1
|
Lanning S, Pedicino N, Haley DJ, Hernandez S, Cortez V, DuBois RM. Structure and immunogenicity of the murine astrovirus capsid spike. J Gen Virol 2023; 104:001913. [PMID: 37910165 PMCID: PMC10773150 DOI: 10.1099/jgv.0.001913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
Human astroviruses (HAstVs) are small, non-enveloped icosahedral RNA viruses that are a significant cause of diarrhoea in young children. Despite their worldwide prevalence, HAstV pathogenesis studies and vaccine development remain challenging due to the lack of an animal model for HAstV infection. The recent development of a murine astrovirus (MuAstV) infection model in mice provides the opportunity to test proof-of-concept vaccines based on MuAstV antigens. To help establish a system in which an astrovirus capsid spike-based vaccine could be tested in vivo, we designed and produced a recombinant MuAstV capsid spike protein based on predicted secondary structure homology to HAstV spike proteins. The recombinant MuAstV spike can be expressed with high efficiency in Escherichia coli and retains antigenicity to polyclonal antibodies elicited by MuAstV infection. We determined the crystal structure of the MuAstV spike to 1.75 Å and assessed its structural conservation with HAstV capsid spike. Despite low sequence identity between the MuAstV and HAstV spikes and differences in their overall shapes, they share related structural folds. Additionally, we found that vaccination with MuAstV spike induced anti-MuAstV-spike antibodies, highlighting that the recombinant spike is immunogenic. These studies lay a foundation for future in vivo MuAstV challenge studies to test whether MuAstV spike can be the basis of an effective vaccine.
Collapse
Affiliation(s)
- Sarah Lanning
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Natalie Pedicino
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Danielle J. Haley
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Samuel Hernandez
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Valerie Cortez
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
2
|
Butt J, Schmitz M, Berkus B, Schmidt K, Höfler D. Validation of Multiplex PCR and Serology Detecting Helicobacter Species in Mice. Microorganisms 2023; 11:microorganisms11020249. [PMID: 36838214 PMCID: PMC9963394 DOI: 10.3390/microorganisms11020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023] Open
Abstract
High-throughput multiplexed assays are needed to simplify detection of Helicobacter species in experimental infection and routine health monitoring of laboratory mice. Therefore, fluorescent bead-based hybridization assays for Helicobacter sp. DNA and serology were developed. Multiplex PCR amplicons (H. hepaticus, H. bilis, H. typhlonius, H. pylori, H. muridarum, H. pullorum, H. cinaedi, H. heilmanii, C. jejuni) and antibodies against H. pylori, H. hepaticus, H. bilis were assessed in naturally and experimentally infected mice, and results compared to conventional PCR. Species-specific and sensitive detection of seven Helicobacter spp. <100 copies/PCR, and of two species <1000 copies/PCR was successfully established in the Helicobacter multiplex DNA finder. The novel assay was highly comparable with conventional PCR (kappa = 0.98, 95%CI: 0.94-1.00). Antibody detection of H. hepaticus and H. bilis showed low sensitivity (71% and 62%, respectively) and cross-reactivity in H. typhlonius-infected mice. Infection experiments showed that antibodies develop earliest two weeks after DNA detection in feces. In conclusion, detection of Helicobacter antibodies showed low sensitivity depending on the timing relative to infection. However, Helicobacter multiplex DNA finder is a sensitive and specific high-throughput assay applicable in routine health monitoring for laboratory animals.
Collapse
Affiliation(s)
- Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Schmitz
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bernhard Berkus
- Microbiological Diagnostics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katja Schmidt
- Microbiological Diagnostics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Höfler
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
3
|
Zhang M, Lv X, Wang B, Yu S, Lu Q, Kan Y, Wang X, Jia B, Bi Z, Wang Q, Zhu Y, Wang G. Development of a potential diagnostic monoclonal antibody against capsid spike protein VP27 of the novel goose astrovirus. Poult Sci 2021; 101:101680. [PMID: 35051673 PMCID: PMC8883067 DOI: 10.1016/j.psj.2021.101680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Goose astrovirus (GAstVs) is an emerging pathogen of goslings that causes fatal gout, kidney hemorrhages, renomegaly, and high mortality. The GAstVs VP27 protein is an important capsid protein and a candidate for the development of diagnostic reagents. The aim of this study was to clone and express the VP27 gene for preparation of a specific monoclonal antibody (mAb). The VP27 protein was expressed and purified in the supernatant of Escherichia coli BL21. Then, the mAb was obtained with the hybridoma technique and named 2AF11. It was differentiated as IgG1 with the help of immunoglobulin subclass tests. This mAb can specifically recognize the VP27 protein in GAstVs-infected cells, as evidenced by western blot analysis and immunofluorescent assay. Furthermore, this mAb could also detect the VP27 protein in GAstVs-infected tissues, as demonstrated by immunohistochemistry. These findings indicate that this mAb has high diagnostic potential. Therefore, the newly produced anti-VP27 mAb, 2AF11, could be a useful tool as a specific diagnostic marker for GAstVs.
