1
|
Benayas B, Morales J, Egea C, Armisén P, Yáñez‐Mó M. Optimization of extracellular vesicle isolation and their separation from lipoproteins by size exclusion chromatography. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e100. [PMID: 38939075 PMCID: PMC11080862 DOI: 10.1002/jex2.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2024]
Abstract
Interest in the use of extracellular vesicles (EVs) as biomarkers of disease is rapidly growing. However, one main unsolved issue in the EV field is finding a technique able to eliminate non-EV contaminants present in biofluid samples in a one-step isolation protocol. Due to the expansion and value of size exclusion chromatography (SEC) as one of the best EV isolation methods, we have tested several agarose resins with different agarose percentages, bead sizes and crosslinking features to optimize EV isolation. For this optimization of SEC, we first employed conditioned media from a melanoma cell culture, a simpler sample in comparison to biological fluids, but which also contains abundant contaminants such as soluble protein and lipoproteins (LPPs). The distinct agaroses and the combinations of resins with different agarose percentages in the same column were tested. Soluble protein, EVs and LPPs levels from the different eluted fractions were quantitated by immunodetection or absorbance measurements. Samples were also analysed by NTA and TEM to verify the yield and the LPP contamination. Different percentages of agarose resins (2%, 4% and 6%) yielded samples with increasing LPP contamination respectively, which was not improved in the columns that combined them. Crosslinking of the agarose did not affect EV isolation yield nor the LPP contamination. In contrast, reducing the bead size greatly improved EV purity. We thus selected 4% Rapid Run Fine agarose beads as the resin that more efficiently isolated EVs with almost no contamination of other particles. Using blood plasma samples, this resin also demonstrated an improved capacity in the isolation of EVs from LPPs in comparison to the agaroses most commonly used in the field and differential ultracentrifugation.
Collapse
Affiliation(s)
- Beatriz Benayas
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| | - Joaquín Morales
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| | - Carolina Egea
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
| | - Pilar Armisén
- Agarose Bead Technologies (ABT)Torrejón de ArdozMadridSpain
| | - María Yáñez‐Mó
- Dept Biología MolecularUniversidad Autónoma de MadridIUBMCentro de Biología Molecular Severo Ochoa, IIS‐IPMadridSpain
| |
Collapse
|
2
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Malian children infected with Plasmodium ovale and Plasmodium falciparum display very similar gene expression profiles. PLoS Negl Trop Dis 2023; 17:e0010802. [PMID: 36696438 PMCID: PMC9901758 DOI: 10.1371/journal.pntd.0010802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium parasites caused 241 million cases of malaria and over 600,000 deaths in 2020. Both P. falciparum and P. ovale are endemic to Mali and cause clinical malaria, with P. falciparum infections typically being more severe. Here, we sequenced RNA from nine pediatric blood samples collected during infections with either P. falciparum or P. ovale, and characterized the host and parasite gene expression profiles. We found that human gene expression varies more between individuals than according to the parasite species causing the infection, while parasite gene expression profiles cluster by species. Additionally, we characterized DNA polymorphisms of the parasites directly from the RNA-seq reads and found comparable levels of genetic diversity in both species, despite dramatic differences in prevalence. Our results provide unique insights into host-pathogen interactions during malaria infections and their variations according to the infecting Plasmodium species, which will be critical to develop better elimination strategies against all human Plasmodium parasites.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K. Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B. Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Emily M. Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A. Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V. Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ogobara K. Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E. Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mahamadou A. Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A. Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore Maryland, United States of America
| |
Collapse
|
3
|
Gutierrez BC, Ancarola ME, Volpato-Rossi I, Marcilla A, Ramirez MI, Rosenzvit MC, Cucher M, Poncini CV. Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy. Front Cell Infect Microbiol 2022; 12:980817. [PMID: 36467728 PMCID: PMC9710384 DOI: 10.3389/fcimb.2022.980817] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Izadora Volpato-Rossi
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Antonio Marcilla
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de Valencia, Valencia, Spain
| | - Marcel Ivan Ramirez
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
4
|
Plasma Exchange May Enhance Antitumor Effects by Removal of Soluble Programmed Death-Ligand 1 and Extracellular Vesicles: Preliminary Study. Biomedicines 2022; 10:biomedicines10102483. [PMID: 36289745 PMCID: PMC9599354 DOI: 10.3390/biomedicines10102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The antitumor effect of antibody-drug conjugates (ADC) is the main factor in achieving cures. Although the mechanism of tumor resistance to treatment is multifaceted, tumor-derived extracellular vesicles (T-EVs) have been implicated as contributing to the attenuation of ADC therapeutic efficacy. Thus, strategies to eliminate T-EVs are highly promising for overcoming drug resistance. Here we demonstrate plasma exchange therapy to remove T-EVs, decreasing their amount in vitro by 75%. Although trastuzumab emtansine (T-DM1) treatment alone was effective in our rat tumor model, the combination therapy of T-DM1 and T-EV filtration achieved early tumor shrinkage. Our results indicate that T-EV filtration plus ADC is a promising strategy for overcoming drug resistance.
