the dynamic nature of DWV master variants emerging in Hawaii.
Collapse
Affiliation(s)
- Zhening Zhang
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Ethel M. Villalobos
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Scott Nikaido
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA; (E.M.V.); (S.N.)
| | - Stephen J. Martin
- School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK;
| |
Collapse
|
10
|
Nguyen TT, Yoo MS, Truong AT, Youn SY, Kim DH, Lee SJ, Yoon SS, Cho YS. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea. PLoS One 2024; 19:e0299558. [PMID: 38502683 PMCID: PMC10950237 DOI: 10.1371/journal.pone.0299558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So Youn Youn
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
11
|
Mukogawa B, Nieh JC. The Varroa paradox: infestation levels and hygienic behavior in feral scutellata-hybrid and managed Apis mellifera ligustica honey bees. Sci Rep 2024; 14:1148. [PMID: 38212601 PMCID: PMC10784517 DOI: 10.1038/s41598-023-51071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
The Varroa destructor mite is a parasitic threat to managed and feral honey bee colonies around the world. Beekeepers use miticides to eliminate Varroa in commercial hives, but these chemicals can diminish bee health and increase miticide resistance. In contrast, feral honey bees have developed multiple ways to counteract mites without chemical treatment. We compared mite levels, grooming habits, and mite-biting behavior between feral Africanized honey bees (genomically verified Apis mellifera scutellata hybrids) and managed Italian honey bees (A. mellifera ligustica). Surprisingly, there was no difference in mite infestation levels between scutellata-hybrids and managed bees over one year despite the regular use of miticides in managed colonies. We also found no differences in the social immunity responses of the two groups, as measured by their hygienic habits (through worker brood pin-kill assays), self-grooming, and mite-biting behavior. However, we provide the first report that both scutellata-hybrids and managed honey bees bite off mite chemosensory forelegs, which the mites use to locate brood cells for reproduction, to a significantly greater degree than other legs (a twofold greater reduction in foreleg length relative to the most anterior legs). Such biting may impair mite reproduction.
Collapse
Affiliation(s)
- Brandon Mukogawa
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr. MC 0116, La Jolla, CA, 92093, USA.
| | - James C Nieh
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr. MC 0116, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Hazam S, Touati S, Touati L, Saher L, Khedidji H, Ait Kaki S, Chemat S. Promising Algerian essential oils as natural acaricides against the honey bee mite Varroa destructor (Acari: Varroidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:87-107. [PMID: 38015279 DOI: 10.1007/s10493-023-00866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Varroosis induced by Varroa destructor Anderson and Trueman represents the most pathogenic and destructive disease affecting the western honey bee, Apis mellifera. In this study, we investigated the acaricidal activity against the Varroa mite using essential oils (EOs) from the aerial parts of four autochthonous Algerian herbal species, namely Artemisia herba alba, Artemisia campestris, Artemisia judaica and Ruta montana. EOs were obtained by means of hydrodistillation and their composition was characterized by gas chromatography-mass spectrometry. The toxicity of the selected EOs toward V. destructor and A. mellifera adult honey bees was evaluated using the complete exposure method. The results indicate the predominance of davanone (66.9%) in A. herba alba, β-pinene (19.5%) in A. campestris, piperitone (68.7%) in A. judaica and 2-undecanone (70.1%) in R. montana EOs. Interestingly, the LC50 values coupled to bee mortality rates revealed that all tested oils exhibited significant acaricidal efficiency with selectivity ratio (SR) values of 10.77, 8.78, 5.62 and 3.73 for A. campestris, A. judaica, A. herba alba, and R. montana, respectively. These values were better than that of thymol (SR = 3.65), the positive control. These findings suggest that these EOs could be used as plant-derived veterinary acaricides to control varroosis in field conditions.
Collapse
Affiliation(s)
- Souad Hazam
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria.
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria.
| | - Salem Touati
- Multipurpose Agricultural Cooperative of Tizi-Ouzou (CAPTO), Tizi-Ouzou, Algeria
| | - Lounis Touati
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Liza Saher
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Hassiba Khedidji
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Sabrina Ait Kaki
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| |
Collapse
|
13
|
Luna A, Murcia-Morales M, Hernando MD, Van der Steen JJM, Fernández-Alba AR, Flores JM. Comparison of APIStrip passive sampling with conventional sample techniques for the control of acaricide residues in honey bee hives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167205. [PMID: 37730056 DOI: 10.1016/j.scitotenv.2023.167205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Western honey bees are very sensitive bioindicators for studying environmental conditions, hence frequently included in many investigations. However, it is very common in both research studies and health surveillance programs to sample different components of the colony, including adult bees, brood and their food reserves. These practices are undoubtedly aggressive for the colony as a whole, and may affect its normal functioning and even compromise its viability. APIStrip-based passive sampling allows long-term monitoring of residues without affecting the colony in any way. In this study, we compared the effectiveness in the control of acaricide residues by using passive and conventional sampling, where the residue levels of the acaricides coumaphos, tau-fluvalinate and amitraz were evaluated. Conventional and APIStrip-based sampling differ in methods for evaluating bee exposure to residues. APIStrip is less invasive than conventional sampling, offers more efficient measurement of environmental contaminants, and can be stored at room temperature, saving costs and minimizing operator error.
