1
|
Kang S, Lee JY, Natsagdorj A, Matsuki A, Cho KS. Functional adaptation of PM 2.5 microbiomes to varying environmental conditions in Northeast Asia: Ulaanbaatar, Seoul, and Noto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179495. [PMID: 40286617 DOI: 10.1016/j.scitotenv.2025.179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This study examined the bacterial and fungal communities associated with PM2.5 collected from three geographically distinct locations in Northeast Asia-Ulaanbaatar (high pollution), Seoul (moderate pollution), and Noto (low pollution)-which collectively represent a gradient of urbanization and environmental conditions during the spring sampling period from March 15 to April 7, 2022. Ulaanbaatar exhibited the highest abundance of both bacteria and fungi, yet exhibited the lowest fungal diversity. In contrast, Noto exhibited the lowest microbial abundance but the highest fungal diversity, while Seoul displayed intermediate values. Dominant bacterial genera, including Caldalkalibacillus, Halomonas, and Nesterenkonia, demonstrated notable resilience across all three locations, highlighting their adaptability to diverse environmental conditions. The dominant fungal genera were Cladosporium and Candida. Analyses revealed significant correlations between microbial community structures and environmental factors. In Ulaanbaatar, microbial communities were strongly associated with meteorological parameters such as temperature, humidity, and wind speed. In Seoul, stronger correlations were observed with polycyclic aromatic hydrocarbons (PAHs). Noto exhibited weaker correlations with both meteorological factors and organic compounds. Across all sites, bacteria consistently showed broader niche breadths compared to fungi, reflecting their greater metabolic versatility and resource utilization capacity. Both bacterial and fungal niche breadths generally increased at intermediate concentrations of alkanes and DCAs but declined at extreme concentrations, suggesting optimal survival ranges. These findings highlight the complex interplay of environmental factors and pollutants in shaping microbial community structures and functional diversity across diverse geographical settings during the spring season.
Collapse
Affiliation(s)
- Sookyung Kang
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Amgalan Natsagdorj
- Department of Chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Atsushi Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, 9201192 Kanazawa, Japan
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Parajuli A, Mäkelä I, Roslund MI, Ringqvist E, Manninen J, Sun Y, Nurminen N, Oikarinen S, Laitinen OH, Hyöty H, Flodström-Tullberg M, Sinkkonen A. Production, analysis, and safety assessment of a soil and plant-based natural material with microbiome- and immune-modulatory effects. Methods 2024; 231:94-102. [PMID: 39306218 DOI: 10.1016/j.ymeth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
It has been suggested that reduced contact with microbiota from the natural environment contributes to the rising incidence of immune-mediated inflammatory disorders (IMIDs) in western, highly urbanized societies. In line with this, we have previously shown that exposure to environmental microbiota in the form of a blend comprising of soil and plant-based material (biodiversity blend; BDB) enhances the diversity of human commensal microbiota and promotes immunoregulation that may be associated with a reduced risk for IMIDs. To provide a framework for future preclinical studies and clinical trials, this study describes how the preparation of BDB was standardized, its microbial content analysed and safety assessments performed. Multiple batches of BDB were manufactured and microbial composition analysed using 16S rRNA gene sequencing. We observed a consistently high alpha diversity and relative abundance of bacteria normally found in soil and vegetation. We also found that inactivation of BDB by autoclaving effectively inactivates human and murine bacteria, viruses and parasites. Finally, we demonstrate that experimental mice prone to develop IMIDs (non-obese diabetic, NOD, mouse model) can be exposed to BDB without causing adverse effects on animal health and welfare. Our study provides insights into a potentially safe, sustainable, and cost-effective approach for simulating exposure to natural microbiota, which could have substantial impacts on health and socio-economic factors.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Iida Mäkelä
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Marja I Roslund
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Juulia Manninen
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Yan Sun
- Ecosystem and Environment Research Programme, Department of Ecological and Environmental Science, University of Helsinki, Helsinki, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | - Aki Sinkkonen
- Horticulture Technologies, Natural Resources Institute Finland, Helsinki and Turku, Finland.
| |
Collapse
|
3
|
Lara‐Moreno A, Costa MC, Vargas‐Villagomez A, Carlier JD. New bacterial strains for ibuprofen biodegradation: Drug removal, transformation, and potential catabolic genes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13320. [PMID: 39187308 PMCID: PMC11347016 DOI: 10.1111/1758-2229.13320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Ibuprofen (IBU) is a significant contaminant frequently found in wastewater treatment plants due to its widespread use and limited removal during treatment processes. This leads to its discharge into the environment, causing considerable environmental concerns. The use of microorganisms has recently been recognized as a sustainable method for mitigating IBU contamination in wastewater. In this study, new bacteria capable of growing in a solid medium with IBU as the only carbon source and removing IBU from a liquid medium were isolated from environmental samples, including soil, marine, mine, and olive mill wastewater. Four bacterial strains, namely Klebsiella pneumoniae TIBU2.1, Klebsiella variicola LOIBU1.1, Pseudomonas aeruginosa LOIBU1.2, and Mycolicibacterium aubagnense HPB1.1, were identified through 16S rRNA gene sequencing. These strains demonstrated significant IBU removal efficiencies, ranging from 60 to 100% within 14 days, starting from an initial IBU concentration of 5 mg per litre. These bacteria have not been previously reported in the literature as IBU degraders, making this work a valuable contribution to further studies in the field of bioremediation in environments contaminated by IBU. Based on the IBU removal results, the most promising bacteria, K. pneumoniae TIBU2.1 and M. aubagnense HPB1.1, were selected for an in silico analysis to identify genes potentially involved in IBU biodegradation. Interestingly, in the tests with TIBU2.1, a peak of IBU transformation product(s) was detected by high-performance liquid chromatography, while in the tests with HPB1.1, it was not detected. The emerging peak was analysed by liquid chromatography-mass spectrometry, indicating the presence of possible conjugates between intermediates of IBU biodegradation. The proteins encoded on their whole-genome sequences were aligned with proteins involved in an IBU-degrading pathway reported in bacteria with respective catabolic genes. The analysis indicated that strain HPB1.1 possesses genes encoding proteins similar to most enzymes reported associated with the IBU metabolic pathways used as reference bacteria, while strain TIBU2.1 has genes encoding proteins similar to enzymes involved in both the upper and the lower part of that pathway. Notably, in the tests with the strain having more candidate genes encoding IBU-catabolic enzymes, no IBU transformation products were detected, while in the tests with the strain having fewer of these genes, detection occurred.
