1
|
Anshory M, Kalim H, Nouwen JL, Thio HB. HIV-Associated Dermatological Alterations: Barrier Dysfunction, Immune Impairment, and Microbiome Changes. Int J Mol Sci 2025; 26:3199. [PMID: 40244006 PMCID: PMC11989802 DOI: 10.3390/ijms26073199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) significantly impacts skin structure, immune responses, and the microbiome, contributing to diverse dermatological conditions. The epidermis, a key physical and immunological barrier, undergoes structural changes such as hyperplasia and inflammatory infiltrates. Skin adnexal structures like hair follicles also play a role in immune modulation but are affected by HIV-related disruptions. Innate and adaptive immune systems are compromised due to CD4+ T-cell depletion, cytokine imbalances, and altered immune regulation, leading to conditions such as hypersensitivity and inflammatory dermatoses. The skin microbiome in HIV patients shows distinct shifts, including reduced Cutibacterium species and increased opportunistic microbes, independent of CD4+ levels. Age, sex, and environmental stressors exacerbate these changes, with women exhibiting stronger immune responses but higher risks of autoimmune diseases and aging men experiencing accelerated immunosenescence. Understanding these interconnected alterations is essential for developing targeted therapies to manage skin complications and improve the overall health of HIV patients.
Collapse
Affiliation(s)
- Muhammad Anshory
- Department of Dermatology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands;
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Jan L. Nouwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre, 3013 GD Rotterdam, The Netherlands;
| | - Hok Bing Thio
- Department of Dermatology, Erasmus MC, University Medical Centre, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
2
|
Delgado Dolset MI, Pablo-Torres C, Contreras N, Couto-Rodríguez A, Escolar-Peña A, Graña-Castro O, Izquierdo E, López-Rodríguez JC, Macías-Camero A, Pérez-Gordo M, Villaseñor A, Zubeldia-Varela E, Barber D, Escribese MM. Severe Allergy as a Chronic Inflammatory Condition From a Systems Biology Perspective. Clin Exp Allergy 2024; 54:550-584. [PMID: 38938054 DOI: 10.1111/cea.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024]
Abstract
Persistent and unresolved inflammation is a common underlying factor observed in several and seemingly unrelated human diseases, including cardiovascular and neurodegenerative diseases. Particularly, in atopic conditions, acute inflammatory responses such as those triggered by insect venom, food or drug allergies possess also a life-threatening potential. However, respiratory allergies predominantly exhibit late immune responses associated with chronic inflammation, that can eventually progress into a severe phenotype displaying similar features as those observed in other chronic inflammatory diseases, as is the case of uncontrolled severe asthma. This review aims to explore the different facets and systems involved in chronic allergic inflammation, including processes such as tissue remodelling and immune cell dysregulation, as well as genetic, metabolic and microbiota alterations, which are common to other inflammatory conditions. Our goal here was to deepen on the understanding of an entangled disease as is chronic allergic inflammation and expose potential avenues for the development of better diagnostic and intervention strategies.
Collapse
Affiliation(s)
- M I Delgado Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - C Pablo-Torres
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - N Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Couto-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - O Graña-Castro
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - J C López-Rodríguez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Macías-Camero
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M Pérez-Gordo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - A Villaseñor
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - E Zubeldia-Varela
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - D Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - M M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada-Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| |
Collapse
|
3
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Opsteen S, Fram T, Files JK, Levitan EB, Goepfert P, Erdmann N. Impact of Chronic HIV Infection on Acute Immune Responses to SARS-CoV-2. J Acquir Immune Defic Syndr 2024; 96:92-100. [PMID: 38408318 PMCID: PMC11009054 DOI: 10.1097/qai.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
ABSTRACT There is mounting evidence that HIV infection is a risk factor for severe presentations of COVID-19. We hypothesized that the persistent immune activation associated with chronic HIV infection contributes to worsened outcomes during acute COVID-19. The goals of this study were to provide an in-depth analysis of immune response to acute COVID-19 and investigate relationships between immune responses and clinical outcomes in an unvaccinated, sex- and race-matched cohort of people with HIV (PWH, n = 20) and people without HIV (PWOH, n = 41). We performed flow cytometric analyses on peripheral blood mononuclear cells from PWH and PWOH experiencing acute COVID-19 (≤21-day postsymptom onset). PWH were younger (median 52 vs 65 years) and had milder COVID-19 (40% vs 88% hospitalized) compared with PWOH. Flow cytometry panels included surface markers for immune cell populations, activation and exhaustion surface markers (with and without SARS-CoV-2-specific antigen stimulation), and intracellular cytokine staining. We observed that PWH had increased expression of activation (eg, CD137 and OX40) and exhaustion (eg, PD1 and TIGIT) markers as compared to PWOH during acute COVID-19. When analyzing the impact of COVID-19 severity, we found that hospitalized PWH had lower nonclassical (CD16 + ) monocyte frequencies, decreased expression of TIM3 on CD4 + T cells, and increased expression of PDL1 and CD69 on CD8 + T cells. Our findings demonstrate that PWH have increased immune activation and exhaustion as compared to a cohort of predominately older, hospitalized PWOH and raises questions on how chronic immune activation affects acute disease and the development of postacute sequelae.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Emily B. Levitan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Nathaniel Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| |
Collapse
|
5
|
Lynce F, Mainor C, Donahue RN, Geng X, Jones G, Schlam I, Wang H, Toney NJ, Jochems C, Schlom J, Zeck J, Gallagher C, Nanda R, Graham D, Stringer-Reasor EM, Denduluri N, Collins J, Chitalia A, Tiwari S, Nunes R, Kaltman R, Khoury K, Gatti-Mays M, Tarantino P, Tolaney SM, Swain SM, Pohlmann P, Parsons HA, Isaacs C. Adjuvant nivolumab, capecitabine or the combination in patients with residual triple-negative breast cancer: the OXEL randomized phase II study. Nat Commun 2024; 15:2691. [PMID: 38538574 PMCID: PMC10973408 DOI: 10.1038/s41467-024-46961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Chemotherapy and immune checkpoint inhibitors have a role in the post-neoadjuvant setting in patients with triple-negative breast cancer (TNBC). However, the effects of nivolumab, a checkpoint inhibitor, capecitabine, or the combination in changing peripheral immunoscore (PIS) remains unclear. This open-label randomized phase II OXEL study (NCT03487666) aimed to assess the immunologic effects of nivolumab, capecitabine, or the combination in terms of the change in PIS (primary endpoint). Secondary endpoints included the presence of ctDNA, toxicity, clinical outcomes at 2-years and association of ctDNA and PIS with clinical outcomes. Forty-five women with TNBC and residual invasive disease after standard neoadjuvant chemotherapy were randomized to nivolumab, capecitabine, or the combination. Here we show that a combination of nivolumab plus capecitabine leads to a greater increase in PIS from baseline to week 6 (91%) compared with nivolumab (47%) or capecitabine (53%) alone (log-rank p = 0.08), meeting the pre-specified primary endpoint. In addition, the presence of circulating tumor DNA (ctDNA) is associated with disease recurrence, with no new safety signals in the combination arm. Our results provide efficacy and safety data on this combination in TNBC and support further development of PIS and ctDNA analyses to identify patients at high risk of recurrence.
