1
|
Citherlet T, Raberin A, Manferdelli G, Millet GP. Impact of menopause on responses to hypoxia and incidence of acute mountain sickness. Eur J Appl Physiol 2025:10.1007/s00421-025-05790-6. [PMID: 40299027 DOI: 10.1007/s00421-025-05790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Menopause results in decreased ovarian hormones, potentially impacting physiological responses to hypoxia and its tolerance. This study explored menopause's influence on physiological responses during rest and exercise in normobaric hypoxia and its role in predicting acute mountain sickness (AMS). METHODS Thirteen eumenorrheic women in their mid-luteal phase (EW, age = 32 ± 8 year) and fifteen postmenopausal women (PW, age = 63 ± 2 year) were examined on two occasions. Their ovarian hormonal levels were measured. In the first visit, hypoxic ventilatory response (HVR), physiological responses (ventilation, pulse oximetry, and heart rate) at rest and exercise in normobaric hypoxia (FiO2 = 0.14) and anxiety levels were tested. On the second visit, cortisol awakening response and oxidative stress markers were measured at low altitude, with cortisol awakening response repeated during an overnight stay at high altitude (3375 m) along with evaluation for AMS using the Lake Louise Score, peripheral oxygen saturation and anxiety levels. RESULTS PW exhibited lower estradiol (16.9 ± 16.7 vs 4.6 ± 2.3 pg/ml, p < 0.01) and progesterone (13.39 ± 7.61 vs 0.06 ± 0.07 ng/ml, p < 0.001) levels than EW. Despite higher ventilation at rest in EW compared to PW in normoxia (10.0 ± 1.5 vs 8.5 ± 0.9 L/min; p < 0.01) and hypoxia (9.4 ± 1.3 vs 8.2 ± 1.3 L/min) , HVR (- 0.34 ± 0.13 vs - 0.27 ± 0.15 L/min/%) was similar between groups (p = 0.26). AMS incidence did not differ between EW (31%) and PW (40%). CONCLUSION In conclusion, EW had higher ventilation at rest in normoxia and normobaric hypoxia compared to PW, but similar responses and AMS incidence at high altitude. Age has minimal impact on HVR in women.
Collapse
Affiliation(s)
- Tom Citherlet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland.
| | - Antoine Raberin
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| | - Grégoire P Millet
- University of Lausanne, Institute of Sport Sciences, Synathlon, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Lee D, Yamazaki Y, Kuwamizu R, Aoike N, Okamoto M, Kato M, Soya H. Enhanced cardiac vagal activity and mood after low-dose hypoxic gas inhalation in healthy young adults. J Physiol Sci 2025; 75:100002. [PMID: 39823965 PMCID: PMC11979666 DOI: 10.1016/j.jphyss.2024.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Developing strategies to enhance cardiac vagal activity (CVA) is essential for improving mood and managing stress. Although hypoxia inhalation may boost CVA, the optimal acute hypoxic conditions remain unclear. Therefore, we aimed to achieve a comprehensive understanding of the hypoxic conditions required to improve CVA and mood following hypoxia. Twenty-one healthy adults participated in both normobaric hypoxic (NH; FIO2: 13.5 %) and normoxic (NN; FIO2: 20.9 %) conditions. We monitored heart rate variability (HRV), percutaneous oxygen saturation (SpO2), and mood across pre-, hypoxia, and post-sessions and assessed psychophysiological stress using the Baevsky Stress Index (SI). Under hypoxia, SpO2 decreased to 88.1 %, accompanied by reductions in vagally-mediated HRV, followed by supercompensation post-hypoxia. Additionally, mood declined during hypoxia but rapidly rebounded, correlating with CVA and SI fluctuations. These results indicate that acute low-dose hypoxic gas inhalation at FIO2: 13.5 % enhances CVA and mood post-hypoxia, offering a practical method for building resilience.
Collapse
Affiliation(s)
- Dongmin Lee
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Yudai Yamazaki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Naoki Aoike
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Morimasa Kato
- Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, Yonezawa 992-0025, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
3
|
Wang B, Chen S, Song J, Huang D, Xiao G. Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. Front Physiol 2024; 15:1397280. [PMID: 38978820 PMCID: PMC11228308 DOI: 10.3389/fphys.2024.1397280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
High-altitude illnesses, encompassing a spectrum of health threats including Acute Mountain Sickness (AMS), pose significant challenges to individuals exposed to high altitude environments, necessitating effective prophylaxis and immediate management. Given the variability in individual responses to these conditions, accurate prediction of high-altitude illnesses onset is of paramount importance. This review systematically consolidates recent advancements in research on predicting AMS by evaluating existing cohort data, predictive models, and methodologies, while also delving into the application of emerging technologies. Through a thorough analysis of scholarly literature, we discuss traditional prediction methods anchored in physiological parameters (e.g., heart rate, respiratory frequency, blood pressure) and biochemical markers, as well as the integration and utility of novel technologies such as biosensors, genetic testing, and artificial intelligence within high-altitude prediction research. While conventional pre-diction techniques have been extensively used, they are often constrained by limitations in accuracy, reliability, and multifactorial influences. The advent of these innovative technologies holds promise for more precise individual risk assessments and personalized preventive and therapeutic strategies across various forms of AMS. Future research endeavors must pivot decisively towards the meticulous identification and stringent validation of innovative predictive biomarkers and models. This strategic re-direction should catalyze intensified interdisciplinary cooperation to significantly deepen our mechanistic insights into the pathogenesis of AMS while refining existing prediction methodologies. These groundbreaking advancements harbor the potential to fundamentally transform preventive and therapeutic frameworks for high-altitude illnesses, ultimately securing augmented safety standards and wellbeing for individuals operating at elevated altitudes with far-reaching global implications.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Shanji Chen
- The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Hunan Primary Digital Engineering Technology Research Center for Medical Prevention and Treatment, Huaihua, China
- National Institute of Hospital Administration (NIHA), Beijing, China
| | | | - Dan Huang
- Beijing Xiaotangshan Hospital, Beijing, China
- Beijing Highland Conditioning Medical Center, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration (NIHA), Beijing, China
| |
Collapse
|
4
|
Horiuchi M, Mitsui S, Uno T. Influence of Smoking and Alcohol Habits on Symptoms of Acute Mountain Sickness on Mount Fuji: A Questionnaire Survey-Based Pilot Study. High Alt Med Biol 2024; 25:140-148. [PMID: 38416507 DOI: 10.1089/ham.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Horiuchi, Masahiro, Satomi Mitsui, and Tadashi Uno. Influence of smoking and alcohol habits on symptoms of acute mountain sickness on Mount Fuji: a questionnaire survey-based pilot study. High Alt Med Biol 00:000-000, 2024. Background: Acute cigarette smoking or alcohol intake would cause opposing vasculature effects that may influence acute mountain sickness (AMS). The present study aimed to investigate the effects of smoking and alcohol consumption behaviors, and acute smoking and consuming alcohol during ascent on AMS on Mount Fuji. Methods: This questionnaire survey study included 887 participants who climbed Mount Fuji and obtained information regarding sex, age, and smoking and alcohol habits, including behavior during ascent. Results: AMS prevalence was 45% for all participants. A univariate analysis revealed that younger participants (20-29 years) were associated with increased AMS prevalence (effect size [ES] = 0.102, p = 0.057) and severity (ES = 0.18, p = 0.01). A prediction model using multiple logistic regression indicated that several factors influenced AMS risk: younger age (p = 0.001), daily smoking habits (p = 0.021), no smoking (p = 0.033), or alcohol consumption during ascent (p = 0.096). Alcohol consumption during ascent had no effect on the increased AMS risk in younger participants (20-29 years), while alcohol consumption during ascent increased AMS risk for middle-age participants (50-59 years). Conclusion: Younger individuals are more likely to experience AMS. Smoking habits are associated with an increased AMS risk. It may be recommended that middle-aged climbers should ascend without consuming alcohol.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kanoya-City, Japan
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida City, Japan
| | - Satomi Mitsui
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida City, Japan
| | - Tadashi Uno
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida City, Japan
| |
Collapse
|
5
|
Ma J, Ma Y, Yi J, Lei P, Fang Y, Wang L, Liu F, Luo L, Zhang K, Jin L, Yang Q, Sun D, Zhang C, Wu D. Rapid altitude displacement induce zebrafish appearing acute high altitude illness symptoms. Heliyon 2024; 10:e28429. [PMID: 38590888 PMCID: PMC10999933 DOI: 10.1016/j.heliyon.2024.e28429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Rapid ascent to high-altitude areas above 2500 m often leads to acute high altitude illness (AHAI), posing significant health risks. Current models for AHAI research are limited in their ability to accurately simulate the high-altitude environment for drug screening. Addressing this gap, a novel static self-assembled water vacuum transparent chamber was developed to induce AHAI in zebrafish. This study identified 6000 m for 2 h as the optimal condition for AHAI induction in zebrafish. Under these conditions, notable behavioral changes including slow movement, abnormal exploration behavior and static behavior in the Novel tank test. Furthermore, this model demonstrated changes in oxidative stress-related markers included increased levels of malondialdehyde, decreased levels of glutathione, decreased activities of superoxide dismutase and catalase, and increased levels of inflammatory markers IL-6, IL-1β and TNF-α, and inflammatory cell infiltration and mild edema in the gill tissue, mirroring the clinical pathophysiology observed in AHAI patients. This innovative zebrafish model not only offers a more accurate representation of the high-altitude environment but also provides a high-throughput platform for AHAI drug discovery and pathogenesis research.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Li Luo