Collapse
Affiliation(s)
- Alba Lara‐Moreno
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevilleSevilleSpain
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
- Faculty of Sciences and TechnologiesUniversity of the Algarve, Gambelas CampusFaroPortugal
| | | | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR/CIMAR LA)University of the Algarve, Gambelas CampusFaroPortugal
| |
Collapse
|
4
|
Benton LD, Lopez-Galvez N, Herman C, Caporaso JG, Cope EK, Rosales C, Gameros M, Lothrop N, Martínez FD, Wright AL, Carr TF, Beamer PI. Environmental and structural factors associated with bacterial diversity in household dust across the Arizona-Sonora border. Sci Rep 2024; 14:12803. [PMID: 38834753 PMCID: PMC11150412 DOI: 10.1038/s41598-024-63356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs. 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, housing structure, and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs. 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from Mexican homes was enriched with Alishewanella, Paracoccus, Rheinheimera genera and Intrasporangiaceae family. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
Affiliation(s)
- Lauren D Benton
- Department of Pediatrics, Steele Children's Research Center, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA.
| | - Nicolas Lopez-Galvez
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
- San Diego State University Research Foundation, San Diego State University, 5250 Campanile Dr, San Diego, CA, 92182, USA
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, 1350 S Knoles Dr, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Cecilia Rosales
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Mercedes Gameros
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Nathan Lothrop
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| | - Fernando D Martínez
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Anne L Wright
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
| | - Paloma I Beamer
- Asthma and Airway Disease Research Center, University of Arizona, College of Medicine, University of Arizona Health Sciences, 1501 N. Campbell Avenue, Tucson, AZ, 85724, USA
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Ave, PO 245210, Tucson, AZ, 85724, USA
| |
Collapse
|
5
|
Gad M, Cao M, Qin D, Sun Q, Yu CP, Hu A. Development, validation, and application of a microbial community-based index of biotic integrity for assessing the ecological status of a peri-urban watershed in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168659. [PMID: 37979863 DOI: 10.1016/j.scitotenv.2023.168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
This study represents the pioneering effort in employing 16S rRNA-bacteria and 18S rRNA-microeukaryotes to construct the microbial community-based index of biotic integrity (MC-IBI) for assessing the ecological health of riverine ecosystems. The MC-IBI was developed, validated, and implemented using water samples from the Changle River watershed, encompassing both wet and dry seasons. A total of 205 metrics, containing microbial diversity, composition, pollution tolerance/sensitivity, and functional categories, were selected as candidates for evaluation. Following a rigorous screening process, five core metrics were identified as key indicators, namely Pielou's evenness of microeukaryotes, %Cryptophyceae, %Proteobacteria, %Oxyphotobacteria, and % 16S rRNA gene-human pathogens. Moreover, redundancy analysis revealed three metrics (i.e., Pielou's evenness, % 16S rRNA gene-human pathogens, and % Proteobacteria) were positively correlated with impairment conditions. In contrast, two metrics (i.e., %Oxyphotobacteria and %Cryptophyceae) were associated positively with reference conditions. Notably, the developed MC-IBI demonstrates clear discrimination between reference and impaired sites and significantly correlates with environmental parameters and land use patterns. A path model analysis revealed that land use patterns (i.e., build-up land, cropland) negatively impacted the MC-IBI scores. The application of the MC-IBI method yielded an assessment of the ecological conditions at the 73 sampling locations within the Changle River watershed, assigning them into categories of "Very good" (4.1 %), "Good" (4.1 %), "Moderate" (5.5 %), "Poor" (21.9 %), and "Very poor" (64.4 %). This bioassessment framework presents an innovative approach toward the preservation, maintenance, and management of riverine ecosystems.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Benton L, Lopez-Galvez N, Herman C, Caporaso G, Cope E, Rosales C, Gameros M, Lothrop N, Martínez F, Wright A, Carr T, Beamer P. Environmental and Structural Factors Associated with Bacterial Diversity in Household Dust Across the Arizona-Sonora Border. RESEARCH SQUARE 2023:rs.3.rs-3325336. [PMID: 37841844 PMCID: PMC10571632 DOI: 10.21203/rs.3.rs-3325336/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
We previously reported that asthma prevalence was higher in the United States (US) compared to Mexico (MX) (25.8% vs 8.4%). This investigation assessed differences in microbial dust composition in relation to demographic and housing characteristics on both sides of the US-MX Border. Forty homes were recruited in the US and MX. Home visits collected floor dust and documented occupants' demographics, asthma prevalence, and housing structure and use characteristics. US households were more likely to have inhabitants who reported asthma when compared with MX households (30% vs 5%) and had significantly different flooring types. The percentage of households on paved roads, with flushing toilets, with piped water and with air conditioning was higher in the US, while dust load was higher in MX. Significant differences exist between countries in the microbial composition of the floor dust. Dust from US homes was enriched with Geodermatophilus, whereas dust from Mexican homes was enriched with Alishewanella and Chryseomicrobium. A predictive metagenomics analysis identified 68 significantly differentially abundant functional pathways between US and MX. This study documented multiple structural, environmental, and demographic differences between homes in the US and MX that may contribute to significantly different microbial composition of dust observed in these two countries.
Collapse
|
7
|
Cavazzoli S, Squartini A, Sinkkonen A, Romantschuk M, Rantalainen AL, Selonen V, Roslund MI. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiol Res 2023; 270:127343. [PMID: 36841130 DOI: 10.1016/j.micres.2023.127343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Soil quality and microbial diversity are essential to the health of ecosystems. However, it is unclear how the use of eco-friendly natural additives can improve the quality and microbial diversity of contaminated soils. Herein, we used high-throughput 16 S rDNA amplicon Illumina sequencing to evaluate the stimulation and development of microbial diversity and concomitant bioremediation in hydrocarbon (HC) and heavy metal (HM)-rich waste disposal site soil when treated with meat and bone meal (MBM), cyclodextrin (Cdx), and MBM and cyclodextrin mixture (Cdx MBM) over a period of 3 months. Results showed that natural additive treatments significantly increased the soil bacterial diversity (higher Shannon index, Simpson index and evenness) in a time-dependent manner, with Cdx eliciting the greatest enhancement. The two additives influenced the bacterial community succession patterns differently. MBM, while it enhanced the enrichment of specific genera Chitinophaga and Terrimonas, did not significantly alter the total bacterial community. In contrast, Cdx or Cdx MBM promoted a profound change of the bacteria community over time, with the enrichment of the genera Parvibaculum, Arenimonas and unclassified Actinobacteria. These results provide evidence on the involvement of the two natural additives in coupling HC and HM bioremediation and bacterial community perturbations, and thus illustrates their potential application in ecologically sound bioremediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Simone Cavazzoli
- Department of Civil, Environmental and Mechanical Engineering, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy; Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Natural Resources Institute Finland, Luke, Horticulture Technologies, Turku, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Ville Selonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Marja I Roslund
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
8
|
Tan H, Liu X, Yin S, Zhao C, Su L, Wang S, Khalid M, Setälä H, Hui N. Soil microbiota associated with immune-mediated disease was influenced by heavy metal stress in roadside soils of Shanghai. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129338. [PMID: 35785742 DOI: 10.1016/j.jhazmat.2022.129338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and total petroleum hydrocarbons (TPHs) in soils can be detrimental to both soil microorganisms and public health. However, the effects of HMs and TPHs on microbes as well as the consequent microbial-derived health risk remains unclear in soils by local roads where citizens are clearly accessible to traffic-derived pollutants. Herein, we sampled 84 roadside soils throughout Shanghai. We measured the levels of soil edaphic factors, 6 HMs, and alkane TPHs. We further focused on the responses of bacterial and fungal communities assessed via sequencing and network analysis. Results showed that all soil HMs exceeded background levels of Shanghai soil, while the levels of TPHs are comparable to unpolluted sites. Bacterial network nodes and links decreased sharply under HM stress whereas that of fungal networks remained unchanged. The differential pattern was attributed to the asynchronous response of key classes that fungal key classes were more resistant to HMs than bacteria. In addition, 66.8 % of fungal genera associated with immune-mediated disease increased with increased HM stress for its HM tolerance. Together our findings indicate that despite the relatively stable fungal community in response to environmental stresses, the elevation of harmful fungi likely pose threats to health of urban dwellers.