Collapse
Affiliation(s)
- Filipa Lynce
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Candace Mainor
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue Geng
- Georgetown University, Washington, DC, USA
| | | | - Ilana Schlam
- MedStar Washington Hospital Center, Washington, DC, USA
- Tufts Medical Center, Boston, MA, USA
| | | | - Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Zeck
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | | | | - Deena Graham
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | | | - Julie Collins
- MedStar Georgetown University Hospital, Washington, DC, USA
- AstraZeneca, Arlington, VA, USA
| | - Ami Chitalia
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Shruti Tiwari
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Raquel Nunes
- Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD, USA
- AstraZeneca, Arlington, VA, USA
| | | | - Katia Khoury
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Paolo Tarantino
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara M Tolaney
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Paula Pohlmann
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Heather A Parsons
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
6
|
Lynce F, Mainor C, Donahue RN, Geng X, Jones G, Schlam I, Wang H, Toney NJ, Jochems C, Schlom J, Zeck J, Gallagher C, Nanda R, Graham D, Stringer-Reasor EM, Denduluri N, Collins J, Chitalia A, Tiwari S, Nunes R, Kaltman R, Khoury K, Gatti-Mays M, Tarantino P, Tolaney SM, Swain SM, Pohlmann P, Parsons HA, Isaacs C. Adjuvant nivolumab, capecitabine or the combination in patients with residual triple-negative breast cancer: the OXEL randomized phase II study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.04.23297559. [PMID: 38105958 PMCID: PMC10723519 DOI: 10.1101/2023.12.04.23297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chemotherapy and immune checkpoint inhibitors have a role in the post-neoadjuvant setting in patients with triple-negative breast cancer (TNBC). However, the effects of nivolumab, a checkpoint inhibitor, capecitabine, or the combination in changing peripheral immunoscore (PIS) remains unclear. This open-label randomized phase II OXEL study (NCT03487666) aimed to assess the immunologic effects of nivolumab, capecitabine, or the combination in terms of the change in PIS (primary endpoint). Secondary endpoints include the presence of ctDNA, toxicity, clinical outcomes at 2-years and association of ctDNA and PIS with clinical outcomes. Forty-five women with TNBC and residual invasive disease after standard neoadjuvant chemotherapy were randomized to nivolumab, capecitabine, or the combination. Here we show that a combination of nivolumab plus capecitabine leads to a greater increase in PIS from baseline to week 6 (91%) compared with nivolumab (47%) or capecitabine (53%) alone (log-rank p = 0.08), meeting the pre-specified primary endpoint. In addition, the presence of circulating tumor DNA (ctDNA) was associated with disease recurrence, with no new safety signals in the combination arm. Our results provide efficacy and safety data on this combination in TNBC and support further development of PIS and ctDNA analyses to identify patients at high risk of recurrence.
Collapse
Affiliation(s)
- Filipa Lynce
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Candace Mainor
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Renee N. Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xue Geng
- Georgetown University, Washington, DC
| | - Greg Jones
- NeoGenomics, Research Triangle Park, NC, USA
| | - Ilana Schlam
- MedStar Washington Hospital Center, Washington, DC, USA
- Tufts Medical Center, Boston, MA, USA
| | | | - Nicole J. Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caroline Jochems
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Zeck
- MedStar Georgetown University Hospital, Washington, DC, USA
| | | | | | - Deena Graham
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | | | - Julie Collins
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Ami Chitalia
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Shruti Tiwari
- MedStar Washington Hospital Center, Washington, DC, USA
| | - Raquel Nunes
- Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, MD, USA
| | | | - Katia Khoury
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Paolo Tarantino
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sara M. Tolaney
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Paula Pohlmann
- MedStar Georgetown University Hospital, Washington, DC, USA
| | - Heather A. Parsons
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
7
|
Verdegaal EME, Santegoets SJ, Welters MJP, de Bruin L, Visser M, van der Minne CE, de Kok PM, Loof NM, Boekestijn S, Roozen I, Westra IM, Meij P, Van der Burg SH, Kroep JR. Timed adoptive T cell transfer during chemotherapy in patients with recurrent platinum-sensitive epithelial ovarian cancer. J Immunother Cancer 2023; 11:e007697. [PMID: 37949617 PMCID: PMC10649798 DOI: 10.1136/jitc-2023-007697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The presence of T cells and suppressive myeloid cells in epithelial ovarian cancer (EOC) correlate with good and bad clinical outcome, respectively. This suggests that EOC may be sensitive to adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TIL), provided that immunosuppression by myeloid-derived suppressor cells and M2 macrophages is reduced. Platinum-based chemotherapy can alleviate such immunosuppression, potentially creating a window of opportunity for T cell-based immunotherapy. METHODS We initiated a phase I/II trial (NCT04072263) in patients with recurrent platinum-sensitive EOC receiving TIL during platinum-based chemotherapy. TILs were administered 2 weeks after the second, third and fourth chemotherapy course. Patients were treated in two cohorts with or without interferon-α (IFNa), as conditioning and TIL support regimen. The primary endpoint was to evaluate the feasibility and safety according to CTCAE V.4.03 criteria and the clinical response and immune modulatory effects of this treatment were evaluated as secondary endpoints. RESULTS Sixteen patients were enrolled. TIL could be successfully expanded for all patients. TIL treatment during chemotherapy without IFNa (n=13) was safe but the combination with IFNa added to the chemotherapy-induced toxicity with 2 out of 3 patients developing thrombocytopenia as dose-limiting toxicity. Fourteen patients completed treatment with a full TIL cycle and were further evaluated for clinical and immunological response. Platinum-based chemotherapy resulted in reduction of circulating myeloid cell numbers and IL-6 plasma levels, confirming its immunosuppression-alleviating effect. Three complete (CR), nine partial responses and two stable diseases were recorded, resulting in an objective response rate of 86% (Response Evaluation Criteria In Solid Tumors V.1.1). Interestingly, progression free survival that exceeded the previous platinum-free interval was detected in two patients, including an exceptionally long and ongoing CR in one patient that coincided with sustained alleviation of immune suppression. CONCLUSION TIL therapy can be safely combined with platinum-based chemotherapy but not in combination with IFNa. The chemotherapy-mediated reduction in immunosuppression and the increase in platinum-free interval for two patients warrants further exploration of properly-timed TIL infusions during platinum-based chemotherapy, possibly further benefiting from IL-2 support, as a novel treatment option for EOC patients.
Collapse
Affiliation(s)
- Els M E Verdegaal
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Saskia J Santegoets
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Marij J P Welters
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Linda de Bruin
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Marten Visser
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Pita M de Kok
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Nikki M Loof
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Sanne Boekestijn
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Roozen
- Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge M Westra
- Center for Cell and Gene Therapy, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H Van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Judith R Kroep
- Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Ocaña-Guzman R, Ramon-Luing LA, Vazquez-Bolaños LA, Rodríguez-Alvarado M, Bulhusen-Rodriguez F, Torres-Hatem A, Gonzalez-Torres K, de Alba-Alvarado MC, Sada-Ovalle I. Tim-3 Is Differentially Expressed during Cell Activation and Interacts with the LSP-1 Protein in Human Macrophages. J Immunol Res 2023; 2023:3577334. [PMID: 37928435 PMCID: PMC10622183 DOI: 10.1155/2023/3577334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell Immunoglobulin and Mucin Domain 3 (TIM-3) is an immune checkpoint receptor known to regulate T-cell activation and has been targeted for immunotherapy in cancer and other diseases. However, its expression and function in other cell types, such as macrophages, are poorly understood. This study investigated TIM-3 expression in human macrophages polarized to M1 (stimulated with IFN-γ and LPS) and M2 (stimulated with IL-4 and IL-13) phenotypes using an in vitro model. Our results show that M1 macrophages have a lower frequency of TIM-3+ cells compared to M2 macrophages at 48 and 72 hr poststimulation. Additionally, we observed differential levels of soluble ADAM 10, an enzyme responsible for TIM-3 release, in the supernatants of M1 and M2 macrophages at 72 hr. We also found that the TIM-3 intracellular tail might associate with lymphocyte-specific protein 1 (LSP-1), a protein implicated in cell motility and podosome formation. These findings enhance our understanding of TIM-3 function in myeloid cells such as macrophages and may inform the development of immunotherapies with reduced immune-related adverse effects.