- Affiliated Dongguang Hospital, Southern Medical University, Dongguang, 523059, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Chi Zhang
- Department of Clinical Translational Research, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Dejun Wu
- Emergency Department, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
6
|
Liu M, Jiao X, Li R, Li J, Wang L, Wang L, Wang Y, Lv C, Huang D, Wei R, Wang L, Ji X, Guo X. Effects of acetazolamide combined with remote ischemic preconditioning on risk of acute mountain sickness: a randomized clinical trial. BMC Med 2024; 22:4. [PMID: 38166913 PMCID: PMC10762951 DOI: 10.1186/s12916-023-03209-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND We aimed to determine whether and how the combination of acetazolamide and remote ischemic preconditioning (RIPC) reduced the incidence and severity of acute mountain sickness (AMS). METHODS This is a prospective, randomized, open-label, blinded endpoint (PROBE) study involving 250 healthy volunteers. Participants were randomized (1:1:1:1:1) to following five groups: Ripc (RIPC twice daily, 6 days), Rapid-Ripc (RIPC four times daily, 3 days), Acetazolamide (twice daily, 2 days), Combined (Acetazolamide plus Rapid-Ripc), and Control group. After interventions, participants entered a normobaric hypoxic chamber (equivalent to 4000 m) and stayed for 6 h. The primary outcomes included the incidence and severity of AMS, and SpO2 after hypoxic exposure. Secondary outcomes included systolic and diastolic blood pressure, and heart rate after hypoxic exposure. The mechanisms of the combined regime were investigated through exploratory outcomes, including analysis of venous blood gas, complete blood count, human cytokine antibody array, ELISA validation for PDGF-AB, and detection of PDGF gene polymorphisms. RESULTS The combination of acetazolamide and RIPC exhibited powerful efficacy in preventing AMS, reducing the incidence of AMS from 26.0 to 6.0% (Combined vs Control: RR 0.23, 95% CI 0.07-0.70, P = 0.006), without significantly increasing the incidence of adverse reactions. Combined group also showed the lowest AMS score (0.92 ± 1.10). Mechanistically, acetazolamide induced a mild metabolic acidosis (pH 7.30 ~ 7.31; HCO3- 18.1 ~ 20.8 mmol/L) and improved SpO2 (89 ~ 91%) following hypoxic exposure. Additionally, thirty differentially expressed proteins (DEPs) related to immune-inflammatory process were identified after hypoxia, among which PDGF-AB was involved. Further validation of PDGF-AB in all individuals showed that both acetazolamide and RIPC downregulated PDGF-AB before hypoxic exposure, suggesting a possible protective mechanism. Furthermore, genetic analyses demonstrated that individuals carrying the PDGFA rs2070958 C allele, rs9690350 G allele, or rs1800814 G allele did not display a decrease in PDGF-AB levels after interventions, and were associated with a higher risk of AMS. CONCLUSIONS The combination of acetazolamide and RIPC exerts a powerful anti-hypoxic effect and represents an innovative and promising strategy for rapid ascent to high altitudes. Acetazolamide improves oxygen saturation. RIPC further aids acetazolamide, which synergistically regulates PDGF-AB, potentially involved in the pathogenesis of AMS. TRIAL REGISTRATION ClinicalTrials.gov NCT05023941.
Collapse
Affiliation(s)
- Moqi Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xueqiao Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Rui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Jialu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Lu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Liyan Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Yishu Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Chunmei Lv
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Dan Huang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Ran Wei
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Liming Wang
- Department of Internal Medicine, Beijing Xiaotangshan Hospital, Beijing, 102211, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Xiuhai Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
7
|
Derstine M, Jean D, Beidleman BA, Pichler Hefti J, Hillebrandt D, Horakova L, Kriemler S, Mateikaitė-Pipirienė K, Paal P, Rosier AJ, Andjelkovic M, Keyes LE. Acute Mountain Sickness and High Altitude Cerebral Edema in Women: A Scoping Review-UIAA Medical Commission Recommendations. High Alt Med Biol 2023; 24:259-267. [PMID: 37870579 DOI: 10.1089/ham.2023.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Derstine, Mia, Dominique Jean, Beth A. Beidleman, Jacqueline Pichler Hefti, David Hillebrandt, Lenka Horakova, Susi Kriemler, Kasté Mateikaité-Pipiriené, Peter Paal, Alison Rosier, Marija Andjelkovic, and Linda E. Keyes. Acute mountain sickness and high altitude cerebral edema in women: A scoping review-UIAA Medical Commission recommendations. High Alt Med Biol. 24:259-267, 2023. Background: Acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) are illnesses associated with rapid ascent to altitudes over 2,500 m in unacclimatized lowlanders. The aim of this scoping review is to summarize the current knowledge on sex differences in the epidemiology, pathophysiology, symptomatology, and treatment of AMS and HACE, especially in women. Methods and Results: The UIAA Medical Commission convened an international author team to review women's health issues at high altitude and to publish updated recommendations. Pertinent literature from PubMed and Cochrane was identified by keyword search combinations (including AMS, HACE, and high altitude), with additional publications found by hand search. The primary search focus was for articles assessing lowland women sojourning at high altitude. Results: The literature search yielded 7,165 articles, 37 of which were ultimately included. The majority of publications included did not find women at increased risk for AMS or HACE. There was extremely limited sex-specific data on risk factors or treatment. Conclusions: There is a limited amount of data on female-specific findings regarding AMS and HACE, with most publications addressing only prevalence or incidence with regard to sex. As such, general prevention and treatment strategies for AMS and HACE should be used regardless of sex.
Collapse
Affiliation(s)
- Mia Derstine
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| | - Dominique Jean
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Paediatrics, Infectious Diseases and Altitude Medicine, Grenoble, France
| | - Beth A Beidleman
- US Army Research Institute of Environmental Medicine, Military Performance Division, Natick, Massachusetts, USA
| | | | - David Hillebrandt
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- General Medical Practitioner, Holsworthy, United Kingdom
| | - Lenka Horakova
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Susi Kriemler
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kastė Mateikaitė-Pipirienė
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Diaverum Clinics, Elektrėnai Division, Lithuania
| | - Peter Paal
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Department of Anaesthesiology and Intensive Care Medicine, St. John of God Hospital, Paracelesus Medical University, Salzburg, Austria
| | - Alison J Rosier
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
| | - Marija Andjelkovic
- Medical Commission of the International Climbing and Mountaineering Federation (UIAA), Bern, Switzerland
- Pharmacy, Singidunum University, Belgrade, Serbia
| | - Linda E Keyes
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Tang X, Li X, Xin Q, Wang Q, Li S, Yang Y. Anxiety as a Risk Factor for Acute Mountain Sickness Among Young Chinese Men After Exposure at 3800 M: A cross‒sectional Study. Neuropsychiatr Dis Treat 2023; 19:2573-2583. [PMID: 38046832 PMCID: PMC10693273 DOI: 10.2147/ndt.s436438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose We aimed to explore whether anxiety is a risk factor for acute mountain sickness [AMS] in a young Chinese male population. Patients and Methods A total of 143 young Chinese men with a median age of 23 years (IQR, 21-25) were employed in the present study, and they were divided into the AMS+ and AMS- groups according to the Lake Louise AMS score [AMS-S] after exposure at 3800 m for two days. Participants' pulse oximeter saturation [SpO2] and heart rate [HR] were measured. AMS was evaluated using the AMS-S. The anxiety and sleep quality of the subjects were assessed using the Zung Self-Rating Anxiety Scale [SAS] and the Athens Insomnia Scale [AIS], respectively. Outcomes were analysed using Spearman's partial correlation and logistic regression analysis. Results After two days of exposure at 3800 m, the overall prevalence of AMS was 54% in the whole group. The HR was significantly higher in the AMS+ group than in the AMS- group, as well as the SAS score and AIS score. A converse pattern was observed for SpO2. A significant difference was observed for the change in SAS and AIS score between the AMS+ and AMS- groups. Correlation analysis showed that AMS-S was positively correlated with SAS score, AIS score, HR, ΔSAS score, ΔAIS score, and ΔHR but negatively correlated with SpO2. AIS score was positively correlated with SAS score. After logistic regression analysis was adjusted for HR, SpO2, ΔAIS and ΔHR, SAS score (OR=1.446, 95% CI 1.200-1.744, p<0.001), AIS score (OR=1.216, 95% CI 1.033-1.432) and ΔSAS score (OR=1.158, 95% CI 1.012-1.327) were identified as independent risk factors for AMS. Conclusion The present study suggests that anxiety is a risk factor for AMS among young Chinese men, and poor sleep quality may partially mediate the association.
