1
|
Li Y, Cheng T, Zhou S, Li F, Guo W, Li M, Liu T. Changes in aqueous humor cytokines and metabolomics in contralateral eye after unilateral cataract surgery. BMC Ophthalmol 2025; 25:137. [PMID: 40098128 PMCID: PMC11916942 DOI: 10.1186/s12886-025-03961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND For patients with bilateral age-related cataracts, sequential phacoemulsification and intraocular lens implantation is a common treatment. However, it remains unclear whether surgery on the first eye has an impact on the second eye, as current research results are inconsistent. This study will explore whether surgery on one eye affects the non-operated eye through aqueous humor cytokines and metabolomic analyses in the second eye. METHODS A rabbit model of unilateral phacoemulsification and intraocular lens implantation was established. The experimental group consisted of 15 rabbits undergoing this procedure. Postoperatively, rabbits were divided into five subgroups (three rabbits per subgroup), and aqueous humor was collected from both the operated and non-operated eyes at 1 day, 3 days, 1 week, 2 weeks, and 3 weeks after surgery. Additionally, 5 rabbits were selected as a control group, from which aqueous humor was extracted. Levels of IL-1a, IL-1β, IL-2, IL-4, IL-6, IL-8, IFN-γ, TNF-α, MCP-1, and VEGF in the aqueous humor were compared. In the clinical study, preoperative aqueous humor samples were collected from 22 patients undergoing bilateral phacoemulsification and intraocular lens implantation. Among them, 11 patients were tested for the aforementioned 10 cytokines, while the other 11 patients underwent untargeted metabolomics research. RESULTS In the animal experiment, levels of all 10 cytokines in the operated eyes were significantly higher compared to both the control and non-operated eyes groups (P < 0.05). In the non-operated eyes, IL-1β and IL-2 levels were also elevated compared to the control (P < 0.05); however, no statistically significant differences were observed between the non-operated eyes and the control group at postoperative time points of 1 day, 3 days, 1 week, 2 weeks, and 3 weeks. In the clinical study, no significant differences were found in cytokine levels between the two eyes. In the untargeted metabolomics analysis, 354 metabolites showed differential expression, 280 were upregulated and 74 were downregulated. Notably, Adenine and 2-Aminopurine were significantly downregulated, highlighting Purine metabolism as the most impacted pathway. CONCLUSIONS Animal experiments showed a significant increase in IL-1β and IL-2 levels in the non-operated eyes postoperatively, reflecting systemic and local inflammatory responses. In clinical experiments, although no significant changes in cytokines were observed in the aqueous humor of both eyes, differential expression of metabolites indicated metabolic adjustments in the non-operated eye following surgery on the first eye. These findings reveal that unilateral cataract surgery may affect the stability of the intraocular environment in the contralateral eye, suggesting that in staged bilateral surgeries, potential metabolic changes in the non-operated eye and their clinical significance should be considered. This result provides important reference value for optimizing postoperative management strategies, reducing complications, and determining the timing for bilateral surgeries, warranting further investigation.
Collapse
Affiliation(s)
- Yang Li
- Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Taiying Cheng
- Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Sujun Zhou
- Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Fayuan Li
- Zunyi Medical University, Guizhou, 563000, China
| | - Wenjun Guo
- Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Mingbo Li
- Second Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China
| | - Taixiang Liu
- Affiliated Hospital of Zunyi Medical University, Guizhou, 563000, China.
| |
Collapse
|
2
|
Gao H, Zhang T, Li K, Li X. CD73: a new immune checkpoint for leukemia treatment. Front Immunol 2025; 16:1486868. [PMID: 40114928 PMCID: PMC11922907 DOI: 10.3389/fimmu.2025.1486868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Recent studies on the pathogenesis of leukemia have led to remarkable advances in disease treatment. Numerous studies have shown the potential and viability of immune responses against leukemia. In the classical pathway, this process is often initiated by the upstream activity of CD39, which hydrolyzes extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to AMP. Subsequently, CD73 acts on AMP to generate adenosine, contributing to an immunosuppressive microenvironment. However, CD73 can also utilize substrates derived from other molecules through the non-canonical NAD+ pathway, specifically via the CD38/CD203a/CD73 axis, further enhancing adenosine production and facilitating immune escape. Targeting CD73 has shown potential in disrupting these immunosuppressive pathways, thereby enhancing anti-leukemic immune responses and improving patient outcomes. Inhibiting CD73 not only reduces the levels of immunosuppressive adenosine but also increases the efficacy of existing immunotherapies, such as PD-1/PD-L1 inhibitors, making it a versatile therapeutic target in leukemia treatment. This review discusses the potential of CD73 as a therapeutic target and emphasizes its unique position in the immune escape mechanism of leukemia. Moreover, this review provides an overview of the current research progress and future trends, emphasizing the clinical significance of targeting CD73 and other potential therapeutic strategies in leukemia.
Collapse
Affiliation(s)
- Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| |
Collapse
|
3
|
Carvalho-Barbosa N, Zeidler JD, Savio LEB, Coutinho-Silva R. Purinergic signaling in the battlefield of viral infections. Purinergic Signal 2025; 21:83-98. [PMID: 38038801 PMCID: PMC11958901 DOI: 10.1007/s11302-023-09981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Purinergic signaling has been associated with immune defenses against pathogens such as bacteria, protozoa, fungi, and viruses, acting as a sentinel system that signals to the cells when a threat is present. This review focuses on the roles of purinergic signaling and its therapeutic potential for viral infections. In this context, the purinergic system may play potent antiviral roles by boosting interferon signaling. In other cases, though, it can contribute to a hyperinflammatory response and disease severity, resulting in poor outcomes, such as during flu and potentially COVID-19. Lastly, a third situation may occur since viruses are obligatory intracellular parasites that hijack the host cell machinery for their infection and replication. Viruses such as HIV-1 use the purinergic system to favor their infection and persistence within the host cell. Therefore, understanding the particular nuances of purinergic signaling in each viral infection may contribute to designing proper therapeutic strategies to treat viral diseases.
Collapse
Affiliation(s)
- Nayara Carvalho-Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Julianna Dias Zeidler
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
4
|
Fehn A, von Witzleben A, Grages A, Kors TA, Ezić J, Betzler AC, Brunner C, Schuler PJ, Theodoraki MN, Hoffmann TK, Laban S. 5-Aza-2'-deoxycytidin (Decitabine) increases cancer-testis antigen expression in head and neck squamous cell carcinoma and modifies immune checkpoint expression, especially in CD39-positive CD8 and CD4 T cells. Neoplasia 2025; 59:101086. [PMID: 39608124 PMCID: PMC11636331 DOI: 10.1016/j.neo.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Failure of immunotherapy in head and neck squamous cell carcinoma (HNSCC) patients represents an unmet need to augment leverage of adaptive immunity. Immunogenic cancer-testis antigen (CTA) expression as well as lymphocyte differentiation and function are regulated by DNA methylation. Therefore, epigenetic therapy via inhibition of DNA-Methyltransferases by 5-Aza-2'-deoxycytidine (DAC) serves a promising adjuvant in immunotherapy. We investigated the effects of DAC on CTA expression and proliferative capacity in HNSCC cell lines and on the expression of 12 immune checkpoint molecules (ICM) on lymphocytes of oropharyngeal squamous cell carcinoma (OPSCC) patients and healthy donors. In all cell lines CTA were upregulated accompanied by decreased proliferation. In lymphocytes pronounced alterations of the ICM repertoire were observed, influenced by donor type and subpopulation. On CD39+ CD4 and CD8 T cells, the expression of co-stimulatory ICM GITR and OX40 increased dose dependently, whereas expression decreased on CD39- CD4 T cells. PD1 expression increased primarily on CD39+ CD8 T cells and decreased on CD39- CD4 T cells. CD27 expression decreased primarily in CD8 T cells, but increased in CD39- CD4 T cells, whereas ICOS expression was lowered in both CD39+ and CD39- subsets of CD4 as well as CD8 T cells. DAC treatment increased immunogenicity and decreased proliferation in HNSCC cells while enhancing expression of co-stimulatory ICM GITR and OX40. We propose low dose DAC treatment as a adjuvant to immunotherapy.
