1
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2025; 68:1-13. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Kaur A, Russell I, Liu R, Holland A, Bhandari R, Potnis N. Navigating Host Immunity and Concurrent Ozone Stress: Strain-Resolved Metagenomics Reveals Maintenance of Intraspecific Diversity and Genetic Variation in Xanthomonas on Pepper. Evol Appl 2025; 18:e70069. [PMID: 39816160 PMCID: PMC11732741 DOI: 10.1111/eva.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, Xanthomonas perforans, on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O3) conditions in a single growing season. We observed increased disease severity with greater variance on the resistant cultivar under elevated O3, yet no apparent change on the susceptible cultivar. Despite the dominance of a single pathogen genotype on the susceptible cultivar, the resistant cultivar supported a heterogeneous pathogen population. Altered O3 levels led to a strain turnover, with a relatively greater gene flux on the resistant cultivar. Both standing genetic variation and de novo parallel mutations contributed toward evolutionary modifications during adaptation onto the resistant cultivar. The presence of elevated O3, however, led to a relatively higher genetic polymorphism, with random and transient mutations. Population heterogeneity along with genetic variation, and the promotion of interdependency are mechanisms by which pathogen responds to stressors. While parallel mutations may provide clues to predicting long-term pathogen evolution and adaptive potential. And, a high proportion of transient mutations suggest less predictable pathogen evolution under climatic alterations. This knowledge is relevant as we study the risk of pathogen emergence and the mechanisms and constraints underlying long-term pathogen adaptation under climatic shifts.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ivory Russell
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ranlin Liu
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Auston Holland
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Rishi Bhandari
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
3
|
Roussin-Léveillée C, Rossi CAM, Castroverde CDM, Moffett P. The plant disease triangle facing climate change: a molecular perspective. TRENDS IN PLANT SCIENCE 2024; 29:895-914. [PMID: 38580544 DOI: 10.1016/j.tplants.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Variations in climate conditions can dramatically affect plant health and the generation of climate-resilient crops is imperative to food security. In addition to directly affecting plants, it is predicted that more severe climate conditions will also result in greater biotic stresses. Recent studies have identified climate-sensitive molecular pathways that can result in plants being more susceptible to infection under unfavorable conditions. Here, we review how expected changes in climate will impact plant-pathogen interactions, with a focus on mechanisms regulating plant immunity and microbial virulence strategies. We highlight the complex interactions between abiotic and biotic stresses with the goal of identifying components and/or pathways that are promising targets for genetic engineering to enhance adaptation and strengthen resilience in dynamically changing environments.
Collapse
Affiliation(s)
| | - Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | | | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
4
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Miller SA, Testen AL, Jacobs JM, Ivey MLL. Mitigating Emerging and Reemerging Diseases of Fruit and Vegetable Crops in a Changing Climate. PHYTOPATHOLOGY 2024; 114:917-929. [PMID: 38170665 DOI: 10.1094/phyto-10-23-0393-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fruit and vegetable crops are important sources of nutrition and income globally. Producing these high-value crops requires significant investment of often scarce resources, and, therefore, the risks associated with climate change and accompanying disease pressures are especially important. Climate change influences the occurrence and pressure of plant diseases, enabling new pathogens to emerge and old enemies to reemerge. Specific environmental changes attributed to climate change, particularly temperature fluctuations and intense rainfall events, greatly alter fruit and vegetable disease incidence and severity. In turn, fruit and vegetable microbiomes, and subsequently overall plant health, are also affected by climate change. Changing disease pressures cause growers and researchers to reassess disease management and climate change adaptation strategies. Approaches such as climate smart integrated pest management, smart sprayer technology, protected culture cultivation, advanced diagnostics, and new soilborne disease management strategies are providing new tools for specialty crops growers. Researchers and educators need to work closely with growers to establish fruit and vegetable production systems that are resilient and responsive to changing climates. This review explores the effects of climate change on specialty food crops, pathogens, insect vectors, and pathosystems, as well as adaptations needed to ensure optimal plant health and environmental and economic sustainability.
Collapse
Affiliation(s)
- Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH 44691
| | - Anna L Testen
- U.S. Department of Agriculture-Agricultural Research Service Application Technology Research Unit, Wooster, OH 44691
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
6
|
Ontoy JC, Ham JH. Mapping and Omics Integration: Towards Precise Rice Disease Resistance Breeding. PLANTS (BASEL, SWITZERLAND) 2024; 13:1205. [PMID: 38732420 PMCID: PMC11085595 DOI: 10.3390/plants13091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Rice (Oryza sativa), as a staple crop feeding a significant portion of the global population, particularly in Asian countries, faces constant threats from various diseases jeopardizing global food security. A precise understanding of disease resistance mechanisms is crucial for developing resilient rice varieties. Traditional genetic mapping methods, such as QTL mapping, provide valuable insights into the genetic basis of diseases. However, the complex nature of rice diseases demands a holistic approach to gain an accurate knowledge of it. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, enable a comprehensive analysis of biological molecules, uncovering intricate molecular interactions within the rice plant. The integration of various mapping techniques using multi-omics data has revolutionized our understanding of rice disease resistance. By overlaying genetic maps with high-throughput omics datasets, researchers can pinpoint specific genes, proteins, or metabolites associated with disease resistance. This integration enhances the precision of disease-related biomarkers with a better understanding of their functional roles in disease resistance. The improvement of rice breeding for disease resistance through this integration represents a significant stride in agricultural science because a better understanding of the molecular intricacies and interactions underlying disease resistance architecture leads to a more precise and efficient development of resilient and productive rice varieties. In this review, we explore how the integration of mapping and omics data can result in a transformative impact on rice breeding for enhancing disease resistance.