Collapse
Affiliation(s)
- Xugang Tang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
- Department of Cardiology, The No. 37 Hospital of Chinese PLA, Ya’an, Sichuan, People’s Republic of China
| | - Xiuchuan Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Qian Xin
- Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Qiang Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Shuang Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
9
|
Wang YH, Chien WC, Chung CH, Her YN, Yao CY, Lee BL, Li FL, Wan FJ, Tzeng NS. Acute Mountain Sickness and the Risk of Subsequent Psychiatric Disorders-A Nationwide Cohort Study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2868. [PMID: 36833565 PMCID: PMC9957283 DOI: 10.3390/ijerph20042868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
We aim to explore if there is a relationship between acute mountain sickness (AMS) and the risk of psychiatric disorders in Taiwan by using the National Health Insurance Research Database for to the rare studies on this topic. We enrolled 127 patients with AMS, and 1270 controls matched for sex, age, monthly insured premiums, comorbidities, seasons for medical help, residences, urbanization level, levels of care, and index dates were chosen from 1 January 2000 to 31 December 2015. There were 49 patients with AMS and 140 controls developed psychiatric disorders within the 16-year follow-up. The Fine-Gray model analyzed that the patients with AMS were prone to have a greater risk for the development of psychiatric disorders with an adjusted sub-distribution hazard ratio (sHRs) of 10.384 (95% confidence interval [CI]: 7.267-14.838, p < 0.001) for psychiatric disorders. The AMS group was associated with anxiety disorders, depressive disorders, bipolar disorder, sleep disorders, posttraumatic stress disorder/acute stress disorder, psychotic disorder, and substance-related disorder (SRD). The relationship between anxiety, depression, sleep disorders, SRD, and AMS still persisted even after we excluded the psychiatric disorders within the first five years after AMS. There was an association between AMS and the rising risk of psychiatric disorders in the 16 years of long-term follow-up research.
Collapse
Affiliation(s)
- Ya-Hsuan Wang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei City 11490, Taiwan
- Taiwanese Injury Prevention and Safety Promotion Association, Taipei City 11490, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City 11490, Taiwan
- School of Public Health, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Yu-Ning Her
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Chia-Yi Yao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Biing-Luen Lee
- Department of Plastic Surgery, Yonghe Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Fang-Ling Li
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
- Department of Medical Research, Tri-Service General Hospital, Beitou Branch, National Defense Medical Center, Taipei City 11243, Taiwan
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei City 11490, Taiwan
- Student Counseling Center, National Defense Medical Center, Taipei City 11490, Taiwan
| |
Collapse
|
10
|
Alcantara-Zapata DE, Lucero N, De Gregorio N, Astudillo Cornejo P, Ibarra Villanueva C, Baltodano-Calle MJ, Gonzales GF, Behn C. Women's mood at high altitude. sexual dimorphism in hypoxic stress modulation by the tryptophan-melatonin axis. Front Physiol 2023; 13:1099276. [PMID: 36733695 PMCID: PMC9887123 DOI: 10.3389/fphys.2022.1099276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Sexual (and gender)-dimorphism in tolerance to hypobaric hypoxia increasingly matters for a differential surveillance of human activities at high altitude (HA). At low altitudes, the prevalence of anxiety and depression in women has already been found to double when compared with men; it could be expected to even increase on exposure to HA. In purposefully caring for the health of women at HA, the present work explores the potential involvement of the tryptophan (Trp)-melatonin axis in mood changes on exposure to hypobaric hypoxia. The present work highlights some already known anxiogenic effects of HA exposure. Hypoxia and insomnia reduce serotonin (5-HT) availability; the latter defect being expressed as failure of brown adipose tissue (BAT) activation and mood disorders. Rapid eye movement (REM) sleep organization and synapsis restoration that are additionally affected by hypoxia impair memory consolidation. Affective complaints may thus surge, evolving into anxiety and depression. Sex-related differences in neural network organization and hormonal changes during the menstrual cycle, and certainly also during the life cycle, underscore the possibility of 5-HT-related mood alterations, particularly in women on HA exposure. The mean brain rate of 5-HT synthesis at sea level is already 1.5-fold higher in males than in females. sexual dimorphism also evidences the overexpression effects of SERT, a 5-HT transporter protein. Gonadal and thyroid hormones, as influenced by HA exposure, further modulate 5-HT availability and its effects in women. Besides caring for adequate oxygenation and maintenance of one's body core temperature, special precautions concerning women sojourning at HA should include close observations of hormonal cycles and, perhaps, also trials with targeted antidepressants.
Collapse
Affiliation(s)
- D. E. Alcantara-Zapata
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - N. Lucero
- Occupational Health Program, School of Public Health, University of Chile, Santiago, Chile
| | - N. De Gregorio
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - P. Astudillo Cornejo
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - C. Ibarra Villanueva
- Occupational Ergonomics Program, Department of Kinesiology, University of Atacama, Copiapó, Chile
| | - M. J. Baltodano-Calle
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - G. F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
- High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - C. Behn
- Laboratory of Extreme Environments, Department of Physiology and Biophysics, Biomedical Science Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Faculty of Medicine, University of Atacama, Copiapó, Chile
| |
Collapse
|
11
|
Hüfner K, Caramazza F, Pircher Nöckler ER, Stawinoga AE, Fusar-Poli P, Bhandari SS, Basnyat B, Brodmann Maeder M, Strapazzon G, Tomazin I, Zafren K, Brugger H, Sperner-Unterweger B. Association of Pre-existing Mental Health Conditions with Acute Mountain Sickness at Everest Base Camp. High Alt Med Biol 2022; 23:338-344. [PMID: 36070557 DOI: 10.1089/ham.2022.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hüfner, Katharina, Fabio Caramazza, Evelyn R. Pircher Nöckler, Agnieszka E. Stawinoga, Paolo Fusar-Poli, Sanjeeb S. Bhandari, Buddha Basnyat, Monika Brodmann Maeder, Giacomo Strapazzon, Iztok Tomazin, Ken Zafren, Hermann Brugger, and Barbara Sperner-Unterweger. Association of pre-existing mental health conditions with acute mountain sickness at Everest Base Camp. High Alt Med Biol. 23:338-344, 2022. Background: Mental health disorders are common, but limited data are available regarding the number of people with a past medical history of psychiatric diagnoses going to high altitude (HA). It is also unknown whether mental health conditions are associated with an increased risk of acute mountain sickness (AMS). Methods: We analyzed data from a previous study at Everest Base Camp. Participants self-reported their past medical history and history of substance use and had a brief history taken by a physician. AMS was assessed using the self-reported 2018 Lake Louise AMS Score. Results: Eighty-five participants (66 men and 19 women, age 38 ± 9 years) were included. When questioned by a physician, 28 participants reported prior diagnoses or symptoms compatible with depression (23%), anxiety disorder (6%), post-traumatic stress disorder (1%), and psychosis/psychotic experiences (9%). The prevalence of psychiatric diagnoses in the past medical history was much lower in the self-reported data (2/85) compared to data obtained via physician assessment (28/85). Increased risks of AMS were associated with a past medical history of anxiety disorder (odds ratio [OR] 22.7; confidence interval [95% CI] 2.3-220.6; p < 0.001), depression (OR 3.6; 95% CI 1.2-11.2; p = 0.022), and recreational drug use ever (OR 7.3; 95% CI 1.5-35.5; p = 0.006). Conclusions: Many people who travel to HA have a past medical history of mental health conditions. These individuals have an increased risk of scoring positive for AMS on the Lake Louise Score compared with people without a history of mental health conditions.