Collapse
Affiliation(s)
- Adrian Fehn
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Adrian von Witzleben
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Ayla Grages
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Tsima Abou Kors
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Jasmin Ezić
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany
| | - Annika C Betzler
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Cornelia Brunner
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Patrick J Schuler
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Thomas K Hoffmann
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany
| | - Simon Laban
- Head and Neck Cancer Center of the Comprehensive Cancer Center, Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Germany; Ulm University Medical Faculty, Core Facility Immune Monitoring, Ulm, Germany.
| |
Collapse
|
5
|
Isaacs JF, Degefu HN, Chen T, Kleist SA, Musial SC, Ford MA, Searles TG, Lin CC, Skorput AGJ, Shirai K, Turk MJ, Zanazzi GJ, Rosato PC. CD39 Is Expressed on Functional Effector and Tissue-resident Memory CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:588-599. [PMID: 38975728 PMCID: PMC11333163 DOI: 10.4049/jimmunol.2400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The ecto-ATPase CD39 is expressed on exhausted CD8+ T cells in chronic viral infection and has been proposed as a marker of tumor-specific CD8+ T cells in cancer, but the role of CD39 in an effector and memory T cell response has not been clearly defined. We report that CD39 is expressed on Ag-specific CD8+ short-lived effector cells, while it's co-ectoenzyme, CD73, is found on memory precursor effector cells (MPECs) in vivo. Inhibition of CD39 enzymatic activity during in vitro T cell priming enhances MPEC differentiation in vivo after transfer and infection. The enriched MPEC phenotype is associated with enhanced tissue resident memory T cell (TRM cell) establishment in the brain and salivary gland following an acute intranasal viral infection, suggesting that CD39 ATPase activity plays a role in memory CD8+ T cell differentiation. We also show that CD39 is expressed on human and murine TRM cells across several nonlymphoid tissues and melanoma, whereas CD73 is expressed on both circulating and resident memory subsets in mice. In contrast to exhausted CD39+ T cells in chronic infection, CD39+ TRM cells are fully functional when stimulated ex vivo with cognate Ag, further expanding the identity of CD39 beyond a T cell exhaustion marker.
Collapse
Affiliation(s)
- Jordan F. Isaacs
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Hanna N. Degefu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tiffany Chen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Sierra A. Kleist
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Shawn C. Musial
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Myles A. Ford
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Tyler G. Searles
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | | | - Keisuke Shirai
- Department of Medicine, Dartmouth Health, Lebanon NH, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - George J. Zanazzi
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon NH, USA
| | - Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
6
|
Witt M, Oliveira-Ferrer L, Koch-Nolte F, Menzel S, Hell L, Sturmheit T, Seubert E, Weimer P, Ding Y, Qi M, Schmalfeldt B, Bokemeyer C, Fiedler W, Wellbrock J, Brauneck F. Expression of CD39 is associated with T cell exhaustion in ovarian cancer and its blockade reverts T cell dysfunction. Oncoimmunology 2024; 13:2346359. [PMID: 38737794 PMCID: PMC11087076 DOI: 10.1080/2162402x.2024.2346359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Immune exhaustion is a hallmark of ovarian cancer. Using multiparametric flow cytometry, the study aimed to analyze protein expression of novel immunological targets on CD3+ T cells isolated from the peripheral blood (n = 20), malignant ascites (n = 16), and tumor tissue (n = 6) of patients with ovarian cancer (OVCA). The study revealed an increased proportion of effector memory CD8+ T cells in OVCA tissue and malignant ascites. An OVCA-characteristic PD-1high CD8+ T cell population was detected, which differed from PD-1lowCD8+ T cells by increased co-expression of TIGIT, CD39, and HLA-DR. In addition, these OVCA-characteristic CD8+ T cells showed reduced expression of the transcription factor TCF-1, which may also indicate reduced effector function and memory formation. On the contrary, the transcription factor TOX, which significantly regulates terminal T cell-exhaustion, was found more frequently in these cells. Further protein and gene analysis showed that CD39 and CD73 were also expressed on OVCA tumor cells isolated from solid tumors (n = 14) and malignant ascites (n = 9). In the latter compartment, CD39 and CD73 were also associated with the expression of the "don't eat me" molecule CD24 on tumor cells. Additionally, ascites-derived CD24+EpCAM+ tumor cells showed a higher frequency of CD39+ or CD73+ cells. Furthermore, CD39 expression was associated with unfavorable clinical parameters. Expression of CD39 on T cells was upregulated through CD3/CD28 stimulation and its blockade by a newly developed nanobody construct resulted in increased proliferation (eFluor), activation (CD25 and CD134), and production of cytotoxic cytokines (IFN-γ, TNF-α, and granzyme-B) of CD8+ T cells.
Collapse
Affiliation(s)
- Marius Witt
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | | | | | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | - Pauline Weimer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Minyue Qi
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Isaacs JF, Degefu HN, Chen T, Kleist SA, Musial SC, Ford MA, Searles TG, Lin CC, Skorput AGJ, Shirai K, Turk MJ, Zanazzi GJ, Rosato PC. CD39 is expressed on functional effector and tissue resident memory CD8+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585252. [PMID: 38559200 PMCID: PMC10980075 DOI: 10.1101/2024.03.15.585252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ecto-ATPase CD39 is expressed on exhausted CD8+ T cells in chronic viral infection and has been proposed as a marker of tumor-specific CD8+ T cells in cancer, but the role of CD39 in an effector and memory T cell response has not been clearly defined. We report that CD39 is expressed on antigen-specific CD8+ short-lived effector cells (SLECs), while it's co-ecto-enzyme, CD73, is found on memory precursor effector cells (MPEC) in vivo . Inhibition of CD39 enzymatic activity during in vitro T cell priming enhances MPEC differentiation in vivo after transfer and infection. The enriched MPEC phenotype is associated with enhanced tissue resident memory (T RM ) establishment in the brain and salivary gland following an acute intranasal viral infection, suggesting that CD39 ATPase activity plays a role in memory CD8+ T cell differentiation. We also show that CD39 is expressed on human and murine T RM across several non-lymphoid tissues and melanoma, while CD73 is expressed on both circulating and resident memory subsets in mice. In contrast to exhausted CD39+ T cells in chronic infection, CD39+ T RM are fully functional when stimulated ex vivo with cognate antigen. This work further expands the identity of CD39 beyond a T cell exhaustion marker.
Collapse
|
8
|
Mazzocco YL, Bergero G, Del Rosso S, Eberhardt N, Sola C, Saka HA, Villada SM, Bocco JL, Aoki MP. Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery. Front Immunol 2023; 14:1227873. [PMID: 37818368 PMCID: PMC10560791 DOI: 10.3389/fimmu.2023.1227873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sebastian Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Natalia Eberhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Claudia Sola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Héctor Alex Saka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sofía María Villada
- Servicio de Enfermedades Infecciosas, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| |
Collapse
|
9
|
Abdul-Aziz A, Devine RD, Lyberger JM, Chang H, Kovacs A, Lerma JR, Rogers AM, Byrd JC, Hertlein E, Behbehani GK. Mass Cytometry as a Tool for Investigating Senescence in Multiple Model Systems. Cells 2023; 12:2045. [PMID: 37626855 PMCID: PMC10453346 DOI: 10.3390/cells12162045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular senescence is a durable cell cycle arrest as a result of the finite proliferative capacity of cells. Senescence responds to both intrinsic and extrinsic cellular stresses, such as aging, mitochondrial dysfunction, irradiation, and chemotherapy. Here, we report on the use of mass cytometry (MC) to analyze multiple model systems and demonstrate MC as a platform for senescence analysis at the single-cell level. We demonstrate changes to p16 expression, cell cycling fraction, and histone tail modifications in several established senescent model systems and using isolated human T cells. In bone marrow mesenchymal stromal cells (BMSCs), we show increased p16 expression with subsequent passage as well as a reduction in cycling cells and open chromatin marks. In WI-38 cells, we demonstrate increased p16 expression with both culture-induced senescence and oxidative stress-induced senescence (OSIS). We also use Wanderlust, a trajectory analysis tool, to demonstrate how p16 expression changes with histone tail modifications and cell cycle proteins. Finally, we demonstrate that repetitive stimulation of human T cells with CD3/CD28 beads induces an exhausted phenotype with increased p16 expression. This p16-expressing population exhibited higher expression of exhaustion markers such as EOMES and TOX. This work demonstrates that MC is a useful platform for studying senescence at a single-cell protein level, and is capable of measuring multiple markers of senescence at once with high confidence, thereby improving our understanding of senescent pathways.
Collapse
Affiliation(s)
- Amina Abdul-Aziz
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (A.A.-A.)
| | - Raymond D. Devine
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Justin M. Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hsiaochi Chang
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Amy Kovacs
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - James R. Lerma
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (A.A.-A.)
| | - Andrew M. Rogers
- Maine Medical Center, Portland, ME 04102, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (A.A.-A.)
| | - Erin Hertlein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (A.A.-A.)
| | - Gregory K. Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Turner RJ, Guy TV, Geraghty NJ, Splitt A, Watson D, Brungs D, Carolan MG, Miller AA, de Leon JF, Aghmesheh M, Sluyter R. Low Pretreatment CD4 +:CD8 + T Cell Ratios and CD39 +CD73 +CD19 + B Cell Proportions Are Associated with Improved Relapse-Free Survival in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:12538. [PMID: 37628721 PMCID: PMC10454544 DOI: 10.3390/ijms241612538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The ectonucleotidases CD39 and CD73 are present on immune cells and play important roles in cancer progression by suppressing antitumour immunity. As such, CD39 and CD73 on peripheral blood mononuclear cells (PBMCs) are emerging as potential biomarkers to predict disease outcomes and treatment responses in cancer patients. This study aimed to examine T and B cells, including CD39 and CD73 expressing subsets, by flow cytometry in PBMCs from 28 patients with head and neck squamous cell carcinoma (HNSCC) and to assess the correlation with the treatment modality, human papillomavirus (HPV) status, and relapse-free survival (RFS). The PBMCs were examined pre-, mid-, and post-radiotherapy with concurrent cisplatin chemotherapy or anti-epidermal growth factor receptor antibody (cetuximab) therapy. Combination radiotherapy caused changes to T and B cell populations, including CD39 and CD73 expressing subsets, but no such differences were observed between concurrent chemotherapy and cetuximab. Pretreatment PBMCs from HPV+ patients contained increased proportions of CD39-CD73-CD4+ T cells and reduced proportions of CD39-/+CD73+CD4+ T cells compared to the equivalent cells from HPV- patients. Notably, the pretreatment CD4+:CD8+ T cell ratios and CD39+CD73+CD19+ B cell proportions below the respective cohort medians corresponded with an improved RFS. Collectively, this study supports the notion that CD39 and CD73 may contribute to disease outcomes in HNSCC patients and may assist as biomarkers, either alone or as part of immune signatures, in HNSCC. Further studies of CD39 and CD73 on PBMCs from larger cohorts of HNSCC patients are warranted.