Collapse
|
5
|
Arabpour M, Lebrero-Fernandez C, Schön K, Strömberg A, Börjesson V, Lahl K, Ballegeer M, Saelens X, Angeletti D, Agace W, Lycke N. ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunol 2022; 15:745-761. [PMID: 35418673 PMCID: PMC9259495 DOI: 10.1038/s41385-022-00510-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
Migratory dendritic cells expressing CD103 are the targets for mucosal vaccines. These belong to either of two lineage-restricted subsets, cDC1 or cDC2 cells, which have been linked to priming of functionally distinct CD4 T cells. However, recent studies have identified plasticity in cDC2 cells with overlapping functions with cDC1 cells, while the converse has not been reported. We genetically engineered a vaccine adjuvant platform that targeted the cholera toxin A1 (CTA1) ADP-ribosylating enzyme to CD103+ cDC1 and cDC2 cells using a single-chain antibody (scFv) to CD103. Unexpectedly, intranasal immunization with the CTA1-svFcCD103 adjuvant modified cDC1 cells to effectively prime Th17 cells, a function previously limited to cDC2 cells. In fact, cDC2 cells were dispensible, while cDC1 cells, lacking in Batf3-/- mice, were critical. Following intranasal immunizations isolated cDC1 cells from mLN exclusively promoted Rorgt+ T cells and IL-17, IL-21, and IL-22 production. Strong CD8 T cell responses through antigen cross presentation by cDC1 cells were also observed. Single-cell RNAseq analysis revealed upregulation of Th17-promoting gene signatures in sorted cDC1 cells. Gene expression in isolated cDC2 cells was largely unaffected. Our finding represents a major shift of paradigm as we have documented functional plasticity in cDC1 cells.
Collapse
Affiliation(s)
- Mohammad Arabpour
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Vanja Börjesson
- grid.8761.80000 0000 9919 9582Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- grid.4514.40000 0001 0930 2361Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Marlies Ballegeer
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Davide Angeletti
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - William Agace
- grid.4514.40000 0001 0930 2361Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden ,grid.5170.30000 0001 2181 8870Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
HIV-1 Nef Protein Affects Cytokine and Extracellular Vesicles Production in the GEN2.2 Plasmacytoid Dendritic Cell Line. Viruses 2021; 14:v14010074. [PMID: 35062278 PMCID: PMC8780779 DOI: 10.3390/v14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset specialized in type I interferon production, whose role in Human Immunodeficiency Virus (HIV) infection and pathogenesis is complex and not yet well defined. Considering the crucial role of the accessory protein Nef in HIV pathogenicity, possible alterations in intracellular signalling and extracellular vesicle (EV) release induced by exogenous Nef on uninfected pDCs have been investigated. As an experimental model system, a human plasmacytoid dendritic cell line, GEN2.2, stimulated with a myristoylated recombinant NefSF2 protein was employed. In GEN2.2 cells, Nef treatment induced the tyrosine phosphorylation of STAT-1 and STAT-2 and the production of a set of cytokines, chemokines and growth factors including IP-10, MIP-1β, MCP-1, IL-8, TNF-α and G-CSF. The released factors differed both in type and amount from those released by macrophages treated with the same viral protein. Moreover, Nef treatment slightly reduces the production of small EVs, and the protein was found associated with the small (size < 200 nm) but not the medium/large vesicles (size > 200 nm) collected from GEN2.2 cells. These results add new information on the interactions between this virulence factor and uninfected pDCs, and may provide the basis for further studies on the interactions of Nef protein with primary pDCs.
