1
|
Chen X, Wang C, Zheng QY, Hu WC, Xia XH. Emerging advances in biosensor technologies for quorum sensing signal molecules. Anal Bioanal Chem 2025; 417:33-50. [PMID: 39609273 DOI: 10.1007/s00216-024-05659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Quorum sensing is a physiological phenomenon of microbial cell-to-cell information exchange, which relies on the quorum sensing signal molecules (QSSMs) to communicate and coordinate collective processes. Quorum sensing enables bacteria to alter their behavior as the population density and species composition of the bacterial community change. Effective detection of QSSMs is paramount for regulating microbial community behavior. However, traditional detection methods face the shortcomings of complex operation, high costs, and lack of portability. By combining the advantage of biosensing and nanomaterials, the biosensors play a pivotal significance in QSSM detection. In this review, we first briefly describe the QSSM classification and common detection techniques. Then, we provide a comprehensive summary of research progress in biosensor-based QSSM detection according to the transduction mechanism. Finally, challenges and development trends of biosensors for QSSM detection are discussed. We believe it offers valuable insights into this burgeoning research area.
Collapse
Affiliation(s)
- Xi Chen
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
| | - Chen Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing Yin Zheng
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Chao Hu
- School of Special Education and Rehabilitation, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Priya R, Dubey SK, Goel S. Miniaturized Devices for Isothermal Amplification and Photometric Quantification of Pseudomonas Aeruginosa. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 6:133-139. [PMID: 39698119 PMCID: PMC11655106 DOI: 10.1109/ojemb.2024.3477315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 10/06/2024] [Indexed: 12/20/2024] Open
Abstract
Goal: This study introduced a proof-of-concept prototype for isothermal recombinase polymerase amplification (RPA) with miniaturized photometric detection, enabling rapid P. aeruginosa detection. Methods: The researchers conducted the amplification process within a microchamber with a diameter of 10 mm, utilizing a standalone Thermostat driven thermal management setup. RPA, an amplification technique was employed, which required a lower operating temperature of 37 °C-40 °C to complete the reaction. The amplified amplicon was labeled with a fluorophore reporter, stimulated by an LED light source, and detected in real-time using a photodiode. Results: The developed prototype successfully demonstrated the rapid detection of P. aeruginosa using the RPA assay. The process only required the utilization of 0.04 ng of working concentration of DNA. The entire process, from amplification to detection, could be completed in over 15 minutes. The platform showed enhanced sensitivity and specificity, providing a cost-effective and accurate solution for on-site detection/quantification of pathogens. Conclusions: The integration of isothermal RPA with the miniaturized photometric detection platform proved successful in achieving the goal of rapid and specific pathogen detection. This study proved the benefits of Isothermal Nucleic Acid Amplification Technology (INAAT), emphasizing its potential as an accessible, user-friendly point-of-care technology for resource-constrained institutions. The RPA-based prototype demonstrated capability without requiring costly laboratory equipment or expertise. The developed platform, when combined with Internet of Things (IoT) enabled cloud platform, also allowed remote monitoring of data. Overall, the methodology presented in this study offered a cost-effective, accurate, and convenient solution for on-site testing in resource-limited settings.
Collapse
Affiliation(s)
- Ramya Priya
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Mechanical EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| | - Satish Kumar Dubey
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Mechanical EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
- Department of Electrical and Electronics EngineeringBirla Institute of Technology and Science (BITS) Pilani, Hyderabad CampusHyderabad500078India
| |
Collapse
|
3
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
4
|
El-Said WA, Saleh TS, Al-Bogami AS, Wani MY, Choi JW. Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from Pseudomonas aeruginosa. BIOSENSORS 2024; 14:399. [PMID: 39194628 DOI: 10.3390/bios14080399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Pyocyanin is considered a maker of Pseudomonas aeruginosa (P. aeruginosa) infection. Pyocyanin is among the toxins released by the P. aeruginosa bacteria. Therefore, the development of a direct detection of PYO is crucial due to its importance. Among the different optical techniques, the Raman technique showed unique advantages because of its fingerprint data, no sample preparation, and high sensitivity besides its ease of use. Noble metal nanostructures were used to improve the Raman response based on the surface-enhanced Raman scattering (SERS) technique. Anodic metal oxide attracts much interest due to its unique morphology and applications. The porous metal structure provides a large surface area that could be used as a hard template for periodic nanostructure array fabrication. Porous shapes and sizes could be controlled by controlling the anodization parameters, including the anodization voltage, current, temperature, and time, besides the metal purity and the electrolyte type/concentration. The anodization of aluminum foil results in anodic aluminum oxide (AAO) formation with different roughness. Here, we will use the roughness as hotspot centers to enhance the Raman signals. Firstly, a thin film of gold was deposited to develop gold/alumina (Au/AAO) platforms and then applied as SERS-active surfaces. The morphology and roughness of the developed substrates were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The Au/AAO substrates were used for monitoring pyocyanin secreted from Pseudomonas aeruginosa microorganisms based on the SERS technique. The results showed that the roughness degree affects the enhancement efficiency of this sensor. The high enhancement was obtained in the case of depositing a 30 nm layer of gold onto the second anodized substrates. The developed sensor showed high sensitivity toward pyocyanin with a limit of detection of 96 nM with a linear response over a dynamic range from 1 µM to 9 µM.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Tamer S Saleh
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| |
Collapse
|
5
|
du Plooy J, Jahed N, Iwuoha E, Pokpas K. Advances in paper-based electrochemical immunosensors: review of fabrication strategies and biomedical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230940. [PMID: 38034121 PMCID: PMC10685120 DOI: 10.1098/rsos.230940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Cellulose paper-based sensing devices have shown promise in addressing the accuracy, sensitivity, selectivity, analysis time and cost of current disease diagnostic tools owing to their excellent physical and physiochemical properties, high surface-area-to-volume ratio, strong adsorption capabilities, ease of chemical functionalization for immobilization, biodegradability, biocompatibility and liquid transport by simple capillary action. This review provides a comprehensive overview of recent advancements in the field of electrochemical immunosensing for various diseases, particularly in underdeveloped regions and globally. It highlights the significant progress in fabrication techniques, fluid control, signal transduction and paper substrates, shedding light on their respective advantages and disadvantages. The primary objective of this review article is to compile recent advances in the field of electrochemical immunosensing for the early detection of diseases prevalent in underdeveloped regions and globally, including cancer biomarkers, bacteria, proteins and viruses. Herein, the critical need for new, simplistic early detection strategies to combat future disease outbreaks and prevent global pandemics is addressed. Moreover, recent advancements in fabrication techniques, including lithography, printing and electrodeposition as well as device orientation, substrate type and electrode modification, have highlighted their potential for enhancing sensitivity and accuracy.