Collapse
Affiliation(s)
- Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Fabio Caramazza
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Innsbruck Medical University, Innsbruck, Austria.,Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Evelyn R Pircher Nöckler
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | | | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Buddha Basnyat
- Mountain Medicine Society of Nepal, Kathmandu, Nepal.,Oxford University Clinical Research Unit, Patan Academy of Health Science, Nepal International, Kathmandu, Nepal
| | - Monika Brodmann Maeder
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,SIME Swiss Institute of Medical Education, Bern, Switzerland
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Iztok Tomazin
- Department of Family Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Mountain Rescue Association of Slovenia, Kranj, Slovenia
| | - Ken Zafren
- Department of Emergency Medicine, Stanford University Medical Center, Palo Alto, California, USA.,Department of Emergency Medicine, Alaska Native Medical Center, Anchorage, Alaska, USA
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.,Department of Anaesthesiology and Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Sperner-Unterweger
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital of Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
12
|
Xue Y, Wang X, Wan B, Wang D, Li M, Cheng K, Luo Q, Wang D, Lu Y, Zhu L. Caveolin-1 accelerates hypoxia-induced endothelial dysfunction in high-altitude cerebral edema. Cell Commun Signal 2022; 20:160. [PMID: 36253854 PMCID: PMC9575296 DOI: 10.1186/s12964-022-00976-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background High-altitude cerebral edema (HACE) is a serious and potentially fatal brain injury that is caused by acute hypobaric hypoxia (HH) exposure. Vasogenic edema is the main pathological factor of this condition. Hypoxia-induced disruptions of tight junctions in the endothelium trigger blood‒brain barrier (BBB) damage and induce vasogenic edema. Nuclear respiratory factor 1 (NRF1) acts as a major regulator of hypoxia-induced endothelial cell injury, and caveolin-1 (CAV-1) is upregulated as its downstream gene in hypoxic endothelial cells. This study aimed to investigate whether CAV-1 is involved in HACE progression and the underlying mechanism. Methods C57BL/6 mice were exposed to HH (7600 m above sea level) for 24 h, and BBB injury was assessed by brain water content, Evans blue staining and FITC-dextran leakage. Immunofluorescence, transmission electron microscope, transendothelial electrical resistance (TEER), transcytosis assays, and western blotting were performed to confirm the role and underlying mechanism of CAV-1 in the disruption of tight junctions and BBB permeability. Mice or bEnd.3 cells were pretreated with MβCD, a specific blocker of CAV-1, and the effect of CAV-1 on claudin-5 internalization under hypoxic conditions was detected by immunofluorescence, western blotting, and TEER. The expression of NRF1 was knocked down, and the regulation of CAV-1 by NRF1 under hypoxic conditions was examined by qPCR, western blotting, and immunofluorescence. Results The BBB was severely damaged and was accompanied by a significant loss of vascular tight junction proteins in HACE mice. CAV-1 was significantly upregulated in endothelial cells, and claudin-5 explicitly colocalized with CAV-1. During the in vitro experiments, hypoxia increased cell permeability, CAV-1 expression, and claudin-5 internalization and downregulated tight junction proteins. Simultaneously, hypoxia induced the upregulation of CAV-1 by activating NRF1. Blocking CAV-1-mediated intracellular transport improved the integrity of TJs in hypoxic endothelial cells and effectively inhibited the increase in BBB permeability and brain water content in HH animals. Conclusions Hypoxia upregulated CAV-1 transcription via the activation of NRF1 in endothelial cells, thus inducing the internalization and autophagic degradation of claudin-5. These effects lead to the destruction of the BBB and trigger HACE. Therefore, CAV-1 may be a potential therapeutic target for HACE. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00976-3.
Collapse
Affiliation(s)
- Yan Xue
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.,Medical School of Nantong University, Nantong, 226007, China.,Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Baolan Wan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Meiqi Li
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Kang Cheng
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Dan Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
13
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Yang J, Jia Z, Song X, Shi J, Wang X, Zhao X, He K. Proteomic and clinical biomarkers for acute mountain sickness in a longitudinal cohort. Commun Biol 2022; 5:548. [PMID: 35668171 PMCID: PMC9170681 DOI: 10.1038/s42003-022-03514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ascending to high-altitude by non-high-altitude natives is a well-suited model for studying acclimatization to extreme environments. Acute mountain sickness (AMS) is frequently experienced by visitors. The diagnosis of AMS mainly depends on a self-questionnaire, revealing the need for reliable biomarkers for AMS. Here, we profiled 22 AMS symptom phenotypes, 65 clinical indexes, and plasma proteomic profiles of AMS via a combination of proximity extension assay and multiple reaction monitoring of a longitudinal cohort of 53 individuals. We quantified 1069 proteins and validated 102 proteins. Via differential analysis, machine learning, and functional association analyses. We found and validated that RET played an important role in the pathogenesis of AMS. With high-accuracies (AUCs > 0.9) of XGBoost-based models, we prioritized ADAM15, PHGDH, and TRAF2 as protective, predictive, and diagnostic biomarkers, respectively. Our findings shed light on the precision medicine for AMS and the understanding of acclimatization to high-altitude environments.
Collapse
Affiliation(s)
- Jing Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jinlong Shi
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoreng Wang
- Laboratory of Radiation Injury Treatment, Medical Innovation Research Division, PLA General Hospital, Beijing, China
| | - Xiaojing Zhao
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
- Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
15
|
Boos CJ, Mellor A, Woods DR, O’Hara JP. The Effect of High-Altitude Acclimatisation on Ultra-Short Heart Rate Variability. Front Cardiovasc Med 2022; 9:787147. [PMID: 35419439 PMCID: PMC8995742 DOI: 10.3389/fcvm.2022.787147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction High-altitude (HA) exposure affects heart rate variability (HRV) and has been inconsistently linked to acute mountain sickness (AMS). The influence of increasing HA exposure on ultra-short HRV and its relationship to gold standard HRV measures at HA has not been examined. Methods This was a prospective observational study of adults aged ≥ 18 years undertaking a HA trek in the Dhaulagiri region of the Himalayas. Cardiac inter-beat-intervals were obtained from a 10-s recording of supra-systolic blood pressure (Uscom BP+ device) immediately followed by 300 s single lead ECG recording (CheckMyHeart device). HRV was measured using the RMSSD (root mean square of successive differences of NN intervals) at sea level (SL) in the United Kingdom and at 3,619, 4,600, and 5,140 m at HA. Oxygen saturations (SpO2) were measured using finger-based pulse oximetry. The level of agreement between the 10 and 300 s RMSSD values were examined using a modified Bland–Altman relative-difference analysis. Results Overall, 89 participants aged 32.2 ± 8.8 years (range 18–56) were included of which 70.8% were men. HA exposure (SL vs. 3,619 m) was associated with an initial increase in both 10 s (45.0 [31.0–82.0]) vs. 58.0 [33.0–119.0] ms) and 300 s (45.67 [33.24–70.32] vs. 56.48 [36.98–102.0] ms) in RMSSD. Thereafter at 4,600 and 5,140 m both 10 and 300 s RMSSD values were significantly lower than SL. From a total of 317 paired HRV measures the 10 and 300 s RMSSD measures were moderately correlated (Spearman r = 0.66; 95% CI: 0.59–0.72; p < 0.0001). The median difference (bias) in RMSSD values (300 s − 10 s) was −2.3 ms with a lower and upper limit of agreement of −107.5 and 88.61 ms, respectively with no differences with altitude. Overall, 293/317 (92.4%) of all paired HRV values fell within the 95% CI limits of agreement. Neither HRV method was predictive of AMS. Conclusion Increasing HA affects ultra-short HRV in a similar manner to gold-standard 300 s. Ultra-short HRV has a moderate agreement with 300 s measurements. HRV did not predict AMS.