Collapse
Affiliation(s)
- John Christian Ontoy
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA 70803, USA;
- Department of Plant Pathology and Crop Physiology, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA 70803, USA;
- Department of Plant Pathology and Crop Physiology, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Pandey P, Patil M, Priya P, Senthil-Kumar M. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:674-688. [PMID: 37864841 DOI: 10.1093/jxb/erad413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| |
Collapse
|
8
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
9
|
Poulicard N, Pagán I, González-Jara P, Mora MÁ, Hily JM, Fraile A, Piñero D, García-Arenal F. Repeated loss of the ability of a wild pepper disease resistance gene to function at high temperatures suggests that thermoresistance is a costly trait. THE NEW PHYTOLOGIST 2024; 241:845-860. [PMID: 37920100 DOI: 10.1111/nph.19371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
10
|
Peng J, Li Y, Xing Q, Huang C, Yan J. Dual RNA-Seq Reveals Temperature-Mediated Gene Reprogramming and Molecular Crosstalk between Grapevine and Lasiodiplodia theobromae. J Fungi (Basel) 2023; 9:1197. [PMID: 38132797 PMCID: PMC10745131 DOI: 10.3390/jof9121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
High temperatures associated with a fluctuating climate profoundly accelerate the occurrence of a myriad of plant diseases around the world. A comprehensive insight into how plants respond to pathogenic microorganisms under high-temperature stress is required for plant disease management, whereas the underlying mechanisms behind temperature-mediated plant immunity and pathogen pathogenicity are still unclear. Here, we evaluated the effect of high temperature on the development of grapevine canker disease and quantified the contribution of temperature variation to the gene transcription reprogramming of grapevine and its pathogenic agent Lasiodiplodia theobromae using a dual RNA-seq approach. The results showed that both grapevine and the pathogen displayed altered transcriptomes under different temperatures, and even the transcription of a plethora of genes from the two organisms responded in different directions and magnitudes. The transcription variability that arose due to temperature oscillation allowed us to identify a total of 26 grapevine gene modules and 17 fungal gene modules that were correlated with more than one gene module of the partner organism, which revealed an extensive web of plant-pathogen gene reprogramming during infection. More importantly, we identified a set of temperature-responsive genes that were transcriptionally orchestrated within the given gene modules. These genes are predicted to be involved in multiple cellular processes including protein folding, stress response regulation, and carbohydrate and peptide metabolisms in grapevine and porphyrin- and pteridine-containing compound metabolisms in L. theobromae, implying that in response to temperature oscillation, a complex web of signaling pathways in two organism cells is activated during infection. This study describes a co-transcription network of grapevine and L. theobromae in the context of considering temperature variation, which provides novel insights into deciphering the molecular mechanisms underlying temperature-modulated disease development.
Collapse
Affiliation(s)
| | | | | | | | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China (Q.X.)
| |
Collapse
|
11
|
Leisner CP, Potnis N, Sanz-Saez A. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:2946-2963. [PMID: 36585762 DOI: 10.1111/pce.14532] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
As sessile organisms, plants are constantly challenged by a dynamic growing environment. This includes fluctuations in temperature, water availability, light levels, and changes in atmospheric constituents such as carbon dioxide (CO2 ) and ozone (O3 ). In concert with changes in abiotic conditions, plants experience changes in biotic stress pressures, including plant pathogens and herbivores. Human-induced increases in atmospheric CO2 levels have led to alterations in plant growth environments that impact their productivity and nutritional quality. Additionally, it is predicted that climate change will alter the prevalence and virulence of plant pathogens, further challenging plant growth. A knowledge gap exists in the complex interplay between plant responses to biotic and abiotic stress conditions. Closing this gap is crucial for developing climate resilient crops in the future. Here, we briefly review the physiological responses of plants to elevated CO2 , temperature, tropospheric O3 , and drought conditions, as well as the interaction of these abiotic stress factors with plant pathogen pressure. Additionally, we describe the crosstalk and trade-offs involved in plant responses to both abiotic and biotic stress, and outline targets for future work to develop a more sustainable future food supply considering future climate change.
Collapse
Affiliation(s)
- Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Science, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
12
|
Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, Liu H, Trivedi P. Climate change impacts on plant pathogens, food security and paths forward. Nat Rev Microbiol 2023; 21:640-656. [PMID: 37131070 PMCID: PMC10153038 DOI: 10.1038/s41579-023-00900-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Plant disease outbreaks pose significant risks to global food security and environmental sustainability worldwide, and result in the loss of primary productivity and biodiversity that negatively impact the environmental and socio-economic conditions of affected regions. Climate change further increases outbreak risks by altering pathogen evolution and host-pathogen interactions and facilitating the emergence of new pathogenic strains. Pathogen range can shift, increasing the spread of plant diseases in new areas. In this Review, we examine how plant disease pressures are likely to change under future climate scenarios and how these changes will relate to plant productivity in natural and agricultural ecosystems. We explore current and future impacts of climate change on pathogen biogeography, disease incidence and severity, and their effects on natural ecosystems, agriculture and food production. We propose that amendment of the current conceptual framework and incorporation of eco-evolutionary theories into research could improve our mechanistic understanding and prediction of pathogen spread in future climates, to mitigate the future risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with relevant intergovernmental organizations to provide effective monitoring and management of plant disease under future climate scenarios, to ensure long-term food and nutrient security and sustainability of natural ecosystems.