Collapse
Affiliation(s)
- Alba Luna
- Department of Environment and Agronomy, National Research Council- Institute for Agricultural and Food Research and Technology, CSIC-INIA, 28040 Madrid, Spain; International Doctoral School, Doctorate in Science (Environmental Chemistry line), National University of Distance Education, C/Bravo Murillo 38, Madrid, Spain.
| | - María Murcia-Morales
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| | - María Dolores Hernando
- Department of Desertification and Geoecology, Arid Zones Experimental Station, EEZA-CSIC, 04120 Almería, Spain.
| | | | - Amadeo R Fernández-Alba
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain.
| | - José Manuel Flores
- Department of Zoology, University of Córdoba, Campus of Rabanales, 14071 Córdoba, Spain.
| |
Collapse
|
14
|
LeCroy KA, Krichilsky (Rin) E, Grab HL, Roulston TH, Danforth BN. Spillover of chalkbrood fungi to native solitary bee species from non‐native congeners. J Appl Ecol 2023. [DOI: 10.1111/1365-2664.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Kathryn A. LeCroy
- Department of Environmental Sciences University of Virginia 400 Blandy Farm Lane Boyce Virginia 22620 USA
- Department of Entomology Cornell University Comstock Hall Ithaca New York 14850 USA
| | - Erin Krichilsky (Rin)
- Department of Entomology Cornell University Comstock Hall Ithaca New York 14850 USA
- Department of Ecology, Evolution, and Environmental Biology Columbia University New York City New York 10027 USA
- Division of Invertebrate Zoology American Museum of Natural History New York City New York 10024 USA
| | - Heather L. Grab
- Department of Entomology Cornell University Comstock Hall Ithaca New York 14850 USA
- School of Integrative Plant Sciences, Plant Science Building Cornell University Ithaca New York 14853 USA
| | - T’ai H. Roulston
- Department of Environmental Sciences University of Virginia 400 Blandy Farm Lane Boyce Virginia 22620 USA
| | - Bryan N. Danforth
- Department of Entomology Cornell University Comstock Hall Ithaca New York 14850 USA
| |
Collapse
|
15
|
Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe. Viruses 2022; 14:v14112442. [PMID: 36366540 PMCID: PMC9692946 DOI: 10.3390/v14112442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time.
Collapse
|
16
|
Isolation, Assessments of Risk Factors, and Antimicrobial Susceptibility Test of Klebsiella from Gut of Bee in and around Haramaya University Bee Farm, East Hararghe, Oromia Regional State, Ethiopia. Vet Med Int 2022; 2022:9460543. [PMID: 35942202 PMCID: PMC9356775 DOI: 10.1155/2022/9460543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
A cross-sectional study was employed from March 2021 to October 2021 to isolate and identify Klebsiella species found in the gut of honey bees collected from worker of honey bee (Apis mellifera) from hives in Haramaya University bee farm, Damota and Finqile's, managed under traditional and modern beekeeping apiculture. From the selected farm, a total of 60 samples of live adult honey bees were collected purposively. The live adult worker of the honey bee was individually surface-sterilized and complete alimentary canals of the worker bee were dissected and processed for Klebsiella isolation. Descriptive statistics were used to describe the occurrence of Klebsiella species and the proportion of Klebsiella found in the gut was analyzed for the association with study variables by the Pearson chi-square test. The overall prevalence of Klebsiella spp. was 50% from samples. The prevalence of Klebsiella pneumoniae was 26.7% and that of Klebsiella oxytoca was 23.3% from isolated using bacteriological examined samples. The isolates were characterized for the antimicrobial susceptibility test using the disc diffusion method. Among the isolated colonies, Klebsiella pneumoniae had the highest resistance to ampicillin (84.2%) and showed less resistance to gentamycin and trimethoprim sulfamethoxazole (26.3%). Klebsiella oxytoca was highly resistant to ampicillin (54.5%) and erythromycin (54.5%) and showed low and equal resistance to gentamycin and amoxicillin (18.2%). Molecular characterization should be conducted to identify Klebsiella spp. from honey bees. Monitoring antimicrobial effectiveness is recommended to tackle the existing problem in apiculture farms, and its possible public health threat should be noted for community by public health professionals.
Collapse
|
17
|
Galanis A, Vardakas P, Reczko M, Harokopos V, Hatzis P, Skoulakis EMC, Pavlopoulos GA, Patalano S. Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Mol Ecol Resour 2022; 22:2506-2523. [PMID: 35593171 DOI: 10.1111/1755-0998.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/14/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
Abstract
Honeybees (Apis mellifera) continue to succumb to human and environmental pressures despite their crucial role in providing essential ecosystem services. Owing to their foraging and honey production activities, honeybees form complex relationships with species across all domains, such as plants, viruses, bacteria and other hive pests, making honey a valuable biomonitoring tool for assessing their ecological niche. Thus, the application of honey shotgun metagenomics (SM) has paved the way for a detailed description of the species honeybees interact with. Nevertheless, SM bioinformatics tools and DNA extraction methods rely on resources not necessarily optimized for honey. In this study, we compared five widely used taxonomic classifiers using simulated species communities commonly found in honey. We found that Kraken 2 with a threshold of 0.5 performs best in assessing species distribution. We also optimized a simple NaOH-based honey DNA extraction methodology (Direct-SM), which profiled species seasonal variability similarly to an established column-based DNA extraction approach (SM). Both approaches produce results consistent with melissopalinology analysis describing the botanical landscape surrounding the apiary. Interestingly, we detected a strong stability of the bacteria constituting the core and noncore gut microbiome across seasons, pointing to the potential utility of honey for noninvasive assessment of bee microbiota. Finally, the Direct-SM approach to detect Varroa correlates well with the biomonitoring of mite infestation observed in hives. These observations suggest that Direct-SM methodology has the potential to comprehensively describe honeybee ecological niches and can be tested as a building block for large-scale studies to assess bee health in the field.
Collapse
Affiliation(s)
- Anastasios Galanis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Philippos Vardakas
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece.,Department of Apiculture, Institute of Animal Science, Nea Moudania, Greece
| | - Martin Reczko
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| | - Solenn Patalano
- Institute for Fundamental Biomedical Research (IFBR), BSRC 'Alexander Fleming', Vari, Greece
| |
Collapse
|
18
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
19
|
Borba RS, Hoover SE, Currie RW, Giovenazzo P, Guarna MM, Foster LJ, Zayed A, Pernal SF. Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health and social immunity behaviors. PLoS One 2022; 17:e0263273. [PMID: 35100308 PMCID: PMC8803170 DOI: 10.1371/journal.pone.0263273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.