Collapse
Affiliation(s)
- Christopher John Boos
- Department of Cardiology, Poole Hospital, University Hospitals Dorset, Poole, United Kingdom
- Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, United Kingdom
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- *Correspondence: Christopher John Boos,
| | - Adrian Mellor
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Defence Medical Services, Lichfield, United Kingdom
- James Cook University Hospital, Middlesbrough, United Kingdom
| | - David Richard Woods
- Defence Medical Services, Lichfield, United Kingdom
- Northumbria NHS Foundation Trust, North Shields, United Kingdom
- Academic Department of Medicine, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - John Paul O’Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
16
|
Talks BJ, Campbell C, Larcombe SJ, Marlow L, Finnegan SL, Lewis CT, Lucas SJ, Harrison OK, Pattinson KT. Baseline Psychological Traits Contribute to Lake Louise Acute Mountain Sickness Score at High Altitude. High Alt Med Biol 2022; 23:69-77. [PMID: 35353609 PMCID: PMC8982137 DOI: 10.1089/ham.2021.0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Talks, Benjamin James, Catherine Campbell, Stephanie J. Larcombe, Lucy Marlow, Sarah L. Finnegan, Christopher T. Lewis, Samuel J.E. Lucas, Olivia K. Harrison, and Kyle T.S. Pattinson. Baseline psychological traits contribute to Lake Louise Acute Mountain Sickness score at high altitude. High Alt Med Biol. 23:69-77, 2022. Background: Interoception refers to an individual's ability to sense their internal bodily sensations. Acute mountain sickness (AMS) is a common feature of ascent to high altitude that is only partially explained by measures of peripheral physiology. We hypothesized that interoceptive ability may explain the disconnect between measures of physiology and symptom experience in AMS. Methods: Two groups of 18 participants were recruited to complete a respiratory interoceptive task three times at 2-week intervals. The control group remained in Birmingham (140 m altitude) for all three tests. The altitude group completed test 1 in Birmingham, test 2 the day after arrival at 2,624 m, and test 3 at 2,728 m after an 11-day trek at high altitude (up to 4,800 m). Results: By measuring changes to metacognitive performance, we showed that acute ascent to altitude neither presented an interoceptive challenge, nor acted as interoceptive training. However, AMS symptom burden throughout the trek was found to relate to sea level measures of anxiety, agoraphobia, and neuroticism. Conclusions: This suggests that the Lake Louise AMS score is not solely a reflection of physiological changes on ascent to high altitude, despite often being used as such by researchers and commercial trekking companies alike.
Collapse
Affiliation(s)
- Benjamin James Talks
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
| | - Catherine Campbell
- Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Stephanie J. Larcombe
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
- Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Lucy Marlow
- Warwick Medical School, Warwick University, Coventry, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sarah L. Finnegan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christopher T. Lewis
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
- Department of Anesthesia, Ysbyty Gwynedd, Bangor, United Kingdom
| | - Samuel J.E. Lucas
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Olivia K. Harrison
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Kyle T.S. Pattinson
- Birmingham Medical Research Expeditionary Society, Birmingham, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Committeri G, Bondi D, Sestieri C, Di Matteo G, Piervincenzi C, Doria C, Ruffini R, Baldassarre A, Pietrangelo T, Sepe R, Navarra R, Chiacchiaretta P, Ferretti A, Verratti V. Neuropsychological and Neuroimaging Correlates of High-Altitude Hypoxia Trekking During the "Gokyo Khumbu/Ama Dablam" Expedition. High Alt Med Biol 2022; 23:57-68. [PMID: 35104160 DOI: 10.1089/ham.2021.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol 00:000-000, 2021. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.
Collapse
Affiliation(s)
- Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ginevra Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Ruffini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Riccardo Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
18
|
Andrade EF, Pereira LJ, Oliveira APLD, Orlando DR, Alves DAG, Guilarducci JDS, Castelo PM. Perceived fear of COVID-19 infection according to sex, age and occupational risk using the Brazilian version of the Fear of COVID-19 Scale. DEATH STUDIES 2022; 46:533-542. [PMID: 32845795 DOI: 10.1080/07481187.2020.1809786] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated the fear of COVID-19 infection after proper translation and cultural adaptation of the "Fear of COVID-19 Scale" to the Brazilian Portuguese language. A sample of 1,743 Brazilian participants were included. The scale showed excellent psychometric characteristics. Women showed higher anxiety levels. Fear of COVID-19 scores were lower in males with occupational risk of contamination. On the other hand, women and younger individuals showed higher fear of COVID-19 infection scores. The Brazilian Fear of COVID-19 Scale proved to be a reliable tool with excellent psychometric properties for identifying fear of COVID-19 infection in the Brazilian population.
Collapse
Affiliation(s)
- Eric Francelino Andrade
- Departamento de Medicina Veterinária, Physiology Area, Agrarian Sciences Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí, Brazil
| | - Luciano José Pereira
- Health Sciences Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Ana Paula Luiz de Oliveira
- Department of Preventive Veterinary Medicine and Animal Reproduction, Universidade Estatual Paulista, Jaboticabal, Brazil
| | - Débora Ribeiro Orlando
- Departamento de Medicina Veterinária, Physiology Area, Agrarian Sciences Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Unaí, Brazil
| | | | | | - Paula Midori Castelo
- Department Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| |
Collapse
|
19
|
O'Keeffe K, Dean J, Hodder S, Lloyd A. Self-Selected Motivational Music Enhances Physical Performance in Normoxia and Hypoxia in Young Healthy Males. Front Psychol 2021; 12:787496. [PMID: 34956012 PMCID: PMC8702523 DOI: 10.3389/fpsyg.2021.787496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Humans exposed to hypoxia are susceptible to physiological and psychological impairment. Music has ergogenic effects through enhancing psychological factors such as mood, emotion, and cognition. This study aimed to investigate music as a tool for mitigating the performance decrements observed in hypoxia. Thirteen males (mean ± SD; 24 ± 4 years) completed one familiarization session and four experimental trials; (1) normoxia (sea level, 0.209 FiO2) and no music; (2) normoxia (0.209 FiO2) with music; (3) normobaric hypoxia (∼3800 m, 0.13 FiO2) and no music; and (4) normobaric hypoxia (0.13 FiO2) with music. Experimental trials were completed at 21°C with 50% relative humidity. Music was self-selected prior to the familiarization session. Each experimental trial included a 15-min time trial on an arm bike, followed by a 60-s isometric maximal voluntary contraction (MVC) of the biceps brachii. Supramaximal nerve stimulation quantified central and peripheral fatigue with voluntary activation (VA%) calculated using the doublet interpolation method. Average power output (W) was reduced with a main effect of hypoxia (p = 0.02) and significantly increased with a main effect of music (p = 0.001). When combined the interaction was additive (p = 0.87). Average MVC force (N) was reduced in hypoxia (p = 0.03) but VA% of the biceps brachii was increased with music (p = 0.02). Music reduced subjective scores of mental effort, breathing discomfort, and arm discomfort in hypoxia (p < 0.001). Music increased maximal physical exertion through enhancing neural drive and diminishing detrimental mental processes, enhancing performance in normoxia (6.3%) and hypoxia (6.4%).
Collapse
Affiliation(s)
- Kate O'Keeffe
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Jacob Dean
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
20
|
Falla M, Giardini G, Angelini C. Recommendations for traveling to altitude with neurological disorders. J Cent Nerv Syst Dis 2021; 13:11795735211053448. [PMID: 34955663 PMCID: PMC8695750 DOI: 10.1177/11795735211053448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several neurological conditions might worsen with the exposure to high altitude (HA). The aim of this review was to summarize the available knowledge on the neurological HA illnesses and the risk for people with neurological disorders to attend HA locations. METHODS A search of literature was conducted for several neurological disorders in PubMed and other databases since 1970. The neurological conditions searched were migraine, different cerebrovascular disease, intracranial space occupying mass, multiple sclerosis, peripheral neuropathies, neuromuscular disorders, epileptic seizures, delirium, dementia, and Parkinson's disease (PD). RESULTS Attempts were made to classify the risk posed by each condition and to provide recommendations regarding medical evaluation and advice for or against traveling to altitude. Individual cases should be advised after careful examination and risk evaluation performed either in an outpatient mountain medicine service or by a physician with knowledge of HA risks. Preliminary diagnostic methods and anticipation of neurological complications are needed. CONCLUSIONS Our recommendations suggest absolute contraindications to HA exposure for the following neurological conditions: (1) Unstable conditions-such as recent strokes, (2) Diabetic neuropathy, (3) Transient ischemic attack in the last month, (4) Brain tumors, and 5. Neuromuscular disorders with a decrease of forced vital capacity >60%. We consider the following relative contraindications where decision has to be made case by case: (1) Epilepsy based on recurrence of seizure and stabilization with the therapy, (2) PD (± obstructive sleep apnea syndrome-OSAS), (3) Mild Cognitive Impairment (± OSAS), and (4) Patent foramen ovale and migraine have to be considered risk factors for acute mountain sickness.