Collapse
Affiliation(s)
- Ross J. Turner
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Thomas V. Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Ashleigh Splitt
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Daniel Brungs
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Martin G. Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Andrew A. Miller
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | | | - Morteza Aghmesheh
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| |
Collapse
|
11
|
Wang R, Wang Y, Wu C, Jin G, Zhu F, Yang Y, Wang Y, Zhou G. CD73 blockade alleviates intestinal inflammatory responses by regulating macrophage differentiation in ulcerative colitis. Exp Ther Med 2023; 25:272. [PMID: 37206543 PMCID: PMC10189750 DOI: 10.3892/etm.2023.11972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Ulcerative colitis (UC) is a type of inflammatory bowel disease characterized by excessive and persistent inflammation. Intestinal macrophages play a considerable role in regulating inflammatory immune reactions in the gut mucosa. It has previously been reported that CD73 is related to the pathogenesis of inflammatory or immune-related diseases; however, the roles of CD73 in UC remain unclear. In this study, CD73 expression in the inflamed mucosa of patients with UC was examined using reverse transcription-quantitative PCR (RT-qPCR), western blotting, and immunohistochemistry. Adenosine 5'-(α, β-methylene) diphosphate (APCP) was used to block the expression of CD73. Furthermore, the mRNA levels of proinflammatory mediators associated with macrophages following the blocking of CD73 were examined using RT-qPCR. Finally, the regulatory function of CD73 in intestinal inflammation was assessed by administering APCP in a mouse model of dextran sulfate sodium salt (DSS)-induced colitis. Notably, it was found that CD73 expression was significantly increased in the colonic mucosal tissues of patients with UC. Blockade of CD73 inhibited the expression of pro-inflammatory cytokines but promoted the production of anti-inflammatory cytokines in macrophages, while its promotion of M2 macrophage polarization was also verified. In vivo, CD73 blockade markedly alleviated DSS-induced colitis in mice, as characterized by reduced weight loss, reduction in the incidence of diarrhea, and reduced amount of bloody stool. Mechanistically, it was shown that CD73 regulated macrophage differentiation via the NF-κB and ERK signaling pathways. In conclusion, the findings of the present study indicate that CD73 may have a potential impact on the pathogenesis of UC by modulating the immune response of macrophage differentiation; thus, providing a novel pathway for modulating mucosal inflammation in UC.
Collapse
Affiliation(s)
- Ru Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
- Institute of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yan Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Chao Wu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
- Institute of Clinical Medicine, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Guiyuan Jin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yonghong Yang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
- Correspondence to: Professor Guangxi Zhou, Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong 272000, P.R. China
| |
Collapse
|
12
|
Talhouni S, Fadhil W, Mongan NP, Field L, Hunter K, Makhsous S, Maciel-Guerra A, Kaur N, Nestarenkaite A, Laurinavicius A, Willcox BE, Dottorini T, Spendlove I, Jackson AM, Ilyas M, Ramage JM. Activated tissue resident memory T-cells (CD8+CD103+CD39+) uniquely predict survival in left sided "immune-hot" colorectal cancers. Front Immunol 2023; 14:1057292. [PMID: 37251410 PMCID: PMC10213916 DOI: 10.3389/fimmu.2023.1057292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Characterization of the tumour immune infiltrate (notably CD8+ T-cells) has strong predictive survival value for cancer patients. Quantification of CD8 T-cells alone cannot determine antigenic experience, as not all infiltrating T-cells recognize tumour antigens. Activated tumour-specific tissue resident memory CD8 T-cells (TRM) can be defined by the co-express of CD103, CD39 and CD8. We investigated the hypothesis that the abundance and localization of TRM provides a higher-resolution route to patient stratification. Methods A comprehensive series of 1000 colorectal cancer (CRC) were arrayed on a tissue microarray, with representative cores from three tumour locations and the adjacent normal mucosa. Using multiplex immunohistochemistry we quantified and determined the localization of TRM. Results Across all patients, activated TRM were an independent predictor of survival, and superior to CD8 alone. Patients with the best survival had immune-hot tumours heavily infiltrated throughout with activated TRM. Interestingly, differences between right- and left-sided tumours were apparent. In left-sided CRC, only the presence of activated TRM (and not CD8 alone) was prognostically significant. Patients with low numbers of activated TRM cells had a poor prognosis even with high CD8 T-cell infiltration. In contrast, in right-sided CRC, high CD8 T-cell infiltration with low numbers of activated TRM was a good prognosis. Conclusion The presence of high intra-tumoural CD8 T-cells alone is not a predictor of survival in left-sided CRC and potentially risks under treatment of patients. Measuring both high tumour-associated TRM and total CD8 T-cells in left-sided disease has the potential to minimize current under-treatment of patients. The challenge will be to design immunotherapies, for left-sided CRC patients with high CD8 T-cells and low activate TRM,that result in effective immune responses and thereby improve patient survival.
Collapse
Affiliation(s)
- Shahd Talhouni
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Wakkas Fadhil
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lara Field
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Kelly Hunter
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sogand Makhsous
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Nayandeep Kaur
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Ausrine Nestarenkaite
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Vilnius University, Vilnius, Lithuania
| | - Benjamin E. Willcox
- Birmingham Tissue Analytics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Ian Spendlove
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Andrew M. Jackson
- Host-Tumour Interactions Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammad Ilyas
- Academic Unit of Translational Medical Sciences, School of Medicine, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Judith M. Ramage
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| |
Collapse
|
13
|
Schädlich IS, Winzer R, Stabernack J, Tolosa E, Magnus T, Rissiek B. The role of the ATP-adenosine axis in ischemic stroke. Semin Immunopathol 2023:10.1007/s00281-023-00987-3. [PMID: 36917241 DOI: 10.1007/s00281-023-00987-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Joschi Stabernack
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
14
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
15
|
Pietrobon AJ, Andrejew R, Custódio RWA, Oliveira LDM, Scholl JN, Teixeira FME, de Brito CA, Glaser T, Kazmierski J, Goffinet C, Turdo AC, Yendo T, Aoki V, Figueiró F, Battastini AM, Ulrich H, Benard G, Duarte AJDS, Sato MN. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front Immunol 2022; 13:1012027. [PMID: 36248842 PMCID: PMC9562777 DOI: 10.3389/fimmu.2022.1012027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients’ cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Wesley Alberca Custódio
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliete Nathali Scholl
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department and Division of Infectious and Parasitic Diseases, Berlin Institute of Health, Berlin, Germany
| | - Anna Claudia Turdo
- Department and Division of Infectious and Parasitic Diseases, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Tatiana Yendo
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Fabricio Figueiró
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Maria Battastini
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gill Benard
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Alberto Jose da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Maria Notomi Sato,
| |
Collapse
|
16
|
Atlasy N, Bujko A, Bækkevold ES, Brazda P, Janssen-Megens E, Lundin KEA, Jahnsen J, Jahnsen FL, Stunnenberg HG. Single cell transcriptomic analysis of the immune cell compartment in the human small intestine and in Celiac disease. Nat Commun 2022; 13:4920. [PMID: 35995787 PMCID: PMC9395525 DOI: 10.1038/s41467-022-32691-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
Celiac disease is an autoimmune disorder in which ingestion of dietary gluten triggers an immune reaction in the small intestine leading to destruction of the lining epithelium. Current treatment focusses on lifelong adherence to a gluten-free diet. Gluten-specific CD4+ T cells and cytotoxic intraepithelial CD8+ T cells have been proposed to be central in disease pathogenesis. Here we use unbiased single-cell RNA-sequencing and explore the heterogeneity of CD45+ immune cells in the human small intestine. We show altered myeloid cell transcriptomes present in active celiac lesions. CD4+ and CD8+ T cells transcriptomes show extensive changes and we define a natural intraepithelial lymphocyte population that is reduced in celiac disease. We show that the immune landscape in Celiac patients on a gluten-free diet is only partially restored compared to control samples. Altogether, we provide a single cell transcriptomic resource that can inform the immune landscape of the small intestine during Celiac disease. Celiac disease is linked to responsiveness to dietary gluten, which manifests itself as immune cell activation and the immunopathology including destruction of the epithelium of the small intestine. Here the authors apply single cell transcriptomics to characterise the immune cell compartment of the human small intestine during active Celiac disease.