Collapse
Affiliation(s)
- Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Emilio Guirado
- Multidisciplinary Institute for Environment Studies 'Ramon Margalef', University of Alicante, Alicante, Spain
| | - Jan E Leach
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Pankaj Trivedi
- Microbiome Newtork and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Adamik L, Langin T, Bonhomme L. A generic part of specific combined responses to biotic and abiotic stresses in crops: Overcoming multifaceted challenges towards new opportunities. FRONTIERS IN PLANT SCIENCE 2023; 14:1140808. [PMID: 36909388 PMCID: PMC9998675 DOI: 10.3389/fpls.2023.1140808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Affiliation(s)
| | | | - Ludovic Bonhomme
- Université Clermont Auvergne, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Génétique, diversité et ecophysiologie des céréales (GDEC), Clermont-Ferrand, France
| |
Collapse
|
14
|
Ahmad M. Genomics and transcriptomics to protect rice ( Oryza sativa. L.) from abiotic stressors: -pathways to achieving zero hunger. FRONTIERS IN PLANT SCIENCE 2022; 13:1002596. [PMID: 36340401 PMCID: PMC9630331 DOI: 10.3389/fpls.2022.1002596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
More over half of the world's population depends on rice as a major food crop. Rice (Oryza sativa L.) is vulnerable to abiotic challenges including drought, cold, and salinity since it grown in semi-aquatic, tropical, or subtropical settings. Abiotic stress resistance has bred into rice plants since the earliest rice cultivation techniques. Prior to the discovery of the genome, abiotic stress-related genes were identified using forward genetic methods, and abiotic stress-tolerant lines have developed using traditional breeding methods. Dynamic transcriptome expression represents the degree of gene expression in a specific cell, tissue, or organ of an individual organism at a specific point in its growth and development. Transcriptomics can reveal the expression at the entire genome level during stressful conditions from the entire transcriptional level, which can be helpful in understanding the intricate regulatory network relating to the stress tolerance and adaptability of plants. Rice (Oryza sativa L.) gene families found comparatively using the reference genome sequences of other plant species, allowing for genome-wide identification. Transcriptomics via gene expression profiling which have recently dominated by RNA-seq complements genomic techniques. The identification of numerous important qtl,s genes, promoter elements, transcription factors and miRNAs involved in rice response to abiotic stress was made possible by all of these genomic and transcriptomic techniques. The use of several genomes and transcriptome methodologies to comprehend rice (Oryza sativa, L.) ability to withstand abiotic stress have been discussed in this review.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Visiting Scientist Plant Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
15
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
16
|
Qiu J, Xie J, Chen Y, Shen Z, Shi H, Naqvi NI, Qian Q, Liang Y, Kou Y. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. MOLECULAR PLANT 2022; 15:723-739. [PMID: 35217224 DOI: 10.1016/j.molp.2022.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 05/20/2023]
Abstract
Changes in global temperatures profoundly affect the occurrence of plant diseases. It is well known that rice blast can easily become epidemic in relatively warm weather. However, the molecular mechanism remains unclear. In this study, we show that enhanced blast development at a warm temperature (22°C) compared with the normal growth temperature (28°C) is rice plant-determined. Comparative transcriptome analysis revealed that jasmonic acid (JA) biosynthesis and signaling genes in rice could be effectively induced by Magnaporthe oryzae at 28°C but not at 22°C. Phenotypic analyses of the osaoc1 and osmyc2 mutants, OsCOI1 RNAi lines, and OsMYC2-OE plants further demonstrated that compromised M. oryzae-induced JA biosynthesis and signaling lead to enhanced blast susceptibility at the warm temperature. Consistent with these results, we found that exogenous application of methyl jasmonate served as an effective strategy for improving blast resistance under the warm environmental conditions. Furthermore, decreased activation of JA signaling resulted in the downregulated expression of some key basal resistance genes at 22°C when compared with 28°C. Among these affected genes, OsCEBiP (chitin elicitor-binding protein precursor) was found to be directly regulated by OsMYB22 and its interacting protein OsMYC2, a key component of JA signaling, and this contributed to temperature-modulated blast resistance. Taken together, these results suggest that warm temperature compromises basal resistance in rice and enhances M. oryzae infection by reducing JA biosynthesis and signaling, providing potential new strategies for managing rice blast disease under warm climate conditions.
Collapse
Affiliation(s)
- Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Junhui Xie
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Ya Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhenan Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yan Liang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
17
|
Yang Y, Zhou Y, Sun J, Liang W, Chen X, Wang X, Zhou J, Yu C, Wang J, Wu S, Yao X, Zhou Y, Zhu J, Yan C, Zheng B, Chen J. Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:847199. [PMID: 35386667 PMCID: PMC8978965 DOI: 10.3389/fpls.2022.847199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious bacterial diseases that hinder the normal growth and production of rice, which greatly reduces the quality and yield of rice. The effect of traditional methods such as chemical control is often not ideal. A series of production practices have shown that among the numerous methods for BB controlling, breeding and using resistant varieties are the most economical, effective, and environmentally friendly, and the important basis for BB resistance breeding is the exploration of resistance genes and their functional research. So far, 44 rice BB resistance genes have been identified and confirmed by international registration or reported in journals, of which 15 have been successfully cloned and characterized. In this paper, research progress in recent years is reviewed mainly on the identification, map-based cloning, molecular resistance mechanism, and application in rice breeding of these BB resistance genes, and the future influence and direction of the remained research for rice BB resistance breeding are also prospected.
Collapse
Affiliation(s)
- Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yuhang Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jia Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Fujian A & F University, Fuzhou, China
| | - Weifang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xinyu Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Chulang Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Shilu Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiaoming Yao
- Zhejiang Plant Protection, Quarantine and Pesticide Management Station, Hangzhou, China
| | - Yujie Zhou
- Zhuji Agricultural Technology Extension Center, Zhuji, China
| | - Jie Zhu
- Plant Protection and Soil Fertilizer Management Station of Wenzhou, Wenzhou, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Science, Ningbo, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology for Plant Protection, Ministry of Agriculture, and Rural Affairs, Zhejiang Provincial Key Laboratory of Biotechnology for Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Delplace F, Huard-Chauveau C, Berthomé R, Roby D. Network organization of the plant immune system: from pathogen perception to robust defense induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:447-470. [PMID: 34399442 DOI: 10.1111/tpj.15462] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The plant immune system has been explored essentially through the study of qualitative resistance, a simple form of immunity, and from a reductionist point of view. The recent identification of genes conferring quantitative disease resistance revealed a large array of functions, suggesting more complex mechanisms. In addition, thanks to the advent of high-throughput analyses and system approaches, our view of the immune system has become more integrative, revealing that plant immunity should rather be seen as a distributed and highly connected molecular network including diverse functions to optimize expression of plant defenses to pathogens. Here, we review the recent progress made to understand the network complexity of regulatory pathways leading to plant immunity, from pathogen perception, through signaling pathways and finally to immune responses. We also analyze the topological organization of these networks and their emergent properties, crucial to predict novel immune functions and test them experimentally. Finally, we report how these networks might be regulated by environmental clues. Although system approaches remain extremely scarce in this area of research, a growing body of evidence indicates that the plant response to combined biotic and abiotic stresses cannot be inferred from responses to individual stresses. A view of possible research avenues in this nascent biology domain is finally proposed.