Collapse
Affiliation(s)
- Marika Falla
- Institute of Mountain Emergency
Medicine, Eurac Research, Bolzano, Italy
- Center for Mind/Brain Sciences,
CIMeC, University of Trento, Rovereto, Italy
| | - Guido Giardini
- Mountain Medicine and Neurology
Centre, Valle D’Aosta Regional
Hospital, Aosta, Italy
| | | |
Collapse
|
21
|
Stelling D, Hermes M, Huelmann G, Mittelstädt J, Niedermeier D, Schudlik K, Duda H. Individual differences in the temporal progression of motion sickness and anxiety: the role of passengers' trait anxiety and motion sickness history. ERGONOMICS 2021; 64:1062-1071. [PMID: 33566736 DOI: 10.1080/00140139.2021.1886334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The objective of the study is to show that trait anxiety and motion sickness history are responsible for different temporal progressions of sickness in passengers. The level of inflight anxiety and inflight sickness severity was monitored for 124 passengers in a full-motion cabin simulator during a short-haul flight with four different flight segments. Four groups with different characteristics in trait anxiety and motion sickness susceptibility showed different profiles of inflight sickness development. High trait anxiety was responsible for high inflight anxiety and a constantly high level of motion sickness, while passengers with just a motion sickness history showed an increase in motion sickness severity over time. We suggest that trait anxiety and motion sickness susceptibility interact and have an impact on the temporal progression of inflight sickness severity. The analysis of temporal developments of anxiety and sickness are fruitful for understanding the origins of motion sickness, research and individual treatments. Practitioner summary: In a full-motion cabin simulator study with 124 passengers the level of inflight anxiety and inflight sickness severity was monitored. Trait anxiety and motion sickness history were found to have different impacts on the temporal progression of individual sickness severity. Abbreviations: ANOVA: analysis of variance; AVES: air vehicle simulator; hiA/hiM: group with high anxiety and high motion sickness susceptibility; hiA/loM: group with high anxiety and low motion sickness susceptibility;MSSQ: motion sickness susceptibility scale; loA/hiM: group with low anxiety and high motion sickness susceptibility; loA/loM: group with low anxiety and low motion sickness susceptibility; SPSS: statistical package for the social sciences; SSQ-TS: total score from the simulator sickness questionaire; STAI: state trait anxiety inventory.
Collapse
Affiliation(s)
- Dirk Stelling
- Department of Aviation and Space Psychology, German Aerospace Center DLR, Hamburg, Germany
| | - Michael Hermes
- Department of Aviation and Space Psychology, German Aerospace Center DLR, Hamburg, Germany
| | - Gerrit Huelmann
- Department of Aviation and Space Psychology, German Aerospace Center DLR, Hamburg, Germany
| | - Justin Mittelstädt
- Department of Aviation and Space Psychology, German Aerospace Center DLR, Hamburg, Germany
| | - Dominik Niedermeier
- Department of Flight Dynamics and Simulation, German Aerospace Center DLR, Braunschweig, Germany
| | - Kevin Schudlik
- Department of Aviation and Space Psychology, German Aerospace Center DLR, Hamburg, Germany
| | - Holger Duda
- Department of Flight Dynamics and Simulation, German Aerospace Center DLR, Braunschweig, Germany
| |
Collapse
|
22
|
Chen R, Yang J, Liu C, Sun M, Ke J, Yang Y, Shen Y, Yuan F, He C, Cheng R, Lv H, Tan H, Gao X, Zhang J, Huang L. Sex-Dependent Association Between Early Morning Ambulatory Blood Pressure Variations and Acute Mountain Sickness. Front Physiol 2021; 12:649211. [PMID: 33815152 PMCID: PMC8012890 DOI: 10.3389/fphys.2021.649211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background Acute high altitude (HA) exposure elicits blood pressure (BP) responses in most subjects, and some of them suffer from acute mountain sickness (AMS). However, a 24-h ambulatory BP (ABP) change and the correlation with the occurrence of AMS in different sexes are still unclear. Objectives This prospective study aimed to investigate HA induced BP responses in males and females and the relationship between AMS and 24-h ABP. Methods Forty-six subjects were matched according to demographic parameters by propensity score matching with a ratio of 1:1. All the subjects were monitored by a 24-h ABP device; the measurement was one period of 24 h BP. 2018 Lake Louise questionnaire was used to evaluate AMS. Results Both the incidence of AMS (14 [60.9%] vs. 5 [21.7%], P = 0.007) and headache (18 [78.3%] vs. 8 [34.8%], P = 0.003) were higher in females than in males. All subjects showed an elevated BP in the early morning [morning systolic BP (SBP), 114.72 ± 13.57 vs. 120.67 ± 11.10, P = 0.013]. The elevation of morning SBP variation was more significant in females than in males (11.95 ± 13.19 vs. −0.05 ± 14.49, P = 0.005), and a higher morning BP surge increase (4.69 ± 18.09 vs. −9.66 ± 16.96, P = 0.005) was observed after acute HA exposure in the female group. The increase of morning SBP was associated with AMS occurrence (R = 0.662, P < 0.001) and AMS score (R = 0.664, P = 0.001). Among the AMS symptoms, we further revealed that the incidence (R = 0.786, P < 0.001) and the severity of headache (R = 0.864, P < 0.001) are closely correlated to morning SBP. Conclusions Our study demonstrates that females are more likely to suffer from AMS than males. AMS is closely associated with elevated BP in the early morning period, which may be correlated to higher headache incidence in subjects with higher morning SBP.
Collapse
Affiliation(s)
- Renzheng Chen
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbin Ke
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Shen
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fangzhengyuan Yuan
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan He
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
23
|
Shi YJ, Wang JL, Gao L, Wen DL, Dan Q, Dong Y, Guo YT, Zhao CH, Li TJ, Guo J, Li ZB, Chen YD. Altitude Cardiomyopathy Is Associated With Impaired Stress Electrocardiogram and Increased Circulating Inflammation Makers. Front Physiol 2021; 12:640302. [PMID: 33776794 PMCID: PMC7991828 DOI: 10.3389/fphys.2021.640302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many sea-level residents suffer from acute mountain sickness (AMS) when first visiting altitudes above 4,000 m. Exercise tolerance also decreases as altitude increases. We observed exercise capacity at sea level and under a simulated hypobaric hypoxia condition (SHHC) to explore whether the response to exercise intensity represented by physiological variables could predict AMS development in young men. Eighty young men from a military academy underwent a standard treadmill exercise test (TET) and biochemical blood test at sea level, SHHC, and 4,000-m altitude, sequentially, between December 2015 and March 2016. Exercise-related variables and 12-lead electrocardiogram parameters were obtained. Exercise intensity and AMS development were investigated. After exposure to high altitude, the count of white blood cells, alkaline phosphatase and serum albumin were increased (P < 0.05). There were no significant differences in exercise time and metabolic equivalents (METs) between SHHC and high-altitude exposures (7.05 ± 1.02 vs. 7.22 ± 0.96 min, P = 0.235; 9.62 ± 1.11 vs. 9.38 ± 1.12, P = 0.126, respectively). However, these variables were relatively higher at sea level (8.03 ± 0.24 min, P < 0.01; 10.05 ± 0.31, P < 0.01, respectively). Thus, subjects displayed an equivalent exercise tolerance upon acute exposure to high altitude and to SHHC. The trends of cardiovascular hemodynamics during exercise under the three different conditions were similar. However, both systolic blood pressure and the rate-pressure product at every TET stage were higher at high altitude and under the SHHC than at sea level. After acute exposure to high altitude, 19 (23.8%) subjects developed AMS. Multivariate logistic regression analysis showed that METs under the SHHC {odds ratio (OR) 0.355 per unit increment [95% confidence intervals (CI) 0.159-0.793], P = 0.011}, diastolic blood pressure (DBP) at rest under SHHC [OR 0.893 per mmHg (95%CI 0.805-0.991), P = 0.030], and recovery DBP 3 min after exercise at sea level [OR 1.179 per mmHg (95%CI 1.043-1.333), P = 0.008] were independently associated with AMS. The predictive model had an area under the receiver operating characteristic curve of 0.886 (95%CI 0.803-0.969, P < 0.001). Thus, young men have similar exercise tolerance in acute exposure to high altitude and to SHHC. Moreover, AMS can be predicted with superior accuracy using characteristics easily obtainable with TET.