Collapse
Affiliation(s)
- Nader Atlasy
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Anna Bujko
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.,VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Peter Brazda
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Eva Janssen-Megens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,NimaGen B.V., 6500 AB, Nijmegen, The Netherlands
| | - Knut E A Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, 0372, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, 0450, Norway.,Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, 0372, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands. .,Princess Maxima Centre for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Fang F, Cao W, Mu Y, Okuyama H, Li L, Qiu J, Weyand CM, Goronzy JJ. IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression. JCI Insight 2022; 7:e157509. [PMID: 35730568 PMCID: PMC9309057 DOI: 10.1172/jci.insight.157509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Hirohisa Okuyama
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| | - Jingtao Qiu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Cornelia M. Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Jörg J. Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California, USA
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
- Department of Medicine/Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Kolbe K, Wittner M, Hartjen P, Hüfner AD, Degen O, Ackermann C, Cords L, Stellbrink HJ, Haag F, Schulze zur Wiesch J. Inversed Ratio of CD39/CD73 Expression on γδ T Cells in HIV Versus Healthy Controls Correlates With Immune Activation and Disease Progression. Front Immunol 2022; 13:867167. [PMID: 35529864 PMCID: PMC9074873 DOI: 10.3389/fimmu.2022.867167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background γδ T cells are unconventional T cells that have been demonstrated to be crucial for the pathogenesis and potentially for the cure of HIV-1 infection. The ectonucleotidase CD39 is part of the purinergic pathway that regulates immune responses by degradation of pro-inflammatory ATP in concert with CD73. Few studies on the expression of the ectoenzymes CD73 and CD39 on human γδ T cells in HIV have been performed to date. Methods PBMC of n=86 HIV-1-infected patients were compared to PBMC of n=26 healthy individuals using 16-color flow cytometry determining the surface expression of CD39 and CD73 on Vδ1 and Vδ2 T cells in association with differentiation (CD45RA, CD28, CD27), activation and exhaustion (TIGIT, PD-1, CD38, and HLA-DR), and assessing the intracellular production of pro- and anti-inflammatory cytokines (IL-2, TGF-ß, TNF-α, Granzyme B, IL-10, IFN-γ) after in vitro stimulation with PMA/ionomycin. Results CD39 and CD73 expression on γδ T cells were inversed in HIV infection which correlated with HIV disease progression and immune activation. CD39, but not CD73 expression on γδ T cells of ART-treated patients returned to levels comparable with those of healthy individuals. Only a small subset (<1%) of γδ T cells co-expressed CD39 and CD73 in healthy or HIV-infected individuals. There were significantly more exhausted and terminally differentiated CD39+ Vδ1 T cells regardless of the disease status. Functionally, IL-10 was only detectable in CD39+ γδ T cells after in vitro stimulation in all groups studied. Viremic HIV-infected patients showed the highest levels of IL-10 production. The highest percentage of IL-10+ cells was found in the small CD39/CD73 co-expressing γδ T-cell population, both in healthy and HIV-infected individuals. Also, CD39+ Vδ2 T cells produced IL-10 more frequently than their CD39+ Vδ1 counterparts in all individuals regardless of the HIV status. Conclusions Our results point towards a potential immunomodulatory role of CD39+ and CD73+ γδ T cells in the pathogenesis of chronic HIV infection that needs further investigation.
Collapse
Affiliation(s)
- Katharina Kolbe
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Melanie Wittner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
- *Correspondence: Melanie Wittner,
| | - Philip Hartjen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja-Dorothee Hüfner
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olaf Degen
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Infectious Diseases Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christin Ackermann
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze zur Wiesch
- First Department of Medicine, Section Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|
19
|
Oja AE, van Lier RAW, Hombrink P. Two sides of the same coin: Protective versus pathogenic CD4 + resident memory T cells. Sci Immunol 2022; 7:eabf9393. [PMID: 35394815 DOI: 10.1126/sciimmunol.abf9393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ability of the adaptive immune system to form memory is key to providing protection against secondary infections. Resident memory T cells (TRM) are specialized T cell populations that reside within tissue sites where they await reencounter with their cognate antigen. TRM are distinct from circulating memory cells, including central and effector memory T cells, both functionally and transcriptionally. Since the discovery of TRM, most research has focused on CD8+ TRM, despite that CD4+ TRM are also abundant in most tissues. In the past few years, more evidence has emerged that CD4+ TRM can contribute both protective and pathogenic roles in disease. A complexity inherent to the CD4+ TRM field is the ability of CD4+ T cells to polarize into a multitude of distinct subsets and recognize not only viruses and intracellular bacteria but also extracellular bacteria, fungi, and parasites. In this review, we outline the key features of CD4+ TRM in health and disease, including their contributions to protection against SARS-CoV-2 and potential contributions to immunopathology associated with COVID-19.
Collapse
Affiliation(s)
- Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A, Marson A, Wells JA. Hypoxia Is a Dominant Remodeler of the Effector T Cell Surface Proteome Relative to Activation and Regulatory T Cell Suppression. Mol Cell Proteomics 2022; 21:100217. [PMID: 35217172 PMCID: PMC9006863 DOI: 10.1016/j.mcpro.2022.100217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/02/2023] Open
Abstract
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture-based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.
Collapse
Affiliation(s)
- James R Byrnes
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Eric Shifrut
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA
| | - Julia Carnevale
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lisa Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA; Gladstone Institutes, San Francisco, California, USA; Department of Medicine, University of California, San Francisco, San Francisco, California, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
21
|
Díaz-García E, García-Tovar S, Alfaro E, Zamarrón E, Mangas A, Galera R, Ruíz-Hernández JJ, Solé-Violán J, Rodríguez-Gallego C, Van-Den-Rym A, Pérez-de-Diego R, Nanwani-Nanwani K, López-Collazo E, García-Rio F, Cubillos-Zapata C. Role of CD39 in COVID-19 Severity: Dysregulation of Purinergic Signaling and Thromboinflammation. Front Immunol 2022; 13:847894. [PMID: 35173744 PMCID: PMC8841513 DOI: 10.3389/fimmu.2022.847894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
CD39/NTPDase1 has emerged as an important molecule that contributes to maintain inflammatory and coagulatory homeostasis. Various studies have hypothesized the possible role of CD39 in COVID-19 pathophysiology since no confirmatory data shed light in this regard. Therefore, we aimed to quantify CD39 expression on COVID-19 patients exploring its association with severity clinical parameters and ICU admission, while unraveling the role of purinergic signaling on thromboinflammation in COVID-19 patients. We selected a prospective cohort of patients hospitalized due to severe COVID-19 pneumonia (n=75), a historical cohort of Influenza A pneumonia patients (n=18) and sex/age-matched healthy controls (n=30). CD39 was overexpressed in COVID-19 patients’ plasma and immune cell subsets and related to hypoxemia. Plasma soluble form of CD39 (sCD39) was related to length of hospital stay and independently associated with intensive care unit admission (adjusted odds ratio 1.04, 95%CI 1.0-1.08, p=0.038), with a net reclassification index of 0.229 (0.118-0.287; p=0.036). COVID-19 patients showed extracellular accumulation of adenosine nucleotides (ATP and ADP), resulting in systemic inflammation and pro-coagulant state, as a consequence of purinergic pathway dysregulation. Interestingly, we found that COVID-19 plasma caused platelet activation, which was successfully blocked by the P2Y12 receptor inhibitor, ticagrelor. Therefore, sCD39 is suggested as a promising biomarker for COVID-19 severity. As a conclusion, our study indicates that CD39 overexpression in COVID-19 patients could be indicating purinergic signaling dysregulation, which might be at the basis of COVID-19 thromboinflammation disorder.
Collapse
Affiliation(s)
- Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Ester Zamarrón
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Alberto Mangas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José Juan Ruíz-Hernández
- Department of Internal Medicine, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
| | - Jordi Solé-Violán
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Intensitive Care Medicine, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Departament of Immunology, Gran Canaria Dr Negrín University Hospital, Gran Canaria, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Ana Van-Den-Rym
- Laboratory of Immunogenetics of Human Diseases, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Rebeca Pérez-de-Diego
- Laboratory of Immunogenetics of Human Diseases, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Eduardo López-Collazo
- The Innate Immune Response Group, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
| | - Francisco García-Rio
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Francisco García-Rio, ; Carolina Cubillos-Zapata,
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, Instituto de Investigación Biomédica del Hospital Universitario la Paz (IdiPAZ), Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Francisco García-Rio, ; Carolina Cubillos-Zapata,
| |
Collapse
|
22
|
Aru B, Soltani M, Pehlivanoglu C, Gürlü E, Ganjalikhani-Hakemi M, Yanikkaya Demirel G. Comparison of Laboratory Methods for the Clinical Follow Up of Checkpoint Blockade Therapies in Leukemia: Current Status and Challenges Ahead. Front Oncol 2022; 12:789728. [PMID: 35155232 PMCID: PMC8829140 DOI: 10.3389/fonc.2022.789728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
The development of immune checkpoint inhibitors, the monoclonal antibodies that modulate the interaction between immune checkpoint molecules or their ligands on the immune cells or tumor tissue has revolutionized cancer treatment. While there are various studies proving their efficacy in hematological malignancies, there is also a body of accumulating evidence indicating that immune checkpoint inhibitors' clinical benefits are limited in such diseases. In addition, due to their regulatory nature that balances the immune responses, blockade of immune checkpoints may lead to toxic side effects and autoimmune responses, and even primary or acquired resistance mechanisms may restrict their success. Thus, the need for laboratory biomarkers to identify and monitor patient populations who are more likely respond to this type of therapy and the management of side effects seem critical. However, guidelines regarding the use of immune checkpoint inhibitors in hematological cancers and during follow-up are limited while there is no consensus on the laboratory parameters to be investigated for safety and efficacy of the treatment. This review aims to provide an insight into recent information on predictive and prognostic value of biomarkers and laboratory tests for the clinical follow up of hematological malignancies, with an emphasis on leukemia.