Collapse
Affiliation(s)
- Jarid du Plooy
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nazeem Jahed
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
6
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M. A novel portable immuno-device for the recognition of lymphatic vessel endothelial hyaluronan receptor-1 biomarker using GQD-AgNPrs conductive ink stabilized on the surface of cellulose. RSC Adv 2023; 13:30925-30936. [PMID: 37876653 PMCID: PMC10591117 DOI: 10.1039/d3ra06025j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Lymphatic vessel endothelium expresses various lymphatic marker molecules. LYVE-1, the lymphatic vessel endothelial hyaluronan (HA) receptor, a 322-residue protein belonging to the integral membrane glycoproteins which is found on lymph vessel wall and is completely absent from blood vessels. LYVE-1 is very effective in the passage of lymphocytes and tumor cells into the lymphatics. As regards cancer metastasis, in vitro studies indicate LYVE-1 to be involved in tumor cell adhesion. Researches show that, in neoplastic tissue, LYVE-1 is limited to the lymphovascular and could well be proper for studies of tumor lymphangiogenesis. So, the monitoring of LYVE-1 level in human biofluids has provided a valuable approach for research into tumor lymphangiogenesis. For the first time, an innovative paper-based electrochemical immune-platform was developed for recognition of LYVE-1. For this purpose, graphene quantum dots decorated silver nanoparticles nano-ink was synthesized and designed directly by writing pen-on paper technology on the surface of photographic paper. This nano-ink has a great surface area for biomarker immobilization. The prepared paper-based biosensor was so small and cheap and also has high stability and sensitivity. For the first time, biotinylated antibody of biomarker (LYVE-1) was immobilized on the surface of working electrode and utilized for the monitoring of specific antigen by simple immune-assay strategy. The designed biosensor showed two separated linear ranges in the range of 20-320 pg ml-1 and 0.625-10 pg ml-1, with the acceptable limit of detection (LOD) of 0.312 pg ml-1. Additionally, engineered immunosensor revealed excellent selectivity that promises its use in complex biological samples and assistance for biomarker-related disease screening in clinical studies.
Collapse
Affiliation(s)
- Ahmad Mobed
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
| | - Fereshteh Kohansal
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
7
|
Adrover-Jaume C, Clemente A, Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP, Rojo-Molinero E, Oliver A, de la Rica R. A paper biosensor for overcoming matrix effects interfering with the detection of sputum pyocyanin with competitive immunoassays. Mikrochim Acta 2023; 190:441. [PMID: 37845505 PMCID: PMC10579119 DOI: 10.1007/s00604-023-06017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Detecting sputum pyocyanin (PYO) with a competitive immunoassay is a promising approach for diagnosing Pseudomonas aeruginosa respiratory infections. However, it is not possible to perform a negative control to evaluate matrix-effects in competitive immunoassays, and the highly complex sputum matrix often interferes with target detection. Here, we show that these issues are alleviated by performing competitive immunoassays with a paper biosensor. The biosensing platform consists of a paper reservoir, which contains antibody-coated gold nanoparticles, and a substrate containing a competing recognition element, which is a piece of paper modified with an albumin-antigen conjugate. Detection of PYO with a limit of detection of 4.7·10-3 µM and a dynamic range between 4.7·10-1 µM and 47.6 µM is accomplished by adding the sample to the substrate with the competing element and pressing the reservoir against it for 5 min. When tested with patient samples, the biosensor was able to qualitatively differentiate spiked from non-spiked samples, whereas ELISA did not show a clear cut-off between them. Furthermore, the relative standard deviation was lower when determining sputum with the paper-based biosensor. These features, along with a mild liquefaction step that circumvents the use of harsh chemicals or instruments, make our biosensor a good candidate for diagnosing Pseudomonas infections at the bedside through the detection of sputum PYO.
Collapse
Affiliation(s)
- Cristina Adrover-Jaume
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - M Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Estrella Rojo-Molinero
- Microbiology Department, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Microbiology Department, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Molina BG, Vasani RB, Jarvis KL, Armelin E, Voelcker NH, Alemán C. Dual pH- and electro-responsive antibiotic-loaded polymeric platforms for effective bacterial detection and elimination. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Falina S, Anuar K, Shafiee SA, Juan JC, Manaf AA, Kawarada H, Syamsul M. Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239358. [PMID: 36502059 PMCID: PMC9735910 DOI: 10.3390/s22239358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 05/28/2023]
Abstract
Recently, there has been increasing interest in electrochemical printed sensors for a wide range of applications such as biomedical, pharmaceutical, food safety, and environmental fields. A major challenge is to obtain selective, sensitive, and reliable sensing platforms that can meet the stringent performance requirements of these application areas. Two-dimensional (2D) nanomaterials advances have accelerated the performance of electrochemical sensors towards more practical approaches. This review discusses the recent development of electrochemical printed sensors, with emphasis on the integration of non-carbon 2D materials as sensing platforms. A brief introduction to printed electrochemical sensors and electrochemical technique analysis are presented in the first section of this review. Subsequently, sensor surface functionalization and modification techniques including drop-casting, electrodeposition, and printing of functional ink are discussed. In the next section, we review recent insights into novel fabrication methodologies, electrochemical techniques, and sensors' performances of the most used transition metal dichalcogenides materials (such as MoS2, MoSe2, and WS2), MXenes, and hexagonal boron-nitride (hBN). Finally, the challenges that are faced by electrochemical printed sensors are highlighted in the conclusion. This review is not only useful to provide insights for researchers that are currently working in the related area, but also instructive to the ones new to this field.