Collapse
Affiliation(s)
- Renata S. Borba
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelley E. Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert W. Currie
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pierre Giovenazzo
- Département de Biologie, faculté des sciences et génie, Université Laval, Québec City, Québec, Canada
| | - M. Marta Guarna
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Stephen F. Pernal
- Agriculture & Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| |
Collapse
|
20
|
Honey bee pathogenesis posing threat to its global population: a short review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00062-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Simone-Finstrom M, Strand MK, Tarpy DR, Rueppell O. Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression is Affected by Complex Interactions With Environment, Worker Life History, and Season. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6523145. [PMID: 35137136 PMCID: PMC8825759 DOI: 10.1093/jisesa/ieab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/12/2023]
Abstract
The effects of honey bee management, such as intensive migratory beekeeping, are part of the ongoing debate concerning causes of colony health problems. Even though comparisons of disease and pathogen loads among differently managed colonies indicate some effects, the direct impact of migratory practices on honey bee pathogens is poorly understood. To test long- and short-term impacts of managed migration on pathogen loads and immunity, experimental honey bee colonies were maintained with or without migratory movement. Individuals that experienced migration as juveniles (e.g., larval and pupal development), as adults, or both were compared to control colonies that remained stationary and therefore did not experience migratory relocation. Samples at different ages and life-history stages (hive bees or foragers), taken at the beginning and end of the active season, were analyzed for pathogen loads and physiological markers of health. Bees exposed to migratory management during adulthood had increased levels of the AKI virus complex (Acute bee paralysis, Kashmir bee, and Israeli acute bee paralysis viruses) and decreased levels of antiviral gene expression (dicer-like). However, those in stationary management as adults had elevated gut parasites (i.e. trypanosomes). Effects of environment during juvenile development were more complex and interacted with life-history stage and season. Age at collection, life-history stage, and season all influenced numerous factors from viral load to immune gene expression. Although the factors that we examined are not independent, the results illuminate potential factors in both migratory and nonmigratory beekeeping that are likely to contribute to colony stress, and also indicate potential mitigation measures.
Collapse
Affiliation(s)
- Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
- Corresponding author, e-mail:
| | - Micheline K Strand
- Life Sciences Branch, U.S. Army Research Office, 800 Park Office Drive, Research Triangle Park, NC 27703, USA
| | - David R Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, 112 Derieux Place, Raleigh, NC 27695, USA
- Current address: Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
- Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA
| |
Collapse
|
22
|
Thaduri S, Marupakula S, Terenius O, Onorati P, Tellgren-Roth C, Locke B, de Miranda JR. Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Sci Rep 2021; 11:23214. [PMID: 34853367 PMCID: PMC8636477 DOI: 10.1038/s41598-021-02652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
Collapse
Affiliation(s)
- Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Srisailam Marupakula
- Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Olle Terenius
- Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | | | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| |
Collapse
|
23
|
Albayrak A, Çeven S, Bayır R. Modeling of migratory beekeeper behaviors with machine learning approach using meteorological and environmental variables: The case of Turkey. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
25
|
Ricke DF, Lin CH, Johnson RM. Pollen Treated with a Combination of Agrochemicals Commonly Applied During Almond Bloom Reduces the Emergence Rate and Longevity of Honey Bee (Hymenoptera: Apidae) Queens. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:5. [PMID: 34723328 PMCID: PMC8559157 DOI: 10.1093/jisesa/ieab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Honey bee (Apis mellifera L.) colonies that pollinate California's almond orchards are often exposed to mixtures of agrochemicals. Although agrochemicals applied during almond bloom are typically considered bee-safe when applied alone, their combined effects to honey bees are largely untested. In recent years, beekeepers providing pollination services to California's almond orchards have reported reductions in queen quality during and immediately after bloom, raising concerns that pesticide exposure may be involved. Previous research identified a synergistic effect between the insecticide active ingredient chlorantraniliprole and the fungicide active ingredient propiconazole to lab-reared worker brood, but their effects to developing queens are unknown. To test the individual and combined effects of these pesticides on the survival and emergence of developing queens, we fed worker honey bees in closed queen rearing boxes with pollen artificially contaminated with formulated pesticides containing these active ingredients as well as the spray adjuvant Dyne-Amic, which contains both organosilicone and alkyphenol ethoxylate. The translocation of pesticides from pesticide-treated pollen into the royal jelly secretions of nurse bees was also measured. Despite consistently low levels of all pesticide active ingredients in royal jelly, the survival of queens from pupation to 7 d post-emergence were reduced in queens reared by worker bees fed pollen containing a combination of formulated chlorantraniliprole (Altacor), propiconazole (Tilt), and Dyne-Amic, as well as the toxic standard, diflubenzuron (Dimilin 2L), applied in isolation. These results support recommendations to protect honey bee health by avoiding application of pesticide tank-mixes containing insecticides and adjuvants during almond bloom.
Collapse
Affiliation(s)
- Dylan F Ricke
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691, USA
| | - Chia-Hua Lin
- Department of Entomology, The Ohio State University, Rothenbuhler Honey Bee Research Laboratory, 2501 Carmack Rd., Columbus, OH 43210, USA
| | - Reed M Johnson
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691, USA
| |
Collapse
|
26
|
Truong AT, Sevin S, Kim S, Yoo MS, Cho YS, Yoon B. Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR. J Vet Sci 2021; 22:e40. [PMID: 34056881 PMCID: PMC8170219 DOI: 10.4142/jvs.2021.22.e40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. OBJECTIVES The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. METHODS A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. RESULTS UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 10⁴ spores/bee, and the stable detection level was ≥ 2.40 × 10⁵ spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 10⁴ copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. CONCLUSIONS UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.
Collapse
Affiliation(s)
- A Tai Truong
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen 250000, Vietnam.,Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara 06560, Turkey
| | - Seonmi Kim
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea
| | - Mi Sun Yoo
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Yun Sang Cho
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal & Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| | - Byoungsu Yoon
- Department of Life Science, College of Fusion Science, Kyonggi University, Suwon 16227, Korea.