Collapse
Affiliation(s)
- Miao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuan Lv
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Bei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shengzu Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ying Kan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiqiang Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Beiping Jia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhuangli Bi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qing Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Hefei 230036, China.
| |
Collapse
|
4
|
Morita H, Yasuda M, Yamamoto M, Tomiyama Y, Uchida R, Ka Y, Ogura T, Kawai K, Suemizu H, Hayashimoto N. Pathogenesis of murine astrovirus in experimentally infected mice. Exp Anim 2021; 70:355-363. [PMID: 33828018 PMCID: PMC8390316 DOI: 10.1538/expanim.20-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
Astroviruses are often associated with gastrointestinal diseases in mammals and birds. Murine astrovirus (MuAstV) is frequently detected in laboratory mice. Previous studies on MuAstV in mice did not report any symptoms or lesions. However, little information is available regarding its pathogenicity in immunodeficient mice. Therefore, in this study, we experimentally infected germ-free NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic (NOG) mice, which are severely immunodeficient, with MuAstV. Germ-free mice were used for experimental infection to eliminate the effects of intestinal bacteria. Mice in each group were then necropsied and subjected to PCR for MuAstV detection, MuAstV RNA quantification in each organ, and histopathological examination at 4 and 28 days post inoculation (DPI). Tissue samples from the small intestine were examined by transmission electron microscopy. No symptoms or abnormalities were detected in any mice during necropsy. The MuAstV concentration was highest in the lower small intestine, where it increased approximately 8-fold from 4 to 28 DPI. Transmission electron microscopy revealed circular virus particles of approximately 25 nm in diameter in the cytoplasm of the villous epithelial cells of the lower small intestine. Histopathological examination did not reveal any abnormalities, such as atrophy, in the intestinal villi. Our results suggest that MuAstV proliferates in the villous epithelial cells of the lower small intestine and has weak pathogenicity.
Collapse
Affiliation(s)
- Hanako Morita
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masahiko Yasuda
- Pathology Analysis Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yurina Tomiyama
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ritsuki Uchida
- JAC Inc., No. 44 Kouwa building, 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-0043, Japan
| | - Yuyo Ka
- Animal Resource Technology Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Animal Resource Technology Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Pathology Analysis Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Biomedical Research Laboratory, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuhito Hayashimoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
5
|
Su CM, Cheng YC, Wang HY, Hsieh CH, Wan CH. The origin and past demography of murine astrovirus 1 in laboratory mice. J Gen Virol 2021; 102. [PMID: 33206033 DOI: 10.1099/jgv.0.001520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astroviruses are non-enveloped, positive-sense, ssRNA viruses and often associated with gastrointestinal diseases. Murine astrovirus (MuAstV) was first confirmed in a laboratory mouse colony in 2011. Although infected mice do not present significant clinical symptoms, the virus might interfere with research results. A recent surveillance has shown that MuAstV is highly prevalent in laboratory mice. The aims of the present study were to identify and characterize MuAstV strains as well as to investigate the prevalence rate of viral RNA in laboratory mice in Taiwan, and to estimate the origin and past population demography of MuAstVs. Based on molecular surveillance, MuAstV RNA was detected in 45.7 % of laboratory mice (48/105) from seven of nine colonies. Three fully sequenced MuAstV strains, MuAstV TW1, TW2 and TW3, exhibited 89.1-94.4 % and 89.1-90.0 % nucleotide identities with the reference strains MuAstV STL1 and STL2, respectively. Phylogenetic analyses of the partial regions of the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) genes of 18 Taiwan strains along with other astroviruses revealed that there are three distinct lineages of mouse astrovirus, MuAstV1, MuAstV2 and mouse astrovirus JF755422. The mutation rates of MuAstV1 were 2.6×10-4 and 6.2×10-4 substitutions/site/year for the RdRp and CP regions, respectively. Based on the above molecular clock, the colonization of MuAstV1 in laboratory mice was between 1897 and 1912, in good agreement with the establishment of 'modern' laboratory mouse facilities. Since its initial infection, the population size of MuAstV1 has increased 15-60-fold, probably consistent with the increased use of laboratory mice. In conclusion, MuAstV1 has been associated with modern laboratory mice since the beginning, and its influence on research results may require further investigation.