Collapse
Affiliation(s)
- Ranferi Ocaña-Guzman
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico
| | - Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Luis A. Vazquez-Bolaños
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Michelle Rodríguez-Alvarado
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fausi Bulhusen-Rodriguez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Alonso Torres-Hatem
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Karen Gonzalez-Torres
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Isabel Sada-Ovalle
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacán, México City 04510, Mexico
- Physiology Department, Medicine School Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
9
|
Ocaña-Guzmán R, Osorio-Pérez D, Chavez-Galan L. Opportunistic Infections and Immune-Related Adverse Events Associated with Administering Immune Checkpoint Inhibitors: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1119. [PMID: 37631034 PMCID: PMC10458516 DOI: 10.3390/ph16081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Manipulating the immune system by blocking the immune checkpoint receptors is the basis of immunotherapy, a relevant tool in current clinical oncology. The strategy of blocking the immune checkpoints (Immune Checkpoint Inhibitors, ICI) consists of using monoclonal antibodies to inhibit the interaction between ligand and inhibitory receptors from triggering a complete activation of helper and cytotoxic T cells to fight against tumour cells. Immunotherapy has benefited patients with diverse cancers such as stomach, lung, melanoma, and head and neck squamous cell carcinoma, among others. Unfortunately, a growing number of reports have indicated that the ICI treatment also can show a dark side under specific conditions; some of the adverse effects induced by ICI are immunosuppression, opportunistic infections, and organ-specific alterations. This review discusses some immunologic aspects related to these unwanted effects.
Collapse
Affiliation(s)
- Ranferi Ocaña-Guzmán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Diego Osorio-Pérez
- Department of Medical Oncology, Hospital de la Mujer, Mexico City 11340, Mexico;
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| |
Collapse
|
10
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [PMID: 37403182 DOI: 10.1186/s40364-023-00509-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohadeseh Mirzaee Godarzee
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [DOI: https:/doi.org/10.1186/s40364-023-00509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
|
12
|
Tessema B, Boldt A, König B, Maier M, Sack U. Flow-Cytometry Intracellular Detection and Quantification of HIV1 p24 Antigen and Immunocheckpoint Molecules in T Cells among HIV/AIDS Patients. HIV AIDS (Auckl) 2022; 14:365-379. [PMID: 35958525 PMCID: PMC9359413 DOI: 10.2147/hiv.s374369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Belay Tessema
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Correspondence: Belay Tessema, Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, 196, Gondar, Ethiopia, Tel +251-91-930-6918, Email
| | - Andreas Boldt
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Brigitte König
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Melanie Maier
- Department of Virology, Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Qian F, Hu S, Zhu Y, Wang Y, Liu J, Qiao J, Shu X, Gao Y, Sun B, Zhu C. CD56dim NK Cell is an Important Factor in T Cell Depletion of cART-Treated AIDS Patients. Int J Gen Med 2022; 15:4575-4583. [PMID: 35535146 PMCID: PMC9078362 DOI: 10.2147/ijgm.s356771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate factors involved in T-cell depletion in combination antiretroviral therapy (cART)-treated human immunodeficiency virus 1 (HIV-1)-positive patients. Patients and Methods 29 HIV-1-positive patients were enrolled. The CD4+, CD8+ T cell subsets and CD56dim NK cells were detected by flow cytometry. The concentrations of cytokines were measured by enzyme-linked immunosorbent assay. Extraction, amplification, and viral load quantification of specimens were performed using the Roche Cobas Ampliprep/Cobas TaqMan HIV-1 test. Results Compared with IR group, the total number of red blood cells (RBCs) and lymphocytes (LCs) in INR group was significantly reduced, and there was a significant positive correlation between the number of RBCs and that of LCs. The overall production rates of T cells-related cytokines were lower in INR group. However, the cell-surface expression of programmed death-1 (PD-1) on CD4+ T and CD8+ T cells were markedly elevated in INR group. Moreover, it was found that the proportion and the killing ability of CD56dim NK cells significantly increased in INR patients, and significantly correlated with apoptosis of T lymphocytes. Conclusion A poor immune reconstitution in HIV-positive patients might result from multiple factors, including bone marrow suppression, high PD-1 expression on the surface of CD4+ T cells, and over-activation of T and NK cells. Besides, the activity of NK cells and RBCs count might be important auxiliary indicators for immune reconstitution and provided a reliable guidance for developing strategies to improve immune reconstitution.
Collapse
Affiliation(s)
- Feng Qian
- Department of Infectious Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, 215131, People’s Republic of China
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, 215131, People’s Republic of China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Yueping Zhu
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, 215131, People’s Republic of China
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, 215131, People’s Republic of China
| | - Yinling Wang
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, 215131, People’s Republic of China
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, 215131, People’s Republic of China
| | - Jin Liu
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, 215131, People’s Republic of China
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, 215131, People’s Republic of China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Yong Gao
- The First Affiliated Hospital, Department of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, People’s Republic of China
| | - Chuanwu Zhu
- Department of Infectious Diseases, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
- Department of Infectious Diseases, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, 215131, People’s Republic of China
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou, 215131, People’s Republic of China
- Correspondence: Chuanwu Zhu; Binlian Sun, Tel/Fax +86 512 87806206; +86 27 84225149, Email ;
| |
Collapse
|
14
|
Zhu Z, Zhang Y, Wang H, Jiang T, Zhang M, Zhang Y, Su B, Tian Y. Renal Cell Carcinoma Associated With HIV/AIDS: A Review of the Epidemiology, Risk Factors, Diagnosis, and Treatment. Front Oncol 2022; 12:872438. [PMID: 35433425 PMCID: PMC9010566 DOI: 10.3389/fonc.2022.872438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC), one of the most common genitourinary tumors, is induced by many factors, primarily smoking, obesity, and hypertension. As a non-acquired immunodeficiency syndrome (AIDS)-defining cancer, human immunodeficiency virus (HIV) may also play a critical role in the incidence and progression of RCC. It is evident that individuals who are infected with HIV are more likely than the general population to develop RCC. The age of RCC diagnosis among HIV-positive patients is younger than among HIV-negative individuals. However, many other characteristics remain unknown. With the increase in RCC incidence among HIV-infected patients, more research is being conducted to discover the relationship between RCC and HIV, especially with regard to HIV-induced immunodeficiency, diagnosis, and treatment. Unexpectedly, the majority of the literature suggests that there is no relationship between RCC and HIV-induced immunodeficiency. Nonetheless, differences in pathology, symptoms, or treatment in HIV-positive patients diagnosed with RCC are a focus. In this review, we summarize the association of RCC with HIV in terms of epidemiology, risk factors, diagnosis, and treatment.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yihang Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Taiyi Jiang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mengmeng Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Urology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Bin Su,
| |
Collapse
|
15
|
Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection. Viruses 2022; 14:v14030581. [PMID: 35336991 PMCID: PMC8955100 DOI: 10.3390/v14030581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
During HIV/SIV infection, the upregulation of immune checkpoint (IC) markers, programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte-activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain-3 (Tim-3), CD160, 2B4 (CD244), and V-domain Ig suppressor of T cell activation (VISTA), can lead to chronic T cell exhaustion. These ICs play predominant roles in regulating the progression of HIV/SIV infection by mediating T cell responses as well as enriching latent viral reservoirs. It has been demonstrated that enhanced expression of ICs on CD4+ and CD8+ T cells could inhibit cell proliferation and cytokine production. Overexpression of ICs on CD4+ T cells could also format and prolong HIV/SIV persistence. IC blockers have shown promising clinical results in HIV therapy, implying that targeting ICs may optimize antiretroviral therapy in the context of HIV suppression. Here, we systematically review the expression profile, biological regulation, and therapeutic efficacy of targeted immune checkpoints in HIV/SIV infection.