| |
Collapse
|
27
|
Deng Y, Jiang X, Zhao H, Yang S, Gao J, Wu Y, Diao Q, Hou C. Microplastic Polystyrene Ingestion Promotes the Susceptibility of Honeybee to Viral Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11680-11692. [PMID: 34374532 DOI: 10.1021/acs.est.1c01619] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are an emerging threat to ecological conservation and biodiversity; however, little is known of the types and possible impacts of MPs in pollinators. To examine whether MPs were present in honeybees, we analyzed the honeybee samples collected in fields from six provinces in China. Four types MPs were identified in honeybee including polystyrene (PS) by Raman spectroscopic analysis, and these plastic polymers were detected in 66.7% bee samples. Then, we assessed the physical and biological impacts of PS of three sizes (0.5, 5, and 50 μm) on bees for 21 days. Next, we measured how the presence of PS affected the Israeli acute paralysis virus proliferation, a small RNA virus associated with bee colony decline. Experimental evidence showed that a large mass of PS was ingested and accumulated within the midgut and enhanced the susceptibility of bees to viral infection. Not only histological analysis showed that PS, especially 0.5 μm PS, damaged the midgut tissue and was subsequently transferred to the hemolymph, trachea, and Malpighian tubules, but also qPCR and transcriptomic results indicated that genes correlated with membrane lipid metabolism, immune response, detoxification, and the respiratory system were significantly regulated after PS ingestion. Our results highlight neglected MP contamination to the bees, a pollination ecosystem stressed by the anthropogenic pollution, and have implications for human health via ingestion of bee products.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xuejian Jiang
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, People's Republic of China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Jing Gao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
28
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
29
|
Pascall DJ, Tinsley MC, Clark BL, Obbard DJ, Wilfert L. Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community. Front Microbiol 2021; 12:650747. [PMID: 33967987 PMCID: PMC8100031 DOI: 10.3389/fmicb.2021.650747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed, and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
| | - Matthew C. Tinsley
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Bethany L. Clark
- BirdLife International, The David Attenborough Building, Cambridge, United Kingdom
- Environment and Sustainability Institute, University of Exeter, Cornwall, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
30
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
31
|
Daughenbaugh KF, Kahnonitch I, Carey CC, McMenamin AJ, Wiegand T, Erez T, Arkin N, Ross B, Wiedenheft B, Sadeh A, Chejanovsky N, Mandelik Y, Flenniken ML. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 2021; 13:291. [PMID: 33673324 PMCID: PMC7917660 DOI: 10.3390/v13020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Collapse
Affiliation(s)
- Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Idan Kahnonitch
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Charles C. Carey
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Alexander J. McMenamin
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Tanner Wiegand
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Tal Erez
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Naama Arkin
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Brian Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Asaf Sadeh
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Nor Chejanovsky
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Yael Mandelik
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
32
|
Bartolomé C, Jabal-Uriel C, Buendía-Abad M, Benito M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ Microbiol 2020; 23:478-483. [PMID: 33225560 DOI: 10.1111/1462-2920.15336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
Assessing the extent of parasite diversity requires the application of appropriate molecular tools, especially given the growing evidence of multiple parasite co-occurrence. Here, we compared the performance of a next-generation sequencing technology (Ion PGM ™ System) in 12 Bombus terrestris specimens that were PCR-identified as positive for trypanosomatids (Leishmaniinae) in a previous study. These bumblebees were also screened for the occurrence of Nosematidae and Neogregarinorida parasites using both classical protocols (either specific PCR amplification or amplification with broad-range primers plus Sanger sequencing) and Ion PGM sequencing. The latter revealed higher parasite diversity within individuals, especially among Leishmaniinae (which were present as a combination of Lotmaria passim, Crithidia mellificae and Crithidia bombi), and the occurrence of taxa never reported in these hosts: Crithidia acanthocephali and a novel neogregarinorida species. Furthermore, the complementary results produced by the different sets of primers highlighted the convenience of using multiple markers to minimize the chance of some target organisms going unnoticed. Altogether, the deep sequencing methodology offered a more comprehensive way to investigate parasite diversity than the usual identification methods and provided new insights whose importance for bumblebee health should be further analysed.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, 15706, Spain
| | - Clara Jabal-Uriel
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - María Benito
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30100, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, Albacete, 02006, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, 15706, Spain
| |
Collapse
|
33
|
Tauber JP, Tozkar CÖ, Schwarz RS, Lopez D, Irwin RE, Adler LS, Evans JD. Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. INSECTS 2020; 11:E783. [PMID: 33187240 PMCID: PMC7698215 DOI: 10.3390/insects11110783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
Amygdalin, a cyanogenic glycoside, is found in the nectar and pollen of almond trees, as well as in a variety of other crops, such as cherries, nectarines, apples and others. It is inevitable that western honeybees (Apis mellifera) consistently consume amygdalin during almond pollination season because almond crops are almost exclusively pollinated by honeybees. This study tests the effects of a field-relevant concentration of amygdalin on honeybee microbes and the activities of key honeybee genes. We executed a two-month field trial providing sucrose solutions with or without amygdalin ad libitum to free-flying honeybee colonies. We collected adult worker bees at four time points and used RNA sequencing technology and our HoloBee database to assess global changes in microbes and honeybee transcripts. Our hypothesis was that amygdalin will negatively affect bee microbes and possibly immune gene regulation. Using a log2 fold-change cutoff at two and intraday comparisons, we show no large change of bacterial counts, fungal counts or key bee immune gene transcripts, due to amygdalin treatment in relation to the control. However, relatively large titer decreases in the amygdalin treatment relative to the control were found for several viruses. Chronic bee paralysis virus levels had a sharp decrease (-14.4) with titers then remaining less than the control, Black queen cell virus titers were lower at three time points (<-2) and Deformed wing virus titers were lower at two time points (<-6) in amygdalin-fed compared to sucrose-fed colonies. Titers of Lotmaria passim were lower in the treatment group at three of the four dates (<-4). In contrast, Sacbrood virus had two dates with relative increases in its titers (>2). Overall, viral titers appeared to fluctuate more so than bacteria, as observed by highly inconstant patterns between treatment and control and throughout the season. Our results suggest that amygdalin consumption may reduce several honeybee viruses without affecting other microbes or colony-level expression of immune genes.