Collapse
Affiliation(s)
- Shaili Falina
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Khairu Anuar
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Saiful Arifin Shafiee
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalyst Research Centre (NANOCAT), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| | - Hiroshi Kawarada
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mohd Syamsul
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, Sains@USM, Bayan Lepas 11900, Pulau Pinang, Malaysia
| |
Collapse
|
10
|
Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. BIOSENSORS 2022; 12:485. [PMID: 35884289 PMCID: PMC9313202 DOI: 10.3390/bios12070485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (μPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. μPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to μPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of μPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for μPADs are summarized, and the innovative achievements of μPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of μPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent μPAD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.Z.); (F.D.); (Y.Y.); (G.Z.); (C.Z.); (R.W.)
| |
Collapse
|
11
|
McLean C, Brown K, Windmill J, Dennany L. Innovations In Point-Of-Care Electrochemical Detection Of Pyocyanin. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Manisha H, Sonia J, Shashikiran S, Yuvarajan S, Rekha P, Sudhakara Prasad K. Computer numerical control-printed paper electrodes for electrochemical detection of Pseudomonas aeruginosa virulence factor pyocyanin. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Zhang H, Li X, Zhu Q, Wang Z. The recent development of nanomaterials enhanced paper-based electrochemical analytical devices. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
15
|
Rodriguez-Urretavizcaya B, Pascual N, Pastells C, Martin-Gomez MT, Vilaplana L, Marco MP. Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates. Front Cell Infect Microbiol 2022; 11:786929. [PMID: 34970510 PMCID: PMC8712664 DOI: 10.3389/fcimb.2021.786929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
The development of a highly sensitive, specific, and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors (VFs) of Pseudomonas aeruginosa, is here reported. The assay uses a high-affinity monoclonal antibody (mAb; C.9.1.9.1.1.2.2.) raised against 1-hydroxyphenazine (1-OHphz) hapten derivatives (PC1; a 1:1 mixture of 9-hydroxy- and 6-hydroxy-phenazine-2-carobxylic acids). Selective screening using PYO and 1-OHphz on several cloning cycles allowed the selection of a clone able to detect PYO at low concentration levels. The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 μM in sputa and 2.8 μM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates obtained from P. aeruginosa-infected patients and cultured in Mueller–Hinton medium. Significant differences have been found between clinical isolates obtained from patients with an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively) corroborated by the analysis of PYO/1-OHphz levels released by 37 clinical isolates obtained from infected patients at different stages. In all cases, the levels of 1-OHphz were much lower than those of PYO (at the highest levels 6,000 nM vs. 300 nM for PYO vs. 1-OHphz, respectively). The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such VF also as a biomarker for patient stratification[2] and for an effective management of these kinds of infections.
Collapse
Affiliation(s)
- Barbara Rodriguez-Urretavizcaya
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Nuria Pascual
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Carme Pastells
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Maria-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
16
|
Johnson AC, Buchanan EP, Khechoyan DY. Wound infection: A review of qualitative and quantitative assessment modalities. J Plast Reconstr Aesthet Surg 2021; 75:1287-1296. [PMID: 35216936 DOI: 10.1016/j.bjps.2021.11.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 05/26/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Surgical site infections (SSI) and chronic wounds represent a burden to patients and the health care system. One in 24 surgical patients will develop an SSI, making SSI the most common nosocomial infection in the USA. Early detection and monitoring of wound infection are critical for timely healing and return to normal function. However, the mainstay of wound infection diagnostic entails subjective clinical examination and semi-quantitative, invasive microbiological tests. In this review, we present current wound infection assessment modalities in the clinical and translational fields. There is a need for a point-of-care assessment tool that provides fast, accurate, and quantitative information on wound status, with minimal to no contact with the patient. In the next ten years, the evolution of wound diagnostic tools reported here may allow medical providers to optimize patient care while minimizing patient discomfort.
Collapse
Affiliation(s)
- Ariel C Johnson
- Division of Plastic and Reconstructive Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward P Buchanan
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Plastic Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA
| | - David Y Khechoyan
- Department of Pediatric Plastic Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
17
|
Mojsoska B, Ghoul M, Perron GG, Jenssen H, Alatraktchi FA. Changes in toxin production of environmental Pseudomonas aeruginosa isolates exposed to sub-inhibitory concentrations of three common antibiotics. PLoS One 2021; 16:e0248014. [PMID: 33662048 PMCID: PMC7932067 DOI: 10.1371/journal.pone.0248014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an environmental pathogen that can cause severe infections in immunocompromised patients. P. aeruginosa infections are typically treated with multiple antibiotics including tobramycin, ciprofloxacin, and meropenem. However, antibiotics do not always entirely clear the bacteria from the infection site, where they may remain virulent. This is because the effective antibiotic concentration and diffusion in vitro may differ from the in vivo environment in patients. Therefore, it is important to understand the effect of non-lethal sub-inhibitory antibiotic concentrations on bacterial phenotype. Here, we investigate if sub-inhibitory antimicrobial concentrations cause alterations in bacterial virulence factor production using pyocyanin as a model toxin. We tested this using the aforementioned antibiotics on 10 environmental P. aeruginosa strains. Using on-the-spot electrochemical screening, we were able to directly quantify changes in production of pyocyanin in a measurement time of 17 seconds. Upon selecting 3 representative strains to further test the effects of sub-minimum inhibitory concentration (MICs), we found that pyocyanin production changed significantly when the bacteria were exposed to 10-fold MIC of the 3 antibiotics tested, and this was strain specific. A series of biologically relevant measured pyocyanin concentrations were also used to assess the effects of increased virulence on a culture of epithelial cells. We found a decreased viability of the epithelial cells when incubated with biologically relevant pyocyanin concentrations. This suggests that the antibiotic-induced virulence also is a value worth being enclosed in regular testing of pathogens.