Collapse
Affiliation(s)
- Ya-Jun Shi
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jin-Li Wang
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ling Gao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dong-Lin Wen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qing Dan
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Dong
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ya-Tao Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Hui Zhao
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Teng-Jing Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jun Guo
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zong-Bin Li
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun-Dai Chen
- Department of Cardiology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Shen Y, Yang YQ, Liu C, Yang J, Zhang JH, Jin J, Tan H, Yuan FZY, Ke JB, He CY, Zhang LP, Zhang C, Yu J, Huang L. Association between physiological responses after exercise at low altitude and acute mountain sickness upon ascent is sex-dependent. Mil Med Res 2020; 7:53. [PMID: 33148321 PMCID: PMC7643355 DOI: 10.1186/s40779-020-00283-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Acute mountain sickness (AMS) is the mildest form of acute altitude illnesses, and consists of non-specific symptoms when unacclimatized persons ascend to elevation of ≥2500 m. Risk factors of AMS include: the altitude, individual susceptibility, ascending rate and degree of pre-acclimatization. In the current study, we examined whether physiological response at low altitude could predict the development of AMS. METHODS A total of 111 healthy adult healthy volunteers participated in this trial; and 99 (67 men and 32 women) completed the entire study protocol. Subjects were asked to complete a 9-min exercise program using a mechanically braked bicycle ergometer at low altitude (500 m). Heart rate, blood pressure (BP) and pulse oxygen saturation (SpO2) were recorded prior to and during the last minute of exercise. The ascent from 500 m to 4100 m was completed in 2 days. AMS was defined as ≥3 points in a 4-item Lake Louise Score, with at least one point from headache wat 6-8 h after the ascent. RESULTS Among the 99 assessable subjects, 47 (23 men and 24 women) developed AMS at 4100 m. In comparison to the subjects without AMS, those who developed AMS had lower proportion of men (48.9% vs. 84.6%, P < 0.001), height (168.4 ± 5.9 vs. 171.3 ± 6.1 cm, P = 0.019), weight (62.0 ± 10.0 vs. 66.7 ± 8.6 kg, P = 0.014) and proportion of smokers (23.4% vs. 51.9%, P = 0.004). Multivariate regression analysis revealed the following independent risks for AMS: female sex (odds ratio (OR) =6.32, P < 0.001), SpO2 change upon exercise at low altitude (OR = 0.63, P = 0.002) and systolic BP change after the ascent (OR = 0.96, P = 0.029). Women had larger reduction in SpO2 after the ascent, higher AMS percentage and absolute AMS score. Larger reduction of SpO2 after exercise was associated with both AMS incidence (P = 0.001) and AMS score (P < 0.001) in men but not in women. CONCLUSIONS Larger SpO2 reduction after exercise at low altitude was an independent risk for AMS upon ascent. Such an association was more robust in men than in women. TRIAL REGISTRATION Chinese Clinical Trial Registration, ChiCTR1900025728 . Registered 6 September 2019.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuan-Qi Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jun Jin
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Fang-Zheng-Yuan Yuan
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing-Bin Ke
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chun-Yan He
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lai-Ping Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Chen Zhang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China. .,Department of Cardiology, the Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
25
|
Dzhalilova D, Makarova O. Differences in Tolerance to Hypoxia: Physiological, Biochemical, and Molecular-Biological Characteristics. Biomedicines 2020; 8:E428. [PMID: 33080959 PMCID: PMC7603118 DOI: 10.3390/biomedicines8100428] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia plays an important role in the development of many infectious, inflammatory, and tumor diseases. The predisposition to such disorders is mostly provided by differences in basic tolerance to oxygen deficiency, which we discuss in this review. Except the direct exposure of different-severity hypoxia in decompression chambers or in highland conditions, there are no alternative methods for determining organism tolerance. Due to the variability of the detection methods, differences in many parameters between tolerant and susceptible organisms are still not well-characterized, but some of them can serve as biomarkers of susceptibility to hypoxia. At the moment, several potential biomarkers in conditions after hypoxic exposure have been identified both in experimental animals and humans. The main potential biomarkers are Hypoxia-Inducible Factor (HIF)-1, Heat-Shock Protein 70 (HSP70), and NO. Due to the different mechanisms of various high-altitude diseases, biomarkers may not be highly specific and universal. Therefore, it is extremely important to conduct research on hypoxia susceptibility biomarkers. Moreover, it is important to develop a method for the evaluation of organisms' basic hypoxia tolerance without the necessity of any oxygen deficiency exposure. This can contribute to new personalized medicine approaches' development for diagnostics and the treatment of inflammatory and tumor diseases, taking into account hypoxia tolerance differences.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution ‘Research Institute of Human Morphology’, Moscow 117418, Russia;
| | | |
Collapse
|
26
|
Li Z, Li R, Xu Y, Xu Y. Study on the Oxygen Enrichment Effect of Individual Oxygen-Supply Device in a Tunnel of Plateau Mine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165934. [PMID: 32824194 PMCID: PMC7459575 DOI: 10.3390/ijerph17165934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022]
Abstract
Complex characteristics of the plateau environment such as low oxygen content seriously restrict the exploitation of abundant mineral resources in plateau areas. To regulate the hypoxia environment and improve the comfort of workers engaged in intense physical labor like tunnel excavation operations in plateau mines, an individual oxygen-supply device for tunnel of plateau mine was proposed to create local oxygen enrichment in the area around the human nose. The Computational Fluid Dynamics (CFD) method was used to judge the application’s effect of the individual oxygen-supply device in plateau mine, revealing the oxygen diffusion law under the influence of different oxygen enrichment factors. The orthogonal design and range analysis were used to measure the degree of influence of major factors such as oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The results demonstrate that the oxygen mass fraction of the air inhaled by the human had a positive correlation exponential function, a positive correlation linear function, and a negative correlation exponential function, respectively, concerning oxygen-supply velocity, oxygen-supply concentration, and tunnel airflow velocity. The range analysis revealed that the major influencing factors of oxygen enrichment in the tunnel of the plateau mine were, in a descending sequence, as follows: oxygen-supply concentration, tunnel airflow velocity, and oxygen-supply velocity, and the corresponding ranges were 2.86, 2.63, and 1.83, respectively. The individual oxygen-supply device achieved the best oxygen enrichment effect when the oxygen-supply velocity was 5 m/s, the oxygen-supply concentration was 60%, and the tunnel airflow velocity was 0.2 m/s, which increased the oxygen mass fraction of air inhaled by the human to 30.42%. This study has a positive guiding significance for the improvement of the respiration environment in the tunnel of plateau mine.
Collapse
|
27
|
Otani S, Miyaoka Y, Ikeda A, Ohno G, Imura S, Watanabe K, Kurozawa Y. Evaluating Health Impact at High Altitude in Antarctica and Effectiveness of Monitoring Oxygen Saturation. Yonago Acta Med 2020; 63:163-172. [PMID: 32884435 DOI: 10.33160/yam.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 11/05/2022]
Abstract
Background The Japanese Antarctic Research Expedition (JARE) has been conducting research activities in inland Antarctica, which is extremely cold dryland covered with a thick ice sheet. This environment may cause a health disorder called acute mountain sickness (AMS). To improve the safety of expedition members, we evaluated the impact of extreme environmental conditions on human health and the effectiveness of monitoring of hypoxia for the early detection of AMS. Methods In total, 9 members from JARE 59 were studied. Dome Fuji Station (Dome F), located 3,810 m above sea level (ASL), was the destination of the research party. We analyzed daily AMS scores (higher values correspond to more severe AMS-related symptoms), physiological findings, and percutaneous arterial blood oxygen saturation (SpO2) during the inland activity. We also determined the factors related to AMS scores. Results The average AMS score on arrival at Dome F was significantly higher than that at the departure point (560 m ASL). The average SpO2 level was significantly lower than that at other points. The SpO2 level correlated negatively with the AMS score in Spearman's rank correlation. Generalized estimating equations analysis showed that the AMS score was negatively associated with SpO2 level and positively associated with age. Conclusion Hypoxia is a contributory factor to AMS which we can easily assess by measuring the SpO2 level with a pulse oximeter. SpO2 monitoring is a potentially useful health management tool for members in inland Antarctic expeditions. In addition, our results are helpful for understanding physiological responses and health issues in extreme environments.