Collapse
Affiliation(s)
- Florent Delplace
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Carine Huard-Chauveau
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Richard Berthomé
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
19
|
Vitoriano CB, Calixto CPG. Reading between the Lines: RNA-seq Data Mining Reveals the Alternative Message of the Rice Leaf Transcriptome in Response to Heat Stress. PLANTS 2021; 10:plants10081647. [PMID: 34451692 PMCID: PMC8400768 DOI: 10.3390/plants10081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Rice (Oryza sativa L.) is a major food crop but heat stress affects its yield and grain quality. To identify mechanistic solutions to improve rice yield under rising temperatures, molecular responses of thermotolerance must be understood. Transcriptional and post-transcriptional controls are involved in a wide range of plant environmental responses. Alternative splicing (AS), in particular, is a widespread mechanism impacting the stress defence in plants but it has been completely overlooked in rice genome-wide heat stress studies. In this context, we carried out a robust data mining of publicly available RNA-seq datasets to investigate the extension of heat-induced AS in rice leaves. For this, datasets of interest were subjected to filtering and quality control, followed by accurate transcript-specific quantifications. Powerful differential gene expression (DE) and differential AS (DAS) identified 17,143 and 2162 heat response genes, respectively, many of which are novel. Detailed analysis of DAS genes coding for key regulators of gene expression suggests that AS helps shape transcriptome and proteome diversity in response to heat. The knowledge resulting from this study confirmed a widespread transcriptional and post-transcriptional response to heat stress in plants, and it provided novel candidates for rapidly advancing rice breeding in response to climate change.
Collapse
|
20
|
Castroverde CDM, Dina D. Temperature regulation of plant hormone signaling during stress and development. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab257. [PMID: 34081133 DOI: 10.1093/jxb/erab257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview of known temperature-sensitive or temperature-reinforced molecular hubs in hormone biosynthesis, homeostasis, signaling and downstream responses. These include recent advances on temperature regulation at the genomic, transcriptional, post-transcriptional and post-translational levels - directly linking some plant hormone pathways to known thermosensing mechanisms. Where applicable, diverse plant species and various temperature ranges will be presented, along with emerging principles and themes. It is anticipated that a grand unifying synthesis of current and future fundamental outlooks on how fluctuating temperatures regulate important plant hormone signaling pathways can be leveraged towards forward-thinking solutions to develop climate-smart crops amidst our dynamically changing world.
Collapse
Affiliation(s)
| | - Damaris Dina
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
21
|
Mulat MW, Sinha VB. Distribution and abundance of CREs in the promoters depicts crosstalk by WRKYs in Tef [Eragrostis tef (Zucc.) Troetter]. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. PLANT COMMUNICATIONS 2021; 2:100143. [PMID: 34027390 PMCID: PMC8132130 DOI: 10.1016/j.xplc.2021.100143] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Bacterial blight (BB) is a globally devastating rice disease caused by Xanthomonas oryzae pv. oryzae (Xoo). The use of disease resistance (R) genes in rice breeding is an effective and economical strategy for the control of this disease. Nevertheless, a majority of R genes lack durable resistance for long-term use under global warming conditions. Here, we report the isolation of a novel executor R gene, Xa7, that confers extremely durable, broad-spectrum, and heat-tolerant resistance to Xoo. The expression of Xa7 was induced by incompatible Xoo strains that secreted the transcription activator-like effector (TALE) AvrXa7 or PthXo3, which recognized effector binding elements (EBEs) in the Xa7 promoter. Furthermore, Xa7 induction was faster and stronger under high temperatures. Overexpression of Xa7 or co-transformation of Xa7 with avrXa7 triggered a hypersensitive response in plants. Constitutive expression of Xa7 activated a defense response in the absence of Xoo but inhibited the growth of transgenic rice plants. In addition, analysis of over 3000 rice varieties showed that the Xa7 locus was found primarily in the indica and aus subgroups. A variation consisting of an 11-bp insertion and a base substitution (G to T) was found in EBEAvrXa7 in the tested varieties, resulting in a loss of Xa7 BB resistance. Through a decade of effort, we have identified an important BB resistance gene and characterized its distinctive interaction with Xoo strains; these findings will greatly facilitate research on the molecular mechanism of Xa7-mediated resistance and promote the use of this valuable gene in breeding.
Collapse
Affiliation(s)
- Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pengcheng Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Le Mei
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoling He
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Long Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Hui Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shurong Shen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhandong Ji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xixi Zheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchen Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhenyu Gao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Dali Zeng
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Qian Qian
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Corresponding author
| |
Collapse
|
23
|
Wang W, Du J, Chen L, Zeng Y, Tan X, Shi Q, Pan X, Wu Z, Zeng Y. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage. BMC Genomics 2021; 22:176. [PMID: 33706696 PMCID: PMC7952222 DOI: 10.1186/s12864-021-07458-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Low temperature (LT) often occurs at the seedling stage in the early rice-growing season, especially for direct seeded early-season indica rice, and using flooding irrigation can mitigate LT damage in rice seedlings. The molecular mechanism by which flooding mitigates the damage induced by LT stress has not been fully elucidated. Thus, LT stress at 8 °C, LT accompanied by flooding (LTF) and CK (control) treatments were established for 3 days to determine the transcriptomic, proteomic and physiological response in direct seeded rice seedlings at the seedling stage. RESULTS LT damaged chloroplasts, and thylakoid lamellae, and increased osmiophilic bodies and starch grains compared to CK, but LTF alleviated the damage to chloroplast structure caused by LT. The physiological characteristics of treated plants showed that compared with LT, LTF significantly increased the contents of rubisco, chlorophyll, PEPCK, ATP and GA3 but significantly decreased soluble protein, MDA and ABA contents. 4D-label-free quantitative proteomic profiling showed that photosynthesis-responsive proteins, such as phytochrome, as well as chlorophyll and the tricarboxylic acid cycle were significantly downregulated in LT/CK and LTF/CK comparison groups. However, compared with LT, phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme in LTF were significantly upregulated in rice leaves. Transcriptomic and proteomic studies identified 72,818 transcripts and 5639 proteins, and 4983 genes that were identified at both the transcriptome and proteome levels. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were significantly enriched in glycine, serine and threonine metabolism, biosynthesis of secondary metabolites, glycolysis/gluconeogenesis and metabolic pathways. CONCLUSION Through transcriptomic, proteomic and physiological analyses, we determined that a variety of metabolic pathway changes were induced by LT and LTF. GO and KEGG enrichment analyses demonstrated that DEGs and DEPs were associated with photosynthesis pathways, antioxidant enzymes and energy metabolism pathway-related proteins. Our study provided new insights for efforts to reduce the damage to direct seeded rice caused by low-temperature stress and provided a breeding target for low temperature flooding-resistant cultivars. Further analysis of translational regulation and metabolites may help to elucidate the molecular mechanisms by which flooding mitigates low-temperature stress in direct seeded early indica rice at the seedling stage.