Collapse
Affiliation(s)
- Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Cemil Pehlivanoglu
- Department of Emergency Medicine, Hatay Training and Research Hospital, Antakya, Turkey
| | - Ege Gürlü
- Faculty of Medicine 4Year Student, Yeditepe University, Istanbul, Turkey
| | | | | |
Collapse
|
23
|
Li S, Zhuang S, Heit A, Koo SL, Tan AC, Chow IT, Kwok WW, Tan IB, Tan DS, Simoni Y, Newell EW. Bystander CD4 + T cells infiltrate human tumors and are phenotypically distinct. Oncoimmunology 2022; 11:2012961. [PMID: 36524209 PMCID: PMC9746624 DOI: 10.1080/2162402x.2021.2012961] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific T cells likely underpin effective immune checkpoint-blockade therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating lymphocytes (TILs). Here, we study CD4+ TILs in human lung and colorectal cancers and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in both cancer types. Leveraging high dimensional analyses including mass cytometry, we reveal that CD4+ TILs are phenotypically heterogeneous, within each tumor and across patients. Consistently, we find different subsets of CD4+ TILs showing characteristics of effectors, tissue resident memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both cancer types, the frequencies of CD39- non-Treg CD4+ TILs strongly correlate with frequencies of CD39- CD8+ TILs, which we and others have previously shown to be enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we demonstrate that CD39- CD4+ TILs can be specific for cancer-unrelated antigens, such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs can also recognize cancer-unrelated antigens and suggest measuring CD39 expression as a straightforward way to quantify or isolate bystander CD4+ T cells.
Collapse
Affiliation(s)
- Shamin Li
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Summer Zhuang
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Antja Heit
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA
| | - Si-Lin Koo
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - Aaron C. Tan
- Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | - I-Ting Chow
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - William W. Kwok
- Agency for Science Technology and Research (A*Star), Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore,Division of Medical Oncology, National Cancer Centre Singapore (NCCS), Singapore, Singapore
| | | | - Yannick Simoni
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Université de Paris, Institut Cochin INSERM U1016, Paris, France,CONTACT Yannick Simoni Université de Paris, Institut Cochin INSERM U1016, 22 Rue Mechain, Paris75014, France
| | - Evan W. Newell
- Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, Washington, USA,Evan W. Newell Fred Hutch Cancer Research Center, Vaccine and Infectious Disease Division, 1100 Fairview Ave. N., Mail Stop S2-204, Seattle, WA98109, USA
| |
Collapse
|
24
|
Interleukin-27 in liver xenotransplantation: A rational target to mitigate ischemia reperfusion injury and increase xenograft survival. Transplant Rev (Orlando) 2021; 36:100674. [PMID: 34861509 PMCID: PMC10072133 DOI: 10.1016/j.trre.2021.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
Transplantation of xenogeneic organs is an attractive solution to the existing organ shortage dilemma, thus, securing a clinically acceptable prolongation of xenograft survival is an important goal. In preclinical transplantation models, recipients of liver, kidney, heart, or lung xenotransplants demonstrate significant graft damages through the release of pro-inflammatory molecules, including the C-reactive protein, cytokines, and histone-DNA complexes that all foster graft rejection. Recent studies have demonstrated that mitigation of ischemia reperfusion injury (IRI) greatly improves xenograft survival. Organ IRI develops primarily on a complex network of cytokines and chemokines responding to molecular cues from the graft milieu. Among these, interleukin 27 (IL-27) plays an immunomodulatory role in IRI onset due to graft environment-dependent pro- and anti- inflammatory activities. This review focuses on the impact of IL-27 on IRI of liver xenotransplants and provides insights on the function of IL-27 that could potentially guide genetic engineering strategies of donor pigs and/or conditioning of organs prior to transplantation.
Collapse
|
25
|
Schneider E, Winzer R, Rissiek A, Ricklefs I, Meyer-Schwesinger C, Ricklefs FL, Bauche A, Behrends J, Reimer R, Brenna S, Wasielewski H, Lauten M, Rissiek B, Puig B, Cortesi F, Magnus T, Fliegert R, Müller CE, Gagliani N, Tolosa E. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression. Nat Commun 2021; 12:5911. [PMID: 34625545 PMCID: PMC8501027 DOI: 10.1038/s41467-021-26134-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology & Allergology, University Medical Center Schleswig-Holstein, 23538, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research, Lübeck, Germany
| | - Catherine Meyer-Schwesinger
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Andreas Bauche
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, 23845, Borstel, Germany
| | - Rudolph Reimer
- Technology Platform Microscopy and Image Analysis, Heinrich Pette Institute/Leibniz Institute for Experimental Virology, 20251, Hamburg, Germany
| | - Santra Brenna
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hauke Wasielewski
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Melchior Lauten
- Department of Pediatrics and Adolescent Medicine, University of Lübeck, 23538, Lübeck, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Filippo Cortesi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ralf Fliegert
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
26
|
Modabber Z, Shahbazi M, Akbari R, Bagherzadeh M, Firouzjahi A, Mohammadnia-Afrouzi M. TIM-3 as a potential exhaustion marker in CD4 + T cells of COVID-19 patients. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1707-1715. [PMID: 34499819 PMCID: PMC8589347 DOI: 10.1002/iid3.526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Background COVID‐19 causes a range of clinical symptoms from mild to critical and can be life‐threatening. Up to now, it has led to many deaths. We aimed to evaluate exhausted markers on CD4+ T cells of COVID‐19 patients. Methods In this study, we evaluated 44 patients with confirmed COVID‐19 disease and 16 healthy individuals. Patients were divided into moderate/severe and critical groups. Peripheral blood mononuclear cells (PBMCs) were isolated and stained by anti‐human CD39, PD‐1, TIM‐3, and anti‐human CD4. The percentage of each CD4+ subpopulation was calculated by flow cytometry. Furthermore, we collected clinical information and laboratory data of both control and patient groups. Results We detected overexpression of TIM‐3 on CD4+ T cells in both critical and moderate/severe patients than in healthy individuals (HIs; p < .01 and p < .0001, respectively). CD4+ TIM‐3+ CD39+ lymphocytes were significantly higher in the critical patients than in HI (p < .05). Both Patient groups showed lymphopenia in comparison with HI, but CD4+ lymphocytes did not show any significant difference between study subjects. The increased amount of C‐reactive protein, erythrocyte sedimentation rate, creatinine, blood urea nitrogen, and neutrophil count was observed in patients compared to HI. Conclusion T cell exhaustion occurs during COVID‐19 disease and TIM‐3 is the most important exhausted marker on CD4+ T cells.
Collapse
Affiliation(s)
- Zahra Modabber
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Shahbazi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Akbari
- Department of Internal Medicine, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojgan Bagherzadeh
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Firouzjahi
- Department of Pathology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
CD39 Regulation and Functions in T Cells. Int J Mol Sci 2021; 22:ijms22158068. [PMID: 34360833 PMCID: PMC8348030 DOI: 10.3390/ijms22158068] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
CD39 is an enzyme which is responsible, together with CD73, for a cascade converting adenosine triphosphate into adenosine diphosphate and cyclic adenosine monophosphate, ultimately leading to the release of an immunosuppressive form of adenosine in the tumor microenvironment. Here, we first review the environmental and genetic factors shaping CD39 expression. Second, we report CD39 functions in the T cell compartment, highlighting its role in regulatory T cells, conventional CD4+ T cells and CD8+ T cells. Finally, we compile a list of studies, from preclinical models to clinical trials, which have made essential contributions to the discovery of novel combinatorial approaches in the treatment of cancer.
Collapse
|
28
|
O’Connor RA, Chauhan V, Mathieson L, Titmarsh H, Koppensteiner L, Young I, Tagliavini G, Dorward DA, Prost S, Dhaliwal K, Wallace WA, Akram AR. T cells drive negative feedback mechanisms in cancer associated fibroblasts, promoting expression of co-inhibitory ligands, CD73 and IL-27 in non-small cell lung cancer. Oncoimmunology 2021; 10:1940675. [PMID: 34290905 PMCID: PMC8274440 DOI: 10.1080/2162402x.2021.1940675] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
The success of immune checkpoint therapy shows tumor-reactive T cells can eliminate cancer cells but are restrained by immunosuppression within the tumor micro-environment (TME). Cancer associated fibroblasts (CAFs) are the dominant stromal cell in the TME and co-localize with T cells in non-small cell lung cancer. We demonstrate the bidirectional nature of CAF/T cell interactions; T cells promote expression of co-inhibitory ligands, MHC molecules and CD73 on CAFs, increasing their production of IL-6 and eliciting production of IL-27. In turn CAFs upregulate co-inhibitory receptors on T cells including the ectonucleotidase CD39 promoting development of an exhausted but highly cytotoxic phenotype. Our results highlight the bidirectional interaction between T cells and CAFs in promoting components of the immunosuppressive CD39, CD73 adenosine pathway and demonstrate IL-27 production can be induced in CAF by activated T cells.