Collapse
|
16
|
Richardson ZA, Deleage C, Tutuka CSA, Walkiewicz M, Del Río-Estrada PM, Pascoe RD, Evans VA, Reyesteran G, Gonzales M, Roberts-Thomson S, González-Navarro M, Torres-Ruiz F, Estes JD, Lewin SR, Cameron PU. Multiparameter immunohistochemistry analysis of HIV DNA, RNA and immune checkpoints in lymph node tissue. J Immunol Methods 2022; 501:113198. [PMID: 34863818 PMCID: PMC9036546 DOI: 10.1016/j.jim.2021.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
Collapse
Affiliation(s)
- Zuwena A Richardson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Claire Deleage
- Frederick National Laboratories for Cancer Research, MD, Frederick, United States of America
| | - Candani S A Tutuka
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marzena Walkiewicz
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Perla M Del Río-Estrada
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Gustavo Reyesteran
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Michael Gonzales
- Pathology Department, The Royal Melbourne Hospital, Melbourne, Australia
| | | | - Mauricio González-Navarro
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health Science University, Portland, Oregon, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia; Launceston General Hospital, Tasmania, Launceston, Australia.
| |
Collapse
|
17
|
Miggelbrink AM, Jackson JD, Lorrey SJ, Srinivasan ES, Waibl-Polania J, Wilkinson DS, Fecci PE. CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clin Cancer Res 2021; 27:5742-5752. [PMID: 34127507 PMCID: PMC8563372 DOI: 10.1158/1078-0432.ccr-21-0206] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
In chronic infections and in cancer, persistent antigen stimulation under suboptimal conditions can lead to the induction of T-cell exhaustion. Exhausted T cells are characterized by an increased expression of inhibitory markers and a progressive and hierarchical loss of function. Although cancer-induced exhaustion in CD8 T cells has been well-characterized and identified as a therapeutic target (i.e., via checkpoint inhibition), in-depth analyses of exhaustion in other immune cell types, including CD4 T cells, is wanting. While perhaps attributable to the contextual discovery of exhaustion amidst chronic viral infection, the lack of thorough inquiry into CD4 T-cell exhaustion is particularly surprising given their important role in orchestrating immune responses through T-helper and direct cytotoxic functions. Current work suggests that CD4 T-cell exhaustion may indeed be prevalent, and as CD4 T cells have been implicated in various disease pathologies, such exhaustion is likely to be clinically relevant. Defining phenotypic exhaustion in the various CD4 T-cell subsets and how it influences immune responses and disease severity will be crucial to understanding collective immune dysfunction in a variety of pathologies. In this review, we will discuss mechanistic and clinical evidence for CD4 T-cell exhaustion in cancer. Further insight into the derivation and manifestation of exhaustive processes in CD4 T cells could reveal novel therapeutic targets to abrogate CD4 T-cell exhaustion in cancer and induce a robust antitumor immune response.
Collapse
Affiliation(s)
- Alexandra M. Miggelbrink
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Joshua D. Jackson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Selena J. Lorrey
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Ethan S. Srinivasan
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Duke University School of Medicine, Durham, North Carolina
| | - Jessica Waibl-Polania
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Daniel S. Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E. Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Corresponding Author: Peter E. Fecci, Department of Neurosurgery, Duke Medical Center, DUMC Box 3050, Durham, NC 27705. Phone: 919–681–1010; E-mail:
| |
Collapse
|
18
|
Xu W, Li S, Li M, Yang X, Xie S, Lin L, Li G, Zhou H. Targeted elimination of myeloid-derived suppressor cells via regulation of the STAT pathway alleviates tumor immunosuppression in neuroblastoma. Immunol Lett 2021; 240:31-40. [PMID: 34600949 DOI: 10.1016/j.imlet.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/04/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) has high morality rates and is the most common malignant tumor found in children. High aggregation of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment results in immunosuppression and affects therapeutic effectiveness. At present, doxorubicin (DOX) and dopamine (DA) are the specific drugs used to selectively remove or mature MDSCs. The aim of the present study was to explore the feasibility and underlying mechanism of targeting elimination of MDSCs via DOX or DA administration to alleviate tumor immunosuppression in NB. In the present study, a BALB/c tumor-bearing mouse model was established, and mice were grouped into the control, DOX2.5, DOX5 and DA50 mg/kg groups. DOX or DA were injected intravenously on days 7 and 12 after inoculation, following which the parameters related to the signal transducer and activator of transcription (STAT) pathway in MDSCs, the proportion of MDSCs, T cell infiltration, programmed death-1 (PD-1) on the surface of T cells, the number of regulatory T cells (Tregs), polarization of tumor-related macrophages (TAMs) and tumor growth were compared between the groups on days 14, 17 and 23 after inoculation. The results demonstrated that following DOX or DA administration, STAT1/phosphorylated (p)-STAT1 decreased, whereas STAT3/p-STAT3, STAT5/p-STAT5 and STAT6/p-STAT6 increased, which was accompanied by a decrease in the MDSC proportion in each experimental group. Simultaneously, T cell infiltration in tumors was increased, whereas expression of PD-1, the number of Tregs, TAM polarization and tumor growth were inhibited. The most significant findings were observed in the DOX2.5 mg/kg group. To conclude, low dose DOX or DA administration could effectively regulate the STAT pathway to eliminate MDSCs, alleviate immunosuppression and improve the immune response against NB tumor cells.
Collapse
Affiliation(s)
- Weili Xu
- Departments of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China.
| | - Suolin Li
- Departments of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meng Li
- Departments of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaofeng Yang
- Departments of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shaojian Xie
- Departments of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lin Lin
- Departments of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guixin Li
- Departments of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hui Zhou
- Departments of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
19
|
Castelli V, Lombardi A, Palomba E, Bozzi G, Ungaro R, Alagna L, Mangioni D, Muscatello A, Bandera A, Gori A. Immune Checkpoint Inhibitors in People Living with HIV/AIDS: Facts and Controversies. Cells 2021; 10:2227. [PMID: 34571876 PMCID: PMC8467545 DOI: 10.3390/cells10092227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are reshaping the landscape of cancer treatment, redefining the prognosis of several tumors. They act by restoring the cytotoxic activity of tumor-specific T lymphocytes that are in a condition of immune exhaustion. The same condition has been widely described in chronic HIV infection. In this review, we dissect the role of ICIs in people living with HIV/AIDS (PLWHIV). First, we provide an overview of the immunologic scenario. Second, we discuss the possible use of ICIs as adjuvant treatment of HIV to achieve elimination of the viral reservoir. Third, we examine the influence of HIV infection on ICI safety and effectiveness. Finally, we describe how the administration of ICIs impacts opportunistic infections.