Collapse
Affiliation(s)
- Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Instrumental analysis center, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Song Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Heikki Setälä
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-15140 Lahti, Finland.
| |
Collapse
|
9
|
Soil microbial community changes in response to the environmental gradients of urbanization in Guangzhou City. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Exposomic determinants of immune-mediated diseases. Environ Epidemiol 2022; 6:e212. [PMID: 35702504 PMCID: PMC9187189 DOI: 10.1097/ee9.0000000000000212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
|
11
|
Soininen L, Roslund MI, Nurminen N, Puhakka R, Laitinen OH, Hyöty H, Sinkkonen A. Indoor green wall affects health-associated commensal skin microbiota and enhances immune regulation: a randomized trial among urban office workers. Sci Rep 2022; 12:6518. [PMID: 35444249 PMCID: PMC9021224 DOI: 10.1038/s41598-022-10432-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Urbanization reduces microbiological abundance and diversity, which has been associated with immune mediated diseases. Urban greening may be used as a prophylactic method to restore microbiological diversity in cities and among urbanites. This study evaluated the impact of air-circulating green walls on bacterial abundance and diversity on human skin, and on immune responses determined by blood cytokine measurements. Human subjects working in offices in two Finnish cities (Lahti and Tampere) participated in a two-week intervention, where green walls were installed in the rooms of the experimental group. Control group worked without green walls. Skin and blood samples were collected before (Day0), during (Day14) and two weeks after (Day28) the intervention. The relative abundance of genus Lactobacillus and the Shannon diversity of phylum Proteobacteria and class Gammaproteobacteria increased in the experimental group. Proteobacterial diversity was connected to the lower proinflammatory cytokine IL-17A level among participants in Lahti. In addition, the change in TGF-β1 levels was opposite between the experimental and control group. As skin Lactobacillus and the diversity of Proteobacteria and Gammaproteobacteria are considered advantageous for skin health, air-circulating green walls may induce beneficial changes in a human microbiome. The immunomodulatory potential of air-circulating green walls deserves further research attention.
Collapse
Affiliation(s)
- L Soininen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - M I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.,Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland
| | - N Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - R Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - O H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - H Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - A Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland.
| | | |
Collapse
|
12
|
Alba LM, Esmeralda M, Jaime V. Enhanced Biodegradation of Phenylurea Herbicides by Ochrobactrum anthrophi CD3 Assessment of Its Feasibility in Diuron-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031365. [PMID: 35162387 PMCID: PMC8835586 DOI: 10.3390/ijerph19031365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/04/2022]
Abstract
The phenylurea herbicides are persistent in soil and water, making necessary the de-velopment of techniques for their removal from the environment. To identify new options in this regard, bacterial strains were isolated from a soil historically managed with pesticides. Ochrobactrum anthropi CD3 showed the ability to remove completely herbicides such as diuron, linuron, chlorotoluron and fluometuron from aqueous solution, and up to 89% of isoproturon. In the case of diuron and linuron, their main metabolite, 3,4-dichloroaniline (3,4-DCA), which has a higher toxicity than the parent compounds, was formed, but remained in solution without further degradation. O. anthropi CD3 was also tested for bioremediation of two different agricultural soils artificially contaminated with diuron, employing bioremediation techniques: (i) biostimulation, using a nutrient solution (NS), (ii) bioaugmentation, using O. anthropi CD3, and iii) bioavailability enhancement using 2-hydroxypropyl-β-cyclodextrin (HPBCD). When bioaugmentation and HPBCD were jointly applied, 50% of the diuron initially added to the soil was biodegraded in a range from 4.7 to 0.7 d. Also, 3,4-DCA was degraded in soil after the strain was inoculated. At the end of the soil biodegradation assay an ecotoxicity test confirmed that after inoculating O. anthropi CD3 the toxicity was drastically reduced.
Collapse
|
13
|
Tan H, Liu X, Yin S, Zhao C, Su L, Li X, Khalid M, Setälä H, Hui N. Immune-mediated disease associated microbial community responded to PAH stress in phyllosphere of roadside greenspaces in Shanghai. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118379. [PMID: 34662594 DOI: 10.1016/j.envpol.2021.118379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms in urban greenspaces play key roles in ecosystem service provision and potentially influence human health. Increasing evidence suggests that anthropogenic disturbance poses constant stress on urban microbial communities, yet, as previous studies have focused on non-contaminated greenspaces, it has remained largely unknown how microorganisms respond to anthropogenic stress in roadside greenspaces with contamination. Our previous effort determined phyllosphere PAHs of camphor trees in 84 sites of roadside greenspaces along the urban-rural gradient in Shanghai. Here, we further investigated the phyllosphere microbial communities (PMCs) of the same sites across the same urban categories, including urban, suburban, and rural areas using high-throughput DNA sequencing. We aimed to explore how PMCs, especially those associated with immune-mediated diseases (IMDs), were affected by PAHs and the surrounding land-use types. We found that several microorganisms associated with increasing IMD risk were stimulated by PAHs. The composition of PMCs differed between the three urban categories which can be largely explained by the variation of phyllosphere PAH concentration and the surrounding land-use types. Similar to our previous study, suburban areas were linked with the most potential adverse health effects, where we observed the lowest bacterial diversity, the highest relative abundance of IMD-associated bacteria, and the highest relative abundance of Pathotroph. Urban green-blue infrastructure (GBI) was positively correlated with the diversity of PMCs, whereas urban grey infrastructure tended to homogenize PMCs. Notably, GBI also reduced the relative abundance of IMD-associated and pathogenic microbes, indicating the potential health benefits of GBI in land-use planning. Taken together, our study emphasizes the need to further investigate environmental communities in contaminated traffic environments, as human microbiomes are directly exposed to risky microorganisms.
Collapse
Affiliation(s)
- Haoxin Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Lantian Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| | - Heikki Setälä
- Department of Environmental Sciences, University of Helsinki, FIN-15140, Lahti, Finland.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240, Shanghai, China; Department of Environmental Sciences, University of Helsinki, FIN-15140, Lahti, Finland.
| |
Collapse
|
14
|
Roslund MI, Puhakka R, Nurminen N, Oikarinen S, Siter N, Grönroos M, Cinek O, Kramná L, Jumpponen A, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. ENVIRONMENT INTERNATIONAL 2021; 157:106811. [PMID: 34403882 DOI: 10.1016/j.envint.2021.106811] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/17/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In modern urban environments children have a high incidence of inflammatory disorders, including allergies, asthma, and type1 diabetes. The underlying cause of these disorders, according to the biodiversity hypothesis, is an imbalance in immune regulation caused by a weak interaction with environmental microbes. In this 2-year study, we analyzed bacterial community shifts in the soil surface in day-care centers and commensal bacteria inhabiting the mouth, skin, and gut of children. We compared two different day-care environments: standard urban day-care centers and intervention day-care centers. Yards in the latter were amended with biodiverse forest floor vegetation and sod at the beginning of the study. RESULTS Intervention caused a long-standing increase in the relative abundance of nonpathogenic environmental mycobacteria in the surface soils. Treatment-specific shifts became evident in the community composition of Gammaproteobacteria, Negativicutes, and Bacilli, which jointly accounted for almost 40 and 50% of the taxa on the intervention day-care children's skin and in saliva, respectively. In the year-one skin swabs, richness of Alpha-, Beta-, and Gammaproteobacteria was higher, and the relative abundance of potentially pathogenic bacteria, including Haemophilus parainfluenzae, Streptococcus sp., and Veillonella sp., was lower among children in intervention day-care centers compared with children in standard day-care centers. In the gut, the relative abundance of Clostridium sensu stricto decreased, particularly among the intervention children. CONCLUSIONS This study shows that a 2-year biodiversity intervention shapes human commensal microbiota, including taxa that have been associated with immune regulation. Results indicate that intervention enriched commensal microbiota and suppressed the potentially pathogenic bacteria on the skin. We recommend future studies that expand intervention strategies to immune response and eventually the incidence of immune-mediated diseases.