Collapse
|
7
|
Marchetti P, Antonov A, Anemona L, Vangapandou C, Montanaro M, Botticelli A, Mauriello A, Melino G, Catani MV. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, PTPRCAP. Discov Oncol 2021; 12:6. [PMID: 35201443 PMCID: PMC8777524 DOI: 10.1007/s12672-021-00401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women worldwide, and settings of specific prognostic factors and efficacious therapies are made difficult by phenotypic heterogeneity of BC subtypes. Therefore, there is a current urgent need to define novel predictive genetic predictors that may be useful for stratifying patients with distinct prognostic outcomes. Here, we looked for novel molecular signatures for triple negative breast cancers (TNBCs). By a bioinformatic approach, we identified a panel of genes, whose expression was positively correlated with disease-free survival in TNBC patients, namely IL18R1, CD53, TRIM, Jaw1, LTB, and PTPRCAP, showing specific immune expression profiles linked to survival prediction; most of these genes are indeed expressed in immune cells and are required for productive lymphocyte activation. According to our hypothesis, these genes were not, or poorly, expressed in different TNBC cell lines, derived from either primary breast tumours or metastatic pleural effusions. This conclusion was further supported in vivo, as immuno-histochemical analysis on biopsies of TNBC invasive ductal carcinomas highlighted differential expression of these six genes in cancer cells, as well as in intra- and peri-tumoral infiltrating lymphocytes. Our data open to the possibility that inter-tumour heterogeneity of immune markers might have predictive value; further investigations are recommended in order to establish the real power of cancer-related immune profiles as prognostic factors.
Collapse
Affiliation(s)
- Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alexey Antonov
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR UK
| | - Lucia Anemona
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chaitania Vangapandou
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Andrea Botticelli
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - M. Valeria Catani
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
8
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
9
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
10
|
Mu W, Provaznik J, Hackert T, Zöller M. Tspan8-Tumor Extracellular Vesicle-Induced Endothelial Cell and Fibroblast Remodeling Relies on the Target Cell-Selective Response. Cells 2020; 9:cells9020319. [PMID: 32013145 PMCID: PMC7072212 DOI: 10.3390/cells9020319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cell-derived extracellular vesicles (TEX) expressing tetraspanin Tspan8-alpha4/beta1 support angiogenesis. Tspan8-alpha6/beta4 facilitates lung premetastatic niche establishment. TEX-promoted target reprogramming is still being disputed, we explored rat endothelial cell (EC) and lung fibroblast (Fb) mRNA and miRNA profile changes after coculture with TEX. TEX were derived from non-metastatic BSp73AS (AS) or metastatic BSp73ASML (ASML) rat tumor lines transfected with Tspan8 (AS-Tspan8) or Tspan8-shRNA (ASML-Tspan8kd). mRNA was analyzed by deep sequencing and miRNA by array analysis of EC and Fb before and after coculture with TEX. EC and Fb responded more vigorously to AS-Tspan8- than AS-TEX. Though EC and Fb responses differed, both cell lines predominantly responded to membrane receptor activation with upregulation and activation of signaling molecules and transcription factors. Minor TEX-initiated changes in the miRNA profile relied, at least partly, on long noncoding RNA (lncRNA) that also affected chromosome organization and mRNA processing. These analyses uncovered three important points. TEX activate target cell autonomous programs. Responses are initiated by TEX targeting units and are target cell-specific. The strong TEX-promoted lncRNA impact reflects lncRNA shuttling and location-dependent distinct activities. These informations urge for an in depth exploration on the mode of TEX-initiated target cell-specific remodeling including, as a major factor, lncRNA.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (W.M.); (M.Z.); Tel.: +86-021-6384-6590 (W.M.); +49-6221-484-730 (M.Z.)