Collapse
Affiliation(s)
- Valeria Castelli
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
| | - Emanuele Palomba
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Giorgio Bozzi
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Riccardo Ungaro
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Laura Alagna
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Davide Mangioni
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, 20122 Milano, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (V.C.); (E.P.); (G.B.); (R.U.); (L.A.); (D.M.); (A.M.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milano, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, 20122 Milano, Italy
| |
Collapse
|
20
|
High Levels of TNF-α and TIM-3 as a Biomarker of Immune Reconstitution Inflammatory Syndrome in People with HIV Infection. Life (Basel) 2021; 11:life11060527. [PMID: 34198803 PMCID: PMC8227006 DOI: 10.3390/life11060527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) is an exacerbated immune response that can occur to HIV+ patients after initiating antiretroviral therapy (ART). IRIS pathogenesis is unclear, but dysfunctional and exhausted cells have been reported in IRIS patients, and the TIM-3/Gal-9 axis has been associated with chronic phases of viral infection. This study aimed to evaluate the soluble levels of TIM-3 and Gal-9 and their relationship with IRIS development. TIM-3, Gal-9, TNF-α, IFN-γ, IL-6, TNFR1, TNFR2, E-cadherin, ADAM10, and ADAM17 were measured to search for IRIS-associated biomarkers in plasma samples from 0-, 4-, 8-, 12-, and 24-weeks after ART initiation of 61 HIV+ patients (15 patients developed IRIS, and 46 did not). We found that patients who developed IRIS had higher levels of TIM-3 [median 4806, IQR: 3206-6182] at the time of the IRIS events, compared to any other follow-up time evaluated in these patients or compared with a control group of patients who did not develop IRIS. Similarly, IRIS patients had a higher TNF-α level [median 10.89, IQR: 8.36-12.34] at IRIS events than any other follow-up time evaluated. Other molecules related to the TIM-3 and TNF-α pathway (Gal-9, IL-6, IFN-γ, TNFR1, TNFR2, ADAM-10, and ADAM-17) did not change during the IRIS events. In conclusion, our data suggest that a high level of soluble TIM-3 and TNF-α could be used as an IRIS biomarker.
Collapse
|
21
|
Huang L, Xu Y, Fang J, Liu W, Chen J, Liu Z, Xu Q. Targeting STAT3 Abrogates Tim-3 Upregulation of Adaptive Resistance to PD-1 Blockade on Regulatory T Cells of Melanoma. Front Immunol 2021; 12:654749. [PMID: 33936081 PMCID: PMC8082190 DOI: 10.3389/fimmu.2021.654749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Less than 20% of melanoma patients respond to programmed cell death-1 (PD-1) blockade immunotherapies. Thus, it is crucial to understand the dynamic changes in the tumor microenvironment (TME) after PD-1 blockade, for developing immunotherapy efficacy. Methods A genomic analysis was conducted by The Cancer Genome Atlas (TCGA) datasets and web platform TIMER2.0 datasets. Pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Peripheral blood mononuclear cells (PBMCs), regulatory T (Treg) cells, and B16-F10 melanoma mice were used as models. The cellular and molecular characteristics and mechanisms of Treg cells in melanoma were assessed by performing gene expression studies, immunohistochemistry, RNA sequencing, and flow cytometry. Results Here, we evaluate the countenance of T cell immunoglobulin and mucin-domain containing-3 (Tim-3), and various immunosuppressive factors within tumor-infiltrated Treg cells after treatment with anti-PD-1 or the indicator transduction and activator of transcription 3 (STAT3) inhibitors. Increased expression of Tim-3 is markedly observed within the tissues of the PD-1 blockade resistance of melanoma patients. Targeting STAT3 significantly boosts the response of resistant-PD-1 therapy within the melanoma mouse model. Mechanistically, the manifestation of STAT3 decreases the expression of Tim-3 and various cytokines in the purified Treg cells from individual PBMCs and the murine melanoma model, limiting the immunosuppression of Treg cells. Conclusions Our findings indicate that Tim-3 expression on Treg cells within the TME is STAT3-dependent, providing support to STAT3 as a target and enhancing the immunotherapy for patients suffering from melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Weixing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
22
|
Paul RH, Shikuma CM, Chau NVV, Ndhlovu LC, Thanh NT, Belden AC, Chow DC, Chew GM, Premeaux TA, Ly VT, McBride JAD, Bolzenius JD, Le T. Neurocognitive Trajectories After 72 Weeks of First-Line Anti-retroviral Therapy in Vietnamese Adults With HIV-HCV Co-infection. Front Neurol 2021; 12:602263. [PMID: 33776879 PMCID: PMC7996090 DOI: 10.3389/fneur.2021.602263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Long-term neurocognitive outcomes following first-line suppressive anti-retroviral therapy (ART) remain uncertain for individuals with HIV and hepatitis C (HCV) co-infection. The study examined neurocognitive performance before and after 72 weeks of ART using repeated multivariate analyses and latent trajectory models. Methods: One hundred and sixty adults with chronic, untreated HIV infection (n = 80 with HCV co-infection and n = 80 HIV mono-infected) and 80 demographically similar healthy controls were recruited from the Hospital for Tropical Diseases in Ho Chi Minh City and the surrounding community, respectively. Neurocognitive measures (adapted for use in Vietnam) and liver enzyme tests were compared across groups at baseline. Repeated multivariate and group-based trajectory analyses (GBTA) examined neurocognitive subgroup profiles of the co-infected individuals after 72 weeks of de novo efavirenz- (n = 41) or raltegravir-based (n = 39) ART. Results: Baseline analyses revealed worse motor function in HIV-HCV co-infected individuals compared to both comparison groups. Longitudinal analyses revealed improved neurocognitive performance by week 48 for most participants regardless of treatment arm. GBTA identified a subgroup (35% of HIV-HCV sample) with persistent motor impairment despite otherwise successful ART. Higher HIV viral load and lower CD4+ T cell count at baseline predicted persistent motor dysfunction. Liver indices and ART regimen did not predict neurocognitive outcomes in HIV-HCV co-infected individuals. Conclusions: Most HIV-HCV co-infected individuals achieve normative neurocognitive performance after 48 weeks of de novo suppressive ART. However, individuals with more severe HIV disease prior to ART exhibited motor impairment at baseline and 72 weeks after otherwise successful treatment. Interventions aimed at improving motor symptoms at the time of HIV treatment onset may improve long-term clinical outcomes in HIV-HCV co-infected adults.