Collapse
Affiliation(s)
- Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Nathan Siter
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Ondřej Cinek
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Lenka Kramná
- Department of Pediatrics, Second Faculty of Medicine, Charles University, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan KS66506, KS, United States of America
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Juho Rajaniemi
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Turku, Finland.
| |
Collapse
|
15
|
Haahtela T, Alenius H, Lehtimäki J, Sinkkonen A, Fyhrquist N, Hyöty H, Ruokolainen L, Mäkelä MJ. Immunological resilience and biodiversity for prevention of allergic diseases and asthma. Allergy 2021; 76:3613-3626. [PMID: 33959980 DOI: 10.1111/all.14895] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008-2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.
Collapse
Affiliation(s)
- Tari Haahtela
- Skin and Allergy Hospital Helsinki University HospitalUniversity of Helsinki Helsinki Finland
| | - Harri Alenius
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Department of Bacteriology and Immunology Medicum University of Helsinki Helsinki Finland
| | | | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies Turku Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
- Department of Bacteriology and Immunology Medicum University of Helsinki Helsinki Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Fimlab Laboratories Pirkanmaa Hospital District Tampere Finland
| | - Lasse Ruokolainen
- Lasse Ruokolainen Department of Biosciences University of Helsinki Helsinki Finland
| | - Mika J. Mäkelä
- Skin and Allergy Hospital Helsinki University HospitalUniversity of Helsinki Helsinki Finland
| |
Collapse
|
16
|
Endophytic and rhizospheric bacterial communities are affected differently by the host plant species and environmental contamination. Symbiosis 2021. [DOI: 10.1007/s13199-021-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Yu L, Zhang L, Duan H, Zhao R, Xiao Y, Guo M, Zhao J, Zhang H, Chen W, Tian F. The Protection of Lactiplantibacillus plantarum CCFM8661 Against Benzopyrene-Induced Toxicity via Regulation of the Gut Microbiota. Front Immunol 2021; 12:736129. [PMID: 34447391 PMCID: PMC8383074 DOI: 10.3389/fimmu.2021.736129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023] Open
Abstract
The present study evaluated the protection of Lactiplantibacillus plantarum CCFM8661, a candidate probiotic with excellent benzopyrene (B[a]P)-binding capacity in vitro, against B[a]P-induced toxicity in the colon and brain of mice. Mice that received B[a]P alone served as the model group. Each mouse in the L. plantarum treatment groups were administered 2×109 colony forming unit (CFU) of L. plantarum strains once daily, followed by an oral dose of B[a]P at 50 mg/kg body weight. Behavior, biochemical indicators in the colon and brain tissue, and the gut microbiota composition and short-chain fatty acid (SCFA) levels in the gut were investigated. Compared to the treatment in the model group, CCFM8661 treatment effectively reduced oxidative stress in the brain, improved behavioral performance, increased intestinal barrier integrity, and alleviated histopathological changes in mice. Moreover, CCFM8661 increased the gut microbiota diversity and abundance of Ruminococcus and Lachnospiraceae and reduced the abundance of pro-inflammatory Turicibacter spp. Additionally, the production of SCFAs was significantly increased by L. plantarum CCFM8661. Our results suggest that CCFM8661 is effective against acute B[a]P-induced toxicity in mice and that it can be considered as an effective and easy dietary intervention against B[a]P toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Lingyu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Saarenpää M, Roslund MI, Puhakka R, Grönroos M, Parajuli A, Hui N, Nurminen N, Laitinen OH, Hyöty H, Cinek O, Sinkkonen A, the ADELE Research Group. Do Rural Second Homes Shape Commensal Microbiota of Urban Dwellers? A Pilot Study among Urban Elderly in Finland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073742. [PMID: 33918486 PMCID: PMC8038225 DOI: 10.3390/ijerph18073742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
According to the hygiene and biodiversity hypotheses, increased hygiene levels and reduced contact with biodiversity can partially explain the high prevalence of immune-mediated diseases in developed countries. A disturbed commensal microbiota, especially in the gut, has been linked to multiple immune-mediated diseases. Previous studies imply that gut microbiota composition is associated with the everyday living environment and can be modified by increasing direct physical exposure to biodiverse materials. In this pilot study, the effects of rural-second-home tourism were investigated on the gut microbiota for the first time. Rural-second-home tourism, a popular form of outdoor recreation in Northern Europe, North America, and Russia, has the potential to alter the human microbiota by increasing exposure to nature and environmental microbes. The hypotheses were that the use of rural second homes is associated with differences in the gut microbiota and that the microbiota related to health benefits are more diverse or common among the rural-second-home users. Based on 16S rRNA Illumina MiSeq sequencing of stool samples from 10 urban elderly having access and 15 lacking access to a rural second home, the first hypothesis was supported: the use of rural second homes was found to be associated with lower gut microbiota diversity and RIG-I-like receptor signaling pathway levels. The second hypothesis was not supported: health-related microbiota were not more diverse or common among the second-home users. The current study encourages further research on the possible health outcomes or causes of the observed microbiological differences. Activities and diet during second-home visits, standard of equipment, surrounding environment, and length of the visits are all postulated to play a role in determining the effects of rural-second-home tourism on the gut microbiota.
Collapse
Affiliation(s)
- Mika Saarenpää
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
| | - Marja I. Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
- Department of Medicine, Karolinska University Hospital, Huddinge, 141 86 Stockholm, Sweden
| | - Nan Hui
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan RD. Minhang District, Shanghai 200240, China
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; (N.N.); (O.H.L.); (H.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; (N.N.); (O.H.L.); (H.H.)
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland; (N.N.); (O.H.L.); (H.H.)
| | - Ondrej Cinek
- Second Faculty of Medicine, Charles University, V Úvalu 84, 150 06 Prague 5, Czech Republic;
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland; (M.S.); (M.I.R.); (R.P.); (M.G.); (A.P.); (N.H.)
- Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, 20520 Turku, Finland
- Correspondence:
| | | |
Collapse
|
19
|
Talvenmäki H, Saartama N, Haukka A, Lepikkö K, Pajunen V, Punkari M, Yan G, Sinkkonen A, Piepponen T, Silvennoinen H, Romantschuk M. In situ bioremediation of Fenton's reaction-treated oil spill site, with a soil inoculum, slow release additives, and methyl-β-cyclodextrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20273-20289. [PMID: 33410071 PMCID: PMC8099836 DOI: 10.1007/s11356-020-11910-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/30/2020] [Indexed: 05/12/2023]
Abstract
A residential lot impacted by spills from a leaking light heating oil tank was treated with a combination of chemical oxidation and bioremediation to avoid technically challenging excavation. The tank left emptied in the ground was used for slow infiltration of the remediation additives to the low permeability, clayey soil. First, hydrogen peroxide and citrate chelate was added for Fenton's reaction-based chemical oxidation, resulting in a ca. 50% reduction from the initial 25,000 mg/kg average oil concentration in the soil below the tank. Part of this was likely achieved through mobilization of oily soil into the tank, which was beneficial in regards to the following biological treatment. By first adding live bacteria in a soil inoculum, and then oxygen and nutrients in different forms, an approximately 90% average reduction was achieved. To further enhance the effect, methyl-β-cyclodextrin surfactant (CD) was added, resulting finally in a 98% reduction from the initial average level. The applicability of the surfactant was based on laboratory-scale tests demonstrating that CD promoted oil degradation and, unlike pine soap, was not utilized by the bacteria as a carbon source, and thus inhibiting degradation of oils regardless of the positive effect on biological activity. The effect of CD on water solubility for different hydrocarbon fractions was tested to serve as the basis for risk assessment requirements for authorizing the use of the surfactant at the site.