Collapse
Affiliation(s)
- James P. Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Cansu Ö. Tozkar
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yüzüncü Yıl University, Van 65000, Turkey
| | - Ryan S. Schwarz
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA
| | - Dawn Lopez
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jay D. Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| |
Collapse
|
34
|
Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet Sci 2020; 7:vetsci7040166. [PMID: 33143134 PMCID: PMC7712510 DOI: 10.3390/vetsci7040166] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The Western honey bee (Apis mellifera L., Hymenoptera: Apidae) is a species of crucial economic, agricultural and environmental importance. In the last ten years, some regions of the world have suffered from a significant reduction of honey bee colonies. In fact, honey bee losses are not an unusual phenomenon, but in many countries worldwide there has been a notable decrease in honey bee colonies. The cases in the USA, in many European countries, and in the Middle East have received considerable attention, mostly due to the absence of an easily identifiable cause. It has been difficult to determine the main factors leading to colony losses because of honey bees’ diverse social behavior. Moreover, in their daily routine, they make contact with many agents of the environment and are exposed to a plethora of human activities and their consequences. Nevertheless, various factors have been considered to be contributing to honey bee losses, and recent investigations have established some of the most important ones, in particular, pests and diseases, bee management, including bee keeping practices and breeding, the change in climatic conditions, agricultural practices, and the use of pesticides. The global picture highlights the ectoparasitic mite Varroa destructor as a major factor in colony loss. Last but not least, microsporidian parasites, mainly Nosema ceranae, also contribute to the problem. Thus, it is obvious that there are many factors affecting honey bee colony losses globally. Increased monitoring and scientific research should throw new light on the factors involved in recent honey bee colony losses. The present review focuses on the main factors which have been found to have an impact on the increase in honey bee colony losses.
Collapse
|
35
|
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS One 2020; 15:e0237544. [PMID: 32898160 PMCID: PMC7478651 DOI: 10.1371/journal.pone.0237544] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.
Collapse
|
36
|
Iwanowicz DD, Wu-Smart JY, Olgun T, Smart AH, Otto CRV, Lopez D, Evans JD, Cornman R. An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications. PeerJ 2020; 8:e9424. [PMID: 32742773 PMCID: PMC7370930 DOI: 10.7717/peerj.9424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
Background Lake Sinai Viruses (LSV) are common RNA viruses of honey bees (Apis mellifera) that frequently reach high abundance but are not linked to overt disease. LSVs are genetically heterogeneous and collectively widespread, but despite frequent detection in surveys, the ecological and geographic factors structuring their distribution in A. mellifera are not understood. Even less is known about their distribution in other species. Better understanding of LSV prevalence and ecology have been hampered by high sequence diversity within the LSV clade. Methods Here we report a new polymerase chain reaction (PCR) assay that is compatible with currently known lineages with minimal primer degeneracy, producing an expected 365 bp amplicon suitable for end-point PCR and metagenetic sequencing. Using the Illumina MiSeq platform, we performed pilot metagenetic assessments of three sample sets, each representing a distinct variable that might structure LSV diversity (geography, tissue, and species). Results The first sample set in our pilot assessment compared cDNA pools from managed A. mellifera hives in California (n = 8) and Maryland (n = 6) that had previously been evaluated for LSV2, confirming that the primers co-amplify divergent lineages in real-world samples. The second sample set included cDNA pools derived from different tissues (thorax vs. abdomen, n = 24 paired samples), collected from managed A. mellifera hives in North Dakota. End-point detection of LSV frequently differed between the two tissue types; LSV metagenetic composition was similar in one pair of sequenced samples but divergent in a second pair. Overall, LSV1 and intermediate lineages were common in these samples whereas variants clustering with LSV2 were rare. The third sample set included cDNA from individual pollinator specimens collected from diverse landscapes in the vicinity of Lincoln, Nebraska. We detected LSV in the bee Halictus ligatus (four of 63 specimens tested, 6.3%) at a similar rate as A. mellifera (nine of 115 specimens, 7.8%), but only one H. ligatus sequencing library yielded sufficient data for compositional analysis. Sequenced samples often contained multiple divergent LSV lineages, including individual specimens. While these studies were exploratory rather than statistically powerful tests of hypotheses, they illustrate the utility of high-throughput sequencing for understanding LSV transmission within and among species.
Collapse
Affiliation(s)
- Deborah D Iwanowicz
- Leetown Science Center, U.S. Geological Survey, Kearneysville, WV, United States of America
| | - Judy Y Wu-Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Tugce Olgun
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Autumn H Smart
- Entomology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Clint R V Otto
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND, United States of America
| | - Dawn Lopez
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Jay D Evans
- Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States of America
| | - Robert Cornman
- Fort Collins Science Center, United States Geological Survey, Fort Collins, CO, United States of America
| |
Collapse
|
37
|
Bartolomé C, Buendía-Abad M, Benito M, Sobrino B, Amigo J, Carracedo A, Martín-Hernández R, Higes M, Maside X. Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Sci Rep 2020; 10:10454. [PMID: 32591554 PMCID: PMC7319982 DOI: 10.1038/s41598-020-67183-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
To evaluate the influence that parasites have on the losses of Apis mellifera it is essential to monitor their presence in the colonies over time. Here we analysed the occurrence of nosematids, trypanosomatids and neogregarines in five homogeneous colonies for up to 21 months until they collapsed. The study, which combined the use of several molecular markers with the application of a massive parallel sequencing technology, provided valuable insights into the epidemiology of these parasites: (I) it enabled the detection of parasite species rarely reported in honeybees (Nosema thomsoni, Crithidia bombi, Crithidia acanthocephali) and the identification of two novel taxa; (II) it revealed the existence of a high rate of co-infections (80% of the samples harboured more than one parasite species); (III) it uncovered an identical pattern of seasonal variation for nosematids and trypanosomatids, that was different from that of neogregarines; (IV) it showed that there were no significant differences in the fraction of positive samples, nor in the levels of species diversity, between interior and exterior bees; and (V) it unveiled that the variation in the number of parasite species was not directly linked with the failure of the colonies.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain. .,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - María Benito
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain
| | - Jorge Amigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain.,Departamento de CC. Forenses, Anatomía Patolóxica, Xinecoloxía e Obstetricia, e Pediatría, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Departamento de CC. Forenses, Anatomía Patolóxica, Xinecoloxía e Obstetricia, e Pediatría, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
38
|
Kevill JL, Lee K, Goblirsch M, McDermott E, Tarpy DR, Spivak M, Schroeder DC. The Pathogen Profile of a Honey Bee Queen Does Not Reflect That of Her Workers. INSECTS 2020; 11:E382. [PMID: 32575712 PMCID: PMC7349218 DOI: 10.3390/insects11060382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/11/2023]
Abstract
Throughout a honey bee queen's lifetime, she is tended to by her worker daughters, who feed and groom her. Such interactions provide possible horizontal transmission routes for pathogens from the workers to the queen, and as such a queen's pathogen profile may be representative of the workers within a colony. To explore this further, we investigated known honey bee pathogen co-occurrence, as well as pathogen transmission from workers to queens. Queens from 42 colonies were removed from their source hives and exchanged into a second, unrelated foster colony. Worker samples were taken from the source colony on the day of queen exchange and the queens were collected 24 days after introduction. All samples were screened for Nosema spp., Trypanosome spp., acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Israeli acute paralysis virus (IAPV), Lake Sinai virus (LSV), and deformed wing virus master variants (DWV-A, B, and C) using RT-qPCR. The data show that LSV, Nosema, and DWV-B were the most abundant pathogens in colonies. All workers (n = 42) were LSV-positive, 88% were Nosema-positive, whilst pathogen loads were low (<1 × 106 genome equivalents per pooled worker sample). All queens (n = 39) were negative for both LSV and Nosema. We found no evidence of DWV transmission occurring from worker to queen when comparing queens to foster colonies, despite DWV being present in both queens and workers. Honey bee pathogen presence and diversity in queens cannot be revealed from screening workers, nor were pathogens successfully transmitted to the queen.