Collapse
Affiliation(s)
- Robert H. Paul
- University of Missouri–St. Louis, St. Louis, MO, United States
| | - Cecilia M. Shikuma
- Hawai'i Center for AIDS, University of Hawai'i at Manoa, Honolulu, HI, United States
| | | | - Lishomwa C. Ndhlovu
- Hawai'i Center for AIDS, University of Hawai'i at Manoa, Honolulu, HI, United States
- Cornell University School of Medicine, New York City, NY, United States
| | - Nguyen Tat Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Dominic C. Chow
- Hawai'i Center for AIDS, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Glen M. Chew
- Hawai'i Center for AIDS, University of Hawai'i at Manoa, Honolulu, HI, United States
| | - Thomas A. Premeaux
- Hawai'i Center for AIDS, University of Hawai'i at Manoa, Honolulu, HI, United States
- Cornell University School of Medicine, New York City, NY, United States
| | - Vo Trieu Ly
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | | | | | - Thuy Le
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Paul RH, Shikuma CM, Chau NVV, Ndhlovu LC, Thanh NT, Belden AC, Chow DC, Chew GM, Premeaux TA, Ly VT, McBride JAD, Bolzenius JD, Le T. Neurocognitive Trajectories After 72 Weeks of First-Line Anti-retroviral Therapy in Vietnamese Adults With HIV-HCV Co-infection. Front Neurol 2021; 12. [DOI: https:/doi.org/10.3389/fneur.2021.602263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background: Long-term neurocognitive outcomes following first-line suppressive anti-retroviral therapy (ART) remain uncertain for individuals with HIV and hepatitis C (HCV) co-infection. The study examined neurocognitive performance before and after 72 weeks of ART using repeated multivariate analyses and latent trajectory models.Methods: One hundred and sixty adults with chronic, untreated HIV infection (n = 80 with HCV co-infection and n = 80 HIV mono-infected) and 80 demographically similar healthy controls were recruited from the Hospital for Tropical Diseases in Ho Chi Minh City and the surrounding community, respectively. Neurocognitive measures (adapted for use in Vietnam) and liver enzyme tests were compared across groups at baseline. Repeated multivariate and group-based trajectory analyses (GBTA) examined neurocognitive subgroup profiles of the co-infected individuals after 72 weeks of de novo efavirenz- (n = 41) or raltegravir-based (n = 39) ART.Results: Baseline analyses revealed worse motor function in HIV-HCV co-infected individuals compared to both comparison groups. Longitudinal analyses revealed improved neurocognitive performance by week 48 for most participants regardless of treatment arm. GBTA identified a subgroup (35% of HIV-HCV sample) with persistent motor impairment despite otherwise successful ART. Higher HIV viral load and lower CD4+ T cell count at baseline predicted persistent motor dysfunction. Liver indices and ART regimen did not predict neurocognitive outcomes in HIV-HCV co-infected individuals.Conclusions: Most HIV-HCV co-infected individuals achieve normative neurocognitive performance after 48 weeks of de novo suppressive ART. However, individuals with more severe HIV disease prior to ART exhibited motor impairment at baseline and 72 weeks after otherwise successful treatment. Interventions aimed at improving motor symptoms at the time of HIV treatment onset may improve long-term clinical outcomes in HIV-HCV co-infected adults.
Collapse
|
24
|
Vinhaes CL, Araujo-Pereira M, Tibúrcio R, Cubillos-Angulo JM, Demitto FO, Akrami KM, Andrade BB. Systemic Inflammation Associated with Immune Reconstitution Inflammatory Syndrome in Persons Living with HIV. Life (Basel) 2021; 11:life11010065. [PMID: 33477581 PMCID: PMC7831327 DOI: 10.3390/life11010065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Antiretroviral therapy (ART) has represented a major advancement in the care of people living with HIV (PLWHH), resulting in significant reductions in morbidity and mortality through immune reconstitution and attenuation of homeostatic disruption. Importantly, restoration of immune function in PLWH with opportunistic infections occasionally leads to an intense and uncontrolled cytokine storm following ART initiation known as immune reconstitution inflammatory syndrome (IRIS). IRIS occurrence is associated with the severe and rapid clinical deterioration that results in significant morbidity and mortality. Here, we detail the determinants underlying IRIS development in PLWH, compiling the available knowledge in the field to highlight details of the inflammatory responses in IRIS associated with the most commonly reported opportunistic pathogens. This review also highlights gaps in the understanding of IRIS pathogenesis and summarizes therapeutic strategies that have been used for IRIS.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
| | - Mariana Araujo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Rafael Tibúrcio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Fernanda O. Demitto
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
| | - Kevan M. Akrami
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Divisions of Infectious Diseases and Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Curso de Medicina, Centro Universitário Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Brazil
- Correspondence: ; Tel.: +55-71-3176-2264
| |
Collapse
|
25
|
Immune Checkpoints in Viral Infections. Viruses 2020; 12:v12091051. [PMID: 32967229 PMCID: PMC7551039 DOI: 10.3390/v12091051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
As evidence has mounted that virus-infected cells, such as cancer cells, negatively regulate the function of T-cells via immune checkpoints, it has become increasingly clear that viral infections similarly exploit immune checkpoints as an immune system escape mechanism. Although immune checkpoint therapy has been successfully used in cancer treatment, numerous studies have suggested that such therapy may also be highly relevant for treating viral infection, especially chronic viral infections. However, it has not yet been applied in this manner. Here, we reviewed recent findings regarding immune checkpoints in viral infections, including COVID-19, and discussed the role of immune checkpoints in different viral infections, as well as the potential for applying immune checkpoint blockades as antiviral therapy.
Collapse
|
26
|
Restrepo C, Álvarez B, Valencia JL, García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Prieto L, Nistal S, Montoya M, Górgolas M, Rallón N, Benito JM. Both HCV Infection and Elevated Liver Stiffness Significantly Impacts on Several Parameters of T-Cells Homeostasis in HIV-Infected Patients. J Clin Med 2020; 9:jcm9092978. [PMID: 32942736 PMCID: PMC7564456 DOI: 10.3390/jcm9092978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The role of hepatitis C virus (HCV) co-infection on the T-cell homeostasis disturbances in human immunodeficiency virus (HIV)-infected patients as well as its reversion after HCV eradication with direct acting antivirals (DAAs) therapy has not been yet clarified. We extensively analyzed the effect of HCV co-infection on immune parameters of HIV pathogenesis and its evolution after HCV eradication with DAAs. (2) Methods: Seventy individuals were included in the study-25 HIV-monoinfected patients, 25 HIV/HCV-coinfected patients and 20 HIV and HCV seronegative subjects. All patients were on antiretroviral therapy and undetectable HIV-viremia. Immune parameters, such as maturation, activation, apoptosis, senescence and exhaustion of T-cells were assessed by flow cytometry. Cross-sectional and longitudinal (comparing pre- and post-DAAs data in HIV/HCV coinfected patients) analyses were performed. Univariate and multivariate (general linear model and canonical discriminant analysis -CDA-) analyses were used to assess differences between groups. (3) Results-The CDA was able to clearly separate HIV/HCV coinfected from HIV-monoinfected patients, showing a more disturbed T-cells homeostasis in HIV/HCV patients, especially activation and exhaustion of T-cells. Interestingly, those perturbations were more marked in HIV/HCV patients with increased liver stiffness. Eradication of HCV with DAAs restored some but not all the T-cells homeostasis disturbances, with activation and exhaustion of effector CD8 T-cells remaining significantly increased three months after HCV eradication. (4) Conclusions-HCV co-infection significantly impacts on several immune markers of HIV pathogenesis, especially in patients with increased liver stiffness. Eradication of HCV with DAAs ameliorates but does not completely normalize these alterations. It is of utmost relevance to explore other mechanisms underlying the immune damage observed in HIV/HCV coinfected patients with control of both HIV and HCV replication.