Collapse
Affiliation(s)
- Wenxia Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liming Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yongjun Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueming Tan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaohua Pan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yanhua Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Collaborative Innovation Center for the Modernization Production of Double Cropping Rice / College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
24
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
25
|
Figueroa-Macías JP, García YC, Núñez M, Díaz K, Olea AF, Espinoza L. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes. Int J Mol Sci 2021; 22:ijms22020693. [PMID: 33445665 PMCID: PMC7828132 DOI: 10.3390/ijms22020693] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
In order to survive in a hostile habitat, plants have to manage the available resources to reach a delicate balance between development and defense processes, setting up what plant scientists call a trade-off. Most of these processes are basically responses to stimuli sensed by plant cell receptors and are influenced by the environmental features, which can incredibly modify such responses and even cause changes upon both molecular and phenotypic level. Therefore, significant differences can be detected between plants of the same species living in different environments. The comprehension of plant growth-defense trade-offs from the molecular basis to the phenotypic expression is one of the fundamentals for developing sustainable agriculture, so with this review we intend to contribute to the increasing of knowledge on this topic, which have a great importance for future development of agricultural crop production.
Collapse
Affiliation(s)
| | - Yamilet Coll García
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Habana 10400, Cuba;
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| | - María Núñez
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Andres F. Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| |
Collapse
|
26
|
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. Fight hard or die trying: when plants face pathogens under heat stress. THE NEW PHYTOLOGIST 2021; 229:712-734. [PMID: 32981118 DOI: 10.1111/nph.16965] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 05/22/2023]
Abstract
In their natural environment, plants are exposed to biotic or abiotic stresses that occur sequentially or simultaneously. Plant responses to these stresses have been studied widely and have been well characterised in simplified systems involving single plant species facing individual stress. Temperature elevation is a major abiotic driver of climate change and scenarios have predicted an increase in the number and severity of epidemics. In this context, here we review the available data on the effect of heat stress on plant-pathogen interactions. Considering 45 studies performed on model or crop species, we discuss the possible implications of the optimum growth temperature of plant hosts and pathogens, mode of stress application and temperature variation on resistance modulations. Alarmingly, most identified resistances are altered under temperature elevation, regardless of the plant and pathogen species. Therefore, we have listed current knowledge on heat-dependent plant immune mechanisms and pathogen thermosensory processes, mainly studied in animals and human pathogens, that could help to understand the outcome of plant-pathogen interactions under elevated temperatures. Based on a general overview of the mechanisms involved in plant responses to pathogens, and integrating multiple interactions with the biotic environment, we provide recommendations to optimise plant disease resistance under heat stress and to identify thermotolerant resistance mechanisms.
Collapse
Affiliation(s)
- Henri Desaint
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
- SYNGENTA Seeds, Sarrians, 84260, France
| | - Nathalie Aoun
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | | | | | - Fabrice Roux
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPM, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| |
Collapse
|
27
|
Overexpression of OsCM alleviates BLB stress via phytohormonal accumulation and transcriptional modulation of defense-related genes in Oryza sativa. Sci Rep 2020; 10:19520. [PMID: 33177639 PMCID: PMC7658211 DOI: 10.1038/s41598-020-76675-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022] Open
Abstract
Xanthomonas oryzae is a serious pathogen causing bacterial leaf blight (BLB) disease in rice, markedly reducing its yield. In this study, the rice chorismate mutase (OsCM) gene was overexpressed in a bacterial leaf blight-susceptible rice line to investigate the functional role of OsCM in response to bacterial leaf blight stress. We reported that overexpression of OsCM altered the downstream pathway of aromatic amino acids, mitigating pathogen stress by altering stress-responsive genes and hormonal accumulation. Phenotypic evaluation showed that the lesion length in the transgenic line was significantly lesser than that in the wild-type, suggesting greater resistance in the transgenic line. Further analysis revealed that OsCM expression induced phenylalanine accumulation and suppressed tyrosine accumulation in response to bacterial leaf blight stress. Furthermore, bacterial leaf blight stress induced genes downstream of the phenylpropanoid pathway in conjunction with OsCM, suggesting that the phenylpropanoid pathway is dependent on OsCM gene expression. We reported high SA and low JA accumulation in response to bacterial leaf blight stress in the transgenic line. This higher SA accumulation suggested that SA induces immune responses by functioning as a promoter of nonexpresser pathogenesis-related genes 1 (NPR1) transcriptional regulation. Xa7 expression was induced with increase in nonexpresser pathogenesis-related genes 1, which is thought to be responsible for Xa7 expression, which is responsible for mitigating bacterial leaf blight stress.
Collapse
|
28
|
Sahu A, Das A, Saikia K, Barah P. Temperature differentially modulates the transcriptome response in Oryza sativa to Xanthomonas oryzae pv. oryzae infection. Genomics 2020; 112:4842-4852. [PMID: 32896629 DOI: 10.1016/j.ygeno.2020.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 08/21/2020] [Indexed: 01/17/2023]
Abstract
Bacterial blight is caused by the pathogen Xanthomonas oryzae pv. oryzae (Xoo). Genome scale integrative analysis on the interaction of high and low temperatures on the molecular response signature in rice during the Xoo infection has not been conducted yet. We have analysed a unique RNA-Seq dataset generated on the susceptible rice variety IR24 under combined exposure of Xoo with low 29/21 °C (day/night) and high 35/31 °C (day/night) temperatures. Differentially regulated key genes and pathways in rice plants during both the stress conditions were identified. Differential dynamics of the regulatory network topology showed that WRKY and ERF families of transcription factors play a crucial role during signal crosstalk events in rice plants while responding to combined exposure of Xoo with low temperature vs. Xoo with high temperatures. Our study suggests that upon onset of high temperature, rice plants tend to switch its focus from defence response towards growth and reproduction.