| | - Jan Provaznik
- EMBL Genomics Core Facility, 69117 Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
| | - Margot Zöller
- Department of General, Visceral and Transplantation Surgery, Pancreas Section, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: (W.M.); (M.Z.); Tel.: +86-021-6384-6590 (W.M.); +49-6221-484-730 (M.Z.)
| |
Collapse
|
11
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Cell-autonomous FLT3L shedding via ADAM10 mediates conventional dendritic cell development in mouse spleen. Proc Natl Acad Sci U S A 2019; 116:14714-14723. [PMID: 31262819 DOI: 10.1073/pnas.1818907116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conventional dendritic cells (cDCs) derive from bone marrow (BM) precursors that undergo cascades of developmental programs to terminally differentiate in peripheral tissues. Pre-cDC1s and pre-cDC2s commit in the BM to each differentiate into CD8α+/CD103+ cDC1s and CD11b+ cDC2s, respectively. Although both cDCs rely on the cytokine FLT3L during development, mechanisms that ensure cDC accessibility to FLT3L have yet to be elucidated. Here, we generated mice that lacked a disintegrin and metalloproteinase (ADAM) 10 in DCs (Itgax-cre × Adam10-fl/fl; ADAM10∆DC) and found that ADAM10 deletion markedly impacted splenic cDC2 development. Pre-cDC2s accumulated in the spleen with transcriptomic alterations that reflected their inability to differentiate and exhibited abrupt failure to survive as terminally differentiated cDC2s. Induced ADAM10 ablation also led to the reduction of terminally differentiated cDC2s, and restoration of Notch signaling, a major pathway downstream of ADAM10, only modestly rescued them. ADAM10∆DC BM failed to generate cDC2s in BM chimeric mice with or without cotransferred ADAM10-sufficient BM, indicating that cDC2 development required cell-autonomous ADAM10. We determined cDC2s to be sources of soluble FLT3L, as supported by decreased serum FLT3L concentration and the retention of membrane-bound FLT3L on cDC2 surfaces in ADAM10∆DC mice, and by demonstrating the release of soluble FLT3L by cDC2 in ex vivo culture supernatants. Through in vitro studies utilizing murine embryonic fibroblasts, we determined FLT3L to be a substrate for ADAM10. These data collectively reveal cDC2s as FLT3L sources and highlight a cell-autonomous mechanism that may enhance FLT3L accessibility for cDC2 development and survival.
Collapse
|
13
|
Talker SC, Baumann A, Barut GT, Keller I, Bruggmann R, Summerfield A. Precise Delineation and Transcriptional Characterization of Bovine Blood Dendritic-Cell and Monocyte Subsets. Front Immunol 2018; 9:2505. [PMID: 30425716 PMCID: PMC6218925 DOI: 10.3389/fimmu.2018.02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
A clear-cut delineation of bovine bona fide dendritic cells (DC) from monocytes has proved challenging, given the high phenotypic and functional plasticity of these innate immune cells and the marked phenotypic differences between species. Here, we demonstrate that, based on expression of Flt3, CD172a, CD13, and CD4, a precise identification of bovine blood conventional DC type 1 and 2 (cDC1, cDC2), plasmacytoid DC (pDC), and monocytes is possible with cDC1 being Flt3+CD172adimCD13+CD4−, cDC2 being Flt3+CD172a+CD13−CD4−, pDC being Flt3+CD172adimCD13−CD4+, and monocytes being Flt3−CD172ahighCD13−CD4−. The phenotype of these subsets was characterized in further detail, and a subset-specific differential expression of CD2, CD5, CD11b, CD11c, CD14, CD16, CD26, CD62L, CD71, CD163, and CD205 was found. Subset identity was confirmed by transcriptomic analysis and subset-specific transcription of conserved key genes. We also sorted monocyte subsets based on their differential expression of CD14 and CD16. Classical monocytes (CD14+CD16−) clustered clearly apart from the two CD16+ monocyte subsets probably representing intermediate and non-classical monocytes described in human. The transcriptomic data also revealed differential gene transcription for molecules involved in antigen presentation, pathogen sensing, and migration, and therefore gives insights into functional differences between bovine DC and monocyte subsets. The identification of cell-type- and subset-specific gene transcription will assist in the quest for “marker molecules” that—when targeted by flow cytometry—will greatly facilitate research on bovine DC and monocytes. Overall, species comparisons will elucidate basic principles of DC and monocyte biology and will help to translate experimental findings from one species to another.