Collapse
Affiliation(s)
- Biljana Mojsoska
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- PreDiagnose, Karlslunde, Denmark
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gabriel G. Perron
- Department of Biology, Bard College, Annandale-On-Hudson, NY, United States of America
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | |
Collapse
|
18
|
Do H, Kwon SR, Baek S, Madukoma CS, Smiley MK, Dietrich LE, Shrout JD, Bohn PW. Redox cycling-based detection of phenazine metabolites secreted from Pseudomonas aeruginosa in nanopore electrode arrays. Analyst 2021; 146:1346-1354. [PMID: 33393560 PMCID: PMC7937416 DOI: 10.1039/d0an02022b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) produces several redox-active phenazine metabolites, including pyocyanin (PYO) and phenazine-1-carboxamide (PCN), which are electron carrier molecules that also aid in virulence. In particular, PYO is an exclusive metabolite produced by P. aeruginosa, which acts as a virulence factor in hospital-acquired infections and is therefore a good biomarker for identifying early stage colonization by this pathogen. Here, we describe the use of nanopore electrode arrays (NEAs) exhibiting metal-insulator-metal ring electrode architectures for enhanced detection of these phenazine metabolites. The size of the nanopores allows phenazine metabolites to freely diffuse into the interior and access the working electrodes, while the bacteria are excluded. Consequently, highly efficient redox cycling reactions in the NEAs can be accessed by free diffusion unhindered by the presence of bacteria. This strategy yields low limits of detection, i.e. 10.5 and 20.7 nM for PYO and PCN, respectively, values far below single molecule pore occupancy, e.g. at 10.5 nM 〈npore〉∼ 0.082 per nanopore - a limit which reflects the extraordinary signal amplification in the NEAs. Furthermore, experiments that compared results from minimal medium and rich medium show that P. aeruginosa produces the same types of phenazine metabolites even though growth rates and phenazine production patterns differ in these two media. The NEA measurement strategy developed here should be useful as a diagnostic for pathogens generally and for understanding metabolism in clinically important microbial communities.
Collapse
Affiliation(s)
- Hyein Do
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Oziat J, Cohu T, Elsen S, Gougis M, Malliaras GG, Mailley P. Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 1: Electrochemical signatures of different strains. Bioelectrochemistry 2021; 140:107747. [PMID: 33618190 DOI: 10.1016/j.bioelechem.2021.107747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.
Collapse
Affiliation(s)
- Julie Oziat
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France; Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Bioserenity, Institut du Cerveau et de la Moelle Epinière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Thibaut Cohu
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - Sylvie Elsen
- UMR 1036, INSERM-CEA-UJF, CNRS ERL5261, BIG, CEA-Grenoble, F-38054 Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Pascal Mailley
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France.
| |
Collapse
|
20
|
Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem (Lausanne) 2021; 882:114989. [PMID: 33456428 PMCID: PMC7794054 DOI: 10.1016/j.jelechem.2021.114989] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety. Developing strategies for rapid, inexpensive, specific, and sensitive detection of the pathogens using nanomaterials, integrating with microfluidics devices, amplification methods, or even combining these strategies have received significant attention. Especially, after the health-threatening COVID-19 outbreak, rapid and sensitive detection of pathogens became very critical. Detection of pathogens could be realized with electrochemical, optical, mass sensitive, or thermal methods. Among them, electrochemical methods are very promising by bringing different advantages, i.e., they exhibit more versatile detection schemes and real-time quantification as well as label-free measurements, which provides a broader application perspective. In this review, we discuss the recent advances for the detection of bacteria and viruses using electrochemical biosensors. Moreover, electrochemical biosensors for pathogen detection were broadly reviewed in terms of analyte, bio-recognition and transduction elements. Different fabrication techniques, detection principles, and applications of various pathogens with the electrochemical biosensors were also discussed.
Collapse
Affiliation(s)
- Hüseyin Oğuzhan Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center, Balcova 35340, Izmir, Turkey
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, 89195-999 Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, 8916188635 Yazd, Iran
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| |
Collapse
|
21
|
Rashid JIA, Kannan V, Ahmad MH, Mon AA, Taufik S, Miskon A, Ong KK, Yusof NA. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111625. [PMID: 33545813 DOI: 10.1016/j.msec.2020.111625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/12/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Multidrug resistant Pseudomonas aeruginosa (P. aeruginosa) is known to be a problematic bacterium for being a major cause of opportunistic and nosocomial infections. In this study, reduced graphene oxide decorated with gold nanoparticles (AuNPs/rGO) was utilized as a new sensing material for a fast and direct electrochemical detection of pyocyanin as a biomarker of P. aeruginosa infections. Under optimal condition, the developed electrochemical pyocyanin sensor exhibited a good linear range for the determination of pyocyanin in phosphate-buffered saline (PBS), human saliva and urine at a clinically relevant concentration range of 1-100 μM, achieving a detection limit of 0.27 μM, 1.34 μM, and 2.3 μM, respectively. Our developed sensor demonstrated good selectivity towards pyocyanin in the presence of interfering molecule such as ascorbic acid, uric acid, NADH, glucose, and acetylsalicylic acid, which are commonly found in human fluids. Furthermore, the developed sensor was able to discriminate the signal with and without the presence of pyocyanin directly in P. aeruginosa culture. This proposed technique demonstrates its potential application in monitoring the presence of P. aeruginosa infection in patients.
Collapse
Affiliation(s)
- Jahwarhar Izuan Abdul Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia.
| | - Vayithiswary Kannan
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia; Centre for Research Management and Innovation, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Muhammad Hafiz Ahmad
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Aye Aye Mon
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Safura Taufik
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Azizi Miskon
- Centre for Research Management and Innovation, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia; Department of Electrical and Electronics Engineering, Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Keat Khim Ong
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000 Federal Territory of Kuala Lumpur, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
22
|
Alatraktchi FA, Svendsen WE, Molin S. Electrochemical Detection of Pyocyanin as a Biomarker for Pseudomonas aeruginosa: A Focused Review. SENSORS 2020; 20:s20185218. [PMID: 32933125 PMCID: PMC7570525 DOI: 10.3390/s20185218] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA’s virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.