Collapse
Affiliation(s)
- Jessica L. Kevill
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave., St Paul, MN 55108, USA
| | - Katie Lee
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, St Paul, MN 55108, USA; (K.L.); (M.G.); (M.S.)
| | - Michael Goblirsch
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, St Paul, MN 55108, USA; (K.L.); (M.G.); (M.S.)
- United States Department of Agriculture, Agricultural Research Service, Southeastern Area, Thad Cochran Southern Horticultural Research Laboratory, 810 Highway 26 W., Poplarville, MS 39470, USA
| | - Erin McDermott
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; (E.M.); (D.R.T.)
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA; (E.M.); (D.R.T.)
| | - Marla Spivak
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Suite 219, St Paul, MN 55108, USA; (K.L.); (M.G.); (M.S.)
| | - Declan C. Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave., St Paul, MN 55108, USA
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK
| |
Collapse
|
39
|
Olgun T, Everhart SE, Anderson T, Wu-Smart J. Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS One 2020; 15:e0234431. [PMID: 32530936 PMCID: PMC7292363 DOI: 10.1371/journal.pone.0234431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Managed honey bees (Apis mellifera L.) and wild bees provide critical ecological services that shape and sustain natural, agricultural, and urban landscapes. In recent years, declines in bee populations have highlighted the importance of the pollination services they provide and the need for more research into the reasons for global bee losses. Several stressors cause declining populations of managed and wild bee species such as habitat degradation, pesticide exposure, and pathogens. Viruses, which have been implicated as a key stressor, are able to infect a wide range of species and can be transmitted both intra- and inter-specifically from infected bee species to uninfected bee species via vertical (from parent to offspring) and/or horizontal (between individuals via direct or indirect contact) transmission. To explore how viruses spread both intra- and inter-specifically within a community, we examined the impact of management, landscape type, and bee species on the transmission of four common viruses in Nebraska: Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Black queen cell virus (BQCV), and Sacbrood virus (SBV). Results indicated the prevalence of viruses is significantly affected (P < 0.005) by bee species, virus type, and season, but not by landscape or year (P = 0.290 and 0.065 respectively). The higher prevalence of DWV detected across bee species (10.4% on Apis mellifera, 5.3% on Bombus impatiens, 6.1% on Bombus griseocollis, and 22.44% on Halictus ligatus) and seasons (10.8% in early-mid summer and 11.4% in late summer) may indicate a higher risk of interspecific transmission of DWV. However, IAPV was predominately detected in Halictus ligatus (20.7%) and in late season collections (28.1%), which may suggest species-specific susceptibility and seasonal trends in infection rates associated with different virus types. However, there were limited detections of SBV and BQCV in bees collected during both sampling periods, indicating SBV and BQCV may be less prevalent among bee communities in this area.
Collapse
Affiliation(s)
- Tugce Olgun
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Sydney E. Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Troy Anderson
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Judy Wu-Smart
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
40
|
Šimenc L, Kuhar U, Jamnikar-Ciglenečki U, Toplak I. First Complete Genome of Lake Sinai Virus Lineage 3 and Genetic Diversity of Lake Sinai Virus Strains From Honey Bees and Bumble Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1055-1061. [PMID: 32207825 DOI: 10.1093/jee/toaa049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.
Collapse
Affiliation(s)
- Laura Šimenc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Urška Jamnikar-Ciglenečki
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva, Ljubljana, Slovenia
| |
Collapse
|
41
|
Dufour C, Fournier V, Giovenazzo P. The impact of lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) pollination on honey bee (Apis mellifera L.) colony health status. PLoS One 2020; 15:e0227970. [PMID: 31978125 PMCID: PMC6980599 DOI: 10.1371/journal.pone.0227970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/04/2020] [Indexed: 11/18/2022] Open
Abstract
Commercial lowbush blueberry (Vaccinium angustifolium Ait.) and cranberry (Vaccinium macrocarpon Ait.) crops benefit from the presence of honey bee (Apis mellifera L.) for pollination. Unfortunately, beekeepers are observing negative impacts of pollination services on honey bee colonies. In this study, we investigated three beekeeping management strategies (MS) and measured their impact on honey bee colony health and development. Experimental groups (five colonies/MS) were: A) Control farmland honey producing MS (control MS); B) Blueberry pollination MS (blueberry MS); C) Cranberry pollination MS (cranberry MS) and D) Double pollination MS, blueberry followed by cranberry (double MS). Our goals were to 1) compare floral abundance and attractiveness of foraging areas to honey bees between apiaries using a Geographic Information System, and 2) compare honey bee colony health status and population development between MS during a complete beekeeping season. Our results show significantly lower floral abundance and honey bee attractiveness of foraging areas during cranberry pollination compared to the other environments. The blueberry pollination site seemed to significantly reduce brood population in the colonies who provided those services (blueberry MS and double MS). The cranberry pollination site seemed to significantly reduce colony weight gain (cranberry MS and double MS) and induce a significantly higher winter mortality rate (cranberry MS). We also measured significantly higher levels of Black queen cell virus and Sacbrood virus in the MS providing cranberry pollination (cranberry MS and double MS).