Collapse
Affiliation(s)
- Shinji Otani
- International Platform for Dryland Research and Education, Tottori University, Tottori 680-0001, Japan
| | - Yoichi Miyaoka
- Department of Gastroenterological Surgery I, Hokkaido University, Sapporo 060-8648, Japan
| | - Atsushi Ikeda
- Department of Urology, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Giichiro Ohno
- Department of Surgery, Tokatsu Hospital, Nagareyama 270-0153, Japan.,National Institute of Polar Research, Tachikawa 190-8518, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Tachikawa 190-8518, Japan
| | | | - Youichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
28
|
Shah N, Bye K, Marshall A, Woods DR, O'Hara J, Barlow M, Rimmer J, Boos CJ. The Effects of Apnea Training, Using Voluntary Breath Holds, on High Altitude Acclimation: Breathe-High Altitude Study. High Alt Med Biol 2020; 21:152-159. [DOI: 10.1089/ham.2019.0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Nishma Shah
- Department of Surgical Sciences, Institute of Sports and Exercise Health, University College, London, United Kingdom
| | - Kyo Bye
- Defence Medical Services, Lichfield, United Kingdom
| | - Anna Marshall
- Department of Surgical Sciences, Institute of Sports and Exercise Health, University College, London, United Kingdom
| | - David R. Woods
- Defence Medical Services, Lichfield, United Kingdom
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
- Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, United Kingdom
| | - John O'Hara
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Matthew Barlow
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
| | - Jo Rimmer
- Defence Medical Services, Lichfield, United Kingdom
| | - Christopher John Boos
- Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom
- Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, United Kingdom
- Department of Postgraduate Medical Education, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
29
|
Chang Y, He J, Tang J, Chen K, Wang Z, Xia Q, Li H. Investigation of the gene co-expression network and hub genes associated with acute mountain sickness. Hereditas 2020; 157:13. [PMID: 32299499 PMCID: PMC7164164 DOI: 10.1186/s41065-020-00127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute mountain sickness has become a heavily researched topic in recent years. However, the genetic mechanism and effects have not been elucidated. Our goal is to construct a gene co-expression network to identify the key modules and hub genes associated with high altitude hypoxia. RESULTS The GSE46480 dataset of rapidly transported healthy adults with acute mountain sickness was selected and analyzed by weighted gene co-expression network analysis (WGCNA) to construct a co-expression network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the data set were carried out using Database for Annotation Visualization and Integrated Discovery (DAVID), and the hub genes were selected. We found that the turquoise module was most significantly correlated with acute mountain sickness. The functional enrichment analysis showed that the turquoise module was related to the apoptotic process, protein transport, and translation processes. The metabolic pathway analysis identified hsa03010:ribosome and hsa04144:endocytosis as the most important pathways in the turquoise module. Ten top 10 hub genes (MRPL3, PSMC6, AIMP1, HAT1, DPY30, ATP5L, COX7B, UQCRB, DPM1, and COMMD6) for acute mountain sickness were identified. CONCLUSION One module and 10 hub genes were identified, which were related to acute mountain sickness. The reference provided by this module may help to elucidate the mechanism of acute mountain sickness. In addition, the hub genes may be used in the future as a biomarker and therapeutic target for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Jiange He
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Jiqiang Tang
- Department of Orthopaedics, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Qun Xia
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China.
- Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No.403 Xiqing Road, Xiqing District, Tianjin, 300380, China.
| |
Collapse
|
30
|
Sex-based differences in the prevalence of acute mountain sickness: a meta-analysis. Mil Med Res 2019; 6:38. [PMID: 31813379 PMCID: PMC6900850 DOI: 10.1186/s40779-019-0228-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND When lowlanders rapidly ascend to altitudes > 2500 m, they may develop acute mountain sickness (AMS). The individual susceptibility, ascending velocity, time spent at altitude, activity levels and altitude reached are considered risk factors for AMS. However, it is not clear whether sex is a risk factor. The results have been inconclusive. We conducted a meta-analysis to test whether there were sex-based differences in the prevalence of AMS using Lake Louise Scoring System. METHODS Systematic searches were performed in August 2019 in EMBASE, PubMed, and Web of Science for prospective studies with AMS data for men and women. The titles and abstracts were independently checked in the primary screening step, and the selected full-text articles were independently assessed in the secondary screening step by the two authors (YPH and JLW) based on pre-defined inclusion criteria. The meta-analysis was performed using by the STATA 14.1 software program. A random-effects model was employed. RESULTS Eighteen eligible prospective studies were included. A total of 7669 participants (2639 [34.4%] women) were tested. The results showed that there was a statistically significant higher prevalence rate of AMS in women than in men (RR = 1.24, 95%CI 1.09-1.41), regardless of age or race. Howerver, the heterogeneity was significant in the analysis (Tau2 = 0.0403, Chi2 = 50.15, df = 17; I2 = 66.1%, P = 0.000), it was main caused by different numbers of subjects among the studies (coefficient = - 2.17, P = 0.049). Besides, the results showed that there was no evidence of significant publication bias in the combined studies on the basis of Egger's test (bias coefficient = 1.48, P = 0.052) and Begg's test (P = 0.130). CONCLUSIONS According to this study, the statistically significant finding emerging from this study was that women have a higher prevalence of AMS. However, the authors could not exclude studies where patients were on acetazolamide. Our analysis provided a direction for future studies of the relationship of sex and the risk of AMS, such as the pathological mechanism and prevention research.
Collapse
|
31
|
Estoppey J, Léger B, Vuistiner P, Sartori C, Kayser B. Low- and High-Altitude Cortisol Awakening Responses Differ Between AMS-Prone and AMS-Resistant Mountaineers. High Alt Med Biol 2019; 20:344-351. [DOI: 10.1089/ham.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jan Estoppey
- Institute of Sport Sciences, Synathlon, Uni-Centre, Lausanne, Switzerland
| | - Bertrand Léger
- Department of Medical Research, Romandie Clinic for Rehabilitation, Sion, Switzerland
| | - Philippe Vuistiner
- Department of Medical Research, Romandie Clinic for Rehabilitation, Sion, Switzerland
| | - Claudio Sartori
- Department of Internal Medicine, University Hospital, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, Synathlon, Uni-Centre, Lausanne, Switzerland
| |
Collapse
|
32
|
Gatterer H, Bernatzky G, Burtscher J, Rainer M, Kayser B, Burtscher M. Are Pre-Ascent Low-Altitude Saliva Cortisol Levels Related to the Subsequent Acute Mountain Sickness Score? Observations from a Field Study. High Alt Med Biol 2019; 20:337-343. [DOI: 10.1089/ham.2019.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Günther Bernatzky
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- Austrian Society for Alpine and Mountain Medicine, Austria
| |
Collapse
|
33
|
Hüfner K, Sperner-Unterweger B, Brugger H. Going to Altitude with a Preexisting Psychiatric Condition. High Alt Med Biol 2019; 20:207-214. [PMID: 31343257 PMCID: PMC6763955 DOI: 10.1089/ham.2019.0020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Psychiatric disorders have a high lifetime prevalence affecting about 30% of the global population. Not much is known about high altitude (HA) sojourns in individuals living with a psychiatric condition. This lack of scientific evidence contrasts with the anticipated increase in numbers of individuals with preexisting psychiatric conditions seeking medical advice on HA exposure. Not only are there risks associated with a HA climb, but physical activity in general is known to improve symptoms of many psychiatric disorder and enhance measures of mental well-being like quality of life and resilience. There are additional positive effects of alpine environments on mental health beyond those of physical activity. All individuals going to HA with a preexisting psychiatric condition should be in a state of stable disease with no recent change in medication. Specific considerations and recommendations apply to individual psychiatric disorders. During the HA sojourn the challenge is to separate altitude-related symptoms such as insomnia from prodromal symptoms of the underlying disorder (e.g., depressive episode) or altitude-related hyperventilation from panic attacks. In case an individual with preexisting anxiety disorder decides to go to HA there might be a predisposition toward acute mountain sickness (AMS), but it should always be considered that many symptoms of anxiety and AMS overlap. Any medication that is anticipated to be taken during ascent or at HA should be tested for compatibility with the psychiatric condition and medication before the trip.
Collapse
Affiliation(s)
- Katharina Hüfner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Barbara Sperner-Unterweger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|