Collapse
Affiliation(s)
| | - Winnie E. Svendsen
- Department of Biomedicine and Bioengineering, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs.-Lyngby, Denmark;
| |
Collapse
|
23
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Screen-Printed Electrodes: Promising Paper and Wearable Transducers for (Bio)Sensing. BIOSENSORS 2020; 10:E76. [PMID: 32660011 PMCID: PMC7400178 DOI: 10.3390/bios10070076] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022]
Abstract
Screen-printing technology has revolutionized many fields, including that of electrochemical biosensing. Due to their current relevance, this review, unlike other papers, discusses the relevant aspects of electrochemical biosensors manufactured using this technology in connection to both paper substrates and wearable formats. The main trends, advances, and opportunities provided by these types of devices, with particular attention to the environmental and biomedical fields, are addressed along with illustrative fundamentals and applications of selected representative approaches from the recent literature. The main challenges and future directions to tackle in this research area are also pointed out.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (S.C.); (J.M.P.)
| | | | | |
Collapse
|
24
|
A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology. Heliyon 2020; 6:e04327. [PMID: 32671252 PMCID: PMC7347657 DOI: 10.1016/j.heliyon.2020.e04327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is the most significant reason for deaths in men, outside of lung cancer. The clinical examination of cancer proteins or biomarkers is extremely significant in early examination and monitoring of recurrence of disease after treatment. Biomarkers have expanded great clinical significance owing to their extensive spectra in the identification, elimination, early diagnosis and cure of cancer. In this work, novel, ultrasensitive sandwich-type portable bio device based on citrate-capped silver nanoparticles (Citrate-AgNPs) modified graphene quantum dots (GQDs) nano ink for detection of Prostate specific antigen (PSA) was fabricated. Functionalized cysteamine with gold nanoparticles (Cys-AuNPs) was also utilized to amplify the signal. It provides a good and high external area for the immobilization biotinylated antibody of PSA in the large amount. For the first time, citrate-AgNPs-GQDs nano ink was directly written on the cellulose paper surface (ivory sheet and photographic paper) and modified by Cys-AuNPs. So, final structure of the immunodevices was completed after including of Ab1 and PSA (antigen). The immunosensors were used for the recognition of PSA by using DPVs (differential pulse voltammetry) technique. The obtained low limit of quantification (LLOQ) of the first immunodevice (ivory sheet/Citrate AgNPs-GQDs nano-ink/CysA-Au NPs/Ab1/BSA/PSA/Ab2) was 0.07 μg/L and the linear range for the calibration plot was from 0.07 to 60 μg/L. Also, the achieved LLOQ of the second immunodevice (photographic paper/Citrate AgNPs-GQDs nano-ink/Cys-Au NPs/Ab1/BSA/PSA/Ab2) was 0.05 μg/L with the linear range of 10 to 0.05 μg/L. It is noteworthy that, proposed immunoassay was effectively utilized to the monitoring of PSA glycoprotein in unprocessed human plasma sample. Obtained results show that the constructed immunosensor is able to apply as portable bio device for the clinical analysis of PSA in human plasma samples.
Collapse
|
25
|
Ortiz BJ, Boursier ME, Barrett KL, Manson DE, Amador-Noguez D, Abbott NL, Blackwell HE, Lynn DM. Liquid Crystal Emulsions That Intercept and Report on Bacterial Quorum Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29056-29065. [PMID: 32484648 PMCID: PMC7343617 DOI: 10.1021/acsami.0c05792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report aqueous emulsions of thermotropic liquid crystals (LCs) that can intercept and report on the presence of N-acyl-l-homoserine lactones (AHLs), a class of amphiphiles used by pathogenic bacteria to regulate quorum sensing (QS), monitor population densities, and initiate group activities, including biofilm formation and virulence factor production. The concentration of AHL required to promote "bipolar" to "radial" transitions in micrometer-scale droplets of the nematic LC 4'-pentyl-cyanobiphenyl (5CB) decreases with increasing carbon number in the acyl tail, reaching a threshold concentration of 7.1 μM for 3-oxo-C12-AHL, a native QS signal in the pathogen Pseudomonas aeruginosa. The LC droplets in these emulsions also respond to biologically relevant concentrations of the biosurfactant rhamnolipid, a virulence factor produced by communities of P. aeruginosa under the control of QS. Systematic studies using bacterial mutants support the conclusion that these emulsions respond selectively to the production of rhamnolipid and AHLs and not to other products produced by bacteria at lower (subquorate) population densities. Finally, these emulsions remain configurationally stable in growth media, enabling them to be deployed either in bacterial supernatants or in situ in bacterial cultures to eavesdrop on QS and report on changes in bacterial group behavior that can be detected in real time using polarized light. Our results provide new tools to detect and report on bacterial QS and virulence and a materials platform for the rapid and in situ monitoring of bacterial communication and resulting group behaviors in bacterial communities.
Collapse
Affiliation(s)
- Benjamín J Ortiz
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Michelle E Boursier
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kelsey L Barrett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Daniel E Manson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
McEachern F, Harvey E, Merle G. Emerging Technologies for the Electrochemical Detection of Bacteria. Biotechnol J 2020; 15:e2000140. [PMID: 32388907 DOI: 10.1002/biot.202000140] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Infections are a huge economic liability to the health care system, although real-time detection can allow early treatment protocols to avoid some of this cost and patient morbidity and mortality. Pseudomonas aeruginosa (PA) is a drug-resistant gram-negative bacterium found ubiquitously in clinical settings, accounting for up to 27% of hospital acquired infections. PA secretes a vast array of molecules, ranging from secondary metabolites to quorum sensing molecules, of which many can be exploited to monitor bacterial presence. In addition to electrochemical immunoassays to sense bacteria via antigen-antibody interactions, PA pertains a distinct redox-active virulence factor called pyocyanin (PYO), allowing a direct electrochemical detection of the bacteria. There has been a surge of publications relating to the electrochemical tracing of PA via a myriad of novel biosensing techniques, materials, and methodologies. In addition to indirect methods, research approaches where PYO has been sensitively detected using surface modified electrodes are reviewed and compared with conventional PA-sensing methodologies. This review aims at presenting indirect and direct electrochemical methods currently developed using various surface modified electrodes, materials, and electrochemical configurations on their electrocatalytic effects on sensing of PA and in particular PYO.