Collapse
Affiliation(s)
- Richard A O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Vishwani Chauhan
- Edinburgh Medical School, The Chancellor’s Building, University of Edinburgh, Edinburgh, UK
| | - Layla Mathieson
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Helen Titmarsh
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Irene Young
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Guilia Tagliavini
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sandrine Prost
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Pathology, The Chancellor’s Building, University of Edinburgh, Edinburgh, UK
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - William A Wallace
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
- Department of Pathology, The Chancellor’s Building, University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Sun D, Ko MK, Shao H, Kaplan HJ. Augmented Th17-stimulating activity of BMDCs as a result of reciprocal interaction between γδ and dendritic cells. Mol Immunol 2021; 134:13-24. [PMID: 33689926 PMCID: PMC8629029 DOI: 10.1016/j.molimm.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States.
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
30
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
31
|
Briceño P, Rivas-Yañez E, Rosemblatt MV, Parra-Tello B, Farías P, Vargas L, Simon V, Cárdenas C, Lladser A, Salazar-Onfray F, Elorza AA, Rosemblatt M, Bono MR, Sauma D. CD73 Ectonucleotidase Restrains CD8+ T Cell Metabolic Fitness and Anti-tumoral Activity. Front Cell Dev Biol 2021; 9:638037. [PMID: 33681221 PMCID: PMC7930398 DOI: 10.3389/fcell.2021.638037] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
CD39 and CD73 are ectoenzymes that dephosphorylate ATP into its metabolites; ADP, AMP, and adenosine, and thus are considered instrumental in the development of immunosuppressive microenvironments. We have previously shown that within the CD8+ T cell population, naïve and memory cells express the CD73 ectonucleotidase, while terminally differentiated effector cells are devoid of this enzyme. This evidence suggests that adenosine might exert an autocrine effect on CD8+ T cells during T cell differentiation. To study the possible role of CD73 and adenosine during this process, we compared the expression of the adenosinergic signaling components, the phenotype, and the functional properties between CD73-deficient and WT CD8+ T cells. Upon activation, we observed an upregulation of CD73 expression in CD8+ T cells along with an upregulation of the adenosine A2A receptor. Interestingly, when we differentiated CD8+ T cells to Tc1 cells in vitro, we observed that these cells produce adenosine and that CD73-deficient cells present a higher cytotoxic potential evidenced by an increase in IFN-γ, TNF-α, and granzyme B production. Moreover, CD73-deficient cells presented a increased glucose uptake and higher mitochondrial respiration, indicating that this ectonucleotidase restrict the mitochondrial capacity in CD8+ T cells. In agreement, when adoptively transferred, antigen-specific CD73-deficient CD8+ T cells were more effective in reducing the tumor burden in B16.OVA melanoma-bearing mice and presented lower levels of exhaustion markers than wild type cells. All these data suggest an autocrine effect of CD73-mediated adenosine production, limiting differentiation and cytotoxic T cells' metabolic fitness.
Collapse
Affiliation(s)
- Pedro Briceño
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elizabeth Rivas-Yañez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Mariana V Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Brian Parra-Tello
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paula Farías
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Leonardo Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Valeska Simon
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - César Cárdenas
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Alvaro Lladser
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Hartmann FJ, Mrdjen D, McCaffrey E, Glass DR, Greenwald NF, Bharadwaj A, Khair Z, Verberk SGS, Baranski A, Baskar R, Graf W, Van Valen D, Van den Bossche J, Angelo M, Bendall SC. Single-cell metabolic profiling of human cytotoxic T cells. Nat Biotechnol 2021; 39:186-197. [PMID: 32868913 PMCID: PMC7878201 DOI: 10.1038/s41587-020-0651-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Cellular metabolism regulates immune cell activation, differentiation and effector functions, but current metabolic approaches lack single-cell resolution and simultaneous characterization of cellular phenotype. In this study, we developed an approach to characterize the metabolic regulome of single cells together with their phenotypic identity. The method, termed single-cell metabolic regulome profiling (scMEP), quantifies proteins that regulate metabolic pathway activity using high-dimensional antibody-based technologies. We employed mass cytometry (cytometry by time of flight, CyTOF) to benchmark scMEP against bulk metabolic assays by reconstructing the metabolic remodeling of in vitro-activated naive and memory CD8+ T cells. We applied the approach to clinical samples and identified tissue-restricted, metabolically repressed cytotoxic T cells in human colorectal carcinoma. Combining our method with multiplexed ion beam imaging by time of flight (MIBI-TOF), we uncovered the spatial organization of metabolic programs in human tissues, which indicated exclusion of metabolically repressed immune cells from the tumor-immune boundary. Overall, our approach enables robust approximation of metabolic and functional states in individual cells.
Collapse
Affiliation(s)
- Felix J Hartmann
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Dunja Mrdjen
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Erin McCaffrey
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
- Immunology Graduate Program, Stanford University, Palo Alto, CA, USA
| | - David R Glass
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
- Immunology Graduate Program, Stanford University, Palo Alto, CA, USA
| | - Noah F Greenwald
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Anusha Bharadwaj
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Zumana Khair
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alex Baranski
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Reema Baskar
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - William Graf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Van Valen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michael Angelo
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Sean C Bendall
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
34
|
Kamata-Sakurai M, Narita Y, Hori Y, Nemoto T, Uchikawa R, Honda M, Hironiwa N, Taniguchi K, Shida-Kawazoe M, Metsugi S, Miyazaki T, Wada NA, Ohte Y, Shimizu S, Mikami H, Tachibana T, Ono N, Adachi K, Sakiyama T, Matsushita T, Kadono S, Komatsu SI, Sakamoto A, Horikawa S, Hirako A, Hamada K, Naoi S, Savory N, Satoh Y, Sato M, Noguchi Y, Shinozuka J, Kuroi H, Ito A, Wakabayashi T, Kamimura M, Isomura F, Tomii Y, Sawada N, Kato A, Ueda O, Nakanishi Y, Endo M, Jishage KI, Kawabe Y, Kitazawa T, Igawa T. Antibody to CD137 Activated by Extracellular Adenosine Triphosphate Is Tumor Selective and Broadly Effective In Vivo without Systemic Immune Activation. Cancer Discov 2021; 11:158-175. [PMID: 32847940 DOI: 10.1158/2159-8290.cd-20-0328] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/09/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Mika Kamata-Sakurai
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan.