Collapse
Affiliation(s)
- Stephanie C Talker
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Baumann
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
de Winde CM, Matthews AL, van Deventer S, van der Schaaf A, Tomlinson ND, Jansen E, Eble JA, Nieswandt B, McGettrick HM, Figdor CG, Tomlinson MG, Acton SE, van Spriel AB. C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37. J Cell Sci 2018; 131:jcs214551. [PMID: 30185523 DOI: 10.1242/jcs.214551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Sjoerd van Deventer
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Neil D Tomlinson
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erik Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, D-48149 Münster, Germany
| | - Bernhard Nieswandt
- University Clinic of Würzburg and Rudolf Virchow Center for Experimental Biomedicine, 97070 Würzburg, Germany
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl G Figdor
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Sophie E Acton
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Annemiek B van Spriel
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
15
|
Funikov SY, Rezvykh AP, Mazin PV, Morozov AV, Maltsev AV, Chicheva MM, Vikhareva EA, Evgen’ev MB, Ustyugov AA. FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy. Neurogenetics 2018; 19:189-204. [DOI: 10.1007/s10048-018-0553-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
|
16
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
17
|
Reyes R, Cardeñes B, Machado-Pineda Y, Cabañas C. Tetraspanin CD9: A Key Regulator of Cell Adhesion in the Immune System. Front Immunol 2018; 9:863. [PMID: 29760699 PMCID: PMC5936783 DOI: 10.3389/fimmu.2018.00863] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022] Open
Abstract
The tetraspanin CD9 is expressed by all the major subsets of leukocytes (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, granulocytes, monocytes and macrophages, and immature and mature dendritic cells) and also at a high level by endothelial cells. As a typical member of the tetraspanin superfamily, a prominent feature of CD9 is its propensity to engage in a multitude of interactions with other tetraspanins as well as with different transmembrane and intracellular proteins within the context of defined membranal domains termed tetraspanin-enriched microdomains (TEMs). Through these associations, CD9 influences many cellular activities in the different subtypes of leukocytes and in endothelial cells, including intracellular signaling, proliferation, activation, survival, migration, invasion, adhesion, and diapedesis. Several excellent reviews have already covered the topic of how tetraspanins, including CD9, regulate these cellular processes in the different cells of the immune system. In this mini-review, however, we will focus particularly on describing and discussing the regulatory effects exerted by CD9 on different adhesion molecules that play pivotal roles in the physiology of leukocytes and endothelial cells, with a particular emphasis in the regulation of adhesion molecules of the integrin and immunoglobulin superfamilies.
Collapse
Affiliation(s)
- Raquel Reyes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Cardeñes
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yesenia Machado-Pineda
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Cabañas
- Departamento de Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Departamento de Inmunología, Oftalmología y OTR (IO2), Facultad de Medicina, Universidad Complutense, Madrid, Spain
| |
Collapse
|
18
|
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2018; 86:3-14. [PMID: 29499385 DOI: 10.1016/j.semcdb.2018.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.
Collapse
Affiliation(s)
- Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - P Mark Hogarth
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Inflammation, Cancer and Infection, Burnet Institute, Melbourne, VIC, Australia
| | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|