Collapse
Affiliation(s)
- Francis McEachern
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal, H3A 2B2, Canada
| | - Edward Harvey
- Department of Surgery, Faculty of medicine, McGill University, Montreal, H3A 0C5, Canada
| | - Geraldine Merle
- Department of Chemical Engineering, Polytechnique Montreal, Polytechnique Montreal C.P. 6079, succ. Centre-ville, Montreal, H3C 3A7, Canada
| |
Collapse
|
27
|
Vilaplana L, Marco MP. Phenazines as potential biomarkers of Pseudomonas aeruginosa infections: synthesis regulation, pathogenesis and analytical methods for their detection. Anal Bioanal Chem 2020; 412:5897-5912. [PMID: 32462363 DOI: 10.1007/s00216-020-02696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Infectious diseases are still a worldwide important problem. This fact has led to the characterization of new biomarkers that would allow an early, fast and reliable diagnostic and targeted therapy. In this context, Pseudomonas aeruginosa can be considered one of the most threatening pathogens since it causes a wide range of infections, mainly in patients that suffer other diseases. Antibiotic treatment is not trivial given the incidence of resistance processes and the fewer new antibiotics that are placed on the market. With this scenario, relevant quorum sensing (QS) molecules that regulate the secretion of virulence factors and biofilm formation can play an important role in diagnostic and therapeutic issues. In this review, we have focused our attention on phenazines, as possible new biomarkers. They are pigmented metabolites that are produced by diverse bacteria, characterized for presenting unique redox properties. Phenazines are involved in virulence, competitive fitness and are an essential component of the bacterial QS system. Here we describe their role in bacterial pathogenesis and we revise phenazine production regulation systems. We also discuss phenazine levels previously reported in bacterial isolates and in clinical samples to evaluate them as putative good candidates to be used as P. aeruginosa infection biomarkers. Moreover we deeply go through all analytical techniques that have been used for their detection and also new approaches are discussed from a critical point. Graphical abstract.
Collapse
Affiliation(s)
- Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona, 18-26, 08034, Barcelona, Spain
| |
Collapse
|
28
|
Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst 2020; 144:6461-6478. [PMID: 31603150 DOI: 10.1039/c9an01747j] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbial infections remain the principal cause for high morbidity and mortality rates. While approximately 1400 human pathogens have been recognized, the majority of healthcare-associated infectious diseases are caused by only a few opportunistic pathogens (e.g., Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli), which are associated with increased antibiotic and antimicrobial resistance. Rapid detection, reliable identification and real-time monitoring of these pathogens remain not only a scientific problem but also a practical challenge of vast importance, especially in tailoring effective treatment strategies. Although the development of vaccinations and antibacterial drug treatments are the leading research, progress, and implementation of early warning, quantitative systems indicative of confirming pathogen presence are necessary. Over the years, various approaches, such as conventional culturing, straining, molecular methods (e.g., polymerase chain reaction and immunological assays), microscopy-based and mass spectrometry techniques, have been employed to identify and quantify pathogenic agents. While being sensitive in some cases, these procedures are costly, time-consuming, mostly qualitative, and are indirect detection methods. A great challenge is therefore to develop rapid, highly sensitive, specific devices with adequate figures of merit to corroborate the presence of microbes and enable dynamic real-time measurements of metabolism. As an alternative, electrochemical sensor platforms have been developed as powerful quantitative tools for label-free detection of infection-related biomarkers with high sensitivity. This minireview is focused on the latest electrochemical-based approaches for pathogen sensing, putting them into the context of standard sensing methods, such as cell culturing, mass spectrometry, and fluorescent-based approaches. Description of the latest, impactful electrochemical sensors for pathogen detection will be presented. Recent breakthroughs will be highlighted, including the use of micro- and nano-electrode arrays for real-time detection of bacteria in polymicrobial infections and microfluidic devices for pathogen separation analysis. We will conclude with perspectives and outlooks to understand shortcomings in designing future sensing schemes. The need for high sensitivity and selectivity, low-cost implementation, fast detection, and screening increases provides an impetus for further development in electrochemical detectors for microorganisms and biologically relevant targets.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, TX 78712, USA
| | | |
Collapse
|
29
|
Kang M, Mun C, Jung HS, Ansah IB, Kim E, Yang H, Payne GF, Kim DH, Park SG. Tethered molecular redox capacitors for nanoconfinement-assisted electrochemical signal amplification. NANOSCALE 2020; 12:3668-3676. [PMID: 31793610 DOI: 10.1039/c9nr08136d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant-electrode and product-redox-capacitor encounters (i.e., the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials.
Collapse
Affiliation(s)
- Mijeong Kang
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - ChaeWon Mun
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Ho Sang Jung
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Iris Baffour Ansah
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Haesik Yang
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Dong-Ho Kim
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 51508, South Korea.
| |
Collapse
|
30
|
Alatraktchi FA, Dimaki M, Støvring N, Johansen HK, Molin S, Svendsen WE. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Anal Biochem 2020; 593:113586. [PMID: 31981486 DOI: 10.1016/j.ab.2020.113586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/02/2023]
Abstract
Pyocyanin is a virulence factor solely produced by the pathogen Pseudomonas aeruginosa. Pyocyanin is also a redox active molecule that can be directly detected by electrochemical sensing. A nanograss (NG) based sensor for sensitive quantification of pyocyanin in sputum samples from cystic fibrosis (CF) patients is presented here. The NG sensors were custom made in a cleanroom environment by etching nanograss topography on the electrode surface followed by depositing 200 nm gold. The NG sensors were utilized for amperometric quantification of pyocyanin in spiked hypertonic saline samples, resulting in a linear calibration curve with a R2 value of 0.9901 and a limit of detection of 172 nM. The NG sensors were applied in a small pilot test on five airway samples from five CF patients. The NG sensor was capable of identifying P. aeruginosa in the airway samples in 60 s without any sample pretreatment.