| | - Yoshinori Narita
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Yuji Hori
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Takayuki Nemoto
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Ryo Uchikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Naoka Hironiwa
- Chugai Pharmabody Research Pte. Ltd., Synapse, Singapore
| | - Kenji Taniguchi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Meiri Shida-Kawazoe
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shoichi Metsugi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Taro Miyazaki
- Clinical Development Division, Chugai Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Naoko A Wada
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yuki Ohte
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Shun Shimizu
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Hirofumi Mikami
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Natsuki Ono
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Kenji Adachi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tetsushi Sakiyama
- Pharmaceutical Technology Division, Chugai Pharmaceutical Co., Ltd., Kita-ku, Tokyo, Japan
| | - Tomochika Matsushita
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shojiro Kadono
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Shun-Ichiro Komatsu
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Akihisa Sakamoto
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Sayuri Horikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Ayano Hirako
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Koki Hamada
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Sotaro Naoi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Nasa Savory
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yasuko Satoh
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Motohiko Sato
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yuki Noguchi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Junko Shinozuka
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Haruka Kuroi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Ami Ito
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tetsuya Wakabayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Masaki Kamimura
- Chugai Research Institute for Medical Science, Inc., Kamakura, Kanagawa, Japan
| | - Fumihisa Isomura
- Chugai Research Institute for Medical Science, Inc., Gotemba, Shizuoka, Japan
| | - Yasushi Tomii
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Noriaki Sawada
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Atsuhiko Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Otoya Ueda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshito Nakanishi
- Project & Lifecycle Management Unit, Chugai Pharmaceutical Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Mika Endo
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kou-Ichi Jishage
- Chugai Research Institute for Medical Science, Inc., Kamakura, Kanagawa, Japan
- Chugai Research Institute for Medical Science, Inc., Gotemba, Shizuoka, Japan
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Tomoyuki Igawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
- Chugai Pharmabody Research Pte. Ltd., Synapse, Singapore
| |
Collapse
|
35
|
Gallerano D, Ciminati S, Grimaldi A, Piconese S, Cammarata I, Focaccetti C, Pacella I, Accapezzato D, Lancellotti F, Sacco L, Caronna R, Melaiu O, Fruci D, D'Oria V, Manzi E, Sagnotta A, Parrino C, Coletta D, Peruzzi G, Terenzi V, Battisti A, Cassoni A, Fadda MT, Brozzetti S, Fazzi K, Grazi GL, Valentini V, Chirletti P, Polimeni A, Barnaba V, Timperi E. Genetically driven CD39 expression shapes human tumor-infiltrating CD8 + T-cell functions. Int J Cancer 2020; 147:2597-2610. [PMID: 32483858 DOI: 10.1002/ijc.33131] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
In our study, we investigated the role of CD39 on tumor-infiltrating CD8+ T lymphocytes (CD8+ TILs) in colorectal, head and neck and pancreatic cancers. Partially confirming recent observations correlating the CD39 expression with T-cell exhaustion, we demonstrated a divergent functional activity in CD39+ CD8+ TILs. On the one hand, CD39+ CD8+ TILs (as compared to their CD39- counterparts) produced significantly lower IFN-γ and IL-2 amounts, expressed higher PD-1, and inversely correlated with perforin and granzyme B expression. On the other, they displayed a significantly higher proliferative capacity ex vivo that was inversely correlated with the PD-1 expression. Therefore, CD39+ CD8+ TILs, including those co-expressing the CD103 (a marker of T resident memory [TRM] cells), were defined as partially dysfunctional T cells that correlate with tumor patients with initial progression stages. Interestingly, our results identified for the first time a single nucleotide polymorphism (SNP rs10748643 A>G), as a genetic factor associated with CD39 expression in CD8+ TILs. Finally, we demonstrated that compounds inhibiting CD39-related ATPases improved CD39+ CD8+ T-cell effector function ex vivo, and that CD39+ CD8+ TILs displayed effective suppression function in vitro. Overall these data suggest that the SNP analysis may represent a suitable predictor of CD39+ CD8+ T-cell expression in cancer patients, and propose the modulation of CD39 as a new strategy to restore partially exhausted CD8+ TILs.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Apyrase/antagonists & inhibitors
- Apyrase/genetics
- Apyrase/metabolism
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Nivolumab/pharmacology
- Nivolumab/therapeutic use
- Polymorphism, Single Nucleotide
- Primary Cell Culture
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Daniela Gallerano
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Selina Ciminati
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessio Grimaldi
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Rome, Italy
| | - Ilenia Cammarata
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Chiara Focaccetti
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Accapezzato
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Lancellotti
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Luca Sacco
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Roberto Caronna
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Ombretta Melaiu
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Doriana Fruci
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy, Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Emy Manzi
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sagnotta
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Parrino
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Diego Coletta
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Valentina Terenzi
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Andrea Battisti
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Andrea Cassoni
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Maria Teresa Fadda
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Stefania Brozzetti
- Dipartimento di Chirurgia "Pietro Valdoni", "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Katia Fazzi
- Dipartimento di Chirurgia "Pietro Valdoni", "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary Pancreatic Surgery IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentino Valentini
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Piero Chirletti
- Dipartimento di Scienze Chirurgiche, "Sapienza" Università di Roma, Policlinico Umberto I, Rome, Italy
| | - Antonella Polimeni
- Odontostomatogical and Maxillo-facial Sciences Department, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Barnaba
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Rome, Italy
| | - Eleonora Timperi
- Department of Internal Clinical, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- INSERM U932, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
36
|
Libera J, Wittner M, Kantowski M, Woost R, Eberhard JM, de Heer J, Reher D, Huber S, Haag F, Schulze Zur Wiesch J. Decreased Frequency of Intestinal CD39 + γδ + T Cells With Tissue-Resident Memory Phenotype in Inflammatory Bowel Disease. Front Immunol 2020; 11:567472. [PMID: 33072107 PMCID: PMC7541837 DOI: 10.3389/fimmu.2020.567472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
The ectoenzymes CD39 and CD73 play a major role in controlling tissue inflammation by regulating the balance between adenosine triphosphate (ATP) and adenosine. Still, little is known about the role of these two enzymes and ATP and its metabolites in the pathophysiology of inflammatory bowel disease (IBD). We isolated mononuclear cells from peripheral blood and lamina propria of the large intestine of patients diagnosed with IBD and of healthy volunteers. We then comprehensively analyzed the CD39 and CD73 expression patterns together with markers of activation (HLA-DR, CD38), differentiation (CCR7, CD45RA) and tissue-residency (CD69, CD103, CD49a) on CD4+, CD8+, γδ+ T cells and mucosa-associated invariant T cells using flow cytometry. CD39 expression levels of γδ+ and CD8+ T cells in lamina propria lymphocytes (LPL) were much higher compared to peripheral blood mononuclear cells. Moreover, the frequency of CD39+ CD4+ and CD8+, but not γδ+ LPL positively correlated with T-cell activation. The frequency of CD39+ cells among tissue-resident memory LPL (Trm) was higher compared to non-Trm for all subsets, confirming that CD39 is a marker for the tissue-resident memory phenotype. γδ+ Trm also showed a distinct cytokine profile upon stimulation – the frequency of IFN-γ+ and IL-17A+ cells was significantly lower in γδ+ Trm compared to non-Trm. Interestingly, we observed a decreased frequency of CD39+ γδ+ T cells in IBD patients compared to healthy controls (p = 0.0049). Prospective studies need to elucidate the exact role of this novel CD39+ γδ+ T-cell population with tissue-resident memory phenotype and its possible contribution to the pathogenesis of IBD and other inflammatory disorders.
Collapse
Affiliation(s)
- Jana Libera
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Wittner
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Marcus Kantowski
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Woost
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Johanna M Eberhard
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| | - Jocelyn de Heer
- Clinic and Polyclinic for Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Reher
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Medicine, Infectious Disease Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg Lübeck Borstel Riems, Hamburg, Germany
| |
Collapse
|
37
|
Khalsa JK, Cheng N, Keegan J, Chaudry A, Driver J, Bi WL, Lederer J, Shah K. Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types. Nat Commun 2020; 11:3912. [PMID: 32764562 PMCID: PMC7411074 DOI: 10.1038/s41467-020-17704-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, however, its efficacy in highly malignant brain-tumors, glioblastomas (GBM), is limited. Here, we generate distinct imageable syngeneic mouse GBM-tumor models and utilize RNA-sequencing, CyTOF and correlative immunohistochemistry to assess immune-profiles in these models. We identify immunologically-inert and -active syngeneic-tumor types and show that inert tumors have an immune-suppressive phenotype with numerous exhausted CD8 T cells and resident macrophages; fewer eosinophils and SiglecF+ macrophages. To mimic the clinical-settings of first line of GBM-treatment, we show that tumor-resection invigorates an anti-tumor response via increasing T cells, activated microglia and SiglecF+ macrophages and decreasing resident macrophages. A comparative CyTOF analysis of resected-tumor samples from GBM-patients and mouse GBM-tumors show stark similarities in one of the mouse GBM-tumors tested. These findings guide informed choices for use of GBM models for immunotherapeutic interventions and offer a potential to facilitate immune-therapies in GBM patients. Syngeneic mouse models for glioblastoma (GBM) cannot fully recapitulate clinical findings and response to therapy in patients. Here the authors perform a comprehensive immune profiling of different syngeneic GBM tumour models and compare it with the immune landscape of GBM patients to identify similarities and potential confounding differences.
Collapse
Affiliation(s)
- Jasneet Kaur Khalsa
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nina Cheng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joshua Keegan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ameen Chaudry
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph Driver
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - James Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
38
|
Turner RJ, Geraghty NJ, Williams JG, Ly D, Brungs D, Carolan MG, Guy TV, Watson D, de Leon JF, Sluyter R. Comparison of peripheral blood mononuclear cell isolation techniques and the impact of cryopreservation on human lymphocytes expressing CD39 and CD73. Purinergic Signal 2020; 16:389-401. [PMID: 32754836 DOI: 10.1007/s11302-020-09714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
CD39 and CD73 are ecto-nucleotidases present on human peripheral blood mononuclear cells (PBMCs) and are emerging biomarkers on these cells in various disorders including cancer. Many factors influence PBMC quality, so it is essential to validate sample processing methods prior to incorporation in clinical studies. This study examined the impact of both PBMC cryopreservation and PBMC isolation using SepMate density gradient centrifugation on CD39 and CD73 expressing subsets. First, PBMCs were isolated from the peripheral blood of 11 healthy donors by routine Ficoll-Paque density gradient centrifugation, cryopreserved and compared with freshly isolated PBMCs by flow cytometry. The proportions of T and B cells expressing combinations of CD39 and CD73 were relatively stable over 6-month cryopreservation, although some T cell combinations revealed small but significant changes. Second, peripheral blood was collected from six healthy donors to compare PBMCs isolated by SepMate or Ficoll-Paque density gradient centrifugation. Compared with Ficoll-Paque, the more rapid SepMate method yielded 9.1% less PBMCs but did not alter cell viability or proportions of T and B cells expressing combinations of CD39 and CD73. The present study reveals that cryopreservation is suitable for studying T and B cells expressing combinations of CD39 and CD73. However, caution should be exercised when observing small differences in these cryopreserved subsets between different cohorts. Further, SepMate and Ficoll-Paque methods of PBMC isolation show similar results for T and B cell subset analysis; however, SepMate is a faster and easier approach.