Collapse
Affiliation(s)
- Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - José L Valencia
- Departamento de Estadística e Investigación Operativa III, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Laura Prieto
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Sara Nistal
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-544-37-20; Fax: +34-91-550-48-49
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| |
Collapse
|
27
|
de Armas LR, Pallikkuth S, Rinaldi S, Pahwa R, Pahwa S. Implications of Immune Checkpoint Expression During Aging in HIV-Infected People on Antiretroviral Therapy. AIDS Res Hum Retroviruses 2020; 35:1112-1122. [PMID: 31578868 DOI: 10.1089/aid.2019.0135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Immune checkpoint molecules (ICMs) regulate T cell responses. In chronic viral infections and cancer, where antigens can persistently stimulate the immune system, ICMs can serve as a barrier to effective immune responses. The role of ICMs in the setting of systemic low-grade inflammation as in aging and antiretroviral therapy (ART)-suppressed HIV infection is not known. In this study, we made use of stored samples from the FLORAH cohort of HIV-infected ART-suppressed adults (age range 19-77 years.) and age-matched HIV-uninfected controls. We measured the expression levels of ICMs: PD-1, LAG-3, TIGIT, TIM-3, and 2B4 on resting CD4 and CD8 T cells and maturation subsets. To determine how expression of these molecules can affect T cell function, we stimulated peripheral blood mononuclear cell with HIV Gag or p09/H1N1 antigen and performed intracellular cytokine staining by multiparameter flow cytometry. ICMs were expressed at higher levels in CD8 compared with CD4. PD-1 was the only molecule that remained significantly higher in HIV-infected individuals compared with controls. LAG-3 expression increased with age in CD4 and CD8 T cells. 2B4 expression on CD8 T cells was negatively associated with IL-2 production but showed no effect on CD4 T cell function. TIM-3 expression was negatively associated with IL-21 production in CD4 and CD8 T cells and also negatively correlated with flu vaccine responses in HIV-negative individuals. Taken altogether, this study demonstrates the marked variation in ICM expression in T cells among adults and sheds light on the biology of these molecules and their effects on antigen-specific T cell functions. Overall, our results point to TIM-3 as a potential biomarker for immune function in HIV+ individuals on ART.
Collapse
Affiliation(s)
- Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
28
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
29
|
Pallikkuth S, Bolivar H, Fletcher MA, Babic DZ, De Armas LR, Gupta S, Termini JM, Arheart KL, Stevenson M, Tung FY, Fischl MA, Pahwa S, Stone GW. A therapeutic HIV-1 vaccine reduces markers of systemic immune activation and latent infection in patients under highly active antiretroviral therapy. Vaccine 2020; 38:4336-4345. [PMID: 32387010 DOI: 10.1016/j.vaccine.2020.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/10/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
HIV infection is characterized by chronic immune activation and the establishment of a pool of latently infected cells. Antiretroviral therapy (ART) can suppress viral load to undetectable levels in peripheral blood by standard measure, however immune activation/chronic inflammation and latent infection persist and affect quality of life. We have now shown that a novel therapeutic HIV vaccine consisting of replication-defective HIV (HIVAX), given in the context of viral suppression under ART, can reduce both immune activation/chronic inflammation and latent infection. Immune activation, as measured by percent of CD8 + HLA-DR + CD38 + T cells, approached levels of healthy controls at week 16 following vaccination. Reduced immune activation was accompanied by a reduction in pro-inflammatory cytokines and peripheral α4β7 + plasmacytoid DC (a marker of mucosal immune activation). Levels of both HIV-1 DNA and 2-LTR circles were reduced at week 16 following vaccination, suggesting HIVAX can impact HIV-1 latency and reduce viral replication. Surprisingly, reduced immune activation/chronic inflammation was accompanied by an increase in the percent of memory CD4 + T cells expressing markers PD-1 and TIM-3. In addition, evaluation of HIV-1 Gag-specific CD4 + T cells for expression of 96 T cell related genes pre- and post-therapy revealed increased expression of a number of genes involved in the regulation of immune activation, T cell activation, and antiviral responses. Overall this study provides evidence that vaccination with HIVAX in subjects under long term antiviral suppression can reduce immune activation/chronic inflammation and latent infection (Clinicaltrials.gov, identifier NCT01428596).
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hector Bolivar
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary A Fletcher
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dunja Z Babic
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lesley R De Armas
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sachin Gupta
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James M Termini
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristopher L Arheart
- Department of Public Health Sciences and the Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mario Stevenson
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Margaret A Fischl
- Department of Medicine, Division of Infectious Diseases and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Geoffrey W Stone
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
30
|
Prévost J, Edgar CR, Richard J, Trothen SM, Jacob RA, Mumby MJ, Pickering S, Dubé M, Kaufmann DE, Kirchhoff F, Neil SJD, Finzi A, Dikeakos JD. HIV-1 Vpu Downregulates Tim-3 from the Surface of Infected CD4 + T Cells. J Virol 2020; 94:e01999-19. [PMID: 31941771 PMCID: PMC7081912 DOI: 10.1128/jvi.01999-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/12/2020] [Indexed: 01/26/2023] Open
Abstract
Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
31
|
Hoel H, Ueland T, Hove-Skovsgaard M, Hartling HJ, Gelpi M, Benfield T, Ullum H, Michelsen AE, Aukrust P, Nielsen SD, Trøseid M. Soluble T-Cell Immunoglobulin Mucin Domain-3 Is Associated With Hepatitis C Virus Coinfection and Low-Grade Inflammation During Chronic Human Immunodeficiency Virus Infection. Open Forum Infect Dis 2020; 7:ofaa033. [PMID: 32055642 PMCID: PMC7009472 DOI: 10.1093/ofid/ofaa033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background In well treated human immunodeficiency virus infection (HIV), there is a residual immune activation and immune exhaustion that may contribute to increased risk of comorbidities. T-cell immunoglobulin mucin domain-3 (Tim-3) is an inhibitory molecule involved in HIV-associated T-cell dysfunction. The Tim-3 can be cleaved to soluble Tim-3 (sTim-3) that may serve as a soluble marker of immune exhaustion. Methods We measured sTim-3 with enzyme-linked immunosorbent assay DuoSets in a cross-sectional cohort of 1010 people with HIV (PWH) on antiretroviral therapy (ART), and 76 controls from the Copenhagen Co-Morbidity in HIV Infection (COCOMO) study, and in a longitudinal cohort of 60 PWH before and during ART. Results In the cross-sectional cohort, levels of sTim-3 were elevated in PWH on ART compared with controls, especially in hepatitis C virus (HCV)-coinfected individuals, and were associated with HCV viremia and inflammation. In the longitudinal cohort, pretreatment sTim-3 correlated with HIV viral load and decreased after ART initiation. Pretreatment sTim-3 correlated inversely with CD4 counts, but it did not predict immunological response in multivariable analyses. Conclusions Levels of sTim-3 decreased after ART initiation. In a cross-sectional cohort, levels of sTIM-3 were higher in PWH than in controls and were independently associated with HCV coinfection and high-sensitivity C-reactive protein, representing a potential link between immune exhaustion, inflammation, and risk of comorbidities.