Collapse
Affiliation(s)
- Ankur Sahu
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Akash Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Katherine Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India.
| |
Collapse
|
29
|
Cohen SP, Leach JE. High temperature-induced plant disease susceptibility: more than the sum of its parts. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:235-241. [PMID: 32321671 DOI: 10.1016/j.pbi.2020.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
Higher temperatures associated with climate change often increase the severity of plant diseases. An understanding of how plants respond to pathogens during high temperature stress is required for crop improvement, but the molecular mechanisms underlying this response are largely unknown. Mechanistic research has primarily focused on plant responses during either single stresses or heat-induced loss of single gene resistance. Transcriptome analyses of plant responses to a single stress compared to combined-stresses reveal significant differences showing that single-stress response studies are inadequate for determining the mechanisms of high temperature-induced disease susceptibility. To combat plant disease in light of climate change, future research will require comprehensive study designs and analyses.
Collapse
Affiliation(s)
- Stephen P Cohen
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523-1177, United States; Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, United States
| | - Jan E Leach
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523-1177, United States.
| |
Collapse
|
30
|
Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci Rep 2020; 10:12642. [PMID: 32724216 PMCID: PMC7387522 DOI: 10.1038/s41598-020-69639-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/15/2020] [Indexed: 01/11/2023] Open
Abstract
Rice bacterial leaf blight is caused by Xanthomonas oryzae pv. oryzae (Xoo) and produces substantial losses in rice yields. Resistance breeding is an effective method for controlling bacterial leaf blight disease. The mutant line H120 derived from the japonica line Lijiangxintuanheigu is resistant to all Chinese Xoo races. To identify and map the Xoo resistance gene(s) of H120, we examined the association between phenotypic and genotypic variations in two F2 populations derived from crosses between H120/CO39 and H120/IR24. The segregation ratios of F2 progeny consisted with the action of a single dominant resistance gene, which we named Xa46(t). Xa46(t) was mapped between the markers RM26981 and RM26984 within an approximately 65.34-kb region on chromosome 11. The 12 genes predicted within the target region included two candidate genes encoding the serine/threonine-protein kinase Doa (Loc_Os11g37540) and Calmodulin-2/3/5 (Loc_Os11g37550). Differential expression of H120 was analyzed by RNA-seq. Four genes in the Xa46(t) target region were differentially expressed after inoculation with Xoo. Mapping and expression data suggest that Loc_Os11g37540 allele is most likely to be Xa46(t). The sequence comparison of Xa23 allele between H120 and CBB23 indicated that the Xa46(t) gene is not identical to Xa23.
Collapse
|
31
|
Dossa GS, Quibod I, Atienza-Grande G, Oliva R, Maiss E, Vera Cruz C, Wydra K. Rice pyramided line IRBB67 (Xa4/Xa7) homeostasis under combined stress of high temperature and bacterial blight. Sci Rep 2020; 10:683. [PMID: 31959799 PMCID: PMC6971257 DOI: 10.1038/s41598-020-57499-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/21/2019] [Indexed: 01/03/2023] Open
Abstract
Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide. Increasing temperature often turns into inhibition of host plant defense to pathogens. Recently, a reduced resistance in rice IRBB4 carrying Xa4, but an increase in resistance in IRBB7 carrying Xa7 resistance by increasing temperature has been reported. Influence of high temperature on both R genes (Xa4+Xa7) combined in IRBB67 was analyzed under growth chamber conditions and transcriptomic analysis performed. The pyramided line IRBB67 showed no differences in lesion length between both temperature regimes, demonstrating that non-effectiveness of Xa4 at high temperature did not affect IRBB67 resistance. Moreover, Xa4 complements Xa7 resistance with no Xoo spread in planta beyond the symptomatic area under both temperature regimes in IRBB67. Time course transcriptomic analysis revealed that temperature enhanced IRBB67 resistance to combined heat and Xoo. Our findings highlight altered cellular compartments and point at a role of the cell wall involved in Xoo resistance and heat stress tolerance in both susceptible (IR24) and the resistant (IRBB67) NILs. Interestingly, up-regulation of trehalose-6-phosphatase gene and low affinity cation transporter in IRBB67 suggest that IRBB67 maintained a certain homeostasis under high temperature which may have enhanced its resistance. The interplay of both heat stress and Xoo responses as determined by up-regulated and down-regulated genes demonstrates how resistant plants cope with combined biotic and abiotic stresses.
Collapse
Affiliation(s)
- Gerbert Sylvestre Dossa
- International Rice Research Institute, Los Baños, Philippines.
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany.
- Food and Agriculture Organization, Sub Regional Office for Central Africa, PO. Box 2643, Libreville, Gabon.