Collapse
Affiliation(s)
- Claude Dufour
- Département de biologie, Université Laval, Québec, Québec, Canada
| | - Valérie Fournier
- Centre de recherche et innovation sur les végétaux, Université Laval, Québec, Québec, Canada
| | - Pierre Giovenazzo
- Département de biologie, Université Laval, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
43
|
DWV-A Lethal to Honey Bees ( Apis mellifera): A Colony Level Survey of DWV Variants (A, B, and C) in England, Wales, and 32 States across the US. Viruses 2019; 11:v11050426. [PMID: 31075870 PMCID: PMC6563202 DOI: 10.3390/v11050426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
The strong association between Varroa destructor, deformed wing virus (DWV), and high overwintering colony losses (OCL) of honey bees is well established. Three DWV master variants (DWV-A, -B, and -C) have been described, and their role in colony mortality remains an open question. Therefore, the aim of this study is to investigate the seasonal prevalence, viral load, and changing distribution of the three DWV master variants within honey bee colonies from England, Wales, and 32 states across the United States. Here, we report that in 2016, DWV-B was prevalent (100%, n = 249) and dominant (95%) in England and Wales, compared to the US. (56%, n = 217 and 23%, respectively), where DWV-A was prevalent (83%, n = 217) and dominant (63%). DWV-C was regularly detected in low viral loads (<1 × 107 genome equivalents per bee) and at lower prevalence (58% in England and Wales, n = 203, and 14% across the United States, n = 124) compared to DWV-A and -B. DWV-B prevalence and dominance in England and Wales coincided with low OCL (6%). Meanwhile, a 60% loss was reported by participating U.S. beekeepers. In the United States, DWV-A prevalence (89%, n = 18) and viral load were significantly (p = 0.002) higher (1 × 10 8–1 × 1011) in colonies that died when compared to the surviving colonies (49% (n = 27), 1 × 106–1 × 1010). DWV-B had low prevalence (56%, n = 18) in the colonies that died with viral loads of <1 × 1010. However, DWV-B was routinely detected in high viral loads (>1 × 1010) in surviving colonies from all sample locations, providing further supporting evidence of DWV-A exhibiting increased virulence over DWV-B at the colony level.
Collapse
|
44
|
Cornman RS. Relative abundance and molecular evolution of Lake Sinai Virus (Sinaivirus) clades. PeerJ 2019; 7:e6305. [PMID: 30923646 PMCID: PMC6431542 DOI: 10.7717/peerj.6305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Lake Sinai Viruses (Sinaivirus) are commonly detected in honey bees (Apis mellifera) but no disease phenotypes or fitness consequences have yet been demonstrated. This viral group is genetically diverse, lacks obvious geographic structure, and multiple lineages can co-infect individual bees. While phylogenetic analyses have been performed, the molecular evolution of LSV has not been studied extensively. Here, I use LSV isolates from GenBank as well as contigs assembled from honey bee Sequence Read Archive (SRA) accessions to better understand the evolutionary history of these viruses. For each ORF, substitution rate variation, codon usage, and tests of positive selection were evaluated. Outlier regions of high or low diversity were sought with sliding window analysis and the role of recombination in creating LSV diversity was explored. Phylogenetic analysis consistently identified two large clusters of sequences that correspond to the current LSV1 and LSV2 nomenclature, however lineages sister to LSV1 were the most frequently detected in honey bee SRA accessions. Different expression levels among ORFs suggested the occurrence of subgenomic transcripts. ORF1 and RNA-dependent RNA polymerase had higher evolutionary rates than the capsid and ORF4. A hypervariable region of the ORF1 protein-coding sequence was identified that had reduced selective constraint, but a site-based model of positive selection was not significantly more likely than a neutral model for any ORF. The only significant recombination signals detected between LSV1 and LSV2 initiated within this hypervariable region, but assumptions of the test (single-frame coding and independence of substitution rate by site) were violated. LSV codon usage differed strikingly from that of honey bees and other common honey-bee viruses, suggesting LSV is not strongly co-evolved with that host. LSV codon usage was significantly correlated with that of Varroa destructor, however, despite the relatively weak codon bias exhibited by the latter. While codon usage between the LSV1 and LSV2 clusters was similar for three ORFs, ORF4 codon usage was uncorrelated between these clades, implying rapid divergence of codon use for this ORF only. Phylogenetic placement and relative abundance of LSV isolates reconstructed from SRA accessions suggest that detection biases may be over-representing LSV1 and LSV2 in public databases relative to their sister lineages.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| |
Collapse
|
45
|
Putative Drone Copulation Factors Regulating Honey Bee ( Apis mellifera) Queen Reproduction and Health: A Review. INSECTS 2019; 10:insects10010008. [PMID: 30626022 PMCID: PMC6358756 DOI: 10.3390/insects10010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
Honey bees are major pollinators of agricultural and non-agricultural landscapes. In recent years, honey bee colonies have exhibited high annual losses and commercial beekeepers frequently report poor queen quality and queen failure as the primary causes. Honey bee colonies are highly vulnerable to compromised queen fertility, as each hive is headed by one reproductive queen. Queens mate with multiple drones (male bees) during a single mating period early in life in which they obtain enough spermatozoa to fertilize their eggs for the rest of their reproductive life span. The process of mating initiates numerous behavioral, physiological, and molecular changes that shape the fertility of the queen and her influence on the colony. For example, receipt of drone semen can modulate queen ovary activation, pheromone production, and subsequent worker retinue behavior. In addition, seminal fluid is a major component of semen that is primarily derived from drone accessory glands. It also contains a complex mixture of proteins such as proteases, antioxidants, and antimicrobial proteins. Seminal fluid proteins are essential for inducing post-mating changes in other insects such as Drosophila and thus they may also impact honey bee queen fertility and health. However, the specific molecules in semen and seminal fluid that initiate post-mating changes in queens are still unidentified. Herein, we summarize the mating biology of honey bees, the changes queens undergo during and after copulation, and the role of drone semen and seminal fluid in post-mating changes in queens. We then review the effects of seminal fluid proteins in insect reproduction and potential roles for honey bee drone seminal fluid proteins in queen reproduction and health. We finish by proposing future avenues of research. Further elucidating the role of drone fertility in queen reproductive health may contribute towards reducing colony losses and advancing honey bee stock development.