Collapse
Affiliation(s)
- Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Niina Saartama
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Nordic Envicon Oy, Huopalahdentie 24, 00350, Helsinki, Finland
| | - Anna Haukka
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. BOX 65, 00014, Helsinki, Finland
| | - Katri Lepikkö
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Virpi Pajunen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Department of Geosciences and Geography, University of Helsinki, P.O. BOX 64, 00014, Helsinki, Finland
| | - Milla Punkari
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- MetropoliLab Oy, Viikinkaari 4, 00790, Helsinki, Finland
| | - Guoyong Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
- Luke Natural Resources Institute Finland, Itäinen Pitkäkatu 4 A, 20520, Turku, Finland
| | | | | | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| |
Collapse
|
20
|
Vari HK, Roslund MI, Oikarinen S, Nurminen N, Puhakka R, Parajuli A, Grönroos M, Siter N, Laitinen OH, Hyöty H, Rajaniemi J, Rantalainen AL, Sinkkonen A. Associations between land cover categories, gaseous PAH levels in ambient air and endocrine signaling predicted from gut bacterial metagenome of the elderly. CHEMOSPHERE 2021; 265:128965. [PMID: 33248729 DOI: 10.1016/j.chemosphere.2020.128965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
There is evidence that polycyclic aromatic hydrocarbons (PAHs) and human gut microbiota are associated with the modulation of endocrine signaling pathways. Independently, studies have found associations between air pollution, land cover and commensal microbiota. We are the first to estimate the interaction between land cover categories associated with air pollution or purification, PAH levels and endocrine signaling predicted from gut metagenome among urban and rural populations. The study participants were elderly people (65-79 years); 30 lived in rural and 32 in urban areas. Semi-Permeable Membrane devices were utilized to measure air PAH concentrations as they simulate the process of bioconcentration in the fatty tissues. Land cover categories were estimated using CORINE database and geographic information system. Functional orthologues for peroxisome proliferator-activated receptor (PPAR) pathway in endocrine system were analyzed from gut bacterial metagenome with Kyoto Encyclopaedia of Genes and Genomes. High coverage of broad-leaved and mixed forests around the homes were associated with decreased PAH levels in ambient air, while gut functional orthologues for PPAR pathway increased along with these forest types. The difference between urban and rural PAH concentrations was not notable. However, some rural measurements were higher than the urban average, which was due to the use of heavy equipment on active farms. The provision of air purification by forests might be an important determining factor in the context of endocrine disruption potential of PAHs. Particularly broad-leaved forests around homes may reduce PAH levels in ambient air and balance pollution-induced disturbances within commensal gut microbiota.
Collapse
Affiliation(s)
- Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Noora Nurminen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Nathan Siter
- Tampere University, Faculty of Built Environment, Korkeakoulunkatu 5, Tampere, Finland
| | - Olli H Laitinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Heikki Hyöty
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpönkatu 34, Tampere, Finland
| | - Juho Rajaniemi
- Tampere University, Faculty of Built Environment, Korkeakoulunkatu 5, Tampere, Finland
| | - Anna-Lea Rantalainen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Itäinen Pitkäkatu 4, Turku, Finland.
| |
Collapse
|
21
|
Kotoky R, Pandey P. Difference in the rhizosphere microbiome of Melia azedarach during removal of benzo(a)pyrene from cadmium co-contaminated soil. CHEMOSPHERE 2020; 258:127175. [PMID: 32535435 DOI: 10.1016/j.chemosphere.2020.127175] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP) is a highly persistent biohazard polyaromatic hydrocarbon and often reported to be present in soils co-contaminated with heavy metals. The present study explains the rhizodegradation of BaP using bacterial consortium in the rhizosphere of Melia azedarach, along with a change in taxonomical and functional properties of the rhizosphere microbiome. The relative abundance of most dominant phylum Proteobacteria was 2% higher with BaP, while in the presence of both BaP and Cd, its abundance was 2.2% lower. Functional metagenome analysis also revealed the shifting of microbial community and functional gene abundance in the favor of xenobiotic compound degradation upon augmentation of bacterial consortium. Interestingly, upon the addition of BaP the range of functional abundance for genes of PAH degradation (0.165-0.19%), was found to be decreasing. However, augmentation of a bacterial consortium led to an increase in its abundance including genes for degradation of benzoate (0.55-0.64%), toluene (0.2-0.22%), naphthalene (0.25-0.295%) irrespective of the addition of BaP and Cd. Moreover, under greenhouse condition, the application of M. azedarach-bacterial consortium enhanced the degradation of BaP in the rhizosphere (88%) after 60 days, significantly higher than degradation in bulk soil (68.22%). The analysis also showed an increase in degradation of BaP by 15% with plant-native microbe association than in bulk soil. Therefore, the association of M. azedarach-bacterial consortium enhanced the degradation of BaP in soil along with the taxonomical and functional attributes of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
22
|
Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. SCIENCE ADVANCES 2020; 6:eaba2578. [PMID: 33055153 PMCID: PMC7556828 DOI: 10.1126/sciadv.aba2578] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/14/2020] [Indexed: 05/02/2023]
Abstract
As the incidence of immune-mediated diseases has increased rapidly in developed societies, there is an unmet need for novel prophylactic practices to fight against these maladies. This study is the first human intervention trial in which urban environmental biodiversity was manipulated to examine its effects on the commensal microbiome and immunoregulation in children. We analyzed changes in the skin and gut microbiota and blood immune markers of children during a 28-day biodiversity intervention. Children in standard urban and nature-oriented daycare centers were analyzed for comparison. The intervention diversified both the environmental and skin Gammaproteobacterial communities, which, in turn, were associated with increases in plasma TGF-β1 levels and the proportion of regulatory T cells. The plasma IL-10:IL-17A ratio increased among intervention children during the trial. Our findings suggest that biodiversity intervention enhances immunoregulatory pathways and provide an incentive for future prophylactic approaches to reduce the risk of immune-mediated diseases in urban societies.
Collapse
Affiliation(s)
- Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Ahmad M Gazali
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ondřej Cinek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Lenka Kramná
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Praha 5, 150 06 Prague, Czech Republic
| | - Nathan Siter
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Laura Soininen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland
| | - Juho Rajaniemi
- Faculty of Built Environment, Tampere University, Korkeakoulunkatu 5, FI-33720 Tampere, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland.