| | - Ian Quibod
- International Rice Research Institute, Los Baños, Philippines
| | - Genelou Atienza-Grande
- International Rice Research Institute, Los Baños, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Philippines
| | - Ricardo Oliva
- International Rice Research Institute, Los Baños, Philippines
| | - Edgar Maiss
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
| | | | - Kerstin Wydra
- Department of Phytomedicine, Leibniz Universität Hannover, Hannover, Germany
- Plant Production and Climate Change, Erfurt University of Applied Sciences, Erfurt, Germany
| |
Collapse
|
32
|
Identification and characterization of genes frequently responsive to Xanthomonas oryzae pv. oryzae and Magnaporthe oryzae infections in rice. BMC Genomics 2020; 21:21. [PMID: 31906847 PMCID: PMC6945429 DOI: 10.1186/s12864-019-6438-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background Disease resistance is an important factor that impacts rice production. However, the mechanisms underlying rice disease resistance remain to be elucidated. Results Here, we show that a robust set of genes has been defined in rice response to the infections of Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (Mor). We conducted a comprehensive analysis of the available microarray data from a variety of rice samples with inoculation of Xoo and Mor. A set of 12,932 genes was identified to be regulated by Xoo and another set of 2709 Mor-regulated genes was determined. GO enrichment analysis of the regulated genes by Xoo or Mor suggested mitochondrion may be an arena for the up-regulated genes and chloroplast be another for the down-regulated genes by Xoo or Mor. Cytokinin-related processes were most frequently repressed by Xoo, while processes relevant to jasmonic acid and abscisic acid were most frequently activated by Xoo and Mor. Among genes responsive to Xoo and Mor, defense responses and diverse signaling pathways were the most frequently enriched resistance mechanisms. InterPro annotation showed the zinc finger domain family, WRKY proteins, and Myb domain proteins were the most significant transcription factors regulated by Xoo and Mor. KEGG analysis demonstrated pathways including ‘phenylpropanoid biosynthesis’, ‘biosynthesis of antibiotics’, ‘phenylalanine metabolism’, and ‘biosynthesis of secondary metabolites’ were most frequently triggered by Xoo and Mor, whereas ‘circadian rhythm-plant’ was the most frequent pathway repressed by Xoo and Mor. Conclusions The genes identified here represent a robust set of genes responsive to the infections of Xoo and Mor, which provides an overview of transcriptional reprogramming during rice defense against Xoo and Mor infections. Our study would be helpful in understanding the mechanisms of rice disease resistance.
Collapse
|
33
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
34
|
Deng J, Fang L, Zhu X, Zhou B, Zhang T. A CC-NBS-LRR gene induces hybrid lethality in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5145-5156. [PMID: 31270546 PMCID: PMC6793457 DOI: 10.1093/jxb/erz312] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/25/2019] [Indexed: 05/20/2023]
Abstract
Hybrid lethality forms a reproductive barrier that has been found in many eukaryotes. Most cases follow the Bateson-Dobzhansky-Muller genetic incompatibility model and involve two or more loci. In this study, we demonstrate that a coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) gene is the causal gene underlying the Le4 locus for interspecific hybrid lethality between Gossypium barbadense and G. hirsutum (cotton). Silencing this CC-NBS-LRR gene can restore F1 plants from a lethal to a normal phenotype. A total of 11 099 genes were differentially expressed between the leaves of normal and lethal F1 plants, of which genes related to autoimmune responses were highly enriched. Genes related to ATP-binding and ATPase were up-regulated before the lethal syndrome appeared; this may result in the conversion of Le4 into an active state and hence trigger immune signals in the absence of biotic/abiotic stress. We discuss our results in relation to the evolution and domestication of Sea Island cottons and the molecular mechanisms of hybrid lethality associated with autoimmune responses. Our findings provide new insights into reproductive isolation and may benefit cotton breeding.
Collapse
Affiliation(s)
- Jieqiong Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, China
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Correspondence: or
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, China
- Correspondence: or
| |
Collapse
|
35
|
Venkatesh J, Kang BC. Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:9-17. [PMID: 30877945 DOI: 10.1016/j.pbi.2019.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 02/07/2019] [Indexed: 05/12/2023]
Abstract
Elevated ambient temperatures will likely be a key consequence of climate change over the next few decades. Adverse climatic changes could make crop plants more vulnerable to a number of biotic and abiotic stresses, which would have a major impact on worldwide food production in the future. Recent studies have indicated that elevated temperatures directly and/or indirectly affect plant-pathogen interactions. Elevated temperatures alter multiple signal transduction pathways related to stress responses in the host plant. High temperatures can also influence plant pathogenesis, but little is known about the molecular mechanisms associated with such effects. An improved understanding of the molecular genetic mechanisms involved in plant immune responses under elevated temperatures will be essential to mitigate the adverse effects of climate change to ensure future food security. In this review, we discuss recent advances in our understanding of the effects of temperature on resistance (R) gene and/or regulators of R genes in plant defense responses and summarize current evidence for tradeoffs between plant growth and immunity.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics & Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
36
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
37
|
Cohen SP, Leach JE. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci Rep 2019; 9:6273. [PMID: 31000746 PMCID: PMC6472405 DOI: 10.1038/s41598-019-42731-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/04/2019] [Indexed: 11/26/2022] Open
Abstract
Environmental stresses greatly limit crop yield. With the increase in extreme weather events due to climate change and the constant pressure of diseases and pests, there is an urgent need to develop crop varieties that can tolerate multiple stresses. However, our knowledge of how plants broadly respond to stress is limited. Here, we explore the rice core stress response via meta-analysis of publicly available rice transcriptome data. Our results confirm that rice universally down-regulates photosynthesis in response to both abiotic and biotic stress. Rice also generally up-regulates hormone-responsive genes during stress response, most notably genes in the abscisic acid, jasmonic acid and salicylic acid pathways. We identified several promoter motifs that are likely involved in stress-responsive regulatory mechanisms in rice. With this work, we provide a list of candidate genes to study for improving rice stress tolerance in light of environmental stresses. This work also serves as a proof of concept to show that meta-analysis of diverse transcriptome data is a valid approach to develop robust hypotheses for how plants respond to stress.
Collapse
Affiliation(s)
- Stephen P Cohen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, CO, 80523-1177, Fort Collins, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, CO, 80523-1005, Fort Collins, USA
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, CO, 80523-1177, Fort Collins, USA.
| |
Collapse
|
38
|
Wang PY, Wang MW, Zeng D, Xiang M, Rao JR, Liu QQ, Liu LW, Wu ZB, Li Z, Song BA, Yang S. Rational Optimization and Action Mechanism of Novel Imidazole (or Imidazolium)-Labeled 1,3,4-Oxadiazole Thioethers as Promising Antibacterial Agents against Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3535-3545. [PMID: 30835115 DOI: 10.1021/acs.jafc.8b06242] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The emergence and widespread occurrence of plant bacterial diseases that cause global production constraints have become major challenges to agriculture worldwide. To promote the discovery and development of new bactericides, imidazole-labeled 1,3,4-oxadiazole thioethers were first fabricated by integrating the crucially bioactive scaffolds of the imidazole motif and 1,3,4-oxadiazole skeleton in a single molecular architecture. Subsequently, a superior antibacterial compound A6 was gradually discovered possessing excellent competence against plant pathogens Xanthomonas oryzae pv oryzae and Xanthomonas axonopodis pv citri with EC50 values of 0.734 and 1.79 μg/mL, respectively. These values were better than those of commercial agents bismerthiazol (92.6 μg/mL) and thiodiazole copper (77.0 μg/mL). Further modifying the imidazole moiety into the imidazolium scaffold led to the discovery of an array of potent antibacterial compounds providing the corresponding minimum EC50 values of 0.295 and 0.607 μg/mL against the two strains. Moreover, a plausible action mechanism for attacking pathogens was proposed based on the concentration dependence of scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy images. Given the simple molecular structures, easy synthetic procedure, and highly efficient bioactivity, imidazole (or imidazolium)-labeled 1,3,4-oxadiazole thioethers can be further explored and developed as promising indicators for the development of commercial drugs.