Collapse
|
46
|
Abstract
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Collapse
Affiliation(s)
- Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Infectious Disease Dynamics, and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology and Pollinator Health Center, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
47
|
Cirkovic D, Stevanovic J, Glavinic U, Aleksic N, Djuric S, Aleksic J, Stanimirovic Z. Honey bee viruses in Serbian colonies of different strength. PeerJ 2018; 6:e5887. [PMID: 30479890 PMCID: PMC6240340 DOI: 10.7717/peerj.5887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/07/2018] [Indexed: 11/21/2022] Open
Abstract
Protection of honey bees is of great economic importance because of their role in pollination. Crucial steps towards this goal are epidemiological surveys of pathogens connected with honey bee losses. In this study deformed wing virus (DWV), chronic bee paralysis virus (CBPV), acute bee paralysis virus (ABPV) and sacbrood virus (SBV) were investigated in colonies of different strength located in five regions of Serbia. The relationship between colony strength and virus occurrence/infection intensity were assessed as well as the genetic relationship between virus sequences from Serbia and worldwide. Real-time RT-PCR analyses detected at least one virus in 87.33% of colonies. Single infection was found in 28.67% colonies (21.33%, 4.00%, 2.67% and 0.67% in cases of DWV, ABPV, SBV and CBPV, respectively). In the majority of colonies (58.66%) more than one virus was found. The most prevalent was DWV (74%), followed by ABPV, SBV and CBPV (49.30%, 24.00% and 6.70%, respectively). Except for DWV, the prevalence of the remaining three viruses significantly varied between the regions. No significant differences were found between colony strength and either (i) the prevalence of DWV, ABPV, SBV, CBPV and their combinations, or (ii) DWV infection levels. The sequences of honey bee viruses obtained from bees in Serbia were 93-99% identical with those deposited in GenBank.
Collapse
Affiliation(s)
- Dragan Cirkovic
- Department of Chemical and Technological Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Spomenka Djuric
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Aleksic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Beograd, Serbia
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
48
|
Alger SA, Burnham PA, Lamas ZS, Brody AK, Richardson LL. Home sick: impacts of migratory beekeeping on honey bee ( Apis mellifera) pests, pathogens, and colony size. PeerJ 2018; 6:e5812. [PMID: 30405967 PMCID: PMC6216951 DOI: 10.7717/peerj.5812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/23/2018] [Indexed: 11/20/2022] Open
Abstract
Honey bees are important pollinators of agricultural crops and the dramatic losses of honey bee colonies have risen to a level of international concern. Potential contributors to such losses include pesticide exposure, lack of floral resources and parasites and pathogens. The damaging effects of all of these may be exacerbated by apicultural practices. To meet the pollination demand of US crops, bees are transported to areas of high pollination demand throughout the year. Compared to stationary colonies, risk of parasitism and infectious disease may be greater for migratory bees than those that remain in a single location, although this has not been experimentally established. Here, we conducted a manipulative experiment to test whether viral pathogen and parasite loads increase as a result of colonies being transported for pollination of a major US crop, California almonds. We also tested if they subsequently transmit those diseases to stationary colonies upon return to their home apiaries. Colonies started with equivalent numbers of bees, however migratory colonies returned with fewer bees compared to stationary colonies and this difference remained one month later. Migratory colonies returned with higher black queen cell virus loads than stationary colonies, but loads were similar between groups one month later. Colonies exposed to migratory bees experienced a greater increase of deformed wing virus prevalence and load compared to the isolated group. The three groups had similar infestations of Varroa mites upon return of the migratory colonies. However, one month later, mite loads in migratory colonies were significantly lower compared to the other groups, possibly because of lower number of host bees. Our study demonstrates that migratory pollination practices has varying health effects for honey bee colonies. Further research is necessary to clarify how migratory pollination practices influence the disease dynamics of honey bee diseases we describe here.
Collapse
Affiliation(s)
- Samantha A Alger
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - P Alexander Burnham
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Zachary S Lamas
- Department of Entomology, University of Maryland, College Park, MD, United States of America
| | - Alison K Brody
- Department of Biology, University of Vermont, Burlington, VT, United States of America
| | - Leif L Richardson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, United States of America.,Gund Institute for Environment, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
49
|
Honey bees as models for gut microbiota research. Lab Anim (NY) 2018; 47:317-325. [PMID: 30353179 DOI: 10.1038/s41684-018-0173-x] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022]
Abstract
The gut microbiota of the honey bee (Apis mellifera) offers several advantages as an experimental system for addressing how gut communities affect their hosts and for exploring the processes that determine gut community composition and dynamics. A small number of bacterial species dominate the honey bee gut community. These species are restricted to bee guts and can be grown axenically and genetically manipulated. Large numbers of microbiota-free hosts can be economically reared and then inoculated with single isolates or defined communities to examine colonization patterns and effects on host phenotypes. Honey bees have been studied extensively, due to their importance as agricultural pollinators and as models for sociality. Because of this history of bee research, the physiology, development, and behavior of honey bees is relatively well understood, and established behavioral and phenotypic assays are available. To date, studies on the honey bee gut microbiota show that it affects host nutrition, weight gain, endocrine signaling, immune function, and pathogen resistance, while perturbation of the microbiota can lead to reduced host fitness. As in humans, the microbiota is concentrated in the distal part of the gut, where it contributes to digestion and fermentation of plant cell wall components. Much like the human gut microbiota, many bee gut bacteria are specific to the bee gut and can be directly transmitted between individuals through social interaction. Although simpler than the human gut microbiota, the bee gut community presents opportunities to understand the processes that govern the assembly of specialized gut communities as well as the routes through which gut communities impact host biology.
Collapse
|
50
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|