Collapse
Affiliation(s)
- Chia-Ming Su
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ying-Chien Cheng
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hurng-Yi Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung San South Road, Taipei 10002, Taiwan, ROC
| | - Chia-Hung Hsieh
- Department of Forestry and Nature Conservation, Chinese Culture University, No. 55, Hwa Kang Road, Yang-Ming-Shan, Taipei, Taiwan, ROC
| | - Cho-Hua Wan
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| |
Collapse
|
6
|
Ricart Arbona RJ, Kelly S, Wang C, Dhawan RK, Henderson KS, Shek WR, Williams SH, Altan E, Delwart E, Wolf F, Lipman NS. Serendipitous Discovery of a Novel Murine Astrovirus Contaminating a Murine Helper T-cell Line and Incapable of Infecting Highly Immunodeficient Mice. Comp Med 2020; 70:359-369. [PMID: 32674749 PMCID: PMC7446642 DOI: 10.30802/aalas-cm-19-000106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/18/2020] [Indexed: 11/05/2022]
Abstract
The unexpected seroconversion of sentinel mice in our facility to murine T lymphotrophic virus (MTLV) positivity led to our identification of a novel murine astrovirus that we designated murine astrovirus 2 (MuAstV-2). During our investigation, MuAstV-2 was found to be a contaminant of the T helper cell line (D10. G4.1) that was used to generate the MTLV antigen that we included in the multiplex fluorometric immunoassay (MFIA) that we used for sentinel screening. We eventually determined that cross-reactivity with the astrovirus generated a positive result in the MTLV assay. A confirmatory immunofluorometric assay (IFA) using the same MTLV-infected cell line yielded a similar result. However, the use of antigen prepared from MTLV-infected neonatal mouse thymus did not reproduce a positive result, leading us to suspect that the seroreactivity we had observed was not due to infection with MTLV. A mouse antibody production test showed that mice inoculated with naïve D10. G4.1 cells and their contact sentinels tested positive for MTLV using cell-line generated antigen, but tested negative in assays using MTLV antigen produced in mice. Metagenomic analysis was subsequently used to identify MuAstV-2 in feces from 2 sentinel mice that had recently seroconverted to MTLV. Two closely related astrovirus sequences (99.6% capsid identity) were obtained and shared 95% capsid amino acid identity with the MuAstV-2 virus sequenced from the D10. G4.1 cell line. These viruses are highly divergent from previously identified murine astroviruses, displaying <30% capsid identity, yet were closely related to murine astrovirus 2 (85% capsid identity), which had recently been isolated from feral mice in New York City. A MuAstV-2 specific PCR assay was developed and used to eradicate MuAstV-2 from the infected colony using a test and cull strategy. The newly identified MuAstV2 readily transmits to immunocompetent mouse strains by fecal-oral exposure, but fails to infect NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl (NCG) mice, which have significantly impaired adaptive and innate immune systems. Neither immunocompetent nor immunodeficient mice showed any astrovirus-associated pathology. MuAstV-2 may provide a valuable model for the study of specific aspects of astrovirus pathogenesis and virus-host interactions.
Collapse
Key Words
- ifa, immunofluorescent assay
- lab 1, 2: laboratory 1, 2
- mfia, multiplexed fluorometric immunoassay
- mtlv, murine t lymphotrophic virus
- muastv, murine astrovirus
- muastv-2, murine astrovirus 2
- mulv, murine leukemia virus
- ncg, nod-prkdcem26cd52il2rgem26cd22/njucrl
- nsg, nod.cg-prkdcscid il2rgtm1wjl/szj
- v1, v2, v3: vivarium 1, 2, 3
Collapse
Affiliation(s)
- Rodolfo J Ricart Arbona
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York;,
| | - Sean Kelly
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Chuanwu Wang
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Rajeev K Dhawan
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Kenneth S Henderson
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - William R Shek
- Charles River Laboratories Research Animal Diagnostic Services, Wilmington, Massachusetts
| | - Simon H Williams
- Center for Infection and Immunity, Columbia University, New York, New York
| | - Eda Altan
- Vitalant Research Institute, San Francisco, California; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, California; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Felix Wolf
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| | - Neil S Lipman
- Center for Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York; Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York
| |
Collapse
|
7
|
Morita H, Yasuda M, Yamamoto M, Uchida R, Tanaka M, Ishida T, Hayashimoto N. Prevalence of murine astrovirus in laboratory animal facilities in Japan. J Vet Med Sci 2020; 82:881-885. [PMID: 32418936 PMCID: PMC7399306 DOI: 10.1292/jvms.20-0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To investigate the prevalence of murine astrovirus (MuAstV) in mice in laboratory animal facilities in Japan, a polymerase chain reaction (PCR) test targeting the RNA-dependent
RNA polymerase (RdRP) gene was performed on the cecum contents of 1,212 mice (1,183 immunocompetent mice and 29 immunodeficient mice) from 226 facilities. The results showed that
118 (52.2%) of the 226 facilities were positive for MuAstV. Out of the 1,212 mice, 424 (35.0%) were positive. No gross lesions were observed in any of the mice examined. A
phylogenetic analysis for 15 selected strains revealed that 13 strains formed one cluster, while two were genetically distant from that cluster. These results suggest that multiple
strains are prevalent in laboratory mice in Japan.