Collapse
Affiliation(s)
- Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Medical Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Malene Hove-Skovsgaard
- Department of Infectious diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hans Jakob Hartling
- Department of Infectious diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marco Gelpi
- Department of Infectious diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Amager Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Susanne Dam Nielsen
- Department of Infectious diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
32
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
33
|
Lee E, Bacchetti P, Milush J, Shao W, Boritz E, Douek D, Fromentin R, Liegler T, Hoh R, Deeks SG, Hecht FM, Chomont N, Palmer S. Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Front Microbiol 2019; 10:2214. [PMID: 31611857 PMCID: PMC6775493 DOI: 10.3389/fmicb.2019.02214] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
To date, most assays for measuring the human immunodeficiency virus (HIV-1) reservoir do not include memory CD4+ T-cells expressing the activation marker, human leukocyte antigen-antigen D related (HLA-DR). However, little is known concerning the role these cells play in maintaining persistent HIV-1 during effective antiretroviral therapy (ART). To address this issue, we examined, cellular activation/exhaustion markers (Ki67, CCR5, PD-1, Lag-3 and Tim-3) and viral gag-pol DNA sequences within HLA-DR− and HLA-DR+ memory CD4+ T-cell subsets longitudinally from the peripheral blood of six participants over 3 to ≥15 years of effective therapy. HLA-DR expression was readily detected during the study period in all participants. The average expression levels of CCR5, PD-1 and Tim-3 were higher on the HLA-DR+ T-cell subset whereas the average of LAG-3 expression was higher on their HLA-DR− counterpart. The proportion of HIV-infected cells increased within the HLA-DR+ subset by an average of 18% per year of ART whereas the frequency of infected HLA-DR− T-cells slightly decreased over time (5% per year). We observed that 20–33% of HIV-DNA sequences from the early time points were genetically identical to viral sequences from the last time point within the same cell subset during ART. This indicates that a fraction of proviruses persists within HLA-DR+ and HLA-DR− T-cell subsets during prolonged ART. Our HIV-DNA sequence analyses also revealed that cells transitioned between the HLA-DR+ and HLA-DR− phenotypes. The Ki67 expression, a marker for cellular proliferation, and the combined markers of Ki67/PD-1 averaged 19-fold and 22-fold higher on the HLA-DR+ T-cell subset compared to their HLA-DR− counterpart. Moreover, cellular proliferation, as reflected by the proportion of genetically identical HIV-DNA sequences, increased within both T-cell subsets over the study period; however, this increase was greater within the HLA-DR+ T-cells. Our research revealed that cellular transition and proliferation contribute to the persistence of HIV in HLA-DR+ and HLA-DR− T-cell subsets during prolonged therapy. As such, the HIV reservoir expands during effective ART when both the HLA-DR+ and HLA-DR− cell subsets are included, and therapeutic interventions aimed at reducing the HIV-1 reservoir should target HLA-DR+ and HLA-DR− T-cells.
Collapse
Affiliation(s)
- Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffery Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Remi Fromentin
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Steve G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicolas Chomont
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Boyer Z, Palmer S. Targeting Immune Checkpoint Molecules to Eliminate Latent HIV. Front Immunol 2018; 9:2339. [PMID: 30459753 PMCID: PMC6232919 DOI: 10.3389/fimmu.2018.02339] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022] Open
Abstract
The advent of antiretroviral therapy (ART) has seen a dramatic decrease in the morbidity and mortality of individuals infected with human immunodeficiency virus (HIV). However, ART is not curative and HIV persists in treated individuals within a pool of infected CD4+ memory T cells. The targeting and elimination of these cells, termed the latent HIV reservoir, may be essential in establishing a cure for HIV. Current HIV reservoir research is focused on identifying cells that harbor latent, replication-competent, HIV provirus using specific cell surface markers. Recently, studies have turned to immune checkpoint (IC) molecules, such as programmed cell death protein 1 (PD-1). IC molecules are regulators of the immune system and have previously been linked to HIV infection. Furthermore, cells isolated from treated individuals co-expressing PD-1 alongside other IC molecules are enriched for HIV DNA. Administration of a IC blocking antibodies resulted in an increase of cell-associated HIV RNA within an individual, indicating the potential for this therapeutic to be utilized as a latency reversing agent. IC inhibitors could target CD4+ T cells expressing IC molecules and possibly enhance HIV transcription, allowing for the elimination of these cells by either ART or the immune system. However, treatment with IC inhibitors has been associated with toxicities such as immune-related adverse events and therefore future studies should proceed with caution.
Collapse
Affiliation(s)
- Zoe Boyer
- Centre for Virus Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Devalraju KP, Neela VSK, Ramaseri SS, Chaudhury A, Van A, Krovvidi SS, Vankayalapati R, Valluri VL. IL-17 and IL-22 production in HIV+ individuals with latent and active tuberculosis. BMC Infect Dis 2018; 18:321. [PMID: 29996789 PMCID: PMC6042451 DOI: 10.1186/s12879-018-3236-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 07/04/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND IL-17 and IL-22 cytokines play an important role in protective immune responses against Mycobacterium tuberculosis (Mtb) infection. Information on the production of these cytokines and the factors that regulate their production in the context of human immunodeficiency virus (HIV) and latent tuberculosis infection (LTBI) or active tuberculosis disease (ATB) is limited. In the current study, we compared the production of these two cytokines by PBMC of HIV-LTBI+ and HIV + LTBI+ individuals in response to Mtb antigens CFP-10 (culture filtrate protein) and ESAT-6 (Early Secretory Antigenic Target). We also determined the mechanisms involved in their production. METHODS We cultured Peripheral Blood Mononuclear Cells (PBMCs) from HIV- individuals and HIV+ patients with latent tuberculosis and active disease with CFP-10 and ESAT-6. Production of IL-17, IL-22 and PD1 (Programmed Death 1), ICOS (Inducible T-cell Costimulator), IL-23R and FoxP3 (Forkhead box P3) expression on CD4+ T cells was measured. RESULTS In response to Mtb antigens CFP-10 and ESAT-6, freshly isolated PBMCs from HIV+ LTBI+ and HIV+ active TB patients produced less IL-17 and IL-22 and more IL-10, expressed less IL-23R, and more PD1 and expanded to more FoxP3+ cells. Active TB infection in HIV+ individuals further inhibited antigen specific IL-17 and IL-22 production compared to those with LTBI. Neutralization of PD1 restored IL-23R expression, IL-17 and IL-22 levels and lowered IL-10 production and reduced expansion of FoxP3 T cells. CONCLUSIONS In the current study we found that increased PD1 expression in HIV + LTBI+ and HIV+ active TB patients inhibits IL-17, IL-22 production and IL-23R expression in response to Mtb antigens CFP-10 and ESAT-6.
Collapse
Affiliation(s)
- Kamakshi Prudhula Devalraju
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Venkata Sanjeev Kumar Neela
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Sharadambal Sunder Ramaseri
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| | - Arunabala Chaudhury
- Clinical Division, Cheyutha, LEPRA Society, Cherlapally, Hyderabad, 501301 India
| | - Abhinav Van
- Department of Pulmonary Immunology, Centre for Biomedical Research, University of Texas Health Centre, 11937 US Highway 271, Tyler, TX 75708 USA
| | - Siva Sai Krovvidi
- Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana-501301 India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Centre for Biomedical Research, University of Texas Health Centre, 11937 US Highway 271, Tyler, TX 75708 USA
| | - Vijaya Lakshmi Valluri
- Immunology & Molecular Biology Department, Bhagwan Mahavir Medical Research Centre, A. C. Guards, Hyderabad, TS 500004 India
| |
Collapse
|