Collapse
Affiliation(s)
- Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Ming-Wei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Dan Zeng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Meng Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Jia-Rui Rao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Qing-Qing Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai , China 200237
| | - Bao-An Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R&D of Fine Chemicals of Guizhou University , Guiyang , 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai , China 200237
| |
Collapse
|
39
|
Wang C, Tariq R, Ji Z, Wei Z, Zheng K, Mishra R, Zhao K. Transcriptome analysis of a rice cultivar reveals the differentially expressed genes in response to wild and mutant strains of Xanthomonas oryzae pv. oryzae. Sci Rep 2019; 9:3757. [PMID: 30842619 PMCID: PMC6403221 DOI: 10.1038/s41598-019-39928-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a devastating disease in most of the rice growing regions worldwide. Among the 42 BB resistance (R) genes, Xa23 is an executor R gene, conferring broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, CBB23, a rice line carrying Xa23 gene, was inoculated with wild PXO99A and its mutant, P99M2, to retrieve the differentially expressed genes (DEGs). RNA-Seq analysis retrieved 1,235 DEGs (p-value ≤ 0.05) at 12, 24, 36, and 48 hours of post inoculation (hpi). Gene ontology (GO) analysis classified the DEGs functionally into biological process, cellular component and molecular function. KEGG pathway analysis categorized the DEGs into 11 different pathways, and the ribosome is a prominent pathway followed by biosynthesis of phenylpropanoids. Gene co-expression network analysis identified the clusters of transcription factors (TFs) which may be involved in PXO99A resistance. Additionally, we retrieved 67 differentially expressed TFs and 26 peroxidase responsive genes which may be involved in disease resistance mechanism. DEGs involved in the host-pathogen interaction, e.g., signaling mechanism, cell wall and plant hormones were identified. This data would be a valuable resource for researchers to identify the candidate genes associated with Xoo resistance.
Collapse
Affiliation(s)
- Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Rezwan Tariq
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Kaili Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Rukmini Mishra
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
40
|
Proteomic Analysis of Rapeseed Root Response to Waterlogging Stress. PLANTS 2018; 7:plants7030071. [PMID: 30205432 PMCID: PMC6160990 DOI: 10.3390/plants7030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
The overall health of a plant is constantly affected by the changing and hostile environment. Due to climate change and the farming pattern of rice (Oryza sativa) and rapeseed (Brassica napus L.), stress from waterlogging poses a serious threat to productivity assurance and the yield of rapeseed in China's Yangtze River basin. In order to improve our understanding of the complex mechanisms behind waterlogging stress and identify waterlogging-responsive proteins, we firstly conducted iTRAQ (isobaric tags for relative and absolute quantification)-based quantitative proteomic analysis of rapeseed roots under waterlogging treatments, for both a tolerant cultivar ZS9 and sensitive cultivar GH01. A total of 7736 proteins were identified by iTRAQ, of which several hundred showed different expression levels, including 233, 365, and 326 after waterlogging stress for 4H, 8H, and 12H in ZS9, respectively, and 143, 175, and 374 after waterlogging stress for 4H, 8H, and 12H in GH01, respectively. For proteins repeatedly identified at different time points, gene ontology (GO) cluster analysis suggested that the responsive proteins of the two cultivars were both enriched in the biological process of DNA-dependent transcription and the oxidation⁻reduction process, and response to various stress and hormone stimulus, while different distribution frequencies in the two cultivars was investigated. Moreover, overlap proteins with similar or opposite tendencies of fold change between ZS9 and GH01 were observed and clustered based on the different expression ratios, suggesting the two genotype cultivars exhibited diversiform molecular mechanisms or regulation pathways in their waterlogging stress response. The following qRT-PCR (quantitative real-time polymerase chain reaction) results verified the candidate proteins at transcription levels, which were prepared for further research. In conclusion, proteins detected in this study might perform different functions in waterlogging responses and would provide information conducive to better understanding adaptive mechanisms under environmental stresses.
Collapse
|
41
|
Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae. Int J Mol Sci 2018; 19:ijms19030717. [PMID: 29498672 PMCID: PMC5877578 DOI: 10.3390/ijms19030717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance.
Collapse
|
42
|
Suzuki N, Katano K. Coordination Between ROS Regulatory Systems and Other Pathways Under Heat Stress and Pathogen Attack. FRONTIERS IN PLANT SCIENCE 2018; 9:490. [PMID: 29713332 PMCID: PMC5911482 DOI: 10.3389/fpls.2018.00490] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
Regulatory systems of reactive oxygen species (ROS) are known to be integrated with other pathways involving Ca2+ signaling, protein kinases, hormones and programmed cell death (PCD) pathways to regulate defense mechanisms in plants. Coordination between ROS regulatory systems and other pathways needs to be flexibly modulated to finely tune the mechanisms underlying responses of different types of tissues to heat stress, biotic stresses and their combinations during different growth stages. Especially, modulation of the delicate balance between ROS-scavenging and producing systems in reproductive tissues could be essential, because ROS-dependent PCD is required for the proper fertilization, despite the necessity of ROS scavenging to prevent the damage on cells under heat stress and biotic stresses. In this review, we will update the recent findings associated with coordination between multiple pathways under heat stress, pathogen attack and their combinations. In addition, possible integrations between different signals function in different tissues via ROS-dependent long-distance signals will be proposed.
Collapse
|