Collapse
Affiliation(s)
- Hanako Morita
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| | - Masahiko Yasuda
- Pathology Analysis Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| | - Ritsuki Uchida
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan.,JAC Inc., No.44 Kowa building, 1-2-7 Higashiyama, Meguro-ku, Tokyo 153-0043 Japan
| | - Mai Tanaka
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| | - Tomoko Ishida
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| | - Nobuhito Hayashimoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821 Japan
| |
Collapse
|
8
|
Cortez V, Boyd DF, Crawford JC, Sharp B, Livingston B, Rowe HM, Davis A, Alsallaq R, Robinson CG, Vogel P, Rosch JW, Margolis E, Thomas PG, Schultz-Cherry S. Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nat Commun 2020; 11:2097. [PMID: 32350281 PMCID: PMC7190700 DOI: 10.1038/s41467-020-15999-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization. These studies establish the main target cell type and region of the gut for productive murine astrovirus infection. They further define a mechanism by which an enteric virus can regulate the mucus barrier, induce functional changes to commensal microbial communities, and alter host susceptibility to pathogenic bacteria.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hannah M Rowe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy Davis
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ramzi Alsallaq
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elisa Margolis
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Medical Management and Diagnostic Approaches. THE LABORATORY RAT 2020. [PMCID: PMC7153319 DOI: 10.1016/b978-0-12-814338-4.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This chapter reviews the basic principles of medical management of rat colonies and diagnostic approaches to detect infectious diseases of rats. As is the case with all other species, rats are susceptible to a variety of injuries and diseases that can cause distress, morbidity, or mortality. Any facility that houses rats must develop monitoring programs designed to rapidly identify health-related problems so they can be communicated to appropriate veterinary or animal care personnel to be resolved. These programs generally consist of multiple components, some of which are directed toward individual animals and others that assess the health status of rat populations as a whole. Topics include individual animal monitoring and care, signs of illness and distress, colony health management, components of microbiological monitoring programs, including agents commonly targeted and sentinel programs, quarantine, biological material screening, diagnostic testing methodologies, including culture, serology, molecular diagnostic and histopathology, test profiles and interpretation, management of disease outbreaks, and treatment and prevention strategies for infectious agents.
Collapse
|
10
|
Detection of Murine Astrovirus and Myocoptes musculinus in individually ventilated caging systems: Investigations to expose suitable detection methods for routine hygienic monitoring. PLoS One 2019; 14:e0221118. [PMID: 31408494 PMCID: PMC6692027 DOI: 10.1371/journal.pone.0221118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Murine Astrovirus is one of the most prevalent viral agents in laboratory rodent facilities worldwide, but its influence on biomedical research results is poorly examined. Due to possible influence on research results and high seroprevalence rates in mice, it appears useful to include this virus into routine health monitoring programs. In order to establish exhaust air particle PCR as a reliable detection method for Murine Astrovirus infections in mice kept in individually ventilated cages (IVC) and compare the method to sentinel mice monitoring regarding reproducibility and detection limit, we conducted a study with defined Murine Astrovirus cage prevalence. In parallel, the efficacy of both detection strategies (soiled-bedding sentinel (SBS) and exhaust air dust (EAD) analysis) was tested for Myocoptes musculinus. The fur mite was used as a reference organism during the whole study period to ensure the validity of this method. Because some publications already demonstrated successful detection of several pathogens, including murine fur mite species, via EAP-PCR. Detection of Murine Astrovirus infections at low prevalence is possible with both methods tested. Detection by exhaust air particles (EAP) is faster, more sensitive and more reliable compared to soiled bedding sentinels (SBS). Exhaust air particle PCR also detected the reference organism Myocoptes musculinus, which was not detected at all by sentinel mice, not even by high sensitivity fur swab qPCR. In conclusion, Murine Astrovirus can be detected by both exhaust air particle PCR and soiled bedding sentinels. We recommend exhaust air particle PCR as the better detection technique for Murine Astrovirus, because it is more reliable. Environmental samples are the method of choice for detection of Myocoptes musculinus because relying on soiled bedding sentinels harbors a big risk of missing existing infestations.
Collapse
|