- Natural Resources Institute Finland Luke, Itäinen Pitkäkatu 4A, 20520 Turku, Finland
| |
Collapse
|
23
|
Parajuli A, Hui N, Puhakka R, Oikarinen S, Grönroos M, Selonen VAO, Siter N, Kramna L, Roslund MI, Vari HK, Nurminen N, Honkanen H, Hintikka J, Sarkkinen H, Romantschuk M, Kauppi M, Valve R, Cinek O, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Yard vegetation is associated with gut microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136707. [PMID: 32019041 DOI: 10.1016/j.scitotenv.2020.136707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies. As our previous studies imply that daily skin contact with organic gardening materials modify gut microflora, here we investigated the association between living environment and gut microbiota in a homogenous western population along an urban-rural gradient. We obtained stool samples from 48 native elderly Finns in province Häme in August and November 2015 and identified the bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. We assumed that yard vegetation and land cover classes surrounding homes explain the stool bacterial community in generalized linear mixed models. Diverse yard vegetation was associated with a reduced abundance of Clostridium sensu stricto and an increased abundance of Faecalibacterium and Prevotellaceae. The abundance of Bacteroides was positively and strongly associated with the built environment. Exclusion of animal owners did not alter the main associations. These results suggest that diverse vegetation around homes is associated with health-related changes in gut microbiota composition. Manipulation of the garden diversity, possibly jointly with urban planning, is a promising candidate for future intervention studies that aim to maintain gut homeostasis.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Ville A O Selonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nathan Siter
- School of Architecture, Tampere University of Technology, Tampere, Finland
| | - Lenka Kramna
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Hanna Honkanen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | - Martin Romantschuk
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Raisa Valve
- Division of Food and Nutrition Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ondřej Cinek
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olli H Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Juho Rajaniemi
- School of Architecture, Tampere University of Technology, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland; Natural Resources Institute Finland, Turku, Finland.
| |
Collapse
|
24
|
Smułek W, Sydow M, Zabielska-Matejuk J, Kaczorek E. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109843. [PMID: 31678701 DOI: 10.1016/j.ecoenv.2019.109843] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 05/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) contained in creosote oil are particularly difficult to remove from the soil environment. Their hydrophobic character and low bioavailability to soil microorganisms affects their rate of biodegradation. This study was performed on samples of soil that were (for over forty years) subjected to contamination with creosote oil, and their metagenome and physicochemical properties were characterized. Moreover, the study was undertaken to evaluate the biodegradation of PAHs by autochthonous consortia as well as by selected bacteria strains isolated from long-term contaminated industrial soil. From among the isolated microorganisms, the most effective in biodegrading the contaminants were the strains Pseudomonas mendocina and Brevundimonas olei. They were able to degrade more than 60% of the total content of PAHs during a 28-day test. The biodegradation of these compounds using AT7 dispersant was enhanced only by Serratia marcescens strain. Moreover, the addition of AT7 improved the effectiveness of fluorene and acenaphthene biodegradation by Serratia marcescens 6-fold. Our results indicated that long-term contact with aromatic compounds induced the bacterial strains to use the PAHs as a source of carbon and energy. We observed that supplementation with surfactants does not increase the efficiency of hydrocarbon biodegradation.
Collapse
Affiliation(s)
- W Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - M Sydow
- Lukasiewicz Research Network - Wood Technology Institute, Winiarska 1, 60-654, Poznań, Poland
| | - J Zabielska-Matejuk
- Lukasiewicz Research Network - Wood Technology Institute, Winiarska 1, 60-654, Poznań, Poland
| | - E Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland.
| |
Collapse
|
25
|
Hui N, Parajuli A, Puhakka R, Grönroos M, Roslund MI, Vari HK, Selonen VAO, Yan G, Siter N, Nurminen N, Oikarinen S, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Temporal variation in indoor transfer of dirt-associated environmental bacteria in agricultural and urban areas. ENVIRONMENT INTERNATIONAL 2019; 132:105069. [PMID: 31400602 DOI: 10.1016/j.envint.2019.105069] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
An agricultural environment and exposure to diverse environmental microbiota has been suggested to confer protection against immune-mediated disorders. As an agricultural environment may have a protective role, it is crucial to determine whether the limiting factors in the transfer of environmental microbiota indoors are the same in the agricultural and urban environments. We explored how sampling month, garden diversity and animal ownership affected the indoor-transfer of environmental microbial community. We collected litter from standardized doormats used for 2 weeks in June and August 2015 and February 2016 and identified bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. In February, the diversity and richness of the whole bacterial community and the relative abundance of environment-associated taxa were reduced, whereas human-associated taxa and genera containing opportunistic pathogens were enriched in the doormats. In summer, the relative abundances of several taxa associated previously with beneficial health effects were higher, particularly in agricultural areas. Surprisingly, the importance of vegetation on doormat microbiota was more observable in February, which may have resulted from snow cover that prevented contact with microbes in soil. Animal ownership increased the prevalence of genera Bacteroides and Acinetobacter in rural doormats. These findings underline the roles of season, living environment and lifestyle in the temporal variations in the environmental microbial community carried indoors. As reduced contact with diverse microbiota is a potential reason for immune system dysfunction, the results may have important implications in the etiology of immune-mediated, non-communicable diseases.
Collapse
Affiliation(s)
- Nan Hui
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland.
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Ville A O Selonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Guoyang Yan
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nathan Siter
- Faculty of Built Environment, Tampere University, Tampere, Finland
| | - Noora Nurminen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juho Rajaniemi
- Faculty of Built Environment, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland.
| |
Collapse
|
26
|
Roslund MI, Rantala S, Oikarinen S, Puhakka R, Hui N, Parajuli A, Laitinen OH, Hyöty H, Rantalainen AL, Sinkkonen A. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. ENVIRONMENT INTERNATIONAL 2019; 130:104894. [PMID: 31220749 DOI: 10.1016/j.envint.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 05/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental pollutants that cause adverse health effects. PAHs belong to endocrine signaling disruptors to which children are sensitive to. Recent evidence suggests that PAH pollution alters the abundance of environmental bacteria that is associated with health outcomes. The alteration of environmental and commensal microbiota by PAH pollution has never been connected to endocrine signaling pathways. To estimate the risk of endocrine disruption in daycare children, we measured PAHs from soil and air of eleven urban daycare centres in Finland. We analyzed daycare yards' soil and children's gut and skin bacterial communities with 16S rRNA gene metabarcoding and used Kyoto Encyclopaedia of Genes and Genomes database to categorize endocrine signaling pathways. We also assessed the PAH hazard to children's health based on the current risk assesments. We observed associations between signaling pathways in endocrine system and gaseous PAH levels in ambient air. Peroxisome proliferator-activated receptor and adipocytokine signaling pathway decreased with higher chrysene concentration in the air. Soil PAH contamination was associated with altered Actinobacteria, Bacteoridetes and Proteobacteria communities on children's skin and in daycare yard soil. However, adjusted genera were not the same in soil and on skin, with the exception of Mycobacterium that was associated with higher PAH concentrations both in soil and on the skin. Even though fluoranhtene levels were above the current threshold values, total PAHs were below safety threshold values and based on current risk assessments there is a minor risk for child health. Our findings indicate that PAH concentrations that are considered safe may interfere with endocrine signaling by commensal microbiota and alter both environmental and commensal bacterial communities. The imbalance in human microbiota and the decrease in signaling pathways may contribute to emerging public health problems, including inflammatory disorders, obesity and diabetes. Therefore, the optimal risk assessments of PAHs and theoretically also other contaminants shaping commensal microbiota may need to take into account the possibility of the disruption of endocrine signaling pathways.