Collapse
Affiliation(s)
- Ross J Turner
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,CONCERT - Centre for Oncology Education and Research Translation, Liverpool, NSW, 2170, Australia
| | - Nicholas J Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jonathan G Williams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Daniel Brungs
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,CONCERT - Centre for Oncology Education and Research Translation, Liverpool, NSW, 2170, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Martin G Carolan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,CONCERT - Centre for Oncology Education and Research Translation, Liverpool, NSW, 2170, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Thomas V Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.,CONCERT - Centre for Oncology Education and Research Translation, Liverpool, NSW, 2170, Australia
| | - Jeremiah F de Leon
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia.,GenesisCare, St Vincent's Clinic, Darlinghurst, NSW, 2010, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,CONCERT - Centre for Oncology Education and Research Translation, Liverpool, NSW, 2170, Australia.
| |
Collapse
|
39
|
Cao W, Fang F, Gould T, Li X, Kim C, Gustafson C, Lambert S, Weyand CM, Goronzy JJ. Ecto-NTPDase CD39 is a negative checkpoint that inhibits follicular helper cell generation. J Clin Invest 2020; 130:3422-3436. [PMID: 32452837 PMCID: PMC7324201 DOI: 10.1172/jci132417] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccination is a mainstay in preventive medicine, reducing morbidity and mortality from infection, largely by generating pathogen-specific neutralizing antibodies. However, standard immunization strategies are insufficient with increasing age due to immunological impediments, including defects in T follicular helper (Tfh) cells. Here, we found that Tfh generation is inversely linked to the expression of the ecto-NTPDase CD39 that modifies purinergic signaling. The lineage-determining transcription factor BCL6 inhibited CD39 expression, while increased Tfh frequencies were found in individuals with a germline polymorphism preventing transcription of ENTPD1, encoding CD39. In in vitro human and in vivo mouse studies, Tfh generation and germinal center responses were enhanced by reducing CD39 expression through the inhibition of the cAMP/PKA/p-CREB pathway, or by blocking adenosine signaling downstream of CD39 using the selective adenosine A2a receptor antagonist istradefylline. Thus, purinergic signaling in differentiating T cells can be targeted to improve vaccine responses, in particular in older individuals who have increased CD39 expression.
Collapse
|
40
|
Workel HH, van Rooij N, Plat A, Spierings DC, Fehrmann RSN, Nijman HW, de Bruyn M. Transcriptional Activity and Stability of CD39+CD103+CD8+ T Cells in Human High-Grade Endometrial Cancer. Int J Mol Sci 2020; 21:E3770. [PMID: 32471032 PMCID: PMC7312498 DOI: 10.3390/ijms21113770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor-infiltrating CD8+ T cells (TIL) are of the utmost importance in anti-tumor immunity. CD103 defines tumor-resident memory T cells (TRM cells) associated with improved survival and response to immune checkpoint blockade (ICB) across human tumors. Co-expression of CD39 and CD103 marks tumor-specific TRM with enhanced cytolytic potential, suggesting that CD39+CD103+ TRM could be a suitable biomarker for immunotherapy. However, little is known about the transcriptional activity of TRM cells in situ. We analyzed CD39+CD103+ TRM cells sorted from human high-grade endometrial cancers (n = 3) using mRNA sequencing. Cells remained untreated or were incubated with PMA/ionomycin (activation), actinomycin D (a platinum-like chemotherapeutic that inhibits transcription), or a combination of the two. Resting CD39+CD103+ TRM cells were transcriptionally active and expressed a characteristic TRM signature. Activated CD39+CD103+ TRM cells differentially expressed PLEK, TWNK, and FOS, and cytokine genes IFNG, TNF, IL2, CSF2 (GM-CSF), and IL21. Findings were confirmed using qPCR and cytokine production was validated by flow cytometry of cytotoxic TIL. We studied transcript stability and found that PMA-responsive genes and mitochondrial genes were particularly stable. In conclusion, CD39+CD103+ TRM cells are transcriptionally active TRM cells with a polyfunctional, reactivation-responsive repertoire. Secondly, we hypothesize that differential regulation of transcript stability potentiates rapid responses upon TRM reactivation in tumors.
Collapse
Affiliation(s)
- Hagma H. Workel
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Nienke van Rooij
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Annechien Plat
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Rudolf S. N. Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Hans W. Nijman
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| | - Marco de Bruyn
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.H.W.); (N.v.R.); (A.P.); (H.W.N.)
| |
Collapse
|
41
|
Alam MS, Cavanaugh C, Pereira M, Babu U, Williams K. Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int J Med Microbiol 2020; 310:151397. [PMID: 31974050 DOI: 10.1016/j.ijmm.2020.151397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022] Open
Abstract
Foodborne Listeria monocytogenes (Lm) causes serious illness and death in immunosuppressed hosts, including the elderly population. We investigated Lm susceptibility and inflammatory cytokines in geriatric mice. Young-adult and old mice were gavaged with a Lm strain Lmo-InlAm. Tissues were assayed for Lm burden and splenocytes were analyzed for Th1/Th2/Th17/Treg responses and expression of CD39 and CD73. Old Lm-infected mice lost body-weight dose-dependently, had higher Lm colonization, and showed higher inflammatory responses than Lm-infected young-adult mice. After infection, IL-17 levels increased significantly in old mice whereas IFN-γ levels were unchanged. Levels of IL-10 and Treg cells were increased in infected old mice as compared to infected young-adult mice. Age-dependent enhanced expression of CD39/CD73 was observed in purified Treg prior to infection, suggesting increased baseline adenosine production in old mice. Lm lysate-treated splenocytes from older mice produced significantly higher levels of IL-10, IL17, and IL-1β, produced less IFN-γ and IL-2, and proliferated less than splenocytes from young-adult mice. Data suggests that older mice maybe more susceptible to Lm infection due to an imbalance of Th cell responses with disproportionate and persistent anti-inflammatory responses. Lm infection enhanced differentiation of proinflammatory Th17 cells, which may also exacerbate pathological responses during listeriosis.
Collapse
Affiliation(s)
- M Samiul Alam
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA.
| | - Christopher Cavanaugh
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marion Pereira
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Uma Babu
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| | - Kristina Williams
- Immunobiology Branch, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, 20708, USA
| |
Collapse
|
42
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
43
|
Shih YRV, Liu M, Kwon SK, Iida M, Gong Y, Sangaj N, Varghese S. Dysregulation of ectonucleotidase-mediated extracellular adenosine during postmenopausal bone loss. SCIENCE ADVANCES 2019; 5:eaax1387. [PMID: 31457100 PMCID: PMC6703860 DOI: 10.1126/sciadv.aax1387] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/12/2019] [Indexed: 05/25/2023]
Abstract
Adenosine and its receptors play a key role in bone homeostasis and regeneration. Extracellular adenosine is generated from CD39 and CD73 activity in the cell membrane, through conversion of adenosine triphosphate to adenosine monophosphate (AMP) and AMP to adenosine, respectively. Despite the relevance of CD39/CD73 to bone health, the roles of these enzymes in bona fide skeletal disorders remain unknown. We demonstrate that CD39/CD73 expression and extracellular adenosine levels in the bone marrow are substantially decreased in animals with osteoporotic bone loss. Knockdown of estrogen receptors ESR1 and ESR2 in primary osteoprogenitors and osteoclasts undergoing differentiation showed decreased coexpression of membrane-bound CD39 and CD73 and lower extracellular adenosine. Targeting the adenosine A2B receptor using an agonist attenuated bone loss in ovariectomized mice. Together, these findings suggest a pathological association of purine metabolism with estrogen deficiency and highlight the potential of A2B receptor as a target to treat osteoporosis.
Collapse
Affiliation(s)
- Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Mengqian Liu
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Seong Keun Kwon
- Department of Otorhinolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | | | - Ya Gong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nivedita Sangaj
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
44
|
Schneider E, Rissiek A, Winzer R, Puig B, Rissiek B, Haag F, Mittrücker HW, Magnus T, Tolosa E. Generation and Function of Non-cell-bound CD73 in Inflammation. Front Immunol 2019; 10:1729. [PMID: 31404305 PMCID: PMC6676417 DOI: 10.3389/fimmu.2019.01729] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Damasio MP, Rocha MO, Sousa GR, Ferreira KS, Fares-Gusmão RC, Medeiros NI, Araujo FF, Chaves AT, Dutra WO, Correa-Oliveira R, Gomes JA. PD1 and PDL1 molecules control suppressor activity of regulatory T cells in chronic Chagas cardiomyopathy patients. Hum Immunol 2019; 80:517-522. [DOI: 10.1016/j.humimm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
|
46
|
van Duijn J, van Elsas M, Benne N, Depuydt M, Wezel A, Smeets H, Bot I, Jiskoot W, Kuiper J, Slütter B. CD39 identifies a microenvironment-specific anti-inflammatory CD8 + T-cell population in atherosclerotic lesions. Atherosclerosis 2019; 285:71-78. [PMID: 31048101 DOI: 10.1016/j.atherosclerosis.2019.04.217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marit van Elsas
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marie Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
47
|
Linden J, Koch-Nolte F, Dahl G. Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annu Rev Immunol 2019; 37:325-347. [PMID: 30676821 DOI: 10.1146/annurev-immunol-051116-052406] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.
Collapse
Affiliation(s)
- Joel Linden
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California 92037, USA; .,Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany;
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136, USA;
| |
Collapse
|