Collapse
Affiliation(s)
| | - Maria Dimaki
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Nicolai Støvring
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Winnie E Svendsen
- Department of Bioengineering and Biomedicine, Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
31
|
Simoska O, Sans M, Eberlin LS, Shear JB, Stevenson KJ. Electrochemical monitoring of the impact of polymicrobial infections on Pseudomonas aeruginosa and growth dependent medium. Biosens Bioelectron 2019; 142:111538. [DOI: 10.1016/j.bios.2019.111538] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
|
32
|
Geto A, Noori JS, Mortensen J, Svendsen WE, Dimaki M. Electrochemical determination of bentazone using simple screen-printed carbon electrodes. ENVIRONMENT INTERNATIONAL 2019; 129:400-407. [PMID: 31152981 DOI: 10.1016/j.envint.2019.05.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
Bentazone is one of the most problematic pesticides polluting groundwater resources. It is on the list of pesticides that are mandatory to analyze at water work controls. The current pesticide measuring approach includes manual water sampling and time-consuming chromatographical quantification of the bentazone content at centralized laboratories. Here, we report the use of an electrochemical approach for analytical determination of bentazone that takes 10 s. The electrochemical electrodes were manually screen printed, resulting in the low-cost fabrication of the sensors. The current response was linearly proportional to the bentazone concentration with a R2 ~ 0.999. We demonstrated a sensitivity of 0.0987 μA/μM and a limit of detection of 0.034 μM, which is below the U.S. Health Advisory level. Furthermore, the sensors have proved to be reusable and stable with a drop of only 2% after 15 times reuse. The sensors have been applied to successfully quantify bentazone spiked in real groundwater and lake water. The sensing method presented here is a step towards on-site application of electrochemical detection of pesticides in water sources.
Collapse
Affiliation(s)
- Alemnew Geto
- IPM - Intelligent Pollutant Monitoring ApS, 2690 Karlslunde, Denmark
| | - Jafar Safaa Noori
- IPM - Intelligent Pollutant Monitoring ApS, 2690 Karlslunde, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - John Mortensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Winnie E Svendsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Maria Dimaki
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
Elkhawaga AA, Khalifa MM, El-Badawy O, Hassan MA, El-Said WA. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. PLoS One 2019; 14:e0216438. [PMID: 31361746 PMCID: PMC6667159 DOI: 10.1371/journal.pone.0216438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
Successful antibiotic treatment of infections relies on accurate and rapid identification of the infectious agents. Pseudomonas aeruginosa is implicated in a wide range of human infections that mostly become complicated and life threating, especially in immunocompromised and critically ill patients. Conventional microbiological methods take more than three days to obtain accurate results. Pyocyanin is a distinctive electroactive biomarker for Pseudomonas aeruginosa. Here, we have prepared polyaniline/gold nanoparticles decorated ITO electrode and tested it to establish a rapid, diagnostic and highly sensitive pyocyanin sensor in a culture of Pseudomonas aeruginosa clinical isolates with high selectivity for traces of pyocyanin when measured in the existence of different interferences like vitamin C, uric acid, and glucose. The scanning electron microscopy and cyclic voltammetry techniques were used to characterize the morphology and electrical conductivity of the constructed electrode. The determined linear range for pyocyanin detection was from 238 μM to 1.9 μM with a detection limit of 500 nM. Compared to the screen-printed electrode used before, the constructed electrode showed a 4-fold enhanced performance. Furthermore, PANI/Au NPs/ITO modified electrodes have demonstrated the ability to detect pyocyanin directly in Pseudomonas aeruginosa culture without any potential interference with other species.
Collapse
Affiliation(s)
- Amal A Elkhawaga
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa M Khalifa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mona A Hassan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Waleed A El-Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
34
|
Bahavarnia F, Saadati A, Hassanpour S, Hasanzadeh M, Shadjou N, Hassanzadeh A. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int J Biol Macromol 2019; 138:744-754. [PMID: 31326512 DOI: 10.1016/j.ijbiomac.2019.07.109] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/28/2023]
Abstract
Ovarian cancer is the first and most important cause of malignancy death in women. Mucin 16 or MUC16 protein also known as carcinoma antigen 125 (CA 125) is the most commonly used glycoprotein for early stage diagnosis of ovarian cancer. In this work, a novel paper-based bio-device through hand writing of Ag/RGO (silver nanoparticles/reduced graphene oxide) nano-ink on the flexible paper substrate using pen-on-paper technology was developed. The prepared interface was used to the recognition of CA 125 protein in human biofluid. For this purpose, Ag/rGO nano-ink was synthesized by deposition of Ag nanoparticles onto graphene oxide sheets and the reduction of graphene oxide to rGO simultaneously. Conductivity and resistance of conductive lines were studied after drawing on photographic paper. Subsequently, to prepare a new and unique immuno-device, paper electrode modified by cysteamine caped gold nanoparticles (CysA/Au NPs) using electrochemical techniques. CysA is bonded by sulfur atoms with Au (CysA/Au NPs), and from the amine group with hydroxyl and carboxyl groups of Ag/RGO nano-ink deposited on the surface of paper-based electrodes (CysA/Au NPs/Ag-rGO). Then, anti-CA 125 antibody was immobilized on the electrode surface through Au NPs and CA 125 positively charged amine groups interaction. Atomic force microscopy, Transmission electron microscopy, Field emission scanning electron microscopy, and dynamic light scattering, were performed to identify the engineered immunosensor. Using chronoamperometry technique and under the optimized conditions, the low limit of quantitation (LLOQ) for the proposed immunoassay was recorded as 0.78 U/ml, which this evaluation was performed at highly linear range of 0.78-400 U/ml. The high sensitivity of the electrochemical immunosensor device is indicative of the ability of this immuno-device to detect early stages ovarian cancer.