Collapse
Affiliation(s)
- Marja I Roslund
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland.
| | - Sonja Rantala
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Life Technology, Tampere University, Tampere, Finland
| | - Riikka Puhakka
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Nan Hui
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Anirudra Parajuli
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Life Technology, Tampere University, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Technology, Tampere University, Tampere, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, 15140 Lahti, Finland
| |
Collapse
|
27
|
Greening of Daycare Yards with Biodiverse Materials Affords Well-Being, Play and Environmental Relationships. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162948. [PMID: 31426345 PMCID: PMC6719197 DOI: 10.3390/ijerph16162948] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Nature contacts are recognized as positively contributing to humans’ health and well-being. Although there have been projects to green daycare or schoolyards, yard greening and microbial biodiversity have never been studied simultaneously. We asked whether simultaneously increasing biodiversity exposure and greening urban daycare yards affects 3–5 years-old children’s physical activity and play, their environmental relationships, and their perceived well-being. For transforming six daycare yards in Finland, we used a forest floor with high biodiversity, sod, peat blocks, and planters for vegetable and flower growing. We used qualitative interview and survey-based data collected from the daycare personnel and parents to analyze how green yards encourage children’s engagement with their everyday life-worlds. We identified the functional possibilities provided by the yards and the dynamic aspects related to the greening. Green, biodiverse yards were considered safe, and inspired children’s play, diversified their activities, and increased physical activity. The greenery offered embodied experiences of nature and provided the children with multi-sensory exploration and diverse learning situations. The dynamic and emotional ways of engaging with the natural environment increased their well-being. The activities related to caring for the yards and exploring them promoted the development of environmental relationships. The results can be used for designing health-enhancing yards
Collapse
|
28
|
Molecular Biology-Based Analysis of the Interactive Effect of Nickel and Xanthates on Soil Bacterial Community Diversity and Structure. SUSTAINABILITY 2019. [DOI: 10.3390/su11143888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metals and mineral flotation collector’s toxicity to the soil living system greatly compromise the sustainability of mining and ore processing. Their effects on the soil microbial community, the most active soil component, remain less understood and addressed particularly with regards to xanthates and their combination with metals. This study analyzed the interactive effects of Ni and xanthates, potassium ethyl xanthate and sodium isopropyl xanthate, on the soil bacterial community through an efficient molecular biology-based technique, the Miseq (Illumina). Both soil microbial community diversity and structure were more affected by xanthates than by Ni. The five most dominant phyla, representing 96.31% of the whole bacterial community, comprised Proteobacteria (54.16%), Firmicutes (17.51%), Actinobacteria (15.59%), Acidobacteria (4.87%), and Chloroflexi (4.16%). Different soil treatments exhibited greater difference in the species abundance/dominance than in the species numbers. Proteobacteria was the most dominant in the presence of xanthates, individually or in mixtures with nickel, while Firmicutes exhibited its highest proportion in the Ni/xanthate-treated samples. The most abundant and proportionally different bacterial species between different treatments were presented. The most abundant bacterial strains identified should be explored more for their potential application in biomining and for the prediction and biologically-based treatment and remediation of Ni and xanthate-contaminated systems.
Collapse
|
29
|
Liu X, Selonen V, Steffen K, Surakka M, Rantalainen AL, Romantschuk M, Sinkkonen A. Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. CHEMOSPHERE 2019; 225:574-578. [PMID: 30901652 DOI: 10.1016/j.chemosphere.2019.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/03/2019] [Accepted: 03/10/2019] [Indexed: 05/04/2023]
Abstract
Soil contamination with diesel oil is frequent and methods to improve remediation of diesel oil contaminated soils are urgently needed. The aim of the current study was to assess the potential of meat and bone meal (MBM) as a biostimulation agent to enhance diesel oil degradation in contaminated soils collected from southern Finland. MBM (2% w/w) increased oil degradation in soils when compared to natural attenuation. The increase was comparable to soils treated with a traditional fertilizer (urea). Soil pH increased rapidly in urea treated soil but remained at the level of natural attenuation in MBM treated soil, suggesting that in large-scale experiments MBM treated soils avoid the usual negative impact of urea on soil pH and ultimately microbial degradation. These results indicate that MBM addition enhances diesel oil degradation, and that MBM speeds up ex situ bioremediation of oil contaminated soils.
Collapse
Affiliation(s)
- Xinxin Liu
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| | - Ville Selonen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Kari Steffen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Mea Surakka
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, 15140, Lahti, Finland.
| |
Collapse
|
30
|
Hui N, Grönroos M, Roslund MI, Parajuli A, Vari HK, Soininen L, Laitinen OH, Sinkkonen A. Diverse Environmental Microbiota as a Tool to Augment Biodiversity in Urban Landscaping Materials. Front Microbiol 2019; 10:536. [PMID: 30967847 PMCID: PMC6438878 DOI: 10.3389/fmicb.2019.00536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/01/2019] [Indexed: 01/16/2023] Open
Abstract
Human activities typically lead to simplified urban diversity, which in turn reduces microbial exposure and increases the risk to urban dwellers from non-communicable diseases. To overcome this, we developed a microbial inoculant from forest and agricultural materials that resembles microbiota in organic soils. Three different sand materials (sieved, safety, and sandbox) commonly used in playgrounds and other public spaces were enriched with 5% of the inoculant. Skin microbiota on fingers (identified from bacterial 16S rDNA determined using Illumina MiSeq sequencing) was compared after touching non-enriched and microbial inoculant-enriched sands. Exposure to the non-enriched materials changed the skin bacterial community composition in distinct ways. When the inoculant was added to the materials, the overall shift in community composition was larger and the differences between different sand materials almost disappeared. Inoculant-enriched sand materials increased bacterial diversity and richness but did not affect evenness at the OTU level on skin. The Firmicutes/Bacteroidetes ratio was higher after touching inoculant-enriched compared to non-enriched sand materials. The relative abundance of opportunistic pathogens on skin was 40–50% before touching sand materials, but dropped to 14 and 4% after touching standard and inoculant-enriched sand materials, respectively. When individual genera were analyzed, Pseudomonas sp. and Sphingomonas sp. were more abundant after touching standard, non-enriched sand materials, while only the relative abundance of Chryseobacterium sp. increased after touching the inoculant-enriched materials. As Chryseobacterium is harmless for healthy persons, and as standard landscaping materials and normal skin contain genera that include severe pathogens, the inoculant-enriched materials can be considered safe. Microbial inoculants could be specifically created to increase the proportion of non-pathogenic bacterial taxa and minimize the transfer of pathogenic taxa. We recommend further study into the usability of inoculant-enriched materials and their effects on the bacterial community composition of human skin and on the immune response.
Collapse
Affiliation(s)
- Nan Hui
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Mira Grönroos
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Marja I Roslund
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Laura Soininen
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki Sinkkonen
- Nature-Based Solutions Research Group, Ecology and Environment Research Programme, University of Helsinki, Lahti, Finland
| | | |
Collapse
|
31
|
Belz RG, Patama M, Sinkkonen A. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:510-523. [PMID: 29529439 DOI: 10.1016/j.scitotenv.2018.02.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/17/2023]
Abstract
Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures.
Collapse
Affiliation(s)
- Regina G Belz
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Garbenstraße 13, 70599 Stuttgart, Germany.
| | - Marjo Patama
- University of Hohenheim, Hans-Ruthenberg Institute, Agroecology Unit, Garbenstraße 13, 70599 Stuttgart, Germany; University of Helsinki, Department of Environmental Sciences, Environmental Ecology Unit, Niemenkatu 73, 15140 Lahti, Finland
| | - Aki Sinkkonen
- University of Helsinki, Department of Environmental Sciences, Environmental Ecology Unit, Niemenkatu 73, 15140 Lahti, Finland
| |
Collapse
|
32
|
Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1018-1038. [PMID: 29426121 DOI: 10.1016/j.scitotenv.2018.01.288] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/28/2018] [Accepted: 01/28/2018] [Indexed: 05/03/2023]
Abstract
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.