Collapse
Affiliation(s)
- Farnas Bahavarnia
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Hassanpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664, Iran.
| | - Nasrin Shadjou
- Nanotechnology Research Center, Urmia University, Urmia, Iran
| | - Ahmad Hassanzadeh
- Department of Processing, Helmholtz-Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Chemnitzer Str. 40, 09599 Freiberg, Germany
| |
Collapse
|
35
|
Jarošová R, Mcclure SE, Gajda M, Jović M, Girault HH, Lesch A, Maiden M, Waters C, Swain GM. Inkjet-Printed Carbon Nanotube Electrodes for Measuring Pyocyanin and Uric Acid in a Wound Fluid Simulant and Culture Media. Anal Chem 2019; 91:8835-8844. [DOI: 10.1021/acs.analchem.8b05591] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Romana Jarošová
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Faculty of Science, University Research Centre UNCE “Supramolecular Electrochemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Sandra E. Mcclure
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Margaret Gajda
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Milica Jović
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Hubert H. Girault
- Laboratoire d’Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l’Industrie 17, CP 400, CH-1951 Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Michael Maiden
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Christopher Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, Michigan 48824, United States
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
36
|
Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin. Anal Bioanal Chem 2019; 411:3829-3838. [PMID: 31172234 DOI: 10.1007/s00216-019-01857-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
Abstract
The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the "biggest threats to global health, food security, and development today" enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 μM, and a limit of detection of 0.04 μM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5-10 min from the moment of collection was performed with this electrochemical sensor. Graphical abstract.
Collapse
|
37
|
Jia F, Barber E, Turasan H, Seo S, Dai R, Liu L, Li X, Bhunia AK, Kokini JL. Detection of Pyocyanin Using a New Biodegradable SERS Biosensor Fabricated Using Gold Coated Zein Nanostructures Further Decorated with Gold Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4603-4610. [PMID: 30964288 DOI: 10.1021/acs.jafc.8b07317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, a biodegradable gold coated zein film surface enhanced Raman spectroscopy (SERS) platform, with gold nanoparticles (AuNPs) deposited on the surface to further enhance the Raman signal, was used to detect pyocyanin (PYO), the toxin secreted by Pseudomonas aeruginosa. An inverted pyramid structure imprinted on a zein film and gold coated during the transfer process was further improved with the deposition and fixing of gold nanoparticles, which resulted in enhancement of the SERS signal by approximately a decade. This new platform served as a lab-on-a-chip sensor to enable the sensitive and rapid detection of PYO in drinking water. The size, distribution, and morphology of the zein film nanostructures including the presence and distribution of gold nanoparticles were characterized by scanning electron microscopy (SEM). The new zein-based platform has the advantage of being largely biodegradable compared with commercial silicon- or glass-based platforms. The limit of detection for PYO using the newly developed zein-based SERS sensor platform was calculated as 25 μM, considerably lower than the concentration of PYO in the blood of people with cystic fibrosis which has been reported to be 70 μM.
Collapse
Affiliation(s)
- Fei Jia
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , 100083 , China
- Department of Food Science , Purdue University , West Lafayette , Indiana 47906 , United States
| | - Emma Barber
- Department of Food Science , Purdue University , West Lafayette , Indiana 47906 , United States
| | - Hazal Turasan
- Department of Food Science , Purdue University , West Lafayette , Indiana 47906 , United States
| | - Sujin Seo
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Ruitong Dai
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , 100083 , China
| | - Logan Liu
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Xingmin Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , 100083 , China
| | - Arun K Bhunia
- Department of Food Science , Purdue University , West Lafayette , Indiana 47906 , United States
| | - Jozef L Kokini
- Department of Food Science , Purdue University , West Lafayette , Indiana 47906 , United States
| |
Collapse
|
38
|
Simoska O, Sans M, Fitzpatrick MD, Crittenden CM, Eberlin LS, Shear JB, Stevenson KJ. Real-Time Electrochemical Detection of Pseudomonas aeruginosa Phenazine Metabolites Using Transparent Carbon Ultramicroelectrode Arrays. ACS Sens 2019; 4:170-179. [PMID: 30525472 DOI: 10.1021/acssensors.8b01152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we use a recently developed electrochemical sensing platform of transparent carbon ultramicroelectrode arrays (T-CUAs) for the in vitro detection of phenazine metabolites from the opportunistic human pathogen Pseudomonas aeruginosa. Specifically, redox-active metabolites pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA), and 1-hydroxyphenazine (OHPHZ) are produced by P. aeruginosa, which is commonly found in chronic wound infections and in the lungs of cystic fibrosis patients. As highly diffusible chemicals, PYO and other metabolites are extremely toxic to surrounding host cells and other competing microorganisms, thus their detection is of great importance as it could provide insights regarding P. aeruginosa virulence mechanisms. Phenazine metabolites are known to play important roles in cellular functions; however, very little is known about how their concentrations fluctuate and influence cellular behaviors over the course of infection and growth. Herein we report the use of easily assembled, low-cost electrochemical sensors that provide rapid response times, enhanced sensitivity, and high reproducibility. As such, these T-CUAs enable real-time electrochemical monitoring of PYO and another extremely reactive and distinct redox-active phenazine metabolite, 5-methylphenazine-1-carboxylic acid (5-MCA), from a highly virulent laboratory P. aeruginosa strain, PA14. In addition to quantifying phenazine metabolite concentrations, changes in phenazine dynamics are observed in the biosynthetic route for the production of PYO. Our quantitative results, over a 48-h period, show increasing PYO concentrations during the first 21 h of bacterial growth, after which PYO levels plateau and then slightly decrease. Additionally, we explore environmental effects on phenazine dynamics and PYO concentrations in two growth media, tryptic soy broth (TSB) and lysogeny broth (LB). The maximum concentrations of cellular PYO were determined to be 190 ± 5 μM and 150 ± 1 μM in TSB and LB, respectively. Finally, using desorption electrospray ionization (DESI) and nanoelectrospray ionization (nano-ESI) mass spectrometry we confirm the detection and identification of reactive phenazine metabolites.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Marta Sans
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Mignon D. Fitzpatrick
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Christopher M. Crittenden
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Jason B. Shear
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russia
| |
Collapse
|