Collapse
Affiliation(s)
- Lucette Flandroy
- Federal Public Service Health, Food Chain Safety and Environment, Belgium
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Gabriele Berg
- Environmental Biotechnology, Graz University of Technology, Petersgasse 12, A-8010 Graz, Austria
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Maria-Carlota Dao
- ICAN, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMRS U1166 (Eq 6) Nutriomics, Paris 6, France; UPMC, Sorbonne University, Pierre et Marie Curie-Paris 6, France
| | - Ellen Decaestecker
- Aquatic Biology, Department Biology, Science, Engineering & Technology Group, KU Leuven, Campus Kortrijk. E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Eeva Furman
- Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
| | - Sébastien Massart
- Laboratory of Integrated and Urban Phytopathology, TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage des deportes, 2, 5030 Gembloux, Belgium
| | - Hubert Plovier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Graham Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, UK.
| |
Collapse
|
33
|
Grönroos M, Parajuli A, Laitinen OH, Roslund MI, Vari HK, Hyöty H, Puhakka R, Sinkkonen A. Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. Microbiologyopen 2018; 8:e00645. [PMID: 29808965 PMCID: PMC6436432 DOI: 10.1002/mbo3.645] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Immune‐mediated diseases have increased during the last decades in urban environments. The hygiene hypothesis suggests that increased hygiene level and reduced contacts with natural biodiversity are related to the increase in immune‐mediated diseases. We tested whether short‐time contact with microbiologically diverse nature‐based materials immediately change bacterial diversity on human skin. We tested direct skin contact, as two volunteers rubbed their hands with sixteen soil and plant based materials, and an exposure via fabric packets filled with moss material. Skin swabs were taken before and after both exposures. Next‐generation sequencing showed that exposures increased, at least temporarily, the total diversity of skin microbiota and the diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria and Alpha‐, Beta‐ and Gammaproteobacteria suggesting that contact with nature‐based materials modify skin microbiome and increase skin microbial diversity. Until now, approaches to cure or prevent immune system disorders using microbe‐based treatments have been limited to use of a few microbial species. We propose that nature‐based materials with high natural diversity, such as the materials tested here, might be more effective in modifying human skin microbiome, and eventually, in reducing immune system disorders. Future studies should investigate how long‐term changes in skin microbiota are achieved and if the exposure induces beneficial changes in the immune system markers.
Collapse
Affiliation(s)
- Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Olli H Laitinen
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heikki Hyöty
- Department of Virology, School of Medicine, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|
34
|
Roslund MI, Grönroos M, Rantalainen AL, Jumpponen A, Romantschuk M, Parajuli A, Hyöty H, Laitinen O, Sinkkonen A. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. PeerJ 2018; 6:e4508. [PMID: 29576975 PMCID: PMC5863720 DOI: 10.7717/peerj.4508] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) accumulate in urban soils, and PAH contamination can change soil microbial community composition. Environmental microbiota is associated with human commensal microbiota, immune system and health. Therefore, studies investigating the degradation of PAHs, and the consequences of soil pollution on microbial communities in urban landscaping materials, are crucial. Methods Four landscaping materials (organic matter 1, 2, 13 and 56%) were contaminated with PAHs commonly found at urban sites (phenanthrene, fluoranthene, pyrene, chrysene and benzo(b)fluoranthene) in PAH concentrations that reflect urban soils in Finland (2.4 µg g -1 soil dry weight). PAHs were analyzed initially and after 2, 4, 8 and 12 weeks by gas chromatography-mass spectrometry. Half-lives of PAHs were determined based on 12-weeks degradation. Bacterial communities were analyzed at 1 and 12 weeks after contamination using Illumina MiSeq 16S rRNA gene metabarcoding. Results Half-lives ranged from 1.5 to 4.4 weeks for PAHs with relatively low molecular weights (phenanthrene, fluoranthene and pyrene) in landscaping materials containing 1–2% organic matter. In contrast, in materials containing 13% and 56% organic matter, the half-lives ranged from 2.5 to 52 weeks. Shorter half-lives of phenanthrene and fluoranthene were thus associated with low organic matter content. The half-life of pyrene was inversely related to the relative abundance of Beta-, Delta- and Gammaproteobacteria, and diversity of Bacteroidetes and Betaprotebacteria. Compounds with higher molecular weights followed compound-specific patterns. Benzo(b)fluoranthene was resistant to degradation and half-life of chrysene was shorter when the relative abundance of Betaproteobacteria was high. Temporal microbiota changes involved increase in the relative abundance of Deltaproteobacteria and decrease in genera Flavobacterium and Rhodanobacter. Exposure to PAHs seems to adjust microbial community composition, particularly within class Beta- and Deltaproteobacteria. Conclusions In this study, PAH degradation depended on the organic matter content and bacterial community composition of landscaping materials. Contamination seems to alter bacterial community composition in landscaping materials depending on material type. This alteration includes changes in bacterial phyla associated with human health and immune system. This may open new possibilities for managing urban environments by careful selection of landscaping materials, to benefit health and wellbeing.
Collapse
Affiliation(s)
- Marja I Roslund
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Mira Grönroos
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Kansas, Manhattan, United States of America
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Anirudra Parajuli
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Lahti, Finland
| |
Collapse
|
35
|
Parajuli A, Grönroos M, Siter N, Puhakka R, Vari HK, Roslund MI, Jumpponen A, Nurminen N, Laitinen OH, Hyöty H, Rajaniemi J, Sinkkonen A. Urbanization Reduces Transfer of Diverse Environmental Microbiota Indoors. Front Microbiol 2018; 9:84. [PMID: 29467728 PMCID: PMC5808279 DOI: 10.3389/fmicb.2018.00084] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Expanding urbanization is a major factor behind rapidly declining biodiversity. It has been proposed that in urbanized societies, the rarity of contact with diverse environmental microbiota negatively impacts immune function and ultimately increases the risk for allergies and other immune-mediated disorders. Surprisingly, the basic assumption that urbanization reduces exposure to environmental microbiota and its transfer indoors has rarely been examined. We investigated if the land use type around Finnish homes affects the diversity, richness, and abundance of bacterial communities indoors. Debris deposited on standardized doormats was collected in 30 rural and 26 urban households in and near the city of Lahti, Finland, in August 2015. Debris was weighed, bacterial community composition determined by high throughput sequencing of bacterial 16S ribosomal RNA (rRNA) gene on the Illumina MiSeq platform, and the percentage of four different land use types (i.e., built area, forest, transitional, and open area) within 200 m and 2000 m radiuses from each household was characterized. The quantity of doormat debris was inversely correlated with coverage of built area. The diversity of total bacterial, Proteobacterial, Actinobacterial, Bacteroidetes, and Firmicutes communities decreased as the percentage of built area increased. Their richness followed the same pattern except for Firmicutes for which no association was observed. The relative abundance of Proteobacteria and particularly Gammaproteobacteria increased, whereas that of Actinobacteria decreased with increasing built area. Neither Phylum Firmicutes nor Bacteroidetes varied with coverage of built area. Additionally, the relative abundance of potentially pathogenic bacterial families and genera increased as the percentage of built area increased. Interestingly, having domestic animals (including pets) only altered the association between the richness of Gammaproteobacteria and diversity of Firmicutes with the built area coverage suggesting that animal ownership minimally affects transfer of environmental microbiota indoors from the living environment. These results support the hypothesis that people living in densely built areas are less exposed to diverse environmental microbiota than people living in more sparsely built areas.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nathan Siter
- School of Artitechture, Tampere University of Technology, Tampere, Finland
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K. Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Marja I. Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Noora Nurminen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Olli H. Laitinen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Juho Rajaniemi
- School of Artitechture, Tampere University of Technology, Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| |
Collapse
|